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Can Euclidean Symmetry Help in
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Abstract
In robotic tasks, changes of reference frames typ-
ically do not affect the underlying physical mean-
ing. These are isometric transformations, includ-
ing translations, rotations, and reflections, called
Euclidean group. In this work, we study rein-
forcement learning and planning tasks that have
Euclidean group symmetry. We provide a the-
ory that extends prior work (on symmetry in re-
inforcement learning, planning, and optimal con-
trol) to compact Lie groups and covers them as
special cases, and show examples to explain the
benefits of equivariance to Euclidean symme-
try. We extend the 2D path planning with value-
based planning to continuous MDPs and propose
a pipeline for equivariant sampling-based plan-
ning algorithm with empirical evidence.

1. Introduction
Robot decision-making tasks often involve the movement
of robots in two or three-dimensional Euclidean spaces.
Different reference frames can be used to model the robot,
but they do not change the underlying physical meaning
of the task, indicating potential parameter sharing. Ge-
ometric transformations between reference frames in an
Euclidean space Rd preserve distances and form a set of
isometries, or Euclidean group E(d) of dimension d. This
has been referred to as frame symmetry. In this work, we
aim to answer: Can Euclidean symmetry guarantee bene-
fits in (model-based) RL algorithms? Although the use of
symmetry in decision-making has been studied in model-
free or model-based reinforcement learning, planning, op-
timal control, and other related fields (Ravindran and Barto,
2004; Zinkevich and Balch, 2001; van der Pol et al., 2020a;
Mondal et al., 2020; Wang et al., 2021; Zhao et al., 2022),
they are not unified together. For example, equivariance has
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been studied in navigation on 2D grid, manipulation with
top-down view, Atari games with discrete rotations and re-
flections, and optimal control on manifolds such as SO(3).

To address the aforementioned question, we restrict our at-
tention to the symmetry of changes of reference frame us-
ing Euclidean symmetry groups (and their subgroups), such
as 3D transformations SE(3) or, with reflections, E(3). We
study a set of MDPs such that Euclidean symmetry can
transform in both state and action spaces, naming them
Geometric MDPs, which is motivated by the study of geo-
metric graphs in geometric deep learning (Bronstein et al.,
2021). This type of symmetry is derived from the physical
space and is usually known beforehand, making it useful
in solving MDPs. In addition to the previous definition of
symmetry in MDPs (Ravindran and Barto, 2004; van der
Pol et al., 2020a; Wang et al., 2021; Zhao et al., 2022), the
group transformation is required to be continuous, enabling
the study of quotient space and more equivariance proper-
ties. We present a theoretical framework that studies the
linearized dynamics (LQR) and show that A,B matrices
are G-steerable kernels, using tools from equivariant net-
works and representation theory. The theory covers prior
work such that X is a homogeneous space or even a group
and resumes to previous cases by restrictingG to subgroups
(such as reflections or discrete rotations).

Furthermore, we propose a sampling-based model-based
RL algorithm for Geometric MDPs. It extends the prior
work from planning on 2D grid with value-based planning
to continuous state and action space, which requires the
use of sampling-based planning. We take inspiration from
geometric deep learning (Bronstein et al., 2021) and con-
sider the features in neural networks to transform under
Euclidean symmetry. The algorithm is constructed under
the formalism and is shown to be equivariant. We validate
our algorithm by analyzing a few tasks using the theory and
demonstrating its efficacy through empirical evidence.

Our contributions are summarized as follows. (1) We study
geometric structures under a specific set of MDPs, Geo-
metric MDPs, and focus on Euclidean symmetry. (2) By
analyzing the linearization of Geometric MDPs, our theory
quantitatively shows the reduction of free parameters, sup-
porting the use of Euclidean symmetry. (3) We propose a
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Figure 1. Illustration of equivariance in the proposed sampling-based planning algorithm a0 = plan = s0. The procedure is equivariant
and the learned functions are G-equivariant networks. The sampling procedure produces equivariant trajectories, while the predicted
quantities are G-invariant, such as values and rewards.

sampling-based model-based RL algorithm to integrate Eu-
clidean symmetry, applicable to Geometric MDPs. (4) Our
empirical evidence demonstrates its effectiveness in solv-
ing MDPs on a few continuous control tasks.

2. Problem Statement: Where does symmetry
come from?

We focus on potential sharing in geometric transformations
of MDPs between reference frames, which are isometric
and form the Euclidean symmetry group E(d). These trans-
formations can be written in semi-direct product form as(
Rd,+

)
oG, where G is the stabilizer group of origin and

the action on a vector x has translation part t and rotation-
s/reflections part g, i.e. x 7→ (tg)·x := gx+t. We focus on
the compact group G, and translations can be implemented
by relative position or careful choice of the coordinate sys-
tem (Lang and Weiler, 2020; Brandstetter et al., 2021).

To transform an MDP (to a different reference frame), we
require the MDP has the group G to act on a set X , such as
the state or action space. This extends (Zhao et al., 2022)
on 2D grid Z2 and is analogous to geometric graphs in ge-
ometric deep learning for supervised learning (Bronstein
et al., 2021; Brandstetter et al., 2021). This definition uni-
fies different types of prior work and allows X to be a ho-
mogeneous space, a group, or any other space as long as
equipped with a G-action (van der Pol et al., 2020b; Wang
et al., 2021; Zhao et al., 2022; Teng et al., 2023). The com-
pact group G ≤ GL(d) can be any group, including the
group of proper 3D transformations SO(3) or finite sub-
groups like the icosahedral group or cyclic groups.

To this end, we define a class of MDPs that we can study
their geometric structure and build the theory section upon.
If the group action ·G : G × X → X is also continuous,
there is a rich structure to study. This is not mandatory but
is useful to relate symmetry with the linearized dynamics.

Definition 1 (Geometric MDP) A Geometric MDP

Continuous Discrete

Geometric
MDPs

Non-geometric
MDPs

"I"

"I like" "I like RL"

"I walk" "I walk North"

"I study geometry""I study"

Text
Generation

Finance
Manage

Moving
Particle

2D Path
Planning

Euclidean
Symmetry

Figure 2. Illustration on MDPs with or without underlying geo-
metric structures. The geometric structures underlying MDPs dis-
tinguish the tasks, no matter the underlying space is continuous or
discrete.

(GMDP)M is an MDP with a (compact) symmetry group
G ≤ GL(d) that acts on the state and action space. It is
written as a tuple 〈S,A, P,R, γ,B, G, ρS , ρA〉. The state
and action spaces S,A have (continuous) group actions
that transform them, defined by ρS and ρA.

3. Algorithm: How to Use Symmetry in
Sampling-based Planning?

In this section, we aim to exploit the symmetry in Geo-
metric MDPs G ≤ GL(d), such as rotations and reflec-
tions, for sampling-based planning. We extend prior work
(Zhao et al., 2022) that uses value-based planning on a
discrete state space Z2 and discrete group D4 to continu-
ous case, necessitating sampling-based planning. The idea
is to ensure that the algorithm at = plan(st) produces
same actions up to transformations, i.e., it isG-equivariant:
g · at ≡ g · plan(st) = plan(g · st), shown in Figure 1.
The principle is potentially applicable for MDPs with other
groups.

We use TD-MPC (Hansen et al., 2022) as the backbone
of our implementation and introduce their procedure. The
principle of designing an equivariant sampling-based plan-
ning algorithm does not limit to a particular algorithm.
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Figure 3. Sampled tasks that we use in experiments: (1)
PointMass in 2D, (2) Reacher, (3) PointMass customized
3D version, and (4) PointMass customized 3D version with
multiple particles to control.

Integrating symmetry. The major difference from (Zhao
et al., 2022) is that we additionally need to consider how
the sampling procedure “transforms” under symmetry. The
equivariance in transition model has also been studied in
(Park et al., 2022). There are several components that need
G-equivariance, and we discuss them step-by-step and vi-
sualize in Figure 1.

1. dynamics and reward model. In the definition of
symmetry in Geometric MDPs (and symmetric MDPs
(Ravindran and Barto, 2004; van der Pol et al., 2020b;
Zhao et al., 2022)) in Equation ??, the transition and
reward function are G-invariant. Therefore, in imple-
mentation, the transition network is deterministic and
uses a G-equivariant MLP, and the reward network is
constrained to be G-invariant.

2. value and policy model. The optimal value func-
tion produces a scalar for each state and is G-invariant,
and the optimal policy function isG-equivariant (Ravin-
dran and Barto, 2004). Assuming if we use equiv-
ariant/invariant transition and reward networks in up-
dating our value function T [Vθ] =

∑
aRθ(s,a) +

γ
∑

s′ Pθ(s
′|s,a)Vθ(s′), the learned value network Vθ

will also satisfy the symmetry constraint. Similarly, we
can extract policy from the value network, which is also
equivariant (van der Pol et al., 2020b; Wang et al., 2021;
Zhao et al., 2022).

3. MPC procedure. We consider the equivariance in
MPC procedure in three parts: sample trajec-
tories from the MDP, compute return of them,
and use gradients of loss to update: θ′ =
update(return(sample(s, θ))). We discuss the
equivariance in the next subsection.

4. Evaluation: Sampling-based Planning
In this section, we present the setup and results for our pro-
posed sampling-based planning algorithm: equivariant ver-
sion of TD-MPC.

Tasks. We verify the algorithm on a few selected tasks
from DeepMind Control suite (DMC) and several cus-
tomized ones, visualized in Figure 3. One task is 2D par-
ticle moving in R2, named PointMass. We customize
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Figure 4. Results on Reacher, default PointMass 2D, and
customized 3D PointMass with smaller target.
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Figure 5. Results on a set of customized 3D N -ball PointMass
tasks, with N = 1, 2, 3, 5.

tasks based on it: (1) 3D particle moving in R3 (disabled
gravity), and (2) 3D N -point moving that has several par-
ticles to control simutaneously. The goal is still to move
particle(s) to a target position (the origin). We also ex-
periment two-arm manipulation tasks, Reacher (easy and
hard), where the goal is to move the end-effector to a ran-
dom position in a plane. In Section ?? , we additionally
discuss tasks that Euclidean symmetry do not practically
work better, which is related to the ratio of equivariant fea-
tures discussed in theory.

Experimental setup. We compare against the non-
equivariant version of TD-MPC (Hansen et al., 2022).
Here, we by default make all components equivariant as
described in the algorithm section. In appendix, we include
ablation studies for disabling or enabling each equivari-
ant component. The training procedure follows TD-MPC
(Hansen et al., 2022). We use the state as input and for
equivariant TD-MPC, we divide the orignal hidden dimen-
sion by

√
N where N is the group order to keep the num-

ber of parameters roughly equal to the equivariant and non-
equivariant version. We mostly follow the original hyper-
parameters except for seed_steps. We use 5 random
seeds for each method.

Algorithm setup: equivariance. We use discretized sub-
groups in implementing G-equivariant MLPs with escnn
package (Weiler and Cesa, 2021), as they perform more
stably and For 2D case, we use O(2) subgroups: dihe-
dral groups D4 and D8 (4 or 8 rotation components). For
3D case, we use Icosahedral group and Octahedral group,
which are finite subgroups of SO(3) with order 60 and 24,
respectively.

Results. In Figure 4 and 5, we show the reward curves
in evaluation. Reacher easy and hard are top-down
where the goal is to reach a random 2D position. If we ro-
tate the MDP, the angle between the first and second links
is not affect, i.e. G-invariant. The first joint and the tar-
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get position are transformed under rotation, so we set to ρ1
standard representation (2D rotation matrices). The com-
plete state and action representations are given in Table ??.
The system has O(2) rotation and also reflection symme-
try, and we use D8 and D4 groups. Shown in Figure 4,
D8 outperforms the non-equivariant TD-MPC by notica-
ble margins, especially on hard one. D4 is slightly worse
than D8 but still better than the baseline. With higher order
discrete subgroups, the performance plateaus and does not
worth the additional compute.

The default PointMass 2D version seems easy to solve,
while D8-equivariant version still learns faster. Thus, we
design 3D version of PointMass and use SO(3) sub-
groups to implement 3D equivariant version of TD-MPC,
because the implementation is significantly easier and the
computational cost is lower compared to continuous ver-
sion, which needs to convert between frequency domain
and spatial domain. Figure 5 shows N = 1, 2, 3, 5 balls
in 3D PointMass, and the rightmost figure in Figure 4
shows 1-ball 3D version with smaller target (0.02 com-
pared to 0.03 in N -ball version). We find the Icosahedral
(order 60) equivariant TD-MPC always learns faster and
uses less samples to achieve best rewards. Octahedral (or-
der 24) equivariant version is pretty close and is also mostly
better. The best absolute rewards in 1-ball case is interest-
ingly lower than 2- and 3-ball, which may be caused by
higher possible reward due to 2 or 3 balls that can reach the
goal.

We find TD-MPC is especially sensitive to a hyperparam-
eter seed_steps that controls the number of warmup
trajectories. In contrast, our equivariant version is robust
to it and sometimes learn better with less warmup. We
conjecture that this is related to the end-to-end learning of
all components in the model-based RL algorithm (transi-
tion, reward, policy, value) with task-specific loss (purely
reward-driven). Thus, the efficiency of training all compo-
nents together matters, especially for sparse-reward goal-
reaching tasks, where the equivariant network components
start to shine.
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