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Abstract

With the advent of deep learning, progressively larger neural networks have been
designed to solve complex tasks. We take advantage of these capacity-rich models
to lower the cost of inference by exploiting computation in superposition. To
reduce the computational burden per input, we propose Multiple-Input-Multiple-
Output Neural Networks (MIMONets) capable of handling many inputs at once.
MIMONets augment various deep neural network architectures with variable bind-
ing mechanisms to represent an arbitrary number of inputs in a compositional data
structure via fixed-width distributed representations. Accordingly, MIMONets
adapt nonlinear neural transformations to process the data structure holistically,
leading to a speedup nearly proportional to the number of superposed input items
in the data structure. After processing in superposition, an unbinding mechanism
recovers each transformed input of interest. MIMONets also provide a dynamic
trade-off between accuracy and throughput by an instantaneous on-demand switch-
ing between a set of accuracy-throughput operating points, yet within a single
set of fixed parameters. We apply the concept of MIMONets to both CNN and
Transformer architectures resulting in MIMOConv and MIMOFormer, respectively.
Empirical evaluations show that MIMOConv achieves ≈ 2 – 4× speedup at an
accuracy delta within [+0.68,−3.18]% compared to WideResNet CNNs on CI-
FAR10 and CIFAR100. Similarly, MIMOFormer can handle 2–4 inputs at once
while maintaining a high average accuracy within a [−1.07,−3.43]% delta on the
long range arena benchmark. Finally, we provide mathematical bounds on the in-
terference between superposition channels in MIMOFormer. Our code is available
at https://github.com/IBM/multiple-input-multiple-output-nets.

1 Introduction

Driven by the successes of deep learning in image and natural language processing tasks, increasingly
large neural network models have been developed to reach state-of-the-art performance [1–4]. These
large models, however, increase computational complexity in terms of operation count for every event
of input processing. One viable option to reduce the computational cost of processing per input is
to create a compositional data structure where a variable number of input items (i.e., values) can be
bound to corresponding protection keys, creating key-value pairs that can coexist and be processed
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Figure 1: MIMONets simultaneously pass multiple inputs through a nonlinear function, e.g., a
deep convolutional network (on top) or a Transformer (on bottom). Input samples are bound with
high-dimensional keys to project the samples into quasi-orthogonal subspaces. The results of the
individual samples are retrieved at the end of the network by unbinding with corresponding keys.

concurrently. This variable-sized data structure can be represented by fixed-width distributed rep-
resentations in vector-symbolic architectures (VSAs) [5–7]. In VSAs, the composition of different
items in the data structure is based on functional compositionality (i.e., key-value binding), which
yields a dimensionality-preserving distributed representation, rather than concatenative composi-
tionality. Interestingly, the resulting fixed-width distributed data structure can be transformed by a
one-time application of a function, whereby all input items are jointly transformed, leading to holistic
transformation or computation in superposition [8–10]. This concept of computation in superposition
can reduce the effective number of operations per input by a factor of the number of input items in the
data structure, because the function is applied to the data structure holistically without decomposing
the constituent items for individual transformations. However, processing the VSA data structure via
computation in superposition has so far been limited to linear maps [8–10].

Motivated by these observations, we make the following contributions:

(1) We introduce a principled and transparent approach to Multiple-Input-Multiple-Output Neural
Networks (MIMONets) based on VSA, enabling computation in superposition for highly nonlinear
transformations in neural networks (Section 2). The MIMONets concept can be applied to various
architectures, embracing the rich capacity provided by increasingly large models. The resulting
network can handle many inputs at once, thus reducing the computational cost per input. We describe
and overcome the challenges of computation in superposition, which originates from nonlinear
interference of inputs in separate superposition channels.

(2) We propose MIMOConv, a realization of MIMONets for deep convolutional neural network
(CNN) architectures (Section 3). We provide several strategies for mitigating interference between
different superposition channels, including a novel locality-preserving binding operation (PWHRR)
and isometry-inducing regularization. Empirical evaluations on CIFAR10 and CIFAR100 show that a
MIMOConv built on a WideResNet-28-10 [11] can process concurrently two inputs in superposition
(≈ 2× speedup) even with a slightly higher accuracy (0.11–0.68% gain), and four inputs (≈ 4×
speedup) with a marginal drop (1.24–3.18%) (see Section 5.1).

(3) We further extend the concept of MIMONets to Transformer architectures, where the calculation
of attention scores poses additional challenges for the computation in superposition paradigm. To this
end, we propose MIMOFormer, which relies on a 2D grid binding scheme for computing attention
in superposition (Section 4). We derive probabilistic tail bounds on the distortion caused by inter-
channel interference and show that our method converges to noise-free attention in the limit of high
dimension. Our method succeeds empirically (≥ 96.52% accuracy) at synthetic sequence modelling
tasks [12], while previous work [13] fails (≤ 20.04%). We also provide evaluations on the long
range arena (LRA) dataset [14] in Section 5.2 using a MIMOFormer that is based on the Performer
architecture [15]. Compared to the Performer, MIMOFormer maintains a high average accuracy with
a marginal drop of 1.07% and 3.43% when handling two and four inputs at once, respectively.

(4) MIMONets allow a dynamic trade-off at inference time between accuracy and speed, i.e., they
offer an instantaneous on-demand switching between accuracy-throughput operating points using a
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single set of fixed parameters. Experimental results in Section 5.1 show that a dynamic MIMOConv
can seamlessly operate at various modes (≈ 1 – 4× speedup) while maintaining a high accuracy
compared to the best static models (≤ 1.82% drop).

2 MIMONets enabling Computation in Superposition

The central idea behind MIMONets (see Figure 1) is to simultaneously pass multiple inputs as a
superposition through a nonlinear function fθ parameterized by neural network weights θ. We isolate
the individual inputs into separate protected channels by binding them with protection keys resulting
in a key-value data structure [5–7].

Concept. Assuming two inputs (x(1) and x(2)), which can be generic embeddings either from
images or natural language, we define a unique high-dimensional key (a(1) and a(2)) for each protected
channel, drawn randomly at initialization. Owing to the Blessing of Dimensionality, randomly drawn
high-dimensional vectors are quasi-orthogonal with high probability (see Appendix A). Consequently,
binding (⊙) the inputs with these keys yields quasi-orthogonal key-value pairs (x(1) ⊙ a(1) and
x(2) ⊙ a(2)), which enables one to superpose the pairs with low interference:

s = a(1) ⊙ x(1) + a(2) ⊙ x(2). (1)

As discussed in Appendix A, s admits a noisy retrieval of x(1) and x(2) through unbinding:

x̂(1) = a(1) ⃝∗ s = a(1) ⃝∗ a(1) ⊙ x(1) + a(1) ⃝∗ a(2) ⊙ x(2) = x(1) + noise (2)

To accelerate computing, inspired by the above-mentioned noisy retrieval, we pass the superposition
s through a nonlinear function fθ with parameters θ, such as a neural network, before retrieval. The
quasi-orthogonality of the bound inputs allows processing each in a separate protected subspace—all
with a single function call. To be able to recover the first processed sample fθ(x

(1)) from fθ(s), we
aim to find an unbinding key ã(1) for which

ã(1) ⃝∗ fθ(s) ≈ ã(1) ⃝∗ fθ

(
a(1) ⊙ x(1)

)
+ ã(1) ⃝∗ fθ

(
a(2) ⊙ x(2)

)
(3)

≈ fθ

(
x(1)

)
+ ã(1) ⃝∗ fθ

(
a(2) ⊙ x(2)

)
. (4)

The first approximation holds exact for linear fθ. As discussed in Section 3, a nonlinear fθ can still
be encouraged to allow such an approximation through appropriate weight regularization techniques
and well-suited activation functions. Further, by optimizing over unbinding keys (ã(i)), the second
estimation (Eq. (4)) can be achieved. Consequently, matching binding and unbinding keys (a(i) and
ã(i)) that confirm the approximation (Eq. (3) and (4)) set up a protected channel through the nonlinear
function fθ(s). Appendix A lists the design choices of the adopted VSA, which define the operations
of key-value binding and unbinding, for all MIMONet variants presented in this work. In the case
of image embeddings, we use circular convolution [6] for binding and Matrix Binding of Additive
Terms (MBAT) [16] for unbinding. In the case of sequence tokens, we bind and unbind using the
Hadamard product [17]. Binding and unbinding keys are always data-independent, i.e., they depend
only on the index of the protected channel. See [18] for alternative binding and unbinding options.

Dynamic Inference. Setting up N protected channels through a neural network fθ gives almost a
speedup of N× due to most computations taking place in superposition. However, as is explored
empirically, increasing N adds inter-channel noise leading to a decrease in predictive accuracy. If a
fixed trade-off is unsatisfactory, one can build a dynamic model capable of running a superposition of
one up to N different inputs. By inserting the same input into multiple channels and averaging the
output, one effectively forms an in-network ensemble, similar to [19,20]. Using all protected channels
for different inputs leads to a fast but less accurate model, whereas using all protected channels
for the same input yields a slower but accurate ensemble model. By partitioning the superposition
channels on demand, arbitrary configurations in between may be reached. Note that our method can
instantaneously adapt to the current computational demand, without loading different model weights
from the main memory. To perform across slow and fast configurations, the model should randomly
switch between them during training. See Appendix A for a more detailed explanation.
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Figure 2: MIMOConv configured with N=3 channels. The input images are passed individually
through the first convolutional layer before binding each feature value with a channel-specific
high-dimensional key. The key-value pairs are superposed yielding a dimensionality-preserving
composition and passed through the rest of the CNN layers. The output is unbound with corresponding
keys, and the unbound representations are classified separately with a shared fully-connected layer.

3 MIMOConv

This section presents how the MIMONets concept, introduced in Section 2, can be applied to construct
a multiple-input-multiple-output CNN (MIMOConv) capable of simultaneously processing multiple
images in superposition. The MIMOConv architecture is shown in Figure 2. Multiple input samples
(N ) are passed through the first convolutional layer, bound with a unique high-dimensional key based
on Holographic Reduced Representations (HRR) [6], and superposed by element-wise addition. After
passing the superposed tensors through the network’s main CNN layers, we obtain a combined feature
vector with information on all inputs. By unbinding with separately learned keys based on MBAT [16],
which amounts to a matrix multiplication, we extract the individual processed information, which is
then passed through a final fully-connected layer to produce logits for classification. In the following,
we introduce our three main contributions that lead to a highly accurate MIMOConv.

Augmenting CNNs with locality-preserving variable bindings. We embrace a principled and
transparent binding mechanism from HRR. Accordingly, binding is performed using circular con-
volution with a binding key of dimension D, drawn from an i.i.d. Gaussian distribution with zero
mean and 1/D variance. Instead of convolving the flattened image tensor, we repeatedly apply
circular convolution between the binding key and each pixel volume spanning across the feature
maps (D×1×1). This binding operation, which we call position-wise HRR (PWHRR), is translation
equivariant and maintains locality, an essential property for subsequent layers with limited receptive
fields. More concretely, binding and unbinding are performed as

(a(k) ⊙ x(k)):,w,h = a(k) ∗ x(k)
:,w,h (5)

(ã(k) ⃝∗ h):,w,h = ã(k) · h:,w,h, (6)

with image tensors x(k) ∈ RD×W×H , hidden representation h ∈ RD′×W×H , binding key a(k) ∈ RD

and unbinding key ã(k) ∈ RD′×D′
. Here, D,D′,W, and H denote the hidden dimension at binding,

the hidden dimension at unbinding (generally differs from D), image width, and image height,
respectively. ∗ is the circular convolution, · the matrix multiplication, and k indexes the superposition
channel. Unbinding is applied after the global (average) pooling to reduce computational costs. The
binding keys can be either learned or fixed during training (see ablation study in Appendix E).

Embracing high dimensional embeddings. According to the Blessing of Dimensionality (see
Appendix A), random vectors quickly become quasi-orthogonal as their dimension increases. To
reduce interference between protected channels, we increase the number of feature maps by adopting
Wide Residual Networks [11], the most commonly used CNN architecture to achieve state-of-the-art
accuracy on CIFAR100 [21]. The input tensors are passed individually through the first convolutional
layer before being superposed in a suitably high dimensional space. We set the number of feature maps
after the first convolutional layer to D=64. This is 4× more than the standard Wide-ResNet-28 [11],
which results in improved training stability at a marginally higher compute cost (see Section 5.1).
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Encouraging isometric layers. We aim to preserve the quasi-orthogonality of our protected
channels as the superposition is passed through many network layers. To that end, residual connections
are used and each subfunction gθ of type (strided) spatial convolution or activation function is made
approximately inner-product preserving, i.e.,

⟨gθ(x), gθ(y)⟩ ≈ ⟨x, y⟩. (7)

Inspired by [22], we deploy a regularization to the CNN weights and use a parametric ReLU [23]
activation function, a learnable affine combination between identity and ReLU. Those adjustments
lead to a near-isometric network. The regularization for the individual CNN layers is determined by

L(W ) =
γ

2

∥∥Conv(W,W )− δCo
∥∥2
F

where δCo

:,:,j,l=ICo×Co
·1

j,l=⌊k2 ⌋
, (8)

L(WT ) =
γ

2

∥∥Conv(WT ,WT )− δCi
∥∥2
F

where δCi

:,:,j,l=ICi×Ci
·1

j,l=⌊k2 ⌋
, (9)

with γ as hyperparameter. We use L(W ) if Ci > Co, else L(WT ). See Appendix B for more details.

Figure 3: MIMOFormer layer applying compu-
tation in superposition to single-head FAVOR+S
attention and to the MLP. This example passes four
channels (N ·M=2·2=4) to the FAVOR+S attention
(see Eq. (19)). The individual outputs are retrieved
by unbinding after the MLP. The skip connection
superposes the individual inputs for alignment, us-
ing the same protection keys as in unbinding.

4 MIMOFormer

This section presents MIMOFormer, which ap-
plies the principles of computation in superposi-
tion to dot-product self-attention [24]. Figure 3
shows a MIMOFormer layer with four protected
channels, consisting of a single-head2 attention
block, a concatenation, a linear layer, an MLP,
and a skip connection.

Merely superposing protected attention keys3

and queries does not yield the desired result.
As discussed in Appendix F, with scalar atten-
tion scores between pairs of tokens, vanilla dot-
product attention irreversibly combines attention
scores of separate protected channels, effectively
blurring the attention weights. By building in-
stead on linear Transformers [15] [25], attention
scores are not collapsed to scalars, thus enabling
computation in superposition.

Despite being compatible with other linear trans-
formers (such as DPFP [25]), for concreteness
we discuss changes to the Performer’s FAVOR+
attention block [15]. Enabling computation in
superposition, we label the block as FAVOR+S.

Given attention keys (kj)
L
j=1, queries (qi)

L
i=1,

and values (vj)
L
j=1, FAVOR+ estimates dot-

product attention at sequence index i through

oi =

L∑
j=1

vj
exp
(
⟨kj , qi⟩/

√
D
)

∑L
l=1 exp

(
⟨kl, qi⟩/

√
D
) ≈ 1

Bi

[ L∑
j=1

vjϕ(kj)
T

]
︸ ︷︷ ︸

A

× ϕ(qi), (10)

where ϕ : RD → RR
+ approximates the softmax kernel exp(⟨kj , qi⟩/

√
D) as an explicit inner product.

Since computing ϕ has a computational complexity of O(DR), the construction of A ∈ RD×R takes
O(LDR). Equally, multiplying A× ϕ(qi) ∀i takes O(LDR). Thus, FAVOR+ breaks the quadratic
dependence on sequence length L of attention. The denominator Bi is discussed in Appendix C.

2The application to multi-head attention is straightforward; empirical results are shown in Section 5.2.
3Protection keys are denoted by the letter a and attention keys by the letter k to distinguish between them.
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Our extension, FAVOR+S, computes attention in superposition, yielding a square-root speedup in the
number of protected channels. It encodes them in an M ×N grid, distributing the computational
burden among the setup of the value-key matrix A and its product with ϕ(qi). Importantly, in the
limit of high dimensional projections D our mechanism converges to exact self-attention, completely
separating the protected channels from one another. In the following, we assume the token values vj ,
keys kj , and queries qj to be in protected subspaces:

v
(m,n)
j := v

(m,n)
j ⊙ a(m,n), k

(m,n)
j := k

(m,n)

j ⊙ a(m,n), q
(m,n)
j := q

(m,n)
j ⊙ a(m,n), (11)

where a(m,n) are i.i.d. bipolar vectors of Rademachers [17] and (m,n) denotes a channel.

MIMOFormer benefits from the low time complexity (O(D)) of the Hadamard product, especially
since binding and unbinding are performed in every MIMOFormer layer. Our derivations rely on two
estimates:

ϕ(k)Tϕ(q)
P
≈ exp

(
⟨k, q⟩/

√
D
)

⟨
N∑

w=1

k
(u,w)
j ,

M∑
t=1

q
(t,n)
i ⟩

H
≈ ⟨k(u,n)j , q

(u,n)
i ⟩︸ ︷︷ ︸

intended signal

(12)

The approximation P , which improves with increasing R = dim(ϕ(qi)), is due to FAVOR+ and is
quantified in [15]. On the other hand, the approximation H follows from:
Inter-channel distortion. The probability that inter-channel attention distorts the intended signal of
the dot-product by a factor outside [1− α, 1 + α] has various upper bounds, most notably decaying

exponentially w.r.t. Dα2 cos2(∡(k
(u,n)

j , q
(u,n)
i ))/(NM − 1)2. See Appendix D for the full theorem.

4.1 FAVOR+S: Computing self-attention in superposition

We first discuss separately how to use a one-dimensional grid to carry out either the multiplication
(×) or the construction of A in superposition. Finally, the integration into a 2D grid will be shown.

Placing multiple queries in superposition. We set up channels 1, . . . ,M by simultaneously
generating a superposition in the construction of As and of the queries to be applied. To avoid
inter-channel attention we superpose value-key tensor products, i.e., we do not construct tensor
products between superposed values and superposed keys:

Si =

[ L∑
j=1

M∑
u=1

v
(u)
j ϕ(k

(u)
j )T

]
︸ ︷︷ ︸

As

× ϕ(

M∑
t=1

q
(t)
i ) =

L∑
j=1

M∑
u=1

v
(u)
j

(
ϕ(k

(u)
j )T ϕ(

M∑
t=1

q
(t)
i )

)
(13)

P
≈

L∑
j=1

M∑
u=1

v
(u)
j exp

(
⟨k(u)j ,

M∑
t=1

q
(t)
i ⟩/

√
D
) H
≈

L∑
j=1

M∑
u=1

v
(u)
j exp

(
⟨k(u)j , q

(u)
i ⟩/

√
D
)

(14)

=

M∑
u=1

L∑
j=1

v
(u)
j exp

(
⟨k(u)j , q

(u)
i ⟩/

√
D
)

︸ ︷︷ ︸
unnormalized oi of channel u

. (15)

We obtain a superposition of bound output values; hence, the cost of computing A× ϕ(qi) for all i
is amortized across channels. However, the construction complexity of As is increased M -fold to
O(LDR ·M), hence the complexity per protected channel remains at O(LDR).

Constructing value-key tensor products in superposition. Next, we demonstrate a value-key
tensor product (As) shared across all channels, but with a mere O(LD(R+N)) setup complexity.
In O(LND) we compute

∑N
q=1 v

(q)
j and

∑N
w=1 k

(w)
j for all j. These are then (re)used to build As.

S
(n)
i =

[ L∑
j=1

( N∑
q=1

v
(q)
j

)
ϕ(

N∑
w=1

k
(w)
j )T

]
︸ ︷︷ ︸

As

× ϕ(q
(n)
i ) =

L∑
j=1

N∑
q=1

v
(q)
j

(
ϕ(

N∑
w=1

k
(w)
j )Tϕ(q

(n)
i )

)
(16)
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P
≈

L∑
j=1

N∑
q=1

v
(q)
j exp

(
⟨

N∑
w=1

k
(w)
j , q

(n)
i ⟩/

√
D
) H
≈

L∑
j=1

N∑
q=1

v
(q)
j exp

(
⟨k(n)j , q

(n)
i ⟩/

√
D
)

(17)

=

L∑
j=1

v
(n)
j exp

(
⟨k(n)j , q

(n)
i ⟩/

√
D
)

︸ ︷︷ ︸
unnormalized oi of channel n

+
∑
q ̸=n

L∑
j=1

v
(q)
j exp

(
⟨k(n)j , q

(n)
i ⟩/

√
D
)
.︸ ︷︷ ︸

noise in separate protected subspace

(18)

The output contains the nth channel together with noise. The operation As × ϕ(q
(n)
i ), which takes

O(LDR), must be repeated N times to produce outputs for all N channels, causing a bottleneck.

Simultaneous superposition of queries and value-key tensor products using a 2D grid. Finally,
we combine the two previously described approaches to encode the superposition channels in a 2D
grid of size N ×M . We multiply a constant matrix (As) with features derived from a superposition
of queries to get the superposition vector S(n)

i

S
(n)
i =

[ L∑
j=1

M∑
u=1

(
N∑
q=1

v
(u,q)
j

)
ϕ(

N∑
w=1

k
(u,w)
j )T

]
︸ ︷︷ ︸

construct As in O(LMD(R+N))

× ϕ(

M∑
t=1

q
(t,n)
i ).︸ ︷︷ ︸

construct ∀i,n in O(LND(R+M))

(19)

Computing the multiplication × ∀i, n takes O(LNDR). If we set M=N , we can evaluate S(n)
i ∀i, n

using only O(LNDR + LN2D) instead of the usual O(LDR · N2). Thus, one may achieve a
speedup of O(min(

√
N2, R)) compared to FAVOR+. Since R is normally in the hundreds [15], we

can assume improvements of O(
√
N2) for reasonably large N2 = M ·N . Eq. (19) simplifies to:

S
(n)
i =

∑
j,u,q

v
(u,q)
j

(
ϕ(
∑
w

k
(u,w)
j )Tϕ(

∑
t

q
(t,n)
i )

) P
≈
∑
j,u,q

v
(u,q)
j exp

( ⟨
∑
w
k
(u,w)
j ,

∑
t
q
(t,n)
i ⟩

√
D

)
(20)

H
≈

L∑
j=1

M∑
u=1

N∑
q=1

v
(u,q)
j exp

(
⟨k(u,n)j , q

(u,n)
i ⟩/

√
D
)

(21)

=

M∑
u=1

L∑
j=1

v
(u,n)
j exp

( ⟨k(u,n)j , q
(u,n)
i ⟩

√
D

)
︸ ︷︷ ︸

unnormalized oi of channel (u,n)

+
∑
q ̸=n

M∑
u=1

L∑
j=1

v
(u,q)
j exp

( ⟨k(u,n)j , q
(u,n)
i ⟩

√
D

)
.︸ ︷︷ ︸

noise in separate protected subspace

(22)

4.2 Integrating FAVOR+S into MIMOFormer

As is apparent in Eq. (19), the query superposition is along a different axis (M ) than the key and
value superpositions (N ). The output of attention, however, is only superposed along a single axis
(M ). To be able to set up superpositions along both axes (M and N ) at the next layer, we require all
channels (i.e., keys, queries, and values) in separation, i.e., not superposed, at the interface between
MIMOFormer layers. We present two variants of MIMOFormer with different speedups.

The first computes in superposition exclusively during the attention mechanism. The individual tokens
of the channel (n,m) are directly retrieved from S

(n)
i by unbinding with the key ã(n,m) = a(n,m),

and the remaining computational steps within FAVOR+S are performed separately.

The second (and faster) MIMOFormer instance additionally performs the concatenation, the linear
layer, as well as the MLP in superposition (shown in Figure 3). Unlike in the first variant, the skip
connection around the attention block must account for the introduced superposition. To allow a
potential embedding dimension mismatch, we instantiate two different sets of randomly drawn bipolar
keys: one for the skip connection and post-MLP unbinding, and one for FAVOR+S binding. All keys
are frozen during training; it is up to the trainable weights in the linear layer after concatenation to
find the relationship between the binding and unbinding keys.

The function ϕ in the self-attention block consists of an R=256 dimensional projection and a ReLU
activation [15]. Appendix C provides theoretical justification for using ReLU in ϕ and its benefits for
MIMOFormer. Empirically, ReLU shows better numerical stability than unbiased softmax FAVOR+.
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5 Empirical Results

This section evaluates the proposed MIMONets on various model architectures and benchmarks.
Appendix E and Appendix F describe the experimental setup for MIMOConv and MIMONets,
respectively. All experiments are repeated five times with a different random seed. We report the
mean and standard deviations of accuracy to account for variability in training.

5.1 MIMOConv

CIFAR10 and CIFAR100. Our main baseline, which we adapt to MIMOConv, is a reproduced
WideResNet-28-10 [11], i.e., a 28-layer CNN with the number of feature maps of each convolutional
layer enlarged by 10×. Moreover, as a stronger baseline, we include the isometry regularization in
the training of WideResNet-28-10, and call the resulting network WideIsoNet-28-10. Both baselines
demand 5.251 GMACs (Giga multiply-accumulate operations) per sample. MIMOConv’s inference
complexity per sample is 5.335GMACs for N=1, 2.667GMACs for N=2, and 1.334GMACs for
N=4; hence, we get a ≈N× speedup despite not accelerating the first and last layer. See Appendix E.

Table 1 shows the accuracy of the static MIMOConv, which is exclusively trained to support either 1,
2, or 4 channels. The MIMOConv with one channel (N=1) outperforms both baselines, which may
be attributed to regularizing effects of the key-value binding. MIMOConv with N=2 channels still
outperforms WideResNet-28-10, while reducing the inference complexity by 2×. The complexity
can be further reduced by increasing the number of superpositions to N=4 at a slight accuracy drop
of ≤3.18%, compared to WideResNet-28-10.

Next, we evaluate the dynamic partitioning of the superposition channels to select a speed-accuracy
operating point instantaneously, which is a main feature of our approach and sets it apart from other
static approaches that opt for a fixed performance point like model downsizing, quantization aware
training, and pruning (see Appendix A for a discussion). We set up a model with four channels, but
evaluate its performance in different configurations: a fast (4 inputs/pass), a normal (2 inputs/pass),
and a slow mode (1 input/pass). The fast mode maps each input to one channel; the medium mode
distributes two inputs over pairs of channels; and the slow mode uses all channels for the same input.
The models are trained on 80% of the batches in fast mode and on 20% of the batches in slow mode.
Appendix E provides more details on the trade-off between fast and slow mode training. As Table 1
shows, a single dynamic model can seamlessly switch between operation points while maintaining a
high accuracy compared to the static models (≤1.82% drop).

Table 1: Average accuracy (%) of WideResNet-28-10 variants and our MIMOConv. Static models
are trained to process N inputs in one pass, speeding up inference by N×. Dynamic models are
trained with a variable number of inputs (N=1–4), and can process a variable number of inputs per
pass. We report the average accuracy ± the standard deviation over five runs with different seeds.

CIFAR10 CIFAR100

# inputs/pass 1 2 4 1 2 4

WideResNet-28-10 96.82±0.06 n.a. n.a. 81.62±0.07 n.a. n.a.
WideIsoNet-28-10 97.31±0.11 n.a. n.a. 82.38±0.20 n.a. n.a.

MIMOConv static (N=1) 97.49±0.08 n.a. n.a. 83.19±0.17 n.a. n.a.
MIMOConv static (N=2) n.a. 96.93±0.13 n.a. n.a. 82.30±0.19 n.a.
MIMOConv static (N=4) n.a. n.a. 95.58±0.23 n.a. n.a. 78.44±0.30

MIMOConv dynamic (N=1–4) 97.13±0.11 96.41±0.14 95.43±0.07 82.52±0.09 80.48±0.08 78.19±0.10

The detailed ablation study in Appendix E makes the following findings: (1) isometry regularization
improves accuracy for any number of channels; (2) training MIMOConv for more epochs closes the
performance gap to the single-input baseline; (3) an appropriate number of feature maps (32 or 64) in
the first layer stabilizes training; and (4) the binding keys can be frozen during training without loss
(whereas unbinding keys are never frozen).
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MNIST and SVHN. Figure 4 compares MIMO-
Conv with DataMux [13] on the MNIST dataset.
Even with a trivial downsizing for fair compar-
ison from a 28-layer very-wide (10×) ResNet
to a 10-layer narrow (1×) network, MIMOConv
scales much better to high superposition chan-
nels (N ) than DataMUX does. Indeed, our model
shows an accuracy of 80.4% against their 52.9%
in case of N=16 superposition channels (high-
est number of channels reported by DataMUX
for vision tasks), despite being computationally
cheaper (0.47MMAC/s vs. 0.65MMAC/s). Also,
DataMux’s binding overhead results in a mere
1.35× reduction in MACs compared to our 10.9×
as N goes from 1 to 16. Ergo, our method scales
better in accuracy and throughput as N increases.

1 2 4 8 16
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DataMUX: CNN+Nonlinear (8x)

Figure 4: Classification accuracy (%) on MNIST
for downsized model.

Finally, we tested MIMOConv on the SVHN dataset. Despite limited hyperparameter tuning,
MIMOConv achieves a high accuracy of 97.17% (N=1), and can maintain its performance with
larger superpositions (97.05% and 96.84% for N=2 and N=4, respectively).

5.2 MIMOFormer

LRA. We evaluate MIMOFormer on five tasks from LRA [14], and compare against the vanilla
Transformer [24] and the Performer [15] using FAVOR+ attention with ReLU projection. Moreover,
we also consider wide Transformer variants [26], consisting of only one layer but as many heads as
their deep counterparts. Task-specific architectures and training hyperparameters are kept the same
for the Performer and the MIMOFormer (see Appendix F).

Table 2: Test accuracy (%) on the long range arena (LRA). MIMOFormer uses an equal number of
query superpositions (M ) and value-key superpositions (N ), i.e., N=M . Computation in superposi-
tion is performed either in attention only (att.) or in both attention and MLP (att.+MLP). L is the
number of layers, H the number of heads, and ∗ indicates curriculum learning.

ListOps Text Retrieval Image Pathfinder Avg.

Deep models L=6, H=8 L=6, H=8 L=4, H=4 L=3, H=4 L=4, H=8

Transformer [24] 36.37 64.27 57.46 42.44 71.40 53.39
Performer [15] 18.01 65.40 53.82 42.77 77.05 51.41
Performer (reproduced) 38.94±0.23 65.70±0.31 81.58±0.18 40.14±0.86 73.82±0.78 60.04±0.47

MIMOFormer (N=2, att.) 38.08±0.21 65.00±0.28 79.37±0.81 38.21±0.63 72.36±0.54 58.61±0.49

MIMOFormer (N=2, att.+MLP) 37.65±0.33 64.39±0.22 76.02±0.27 33.85±0.55 67.98±0.47 55.98±0.37

MIMOFormer (N=4, att.) 37.22±0.33 64.59±0.14 60.99±9.06 28.16±0.08 55.50±4.95 49.29±2.91

MIMOFormer (N=4, att.)∗ 37.64±0.73 64.46±0.15 74.38±0.82 30.52±0.77 67.10±0.45 54.82±0.58

MIMOFormer (N=4, att.+MLP) 17.74±0.63 60.71±5.14 72.20±0.28 24.01±0.47 50.33±0.16 45.00±1.34

Wide models L=1, H=48 L=1, H=48 L=1, H=16 L=1, H=12 L=1, H=32

Performer (reproduced) 39.40±0.51 65.73±0.32 83.67±0.25 41.67±0.44 74.11±0.33 60.93±0.37

MIMOFormer (N=2, att.) 38.90±0.53 65.39±0.18 81.27±0.28 40.25±0.21 73.51±0.23 59.86±0.29

MIMOFormer (N=2, att.+MLP) 37.59±0.17 64.64±0.25 78.30±0.32 36.69±0.76 68.22±0.18 57.09±0.34

MIMOFormer (N=4, att.) 37.71±0.24 64.22±0.14 74.99±0.36 35.43±0.60 69.52±0.40 56.37±0.35

MIMOFormer (N=4, att.)∗ 37.68±0.36 64.56±0.25 76.37±0.50 35.53±0.48 73.37±0.22 57.50±0.36

MIMOFormer (N=4, att.+MLP) 18.52±0.98 63.53±0.12 74.30±0.26 26.54±0.28 56.33±0.17 47.84±0.36

Owing to an improved training setup, our replicated deep and wide Performer baselines substantially
outperform the results reported in [14] (see Table 2). Moreover, MIMOFormer enables accurate
computation in superposition for both deep and wide attention models. The performance drop is less
pronounced in wide models (only 1.07% drop compared to Performer with N=2, att.), which may be
attributed to the larger number of heads, increasing the effective dimension (Dtot = H ·Dhead).

When computing both attention and the MLP in superposition (att.+MLP), we observe better scaling
(in N ) for wide models. Also, MIMOFormer reduces the gap to the baseline as the number of epochs
increases (see Appendix F).
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To stabilize training in the case of N=4, we implemented a curriculum training procedure where the
number of superpositions is reduced to N ’=N/2 during a warmup phase (1/6th of the training steps),
improving the average accuracy of MIMOFormer in both wide and deep models.

Comparing against a reproduced DataMUX [13], MIMOFormer (att.) outperforms it on ListOps
(38.08% vs. 30.54% accuracy) when using models of similar size and N=2, see Appendix F.

Table 3: Accuracy (%) on synthetic sequence modelling.

Architecture Attention Associative
recall [12]

Induction
head [12]

Transformer Softmax 98.48±1.87 100±0.0

Performer FAVOR+ 96.32±6.26 31.58±33.67

MIMOFormer (N=2, att.) FAVOR+ 96.52±2.79 99.40±0.13

MIMOFormer (N=2, att.) DPFP [25] 93.64±12.66 98.56±0.86

DataMUX (N=2) [13] Softmax 20.04±1.72 6.06±2.24

Synthetic sequence modeling. Table 3
reports the accuracy on two synthetic
sequence modeling tasks, which Trans-
former alternatives such as S4 [27] have
difficulties solving [12]. On these more
nuanced NLP tasks, the accuracy of Data-
MUX [13] drops to 20.04% and 6.06%
for N=2 despite significant efforts in
training, while MIMOFormer, at a score
of 96.52% and 99.40% respectively, succeeds. We attribute this difference in performance to attention
score blurring in DataMux, discussed in Appendix F. Contrastingly, our method converges to exact
attention without blurring. It is versatile and can be adjusted to other linear Transformers such as
DPFP [25], achieving a score of 93.64% and 98.56%.

6 Related Work

So far, superposition principles have been applied in order to store the weights of multiple models in
a single neural network [28–30], to circumvent catastrophic forgetting in continual learning [31, 32],
and to render symbolic reasoning tractable [33]. To address privacy concerns when running remote
inference, single inputs were bound with random channels to implement pseudo-encryption [34].
Recently in [35], HRR was used to define an unconventional version of self-attention, whose attention
scores are processed to a diagonal matrix. The value vectors are scaled according to their importance
in the sequence instead of being combined in a weighted sum. In contrast to us, none of these works
superpose multiple inputs into a data structure to speed up computation.

In [19, 20], an ensemble of CNN models was fit into one network. However, by only broadcasting
a single input over the channels and by averaging all the outputs, this approach collapses to a
single-input-single-output (SISO) network. On the contrary, we explore using protected channels for
different inputs at inference, resulting in an actual multiple-input-multiple-output (MIMO) network.

There has also been a line of work to accelerate Transformers using inputs in superposition [13] [36].
DataMux [13] claims to retain high performance for language understanding tasks, even when using
up to 40 inputs in superposition. However, none of the reported tasks require attention layers at
all [37]. In Section 5.2 we show failure of their method when actual attention is required (see also
Appendix F). MUX-PLMs [36] improves on DataMux with contextual binding and replaces token
prefixes with unbinding keys, but does not address the blurry attention mechanism. In contrast to
DataMUX and MUX-PLMs, our work approximates true attention and our theoretical derivations
show convergence to actual dot-product attention as the dimension of attention projections increases,
giving us an even stronger case for applicability to large language models.

7 Conclusion

We present MIMONets that simultaneously process multiple inputs by performing computation in
superposition. MIMONets bind arbitrary inputs with high-dimensional keys, which projects them
to orthogonal subspaces that, together with near-isometric subfunctions, guarantee low interference
through all nonlinear layers. Unbinding with (learned) keys can safely retrieve information on
individual channels. We provide two MIMONets instances, MIMOConv and MIMOFormer, that
show the effectiveness of computation in superposition through two dominant operations in neural
network architectures: convolution and attention. Further investigations could explore the MIMO-
capability of architectures that contain additional nonlinearities (e.g., max-pooling) and use different
input modalities. MIMONets could be suitable candidates to accelerate dynamically and on-demand
the inference of foundation models [38].
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superposition method for text classification,” Neural Networks, vol. 161, pp. 418–436, 2023.

[33] M. Hersche, M. Zeqiri, L. Benini, A. Sebastian, and A. Rahimi, “A neuro-vector-symbolic
architecture for solving Raven’s progressive matrices,” Nature Machine Intelligence, vol. 5,
no. 4, pp. 363–375, 2023.

[34] M. M. Alam, E. Raff, T. Oates, and J. Holt, “Deploying convolutional networks on untrusted
platforms using 2D holographic reduced representations,” in International Conference on
Machine Learning (ICML). PMLR, 2022, pp. 367–393.

[35] ——, “Recasting self-attention with holographic reduced representations,” in Proceedings
of 8TH SIGKDD International Workshop on Mining and Learning from Time Series – Deep
Forecasting: Models, Interpretability, and Applications (MiLeTS 2022), 2022.

[36] V. Murahari, A. Deshpande, C. Jimenez, I. Shafran, M. Wang, Y. Cao, and K. Narasimhan, “Mux-
plms: Data multiplexing for high-throughput language models,” in Findings of the Association
for Computational Linguistics: EMNLP 2023, 2023, pp. 4540–4554.

12



37th Conference on Neural Information Processing Systems (NeurIPS 2023)

[37] M. Hassid, H. Peng, D. Rotem, J. Kasai, I. Montero, N. A. Smith, and R. Schwartz, “How
much does attention actually attend? Questioning the importance of attention in pretrained
transformers,” in Findings of the Association for Computational Linguistics: EMNLP 2022,
2022, pp. 1403–1416.

[38] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill et al., “On the opportunities and risks of foundation models,”
arXiv preprint arXiv:2108.07258, 2021.

13


	Introduction
	MIMONets enabling Computation in Superposition
	MIMOConv
	MIMOFormer
	FAVOR+S: Computing self-attention in superposition
	Integrating FAVOR+S into MIMOFormer

	Empirical Results
	MIMOConv
	MIMOFormer

	Related Work
	Conclusion

