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ABSTRACT

Undertaking causal inference with observational data is extremely useful across
a wide range of domains including the development of medical treatments, ad-
vertisements and marketing, and policy making. There are two main challenges
associated with undertaking causal inference using observational data: treat-
ment assignment heterogeneity (i.e., differences between the treated and untreated
groups), and an absence of counterfactual data (i.e. not knowing what would have
happened if an individual who did get treatment, were instead to have not been
treated). We address these two challenges by combining structured inference and
targeted learning. To our knowledge, Targeted Variational AutoEncoder (TVAE)
is the first method to incorporate targeted learning into deep latent variable mod-
els. Results demonstrate competitive and state of the art performance.

1 INTRODUCTION

The estimation of the causal effects of interventions or treatments on outcomes is of the upmost
importance across a range of decision making processes and scientific endeavours, such as policy
making (Kreif & DiazOrdaz, 2019), advertisement (Bottou et al., 2013), the development of medical
treatments (Petersen et al., 2017), the evaluation of evidence within legal frameworks (Pearl, 2009;
Siegerink et al., 2016) and social science (Vowels, 2020; Hernan, 2018; Grosz et al., 2020). Despite
the common preference for Randomized Controlled Trial (RCT) data over observational data, this
preference is not always justified. Besides the lower cost and fewer ethical concerns, observational
data may provide a number of statistical advantages including greater statistical power and increased
generalizability (Deaton & Cartwright, 2018). However, there are two main challenges when deal-
ing with observational data. Firstly, the group that receives treatment is usually not equivalent to
the group that does not (treatment assignment heterogeneity), resulting in selection bias and con-
founding due to associated covariates. For example, young people may prefer surgery, older people
may prefer medication. Secondly, we are unable to directly estimate the causal effect of treatment,
because only the factual outcome for a given treatment assignment is available. In other words, we
do not have the counterfactual associated with the outcome for a different treatment assignment to
that which was given. Treatment effect inference with observational data is concerned with find-
ing ways to estimate the causal effect by considering the expected differences between factual and
counterfactual outcomes.

We seek to address the two challenges by proposing a method that incorporates targeted learning
techniques into a disentangled variational latent model, trained according to the approximate max-
imum likelihood paradigm. Doing so enables us to estimate the expected treatment effects, as well
as individual-level treatment effects. Estimating the latter is especially important for treatments
that interact with patient attributes, whilst also being crucial for enabling individualized treatment
assignment. Thus, we propose the Targeted Variational AutoEncoder (TVAE), undertake an abla-
tion study, and compare our method’s performance against current alternatives on two benchmark
datasets.
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Figure 1: Directed Acyclic Graphs (DAGs) for (a) the problem of estimating the effect of treatment
t on outcome y with confounders x. DAG (b) reflects an RCT. DAG (c) illustrates TVAE and is an
extension of the DAG by Zhang et al. (2020), where the structure is a priori assumed to factorize
into into risk zy , instrumental zt, and confounding factors zc. We extend their model with zo to
account for the scenario whereby not all covariates will be related to treatment and/or outcome.

2 BACKGROUND

Problem Formulation: A characterization of the problem of causal inference with no unob-
served confounders is depicted in the Directed Acyclic Graphs (DAGs) shown in Figs. 1(a) and
1(b). Fig. 1(a) is characteristic of observational data, where the assignment of treatment is related
to the covariates. Fig. 1(b) is characteristic of the ideal RCT, where the treatment is unrelated to
the covariates. Here, xi ∼ p(x) ∈ Rm represents the m-dimensional, pre-treatment covariates for
individual i assigned factual treatment ti ∼ p(t|x) resulting in factual outcome yti ∼ p(y|x, t).
Together, these constitute dataset D = {[yi, ti,xi]}Ni=1 where N is the sample size.

The conditional average treatment effect for an individual with covariates xi may be estimated as
τ̂i(xi) = E[yi|xi, do(t = 1) − yi|xi, do(t = 0)], where the expectation accounts for the non-
determinism of the outcome (Jesson et al., 2020). Alternatively, by comparing the post-intervention
distributions when we intervene on treatment t, the Average Treatment Effect (ATE) is τ̂(x) =
Ex[E[y|x, do(t = 1)] − E[y|x, do(t = 0)]]. Here, do(t) indicates the intervention on t, setting all
instances to a static value, dynamic value, or distribution and therefore removing any dependencies
it originally had (Pearl, 2009; van der Laan & Rose, 2018; 2011). This scenario corresponds with
the DAG in Fig. 1(b), where treatment t is no longer a function of the covariates x.

Using an estimator for the conditional mean Q(t,x) = E(y|t,x), we can calculate the Average
Treatment Effect (ATE) and the empirical error for estimation of the ATE (eATE).1 In order to
estimate eATE we assume access to the ground truth treatment effect τ , which is only possible with
synthetic or semi-synthetic datasets. The Conditional Average Treatment Effect (CATE) may also
be calculated and the Precision in Estimating Heterogeneous Effect (PEHE) is one way to evaluate
a model’s efficacy in estimating this quantity. See the appendix for the complete definitions of these
terms.

The Naive Approach: The DAG in Fig. 1(a) highlights the problem with taking a naive approach
to modeling the joint distribution p(y, t,x). The structural relationship t ← x → y indicates both
that the assignment of treatment t is dependent on the covariates x, and that a backdoor path exists
through x to y. In addition to our previous assumptions, if we also assume linearity, adjusting for this
backdoor path is a simple matter of adjusting for x by including it in a logistic regression. The naive
method is an example of the uppermost methods depicted in Fig. 2, and leads to the largest bias. The
problem with the approach is (a) that the graph is likely misspecified such that the true relationships
between covariates as well as the relationships between covariates and the outcome may be more
complex. There is also problem (b), that linearity is not sufficient to ‘let the data speak’ (van der
Laan & Rose, 2011) or to avoid biased parameter estimates. Using powerful nonparametric models
(e.g., neural networks) may solve the limitations associated with linearity and interactions to yield a
consistent estimator for p(y|x), and such a model is an example of the middlemost methods depicted
in Fig. 2. However, this estimator is not targeted to the estimation of the causal effect parameter τ ,
only predicting the outcome, and we require a means to reduce residual bias.

Targeted Learning: Targeted Maximum Likelihood Estimation (TMLE) (Schuler & Rose, 2016;
van der Laan & Rose, 2011; 2018; van der Laan & Starmans, 2014) falls under the lowermost

1For a binary outcome variable y ∈ {0, 1}, E(y|t,x) is the same as the conditional probability distribution
p(y|t,x).
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Figure 2: Different methods for estimating the causal parameter τ yield different levels of bias.
Adapted from (van der Laan & Rose, 2011).

methods depicted in Fig. 2 and follows an approach involving three main steps: (1) estimation of
the conditional mean E(y|t,x) with estimatorQ0(t,x), (2) estimation of the propensity scores with
estimator g(t|x), and (3) updating the conditional mean estimatorQ0 to getQ∗ using the propensity
scores to attain an estimate for the causal parameter τ .

The propensity score for individual i is defined as the conditional probability of being assigned
treatment g(ti,xi) = p(t = ti|x = xi), ∈ [0, 1] (Rosenbaum & Rubin, 1983). The scores can be
used to compensate for the relationship between the covariates and the treatment assignment using
Inverse Probability of Treatment Weights (IPTWs), reweighting each sample according to its propen-
sity score. Step (3) is undertaken using ‘clever covariates’ which are similar to the IPTWs. They
form an additional covariate variable H(1,xi) = g(1|xi)−1 for individual i assigned treatment, and
H(0,xi) = −g(1|xi)−1 for individual i not assigned treatment. Note that when we condition on a
single numeric value we imply an intervention (e.g. g(1|xi) ≡ g(do(t = 1)|xi)). A logistic regres-
sion is then undertaken as y = σ−1[Q0(t,x)] + εH(t,x) where σ−1 is the logit/inverse sigmoid
function, Q0(t,x) is set to be a constant, suppressed offset and ε represents a fluctuation parameter
which is to be estimated from the regression. Once ε has been estimated, we acquire an updated
estimator:

Q1(do(t = t),x) = σ
[
σ−1[Q0(t,x)] + εH(t,x)

]
(1)

This equation tells us that our new estimator Q1 is equal to the old estimator balanced by the correc-
tive εH(t,x) term. This term adjusts for the bias associated with the propensity scores. When the
ε parameter is zero, it means that there is no longer any influence from the ‘clever covariates’ H().
The updated estimator Q1 can then be plugged into the estimator for τ̂ (Q1;x). When the optimal
solution is reached (i.e. when ε = 0), the estimator also satisfies what is known as the efficient
Influence Curve (IC), or canonical gradient equation (Hampel, 1974; van der Laan & Rose, 2011;
Kennedy, 2016):

N∑
i=1

IC∗(yi, ti,xi) = 0 =

N∑
i=1

[H(ti,xi)(yi −Q(ti,xi)) +Q(1,xi)−Q(0,xi)− τ (Q;x)] (2)

where IC(yi, ti,xi) represents the IC, and IC∗(yi, ti,xi) represents the efficient IC for consistent
Q and g. It can be seen from the right hand side Eq. 2 that at convergence, the estimator and its
estimand are equal: yi = Q(ti,xi) and Q(1,xi) − Q(0,xi) = τ (Q;x). Over the whole dataset,
all terms in Eq. 2 ‘cancel’ resulting in the mean ¯IC = 0. As such, the logistic regression in Eq. 1
represents a solution to the IC via a parametric submodel.

The TMLE method provides a doubly robust, asymptotically efficient estimate of the causal or
‘target’ parameter, and these theoretical guarantees make it attractive for adaptation into neural
networks for causal effect estimation.

3 METHODOLOGY

In this section we present the Targeted Variational AutoEncoder (TVAE), a deep generative latent
variable model that enables estimation of the average and conditional average treatment effects (ATE
and CATE resp.) via the use of amortized variational inference techniques and Targeted Maximum
Likelihood Estimation (TMLE). For a review on the relevant VAE theory, see the appendix. A top-
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Figure 3: The block-diagram for Targeted VAE. Dashed boxes indicate the variationally inferred
latent variables zo, zc, zt, and zy . Arrows indicate functions, and colors distinguish treatment
(green), outcome (blue), covariates (grey), and confounder (purple) related entities.

level diagram for TVAE is shown in Fig. 3 and follows the structure implied by the DAG in Fig. 1(c).
A more detailed architectural block-diagram is also presented in the appendix.2

Assumptions: As is common (Yao et al., 2020; Guo et al., 2020; Rubin, 2005; Imbens & Rubin,
2015) when undertaking causal inference with observational data, we make three assumptions: (1)
Stable Unit Treatment Value Assumption (SUTVA): the potential outcomes for each individual or
data unit are independent of the treatments assigned to all other individuals, such that there are no
interactions between individuals. (2) Positivity: the assignment of treatment probabilities are all
non-zero and non-deterministic p(t = ti|x = xi) > 0, ∀ t and x. (3) Ignorability: all confounders
are observed such that the likelihood of treatment for two individuals with the same covariates
is equal, and the potential outcomes for two individuals with the same covariates are also equal
s.t. (yt=1,yt=0) ⊥⊥ t|x and t ⊥⊥ (yt=1,yt=0)|x.3

TVAE: If one had knowledge of the true causal DAG underlying a set of data, one could undertake
causal inference without being concerned for issues relating to structural misspecification. Unfortu-
nately, and this is particularly the case with observational data, we rarely have access to this knowl-
edge. Quite often an observed set of covariates x are modelled as a group of confounding variables
(as per the DAG in Figure 1a). Furthermore, and as noted by Zhang et al. (2020), researchers may be
encouraged to incorporate as many covariates into their model as possible, in an attempt to reduce
the severity of the ignorability assumption. However, including more covariates than is necessary
leads to other problems relating to the curse of dimensionality and (in)efficiency of estimation.

A large set of covariates may be separable into subsets of factors such as instrumental, risk, and
confounding factors. Doing so helps us to match our model more closely to the true data generating
process, as well as to improve estimation efficiency by ‘distilling’ our covariate adjustment set.
Prior work has explored the potential to discover the relevant confounding covariates via Bayesian
networks (Haggstrom, 2017), regularized regression (Kuang et al., 2017), and deep latent variable
models based on Variational Autoencoders (VAEs) (Zhang et al., 2020; Louizos et al., 2017). The
first two methods identify variables (and are variable selection algorithms), whereas VAEs infer
them, and learn compact, disentangled representations of the observations. The benefit of the latter
approach is that it (a) infers latent variables on a datapoint-by-datapoint basis (rather than deriving
subsets from population aggregates), (b) under additional assumptions, VAEs have been shown to
infer hidden confounders in the presence of noisy proxy variables, thereby potentially reducing the
reliance on ignorability) (Louizos et al., 2017), and (c) makes no assumptions about the functional
form used to map between covariate and latent space.

We seek to infer and disentangle the latent distribution into subsets of latent factors using VAEs.
These latent subsets are {zt, zy, zc, zo}, which represent the instrumental factors on t, the risk
factors on y, the confounders on both t and y, and factors solely related to x, respectively. Without
inductive bias, consistently disentangling the latent variables into these factors would be impossible
(Locatello et al., 2019). In TVAE this inductive bias is incorporated in a number of ways: firstly,
by incorporating supervision and constraining zt and zy to be predictive of t and y, respectively;
secondly, by constraining zc to be predictive of both t and y; and finally, by employing diagonal-

2Source code will also made available in supplementary material upon acceptance.
3Taken together, assumptions (2) and (3) constitute strong ignorability.
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covariance priors (isotropic Gaussians) to encourage disentanglement and independence between
latent variables. The structural inductive bias on the model is such that zy , and zt, and zc learn
factors relevant to outcome and treatment, for which we provide explicit supervision, thereby leaving
zo for all remaining factors.

In general, it is impossible to isolate the effect of t→ y due to unobserved confounding (D‘Amour,
2019), and this is why we make the assumption of ignorability. However, it is worth noting that,
under additional assumptions, deep latent variable techniques have been shown to be able to infer
hidden confounders from what are known as noisy proxy variables present in the dataset (see e.g.,
Montgomery et al. 2000; Louizos et al. 2017). The assumption of ignorability then shifts from ‘all
confounders are observed’, to ‘all unobserved confounders have been inferred from proxies’. Whilst
the capability to infer confounders from proxies represents an additional motivation for the use of
VAEs, the focus of this work is not to explore whether and by how much we are able to do so, and
we therefore maintain the assumption of ignorability.

Inference:

q(zt|x) =

Dzt∏
d=1

N (µd = f1d(x), σ2
d = f2d(x)); q(zy|x) =

Dzy∏
d=1

N (µd = f3d(x), σ2
d = f4d(x))

q(zc|x) =

Dzc∏
d=1

N (µd = f5d(x), σ2
d = f6d(x)); q(zo|x) =

Dzo∏
d=1

N (µd = f7d(x), σ2
d = f8d(x))

p(t̂|zt, zc) = Bern(f9(zt, zc)) = Bern(gq(zt, zc))

p(ŷ|zy, zc, t) = Bern(t̂ · f10(zy, zc) + (1− t̂) · f11(zy, zc)) = Bern(Qq(.))

Generation:

p(z{o,t,c,y}) =

D{zo,t,c,y}∏
d

N (z{o,t,c,y}d|0, 1); p(t̂|zt, zc) = Bern(h1(zt, zc)) = Bern(gp(.))

p(ŷ|zy, zc, t̂) = Bern(t̂ · h2(zy, zc) + (1− t̂) · h3(zy, zc)) = Bern(Qp(.))

p(x̂bin|zc, zo, zt, zy) = Bern(h6(zc, zo, zt, zy))

p(x̂cont|zc, zo, zt, zy) =

Dxcont∏
d=1

N (xcont,d|µd = h4(zc, zo, zt, zy), σ2
d = h5(zc, zo, zt, zy))

(3)

The proof for identifiability under the assumption of ignorability (or, alternatively, under the as-
sumption that all unobserved confounders have been inferred from proxy variables) has been de-
rived previously by Louizos et al. (2017) and Zhang et al. (2020). The factor zo is d-separated from
t and y given x, and does not affect the identification of the causal effect. i.e., p(y|do(t),x) =
p(y|do(t), z{t,o,y,c}) = p(y|t, zy, zc) (see Zhang et al. 2020 and Louizos et al. 2017). We impose
the priors and parameterizations denoted in Equation 3, where D(.) is the number of dimensions in
the respective variable (latent or otherwise), and f1−11 and h1−6 represent fully connected neural
network functions. The parameters for these neural networks are learnt via variational Bayesian
approximate inference (Kingma & Welling, 2014) according to the following objective:

LELBO
i =

N∑
i

Eqcqtqyqo
[
log p (x̂i|zt, zc, zy, zo) + log p

(
t̂i|zt, zc

)
+ log p (ŷi|ti, zy, zc)

]
− [DKL (q (zt|xi) ||p (zt)) +DKL (q (zc|x, ) ‖p (zc))

+DKL (q (zy|xi) ‖p (zy)) +DKL (q (zo|xi) ‖p (zo))]

(4)

Note that all Gaussian variance parameterizations are diagonal. In cases where prior knowledge
dictates a discrete rather than continuous outcome, equivalent parameterizations to those in Eqs. 3
may be employed. For example, in the IHDP dataset, the outcome data are standardized to have a
variance of 1, and the outcome generation model becomes a Gaussian with variance also equal to 1.
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Note that separate treatment and outcome classifiers are used both during inference and generation
(Qq, gq and Qp, gp resp.). The classifiers for inference have separate parameters to those use during
generation. Predictors or classifiers of outcome incorporate the two-headed approach of (Shalit
et al., 2017), and use ground-truth t are used for Qq whereas samples t̂ are used for Qp. For unseen
test cases, either the ground-truth t or an sampled treatment t̂ from treatment classifier gp may be
used to simulate an outcome. During training t̂ is used.

We now introduce the targeted regularization, the purpose of which is to encourage the outcome to
be independent of the treatment assignment. Following Eq. 1, we define the fluctuation sub-model
and corresponding logistic loss for finding ε as:

Q̂(g, ti, z
y
i , z

c
i , ε) = σ

[
σ−1[Q(ti, z

y
i , z

c
i )] + ε

(
I(ti = 1)

g(ti = 1; zti, z
c
i )
− I(ti = 0)

g(ti = 0; zti, z
c
i )

)]
(5)

ξi(Q̂; ε) = −yi log(Q̂(g, ti, z
y
i , z

c
i , ε))− (1− yi) log(1− Q̂(g, ti, z

y
i , z

c
i , ε)) (6)

In Eq. 5, I is the indicator function. For an unbounded regression loss, mean squared error loss
may be used (see appendix). Note that the logistic loss is suitable for continuous outcomes bounded
between 0 and 1 (see van der Laan & Rose 2011, pp.121:132 for proof). Putting it all together, we
then optimize to find generative parameters for functions h1−6, inference parameters for functions
f1−12, and fluctuation parameter ε as follows:

L = min

[ N∑
i

(
LELBO
i + λTLξi(Q, g, ε)

)]
;

∂

∂ε
L∗
∣∣∣∣
ε=0

= ¯IC
∗

= 0 (7)

Where λTL represents a hyperparameter loss weight for the targeted regularization. At convergence,
ε = 0 when Q and g become consistent estimators, satisfying the conditions for the EIC (see Eq. 2
and reference van der Laan & Rose 2011, pp125:128).

A further element that differentiates our work from one other recent contribution (Shi et al., 2019)
that uses targeted regularization is that the gradients resulting from ξ are not taken with respect to
gp or gq (which are the propensity score arms which we assume to be consistent and unbiased). Tar-
geted learning is concerned with de-biasing the outcome classifierQ using propensity scores from g.
In other words, assuming the propensity scores are well estimated, the targeted learning regularizer
is intended to affect the outcome classifier only, and not the propensity score estimator. It is there-
fore more theoretically aligned (with the targeted learning literature) to apply regularization to the
outcome estimatorQ, and not to g. As per Eq. 1, in TMLE, g is assumed to be a consistent estimator,
forming part of the de-biasing update process for Q, but it is not subject to update itself. In order
to prevent the regularization from affecting the propensity arms, the gradients from the regularizer
are only taken with respect to all parameters that influence this outcome classifier (which include
upstream parameters for Qq as well as the more direct parameters Qp). We use Pytorch’s ‘detach’
method on the propensity scores when calculating the targeted regularization. This method decou-
ples the propensity score arm from backpropagation relating to the computation of the regularization
value. In contrast, Dragonnet (Shi et al., 2019) applies regularization to the entire network.

In summary, the notable aspects of our model are as follows: the introduction of a new latent vari-
able zo for factors unrelated to outcome and/or treatment to aid the recovery of the true underlying
structure; the ability to estimate both individual level and average treatment effects; and, as far as
we are aware, the first incorporation of targeted learning in a deep latent variable approach, and
one which backpropagates the regularization gradients to specific outcome-related parameters in the
network.

4 RELATED WORK

There are a number of ways to mitigate the problems associated with the confounding between the
covariates and the treatment. For a review on such methods, readers are pointed to the recent survey
by (Yao et al., 2020). Here we consider methods that utilize neural networks as part of their models,
but note that many non-neural network methods exist (Chernozhukov et al., 2017; van der Laan &
Rose, 2011; van der Laan & Starmans, 2014; Rubin, 2005; Hill, 2011; Athey & Imbens, 2016).

Perhaps the most similar works to ours are those of Dragonnet (Shi et al., 2019) and TEDVAE
(Zhang et al., 2020). We discuss the differences between these and TVAE in turn. Dragonnet
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incorporates the same targeted learning regularization process which allows for the simultaneous
optimization of Q and ε. However, the method sacrifices the ability to estimate individual treatment
effect in preference to achieving good estimation of the average treatment effect across the sample.
Indeed, they do not report PEHE. Finally, Dragonnet applies regularization to the entire network,
whereas we specifically ‘target’ the regularization to the outcome prediction arm by restricting the
backpropagation of gradients.

TEDVAE, on the other hand, builds on CEVAE (Louizos et al., 2017) and seeks inference and
disentanglement of the latent instrumental, risk, and confounding factors from proxy variables with
a variational approach. However, it has no means to allocate latent variables that are unrelated to
treatment and/or outcome (i.e., TVAE’s zo). The advantage of including factors zo with a variational
penalty is that the model has the option to use them, or not to use them, depending on whether they
are necessary (i.e. KL is pushed to zero). It is important not to force factors unrelated to treatment
and outcome into z{c,y,t} because doing so restricts the overlap between the class of models that can
be represented using TEDVAE, and the class of models describing the true data generating process.

Other methods include GANITE (Yoon et al., 2018) which requires adversarial training, and may
therefore be more difficult to optimise. PM (Schwab et al., 2019), SITE (Yao et al., 2018), and Mul-
tiMBNN (Sharma et al., 2020) incorporate propensity score matching. TARNET (Shalit et al., 2017)
inspired the two-headed outcome arm in our TVAE, as well as the three-headed architecture in (Shi
et al., 2019). RSB (Zhang et al., 2019) incorporates a regularization penalty, based on the Pearson
Correlation Coefficient, intended to reduce the association between latent variables predictive of
treatment assignment and those predictive of outcome.

5 EXPERIMENTS

We perform an ablation study, beginning with (a) TVAE (base) which is equivalent to TEDVAE
(b) TVAE with zo, and (c) TVAE with both with zo and targeted regularization ξ during training.
In order to fairly evaluate the benefits of introducing zo, we ensure that the total number of latent
dimensions remains constant. We undertake the ablation study on a synthetic dataset which we call
TVAEsynth, before comparing against methods on both the IHDP dataset (Hill, 2011; Gross, 1993)
and the Jobs dataset (LaLonde, 1986; Smith & Todd, 2005; Dehejia & Wahba, 2002). In particular,
the synthetic dataset was intentionally created such that not all covariates are exogenous and so
that there exist some latent factors not related to outcome or treatment. Thus, we should expect
a significant improvement in performance to occur with the introduction of zo, demonstrating the
importance of incorporating inductive bias that closely matches the true structure of the data. Note
that while these datasets vary in whether the outcome variable is continuous (IHDP, TVAESynth)
or binary (Jobs), the treatment variable is always binary. Whilst it is possible to undertake Targeted
Learning on continuous treatment effects, we leave this to future work.

For the IHDP dataset, we evaluate our network on the Average Treatment Effect estimation error
(eATE), and the Precision in Estimation of Heretogeneous Effect (PEHE). As per (Louizos et al.,
2017; Shalit et al., 2017; Yao et al., 2018), for the Jobs dataset (for which we have only partial
effect supervision) we evaluate our network on the Average Treatment effect on the Treated error
(eATT) to approximate the eATE, and the policy risk Rpol to approximate the error on the CATE.
See the appendix for definitions of these metrics. When estimating treatment effects, 100 samples
are drawn for each set of input covariates xi. We compare against Dragonnet (Shi et al., 2019),
TEDVAE (Zhang et al., 2020), CEVAE (Louizos et al., 2017), GANITE (Yoon et al., 2018), Targeted
Maximum Likelihood Estimation (TMLE) (van der Laan & Rose, 2018), and TARNET + variants
(Shalit et al., 2017). We provide results for both within sample and out-of-sample performance. It
is worth noting that within sample and out-of-sample results are equally valid for treatment effect
estimation, because the network is never supervised on treatment effect (Shi et al., 2019).

For model selection we follow Louizos et al. (2017) and Zhang et al. (2020) and use the minimum
validation loss on the total objective function. Whilst some model selection heuristics exist that serve
as surrogates for the eATE itself (e.g., see Hassanpour & Greiner 2019 or Athey & Imbens 2016)
we take the same view as Zhang et al. (2020), namely that the development of our model ‘should be
self-sufficient and not rely on others’. Furthermore, we undertake minimal hyperparameter tuning
for the simple reason that, in real-world applications, the supervision required for effective tuning
would not be available. For all experiments, we undertake 100 replications and provide mean and
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standard error. See the appendix for details on these datasets and the architecture, as well as training
and testing details.

Table 1: Means and standard errors for the ablation study using the TVAESynth dataset. Here, ‘oos’
means out-of-sample, ‘ws’ means within sample. ‘+zo’ indicates the introduction of the miscella-
neous factors, ‘+z∗o’ indicates the introduction of miscellaneous factors but without changing the
dimensionality of zc thereby increasing total latent capacity, ‘+ξ’ indicates our targeted regulariza-
tion (with selected backpropagation), ‘+ξ∗’ indicatest targeted regularization equivalent to the one
used by Shi et al. (2019) (i.e. with gradients applied to all upstream parameters), the ξ subscript
indicates its weight in the loss.

Method √
εPEHE ws

√
εPEHE oos εATE ws εATE oos

TVAE (base/TEDVAE) .179±.003 .178±.003 .128±.005 .128±.005
TVAE + z∗o .174±.003 .173±.003 .121±.005 .120±.005
TVAE + zo .166±.003 .166±.003 .069±.004 .069±.004
TVAE + ξλ=0.1 .171±.003 .170±.003 .122±.004 .121±.004
TVAE + zo + ξ∗λ=0.1 .151±.002 .150±.003 .048±.003 .048±.003
TVAE + zo + ξλ=0.1 (full model) .150±.002 .150±.003 .048±.003 .048±.003

Ablation Study - TVAESynth: The results for the ablation study on the synthetic dataset are shown
in Table 1. The results demonstrate that both eATE and PEHE are significantly improved by the
incorporation of zo or targeted regularization, with a combination of the two yielding the best results
for both within sample and out of sample testing. The fact that TVAE +zo outperforms TVAE
+z∗o despite the latter having a larger latent capacity, suggests that reducing the capacity of the
latent space has a beneficial, regularizing effect. Based on the results of this ablation, the benefits
of this regularizing effect appear to be distinct from the benefits that derive from the addition of
miscellaneous factors. Finally, the results indicate negligible empirical benefits to restricting the
backgpropagation of the regularizer to non-propensity related parameters. However, the restriction
of the backpropagation (according to our implementation), more closely aligns with the original
TMLE and efficient influence curve theory, and we therefore retain this feature for the remaining
experiments.

IHDP Results: Results on IHDP are shown in Table 2 and indicate state of the art performance
for both within sample and out-of-sample eATE and PEHE. The results corroborate the ablation
results in Table 1, in that the incorporation of zo and targeted regularization result in monotonic
improvement above TEDVAE. TVAE is outperformed only by Dragonnet on within-sample eATE
performance. However, this method does not provide estimations for indvidual CATE, and is limited
to the estimation of average treatment effects.

Table 2: Means and standard errors for evaluation on the semi-synthetic IHDP dataset (Hill, 2011).
Results from: (Louizos et al., 2017; Shalit et al., 2017; Zhang et al., 2020; Yoon et al., 2018). Here,
‘oos’ means out-of-sample and ‘ws’ means within sample. ‘+ zo’ indicates the introduction of the
miscellaneous factors, and ‘+ ξ’ indicates targeted regularization with subscript indicating its weight
in the loss.

Method √
εPEHE ws

√
εPEHE oos εATE ws εATE oos

TMLE (van der Laan & Rose, 2018) 5.0±.20 - .30±.01 -
CEVAE (Louizos et al., 2017) 2.7±.10 2.6±.10 .34±.01 .46±.020
TARNet (Shalit et al., 2017) .88±.00 .95±.00 .26±.01 .28±.01
CFR-MMD (Shalit et al., 2017) .73±.00 .78±.00 .30±.01 .31±.01
CFR-Wass (Shalit et al., 2017) .71±.00 .76±.00 .25±.01 .27±.01
TEDVAE (Zhang et al., 2020) .62±.11 .63±.12 - .20±.05
GANITE (Yoon et al., 2018) 1.9±.40 2.4±.40 .43±.05 .49±.05
Dragonnet w/ t-reg (Shi et al., 2019) - - .14±.01 .20±.01
TVAE (w/ z0, ξλ=0.0) .57±.03 .57±.03 .16±.01 .16±.01
TVAE (w/ z0, ξλ=0.4) .52±.02 .54±.02 .15±.01 .16±.01
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Table 3: Means and standard errors for evaluation on the real-world Jobs dataset (LaLonde, 1986;
Smith & Todd, 2005; Shalit et al., 2017; Yoon et al., 2018). Results taken from: (Louizos et al.,
2017; Zhang et al., 2020). Here, ‘oos’ means out-of-sample and ‘ws’ means within sample. ‘+ zo’
indicates the introduction of the miscellaneous factors, and ‘+ ξ’ indicates targeted regularization
with subscript indicating its weight in the loss.

Method Rpol ws Rpol oos εATT ws εATT oos
TMLE (van der Laan & Rose, 2018) .22±.00 - .02±.01 -
CEVAE (Louizos et al., 2017) .15±.00 .26±.00 .02±.01 .03±.01
TARNet (Shalit et al., 2017) .17±.00 .21±.00 .05±.02 .11±.04
CFR-MMD (Shalit et al., 2017) .18±.00 .21±.00 .04±.01 .08±.03
CFR-Wass (Shalit et al., 2017) .17±.00 .21±.00 .04±.01 .09±.03
GANITE (Yoon et al., 2018) .13±.00 .14±.00 .01±.01 .06±.03
TEDVAE (Zhang et al., 2020) - - .06±.00 .06±.00
TVAE (w/ z0, ξλ=0) .16±.00 .16±.00 .01±.00 .01±.00
TVAE (w/ z0, ξλ=1) .16±.00 .16±.00 .01±.00 .01±.00

Jobs Results: The results for the Jobs data are shown in Table 3. GANITE was found to perform
the best across most metrics, although this method has been argued to be more reliant on larger
sample sizes than others, on the basis that it performs relatively poorly on the smaller IHDP dataset
(Yoon et al., 2018). Furthermore, GANITE relies on potentially unstable/unreliable adversarial
training (Moyer et al., 2018; Lezama, 2019; Gabbay & Hosen, 2019). Finally, TVAE outperforms
GANITE on eATT, is consistent (beyond 2 decimal places) across out-of-sample and within-sample
evaluations and has a lower standard err, and is competitive across all metrics. On this dataset, the
concomitant improvements associated with the additional latent factors and targeted learning were
negligible.

6 CONCLUSION

In this work we aimed to improve existing latent variable models for causal parameter estimation
in two ways: Firstly, by introducing a latent variable to model factors unrelated to treatment and
outcome, thereby enabling the model to more closely reflect the data structure; and secondly, by
incorporating a targeted learning regularizer with selected backpropagation to further de-bias out-
come predictions. Our experiments demonstrated concomitant improvements in performance, and
our comparison against other methods demonstrated TVAE’s ability to compete with and/or exceed
state of the art for both individual as well as average treatment effect estimation. For future work,
we plan to explore the application of TVAE to longitudinal data with continuous or categorical treat-
ment. There is also opportunity to explore the use of TVAE in inferring hidden confounders from
proxies in the dataset, as well as interpreting the model to explore and validate what information is
inferred in the model’s latent factors. Additionally, it was noted from the ablation study results that
the restriction of regularization gradients did not yield a significant change in performance when
compared with applying the regularization to the entire network. As well as undertaking further
experiments to understand this behavior, we propose to explore alternative ways to integrate the
targeted learning update procedure to the learning procedure. Finally, the ablation results indicated
that part of the improvement associated with the introduction of zo is associated with a regularizing
effect relating to the reduction in the dimensionality of zc. This aspect of the model’s behavior also
lends itself to future exploration.

REFERENCES

A. A. Alemi, I. FIscher, J. V. Dillon, and K. Murphy. Deep variational information bottleneck.
arXiv:1612.00410v7, 2017.

S. Athey and G.W. Imbens. Recursive partitioning for heterogeneous causal effects. Proc. of the
National Academy of Sciences of the USA, 113(27), 2016.

9



Under review as a conference paper at ICLR 2021

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
universal probabilistic programming. J. Mach. Learn. Res., 20, 2019.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: a review for statisticians.
arXiv:1601.00670v9, 2018.

L. Bottou, J. Peters, Quinonero-Candela J., D. X. Charles, D. M. Chickering, E. Portugaly, D. Ray,
P. Simard, and E. Snelson. Counterfactual reasoning and learning systems: the example of com-
putational advertising. Journal of Machine Learning Research, 14, 2013.

C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A. Lerchner. Under-
standing disentangling in Beta-VAE. arXiv:1804.03599v1, 2018.

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey. Dou-
ble/debiased/Neyman machine learning of treatment effects. American Economic Review, 5,
2017.

B. Dai, Z. Wang, and D. Wipf. The usual suspects? reassessing blame for VAE posterior collapse.
arXiv:1912.10702v1, 2019.

A. D‘Amour. On multi-cause causal inference with unobserved confounding: Counterexamples,
impossibility and alternatives. Proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics, 89, 2019.

A. Deaton and N. Cartwright. Understanding and misundertstanding randomized controlled trials.
Social Science and Medicine, 210:2–21, 2018. doi: 10.1016/j.socscimed.2017.12.005.

R. H. Dehejia and S. Wahba. Propensity score-matching methods for nonexperimental causal stud-
ies. Review of Economics and Statistics, 84(1):151–161, 2002.

V. Dorie. Non-parametrics for causal inference. https://github.com/vdorie/npci, 2016.

A. Gabbay and Y. Hosen. Demystifying inter-class disentanglement. arXiv:1906.11796v2, 2019.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. arXiv:1406.2661, 2014.

R. T. Gross. Infant health and development program (IHDP): enhancing the outcomes of low birth
weight, premature infants in the United States. MI: Inter-university Confortium for Political and
Social Research, Ann Arbor, 1993.

M.P. Grosz, J.M. Rohrer, and F. Thoemmes. The taboo against explicit causal inference in
nonexperimental psychology. Perspectives on Psychological Science, pp. 1–13, 2020. doi:
10.1177/1745691620921521.

R. Guo, J. Li, and H. Liu. Learning individual causal effects from networked observational data.
Association for Computing Machinery, 2020.

J. Haggstrom. Data-driven confounder selection via Markov and Bayesian networks. Biometriks,
74(2):389–398, 2017.

F. R. Hampel. The influence curve and its role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393, 1974.

N. Hassanpour and R. Greiner. Counterfactual regression with importance sampling weights. Pro-
ceedings of the 28th International Joint Conference on Artificial Intellgence (IJCAI-19), 2019.

N. Hassanpour and R. Greiner. Learning disentangled representations for counterfactual regression.
ICLR, 2020.

M. Hernan. The c-word: scientific euphemisms do not improve causal inference from observational
data. American Journal of Public Health, 108(5):625–626, 2018. doi: 10.2105/AJPH.2018.
304337.

10



Under review as a conference paper at ICLR 2021

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner.
Beta-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2017.

J. L. Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and
Graphical Statistics, 20(1), 2011.

G.W. Imbens and D.B. Rubin. Causal inference for statistics, social, and biomedical sciences. An
Introduction. Cambridge University Press, New York, 2015.

A. Jesson, S. Mindermann, U. Shalit, and Y. Gal. Identifying causal effect inference failure with
uncertainty-aware models. arXiv:2007.00163v1, 2020.

E. H. Kennedy. Statistical causal inferences and their applications in public health research, chapter
Semiparametric theory and empirical processes in causal inference. Spinger, 2016.

D. P. Kingma and J. L. Ba. Adam: a method for stochastic optimization. arXiv:1412.6980v9, 2017.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv:1312.6114v10, 2014.

N. Kreif and K. DiazOrdaz. Machine learning in policy evaluation: new tools for causal inference.
arXiv:1903.00402v1, 2019.

K. Kuang, P. Cui, B. Li, M. Jiang, S. Yang, and F. Wang. Treatment effect estimation with data-
driven variable decomposition. AAAI, 2017.

R.J. LaLonde. Evaluating the econometric evaluations of training programs with experimental data.
The American Economic Review, pp. 604–620, 1986.

J. Lezama. Overcoming the disentanglement vs reconstruction trade-off via Jacobian supervision.
ICLR, 2019.

F. Locatello, S. Bauer, M. Lucic, G. Ratsch, S. Gelly, B. Scholkopf, and Bachem O. Chal-
lenging common assumptions in the unsupervised learning of disentangled representations.
arXiv:1811.12359v3, 2019.

C. Louizos, U. Shalit, J. Mooij, D. Sontag, R. Zemel, and M. Welling. Causal effect inference with
deep latent-variable models. 31st Conference on Neural Information Processing Systems, 2017.

J. Lucas, G. Tucker, R. Grosse, and M Norouzi. Understanding posterior collapse in generative
latent variable models. ICLR, 2019a.

J. Lucas, G. Tucker, R. Grosse, and M. Norouzi. Don’t blame the ELBO! a linear VAE perspective
on posterior collapse. arXiv:1911.02469v1, 2019b.

M. Maier, K. Marazopoulou, D. Arbour, and D. David. A sound and complete algorithm for learning
causal models from relational data. Proceedings of the 29th Conf. on Uncertainty in Artificial
Intelligence, 2013.

I. Mayer, J. Josse, and J. P. Raimundo, F.and Vert. MissDeepCausal: causal inference from incom-
plete data using deep latent variable models. arXiv:2002.10837v1, 2020.

M.R. Montgomery, M. Gragnolati, K.A. Burke, and E. Paredes. Measuring living standards with
proxy variables. Demography, 37(2):155–174, 2000.

J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, and B. Scholkopf. Probabilistic latent variable models
for distinguishing between cause and effect. NIPS, pp. 1687–1695, 2010.

D. Moyer, S. Gao, R. Brekelmans, G. V. Steeg, and A. Galstyan. Invariant representations without
adversarial training. NeurIPS, 2018.

H. Oktay. Using latent variable models to improve causal estimation. PhD thesis, Doctoral Disser-
tation 1205, 2018.

J. Pearl. Causality. Cambridge University Press, Cambridge, 2009.

11



Under review as a conference paper at ICLR 2021

M. Petersen, L. Balzer, D. Kwarsiima, N. Sang, G. Chamie, J. Ayieko, J. Kabami, A. Owaraganise,
T. Liegler, F. Mwangwa, and K. Kadede. Association of implementation of a universal testing and
treatment intervention with HIV diagnosis, receipt of antiretroviral therapy, and viral suppression
in East Africa. Journal of American Medical Association, 317(21):2196–2206, 2017. doi: 10.
1001/jama.2017.5705.

M. Rolinek, D. Zietlow, and G. Martius. Variational autoencoders pursue PCA directions (by acci-
dent). arXiv:1812.06775v2, 2019.

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies
for causal effects. Biometrika, 70(1):41–55, 1983.

D. B. Rubin. Causal inference using potential outcomes: Design, modeling, decisions. Journal of the
American Statistical Association, 100(469):322–331, 2005. doi: 10.1198/016214504000001880.

M. S. Schuler and S. Rose. Targeted maximum likelihood estimation for causal inference in obser-
vational studies. American Journal of Epidemiology, 185(1):65–73, 2016.

P. Schwab, L. Linhardt, and W. Karlen. Perfect match: a simple method for learning representations
for counterfactual inference with neural networks. arXiv:1810.00656v5, 2019.

U. Shalit, F. D. Johansson, and D. Sontag. Estimating individual treatment effect: generalization
bounds and algorithms. arxiv:1606.03976v5, 2017.

A. Sharma, G. Gupta, A. Prasad, R.and Chatterjee, L. Vig, and G. Shroff. MultiMBNN: matched
and balanced causal inference with neural networks. arXiv:2004.13446v2, 2020.

C. Shi, D. M. Blei, and V. Veitch. Adapting neural networks for the estimation of treatment effects.
33rd Conference on Neural Information Processing Systems, 2019.

B. Siegerink, W. den Hollander, M. Zeegers, and R. Middelburg. Causal inference in law: an
epidemiological perspective. European Journal of Risk Regulation, 7(1):175–186, 2016. doi:
10.1017/S1867299X0000547X.

R. Silva, R. Scheine, G. Clark, and P. Spirtes. Learning the structure of linear latent variable models.
Journal of Machine Learning Research, 7:191–246, 2006.

J. A. Smith and P. E. Todd. Does matching overcome LaLonde’s critique of nonexperimental esti-
mators? Journal of Econometrics, 125(1):305–353, 2005.

N. Tishby and N. Zaslavsky. Deep learning and the information bottleneck principle.
arXiv:1503.02406v1, 2015.

M. J. van der Laan and S. Rose. Targeted Learning - Causal Inference for Observational and
Experimental Data. Springer International, New York, 2011.

M. J. van der Laan and S. Rose. Targeted Learning in Data Science. Springer International, Switzer-
land, 2018.

M. J. van der Laan and R. J. C. M. Starmans. Entering the era of data science: targeted learning and
the integration of statistics and computational data analysis. Advances in Statistics, 2014.

M. J. Vowels. Limited functional form, misspecification, and unreliable interpretations in psychol-
ogy and social science. arXiv:2009.10025, 2020.

L. Yao, S. Li, Y. Li, M. Huai, J. Gao, and A. Zhang. Representation learning for treatment effect
estimation from observational data. 32nd Conference on Neural Information Processing Systems
(NeurIPS), 2018.

L. Yao, Z. Chu, S. Li, Y. Li, J. Gao, and A. Zhang. A survey on causal inference. arXiv:2002.02770,
2020.

J. Yoon, J. Jordan, and M. van der Schaar. GANITE: Estimation of individualized treatment effects
using generative adversarial nets. ICLR, 2018.

12



Under review as a conference paper at ICLR 2021

W. Zhang, L. Liu, and J. Li. Treatment effect estimation with disentangled latent factors.
arXiv:2001.10652, 2020.

Z. Zhang, Q. Lan, Y. Wang, N. Hassanpour, and R. Greiner. Reducing selectin bias in counterfactual
reasoning for individual treatment effects estimation. 33rd Conference on Neural Information
Processing Systems, 2019.

A APPENDIX

This appendix includes details on the metrics used for evaluating treatment effect estimation; back-
ground on Variational AutoEncoders; a formulation of the targeted learning regularizer for contin-
uous, unbounded outcomes (as used with the IHDP dataset evaluations); details about the datasets;
and training, testing, hyperparameters, architecture, and hardware details. Source code and data
(including IHDP (Hill, 2011; Gross, 1993), Jobs (LaLonde, 1986; Smith & Todd, 2005), and our
own TVAESynth) will also be attached as supplementary material for reproducibility purposes upon
publication.

A.1 METRICS

This section presents the metrics used for the experiments (Section 5 in the main paper).

The Average Treatment Effect (ATE) and error on the estimation of ATE (eATE) is given in Eq. 8.

τ̂ (Q;x) =
1

N

N∑
i=1

(Q(1,xi)−Q(0,xi)), εATE = | 1

N

N∑
i=1

(τ̂ (Q;xi)− τ(x))| (8)

To estimate the error on the model’s capacity to model the Conditional Average Treatment effect
(CATE), the Precision in Estimation of Heteogenous Effects (PEHE) is given in Eq. 9.

εPEHE =

√√√√ 1

N

N∑
i=1

(τ̂ (Q;xi)− τ(xi))2 (9)

It can be seen from Equations 8 that the ATE is essentially the expectation of the conditional treat-
ment effect (conditioned on the covariates for each individual) over the data set (Jesson et al., 2020).
For scenarios when a proportion of the dataset is from a Randomized Controlled Trial (RCT), as is
the case for the Jobs dataset, we may use the error on the estimation of Average Treatment effect on
the Treated (ATT), which is given in Eq. 10 (Shalit et al., 2017; Louizos et al., 2017):

eATT = | 1

|T1|
∑
i∈T1

yi −
1

|T0|
∑
j∈T0

yj −
1

|T1|
∑
i∈T1

(Q(1,xi)−Q(0,xi))| (10)

where T = T1 ∪ T0 constitutes all individuals in the RCT, and the subscripts denote whether or
not those individuals were in the treatment (subscript 1) or control groups (subscript 0). The first
two terms in Eq. 10 comprise the true ATT, and the third term the estimated ATT. In datasets where
the ground-truth for the CATE is not available (as is the case with the Jobs dataset) we may use the
policy risk as a proxy for PEHE:

Rpol = 1−
(
E[yt=1|π(x) = 1]p(π(x) = 1) + E[yt=0|π(x) = 0]p(π(x) = 0)

)
(11)

where π(xi) = 1 is the policy to treat when ŷt=1
i − ŷt=0

i > ε, and π(xi) = 0 is the policy not to
treat otherwise (Yao et al., 2018; Shalit et al., 2017). ε is a treatment threshold. This threshold can
be varied to understand how treatment inclusion rates affect the policy risk. For our experiments we
set ε to zero, as per (Shalit et al., 2017; Louizos et al., 2017).
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A.2 VARIATIONAL AUTOENCODERS

This part of the appendix is referenced in Section 3 (Methodology) of the main paper.

We now consider the theory behind a popular and powerful latent variable representation learning
and density estimation method known as Variational AutoEncoders (VAEs) (Kingma & Welling,
2014). Although adversarial methods (Goodfellow et al., 2014) have been shown to be effective for
density estimation, they are also troublesome to train. Hence we choose VAEs which have more
stable training dynamics (Moyer et al., 2018). A further motivation for the use of VAEs relates to
their ability to infer latent variables. The Ignorability assumption holds that all confounders are
observed, and much causal inference is undertaken with this assumption (Mooij et al., 2010; Maier
et al., 2013; Oktay, 2018; Silva et al., 2006). The use of a latent variable model allows us to infer
unobserved/hidden confounders (Louizos et al., 2017), although the use of VAEs means that there
is some uncertainty concerning the guarantees of the learned model (Rolinek et al., 2019; Dai et al.,
2019; Lucas et al., 2019a;b). This uncertainty notwithstanding, previous implementations for latent
variable models with causal inference show promising results in comparison with other methods
(Louizos et al., 2017; Mayer et al., 2020; Hassanpour & Greiner, 2020).

We wish to encode the m-dimensional covariates x on a manifold via a stochastic mapping p(z|x),
where latent variables z provide a compact representation. The distribution pθ(z|x) also serves as
the posterior to the generative model pθ(x) =

∫
pθ(x|z)p(z)dz having parameters θ. Marginalizing

out z is usually intractable, and the true posterior p(z|x) is unknown, so a simpler approximating
posterior qφ(z|x) having parameters φ is introduced (Blei et al., 2018) such that:

log pθ(x) = Eqφ(z|x)
[
log

pθ(x|z)p(z)

qφ(z|x)
+ log

qφ(z|x)

pθ(z|x)

]
(12)

Taken together with the expectation, the second term on the right hand side Eq. 12 represents the
Kullback-Liebler Divergence (KLD) between the approximating posterior and the true posterior.
The KLD is always positive, and by ignoring this term, we are left with a lower-bound on the log-
likelihood known as the variational lower bound, or Evidence Lower BOund (ELBO). The VAE
provides the means to scale this amortized variational inference to intractable, high-dimensional
problems, and minimizes the negative log likelihood over a dataset of N samples by adjusting the
parameters of neural networks {θ, φ} according to the ELBO.

1

N

n∑
i=1

− log pθ(xi) ≤
1

N

N∑
i=1

(
−Eqφ(z|xi) [log pθ (xi|z)] + βDKL [qφ(z|xi)‖p(z)]

)
, (13)

where β = 1 is used for the standard variational approximation procedure, but may be set empiri-
cally (Higgins et al., 2017), annealed (Burgess et al., 2018) or optimized according to the Informa-
tion Bottleneck principle (Alemi et al., 2017; Tishby & Zaslavsky, 2015). The first term in Eq. 13 is
the negative log-likelihood and is calculated in the form of a reconstruction error. The second term is
the KLD between the approximating posterior and the prior, and therefore acts as a prior regularizer.
Typically, the family of isotropic Gaussian distributions is chosen for the posterior qφ(.), and an
isotropic Gaussian with unit variance for the prior p(z), which helps to encourage disentanglement
(Higgins et al., 2017).

A.3 TARGETED REGULARIZATION FOR BOUNDED AND UNBOUNDED OUTCOMES

This part of the appendix is referenced in Section 3 (Methodology) of the main paper. In contrast
with Eq. 6 in the main paper, this formulation of targeted regularization is for an unbounded, contin-
uous outcome (as is the case in the IHDP experiments). A mean-squared error version of ξ, similar
to the one found in (Shi et al., 2019), is given as follows:

Q̂(ti, z
y
i , z

c
i , ε) = Q(ti, z

y
i , z

c
i ) + ε

(
I(ti = 1)

g(ti = 1; zti, z
c
i )
− I(ti = 0)

g(ti = 0; zti, z
c
i )

)
(14)

ξi(Q̂, g;φc,t,y, ε) = (yi −Q(ti, z
y
i , z

c
i , ε))

2 (15)
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Figure 4: The DAG for TVAESynth dataset.

However, we stress that this formulation is only appropriate for unbounded outcomes, and not con-
tinuous outcomes in general (van der Laan & Rose, 2011). For continuous, bounded outcomes, as
well as binary outcomes, the NLL formulation (as in the main paper) has been shown to be more
appropriate, and theoretically sound.

A.4 DATASETS

This part of the appendix is referenced in Section 5 (Experiments) of the main paper.

We utilize 100 replications of the semi-synthetic Infant Health and Development Program (IHDP)
dataset (Hill, 2011; Gross, 1993)4 The linked version (see footnote) corresponds with setting A of
the NPCI data generating package (Dorie, 2016), which is the version that is used most frequently
in other comparisons (e.g., see Shi et al. 2019; Shalit et al. 2017; Yao et al. 2018) and comprises
608 untreated and 139 treated samples (747 in total). There are 25 covariates, 19 of which are
discrete/binary, and the rest are continuous. The outcome for the IHDP data is continuous and
unbounded. Similarly to (Louizos et al., 2017; Shalit et al., 2017) and others, we utilize a 60/30/10
train/validation/test split.

We also utilize the job outcomes dataset which we refer to as Jobs (LaLonde, 1986; Smith & Todd,
2005).5 Unlike the IHDP datset, Jobs is real-world data with a binary outcome. We follow a similar
procedure to (Shalit et al., 2017) who indicate that they used the Dehejia and Wahba (Dehejia &
Wahba, 2002) and PSID comaprison samples. The Dehejia-Wahba sample comprises 260 treated
samples and 185 control samples, along with the PSID comparison group comprising 2490 samples’.
The dataset contains a mixture of observational and Randomized Controlled Trial data. Similarly
to (Louizos et al., 2017; Shalit et al., 2017) and others, we utilize a 56/24/20 train/validation/test
split, and undertake 100 runs with varying random split allocations in order to acquire an estimate of
average performance and standard error. Note that, between models, the same random seed is used
both for intialization as well as dataset splitting, and therefore the variance due to these factors is
equivalent across experiments.

Finally, we introduce a new synthetic dataset named TVAESynth which follows the structure shown
in Figure 4. While the weightings are chosen relatively arbitrarily, the structure is intentionally
designed such that there are a mixture of exogenous and endogenous covariates. This enables us
to compare the performance of TVAE with and without zo (while keeping the total number of la-
tent dimensions constant). These data comprised 1000 samples, a continuous outcome and binary
treatment, 8 covariates, and generative/structural equations as follows:

Uzo,zc,zt,zy,y ∼ N (0,1) Ux1,x4,t ∼ Bernoulli(0.5) Ux2:3,x5:8
∼ N (0,1) (16)

4Available from https://www.fredjo.com/, https://github.com/WeijiaZhang24/
TEDVAE/ and elsewhere, and will be included in supplementary folder with source code upon acceptance.

5Available from https://users.nber.org/˜rdehejia/data/.nswdata2.html.
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Figure 5: Block architectural diagram for TVAE’s inference and generation models (number of
layers in Pred y 1 & 2 and Pred x blocks varies by experiment, as does the number of neurons in
each layer (see details in text).

zo = Uzo zy = Uzy zt = Uzt zc = Uzc (17)

x1 ∼ Bernoulli(σ(zt + 0.1(Ux1
− 0.5))) x2 ∼ N (0.4zo + 0.3zc + 0.5zy + 0.1Ux2

, 0.2) (18)

x3 ∼ N (0.2zo+0.2zc+1.2zt+0.1Ux3
, 0.2) x4 ∼ Bernoulli(σ(0.6zo+0.1(Ux4

−0.5))) (19)

x5 ∼ N (0.6zt + 0.1Ux5
, 0.1) x6 ∼ N (0.9zy + 0.1Ux6

, 0.1) (20)

x7 ∼ N (0.5zo + 0.1Ux7 , 0.1) x8 ∼ N (0.5zo + 0.1Ux8 , 0.1) (21)

tp = σ(0.2zc + 0.8zt + 0.1Ut) t ∼ Bernoulli(tp) (22)

y := 0.2zc + 0.5zyt + 0.2t + 0.1Uy (23)

Interventional distributions were generated by setting t equal to 1 and 0 thereby yielding ground
truth ATE (≈ 0.8) and individual effects for evaluation purposes. The number of treated individuals
is≈ 70%. Note that for every replication, the 1000 sample evaluation set is regenerated, and so may
have an empirical statistics that vary. For experiments, we use a 80/20 train/test split.

A.5 MODEL AND HYPERPARAMETERS

This part of the appendix is referenced in Section 3 (Methodology), as well as in Section 5 (Ex-
periments) of the main paper. A block diagram of the TVAE architecture is shown in Fig. 5. For
continuous outcomes (as in the IHDP dataset) we standardize the values and model as a Gaussian
with a fixed variance of 1, and a mean determined by the outcome arm. All binary outcomes in
the model (e.g. treatment or the relevant covariates) are modelled as Bernoulli distributed with a
probability determined by the associated neural network function.

We now list the hyperparameters that were explored as part of model training. There may be room
to improve on our figures with further hyperparameter tuning. However, given that the tuning of
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hyperparameters in a causal inference paradigm is problematic in general, we intentionally limited
the space of hyperparameters (similarly to Zhang et al. 2020). Bold font indicates the settings that
were used in the presented results.

Hyperparameter settings for IHDP dataset experiments were: hidden layers: 3; the weight on tar-
geted regularization λTL = {0.0, 0.1, 0.2,0.4, 0.6, 0.8, 1.0}; an Adam (Kingma & Ba, 2017) opti-
mizer with learning rate LR = {1e-3, 1e-4, 5e-5}; number of hidden neurons was 300; number of
layers = 4; dimensionality of the latent factors was Dzt = Dzt = 10, Dzc = 15, Dzo = 5; batch
size of 200; number of epochs 200; weight regularization 1e-4; and learning rate decay 5e-4.

Hyperparameter settings for the Jobs dataset experiments were: hidden layers: 3; the weight on
targeted regularization λTL = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}; an Adam (Kingma & Ba, 2017)
optimizer with learning rate LR = {5e-5, 1e-5}; number of hidden neurons was 200; number of
layers = 2; dimensionality of the latent factors was Dzt = Dzt = 6, Dzc = 8, Dzo = 4; batch size
of 200; number of epochs 200; weight regularization 1e-4; and learning rate decay 5e-4=3.

Hyperparameter settings for the TVAESynth dataset experiments were: hidden layers: 2; the weight
on targeted regularization λTL = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}; an Adam (Kingma & Ba, 2017)
optimizer with learning rate LR = 5e-5; number of hidden neurons was 20; number of layers = 2;
dimensionality of the latent factors was Dzt = Dzt = Dzc = 2, Dzo = 1; batch size of 200;
number of epochs 40; weight regularization 1e-4; and learning rate decay 5e-3.

As described in the main paper, wherever a range of hyperaparameters was explored, the validation
loss on the total objective function was used as the model selection criterion (i.e., not the causal
effect estimation performance, which is not available in real-world scenarios).

A.6 SOFTWARE AND HARDWARE

The network is coded using Pyro (Bingham et al., 2019) and builds on base code by (Zhang et al.,
2020). We train on a GPU (e.g. NVIDIA 2080Ti) driven by a 3.6GHz Intel I9-9900K CPU running
Ubuntu 18.04. Training 200 epochs of the IHDP dataset (training split of 450 samples) takes approx.
35 seconds (0.175s per epoch).
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