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Abstract  24 

Background: Dyslipidemia is an important risk factor for coronary artery disease and stroke. 25 

Early detection and prevention of dyslipidemia can markedly alter cardiovascular morbidity and 26 

mortality. Cox proportional hazard model has been commonly employed for survival datasets to 27 

construct the prediction model. Recently, the data-driven learning algorithm began to be used to 28 

analyze right-censored survival data. However, there is no attempt to use deep neural networks in 29 

dyslipidemia prediction. The objective of this study is to predict the risk of dyslipidemia via deep 30 

neural networks for survival data. 31 

Methods: The study cohort was based on the routine health check-up data from 6,328 participants 32 

aged 19 to 90 years and free of dyslipidemia at baseline. A deep neural network (DNN) was used 33 

to develop risk models for predicting dyslipidemia. Cox Proportional Hazards (Cox) and Random 34 

Survival Forests (RSF) were applied in comparison with the DNN model. As metric of 35 

performance, we use the time-dependent concordance index (Ctd-index). 36 

Results: The Ctd-index of the prediction models by using DNN was 0.802. The DNN model 37 

performed significantly better than Cox and RSF model (Ctd-index: 0.735 and 0.770, respectively). 38 

The improvement of DNN over the competing methods was statistically significant. Moreover, 39 

DNN provides performance gain on time intervals compared to conventional survival models. 40 

Conclusions: DNN is a promising method in learning the estimated distribution of survival time 41 

and event while capturing the right-censored nature inherent in survival data. DNN achieves large 42 

and statistically significant performance improvements over previous intuitive regression model 43 

and state-of-the-art data-mining methods.  44 

Key Words: dyslipidemia, risk prediction, deep neural network, survival analysis  45 

 46 
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New & Noteworthy: 47 

⚫ This study applies a DNN based learning algorithm, to develop a risk prediction model for 48 

dyslipidemia based on routine check-up data. 49 

⚫ DNN provides performance improvements measured by the C-index score over the COX 50 

regression model and RSF in dyslipidemia prediction. 51 

⚫ The DNN model may provide a feasible and accurate approach for identifying the high-risk 52 

population among undiagnosed dyslipidemia subjects based on their routine check-up data. 53 

 54 

1. Background 55 

Dyslipidemia is the metabolic abnormality of lipoprotein in the human body, mainly including 56 

the increase of total cholesterol and low-density lipoprotein cholesterol, triglyceride, and decreased 57 

high-density lipoprotein cholesterol, etc [1]. Unhealthy lifestyles, such as high cholesterol diet, an 58 

inactive lifestyle, and smoking, are particularly high-risk factors in developing dyslipidemia. In 59 

China, the prevalence of dyslipidemia is rapidly increasing. One recent study has illustrated that 60 

the incidence density of dyslipidemia in China is as high as 101/1000, and 121/1000 for men and 61 

69/1000 for women, respectively [2]. Dyslipidemia is also a major risk factor for cardiovascular 62 

diseases (CVD), a serious threat to people’s health, especially in developing countries. The study 63 

shows that CVD mortality increased by 41% between 1990 and 2013, mainly due to low and lower-64 

middle-income countries [3]. Moreover, the burden of dyslipidemia and CVD is now growing 65 

faster than our ability to combat. Considering the increased burden caused by dyslipidemia, it is 66 

of great significance to manage the disease by early predicting, detecting, and dealing with risk 67 

factors [4,5,6].  68 
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Traditionally, predictive models were used as the public health responses to disease control. 69 

Statistical models and epidemiological models have been commonly employed to construct the 70 

predictions. In terms of the methods and statistics of identifying and predicting risk factors, Cox 71 

proportional hazard model (CPH) has been widely used. CPH relates the log of the hazard ratio to 72 

a linear function of the predictors [7], making it easy to model cause-specific hazards [8]. However, 73 

CPH has some limitations. For example, the validity of its results will be affected by factors such 74 

as modeling and proportional risk assumption [5]. And CPH has been proven to have a high 75 

variance if the model is greatly complex [8]. In order to deal with a variety of potential results, it 76 

is necessary to apply appropriate methods to consider and manage competing risks [9]. 77 

Furthermore, dyslipidemia possibly also lead to some complications such as atherosclerosis, 78 

coronary heart disease (CHD), peripheral artery disease (PAD), stroke, and others, which may 79 

delay or mask the symptoms of dyslipidemia [1], making it more difficult to use CPH for accurate 80 

prediction. Consequently, it is crucial to use a high prediction capacity method in a complex 81 

situation. 82 

Random Survival Forests (RSF) is a nonparametric algorithm, which has been developed to 83 

surmount the unsolvable problems of the Cox and other classical models. RSF can cope with plenty 84 

of covariates and the correlation between the response and the predictors [6,10]. In addition, RSF 85 

can also be applied to select or rank variables, making it to achieve successful risk predictions for 86 

several diseases [3]. Meanwhile, to improve the accuracy of disease prediction for survival data, 87 

Deep Neural Networks (DNN) have been applied in the field of precise prevention, which is some 88 

of the most prominent non-linear algorithms [11]. Recently, it has been suggested that DNN could 89 

be a good model for biological networks due to some near-human performance [12].  90 
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However, these models’ performance differs significantly depending on the assumptions and 91 

values of parameters they employ. In addition, some of these models also tend to simplify the 92 

complex biological and social processes in which real diseases involve. For these reasons, it is best 93 

not to depend on a specific projection coming from a single model. Using multiple models and 94 

updating approaches can help diminish some of the limitations inherent in modeling. Recently, a 95 

data-driven learning algorithm began to be used to analyze spatial-temporal data. However, there 96 

is no attempt to use DNN to predict dyslipidemia. Therefore, the goal of this study is to apply the 97 

DNN prediction model to predict the risk of dyslipidemia. To observe the performance gain of our 98 

model, we also compare the predictive power of the DNN model with CPH and RSF. 99 

 100 

2. Materials and Methods 101 

2.1. Subjects 102 

We conducted a prospective cohort study of 6,328 participants who received routine health 103 

check-up at Shandong Provincial Qianfoshan Hospital. These participants met the following 104 

criteria: (1) aged between 19 and 90 years; (2) received their first check-ups between 2010 and 105 

2015; (3) received at least three health checks during the 5-year follow-up; (4) individuals who 106 

had been diagnosed as having dyslipidemia, diabetes, cardiovascular disease, hepatosis, renal 107 

dysfunction, or hypothyroidism at baseline were excluded. The study was approved by the 108 

Institutional Review Board of Shandong Provincial Qianfoshan Hospital. The study was conducted 109 

in accordance with the principles of the Declaration of Helsinki. The written informed consent was 110 

obtained from all eligible participants. 111 

 112 

2.2. Outcome and predictor variables 113 
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The prediction outcome of this study was the probability of developing dyslipidemia. We 114 

defined dyslipidemia according to the 2016 Chinese guidelines for the management of 115 

dyslipidemia in adults [13]. Dyslipidemia was defined as having triglycerides (TG) ≥ 2.3mmol/L, 116 

and/or low-density lipoprotein cholesterol (LDL-C) ≥ 4.1 mmol/L, and/or total cholesterol (TC) ≥ 117 

6.2 mmol/L, and/or high-density lipoprotein cholesterol (HDL-C) ≤ 1.0 mmol/L.  118 

We employed the predictor variable set collected from the anthropometric and laboratory tests. 119 

These predictor variables are closely related to the risk of developing dyslipidemia and can be 120 

available in the clinical practice, facilitating the deployment of the model. The anthropometric 121 

variables included height, weight, BMI, systolic blood pressure (SBP), and diastolic blood pressure 122 

(DBP). In terms of laboratory biomarkers, peripheral blood samples were collected after an 123 

overnight fast for measuring the following variables: absolute lymphocyte count (ALC), alanine 124 

transaminase (ALT), absolute monocytes count (AMC), aspartate transaminase (ASTblood urea 125 

nitrogen (BUN), blood uric acid (BUA), fasting blood-glucose (FBG), gamma-glutamyl 126 

transpeptidase (GGT), neutrophil granulocyte (GRA), hematocrit (HCT), highdensity lipoprotein 127 

cholesterol (HDL-C), hemoglobin (HGB), low-density lipoprotein cholesterol (LDL-C), mean 128 

corpuscular hemoglobin (MCH), mean platelet volume (MPV), platelet large cell ratio (P-LCR), 129 

red blood cell count (RBC), serum creatinine (SCr), total cholesterol (TC), triglycerides (TG), and 130 

white blood count (WBC).  131 

 132 

2.3. Prediction Models 133 

2.3.1. Cox proportional hazard model 134 

Cox proportional hazards model (CPH) is the most widely-used statistical model in the medical 135 

setting for investigating the association between the survival time of patients and one or more 136 
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predictor variables [14]. It has been commonly used in a cohort study to identify the risk factors 137 

and construct the prediction model using time-to-event data [15]. However, CPH subjects to 138 

restriction about the underlying stochastic process, which assumes the hazard rate are constant and 139 

the log of the hazard rate is a linear function of covariates. CPH suffers from high variance when 140 

the model is complicated, and nonlinear effects exist.  141 

 142 

2.3.2. Random Survival Forest 143 

Random survival forest (RSF) is a data-driven learning algorithm that can automatically deal 144 

with the nonlinear effects and interactions among the predictors. Similar to the random forests (RF) 145 

[16], RSF uses bootstrap method to randomly select samples from the dataset to construct survival 146 

tree models and uses 37% out-of-bag data from each sample to calculate model accuracy [10]. 147 

While difference between RSF and RF lies in that response variable in RSF is a survival time, 148 

implicating that the data might be censored.  In addition, RSF and RF differs in that RSF splits the 149 

data at the node with the criterion that maximizes the survival difference. Therefore, RSF is 150 

specifically suitable for right-censored data to build prediction model to study the complicated 151 

relationship between various predictors and response. It can be used for event-specific selection of 152 

risk factors in a nonparametric way with no restrictive assumption; thus, it is suitable to reduce the 153 

data dimension of highly correlated biomarker data that are linked with event time of interest [17]. 154 

RSF has been applied to identify risk factors for several diseases.  An RSF is a collection of 155 

randomly grown survival trees, which are generally grown very deeply with many terminal nodes. 156 

By using random feature selection at each node, each tree is grown using an independent bootstrap 157 

sample of the learning data. The splitting rules are either event-specific or combine event-specific 158 

splitting rules across the events [17,18]. 159 
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 160 

2.3.3. Deep Neural Network 161 

The problem of survival analysis has also received substantial recent attention in the deep 162 

learning literature. Recently, several works applied deep neural networks (DNNs) to learn complex 163 

representations of risk and capture the time-dependent influence of covariates on survival. The 164 

current study applied a DNN model, called DeepHit and developed by Lee et al., [19] to learn the 165 

estimated distribution of survival time and event while capturing the right-censored nature inherent 166 

in survival data. This DNN model makes no assumptions about the underlying stochastic process, 167 

making it possible to smoothly learn the nonlinear relationship between the variables and the 168 

disease risks. 169 

We treated participants’ survival time as discrete and the time frame as finite. The time set was 170 

T = {0, . . . , Tmax} for a maximum time horizon Tmax. We assumed that exactly one event eventually 171 

occurs for each participant and considered one event of interest. The current DNN model employed 172 

a network architecture that consists of multiple fully-connected layers and a softmax layer as the 173 

output layer. The model was trained by using a loss function that exploits both survival times and 174 

relative risks [19]. Figure 1 showed the architecture of the current DNN model. 175 

 176 

( Figure 1 insert here ) 177 

 178 

2.4. Analysis 179 

We assessed the baseline characteristics of participants with and without incident dyslipidemia 180 

by using a t-test for continuous variables and a chi-square test for categorical variables. The DNN 181 

model was used to develop risk models for predicting dyslipidemia. CPH and RSF models were 182 



9 

applied in comparison with the DNN model. To evaluate the prediction performance of the three 183 

models, we randomly separated the data into training set (80%) and testing set (20%). As our 184 

metric of performance, we use the time-dependent concordance index (Ctd-index) [20]. The 185 

concordance index measures the extent to which the ordering of survival times of pairs agrees with 186 

the ordering of their predicted risk, which is a widely-used metric for evaluating the performance 187 

of survival models [21]. 188 

 189 

3. Results 190 

3.1. Descriptive statistics  191 

The baseline characteristics of the study cohort by gender were summarized in Table 1. A total 192 

of 2219 dyslipidemia participants were included in this study. Male participants (41.9%) were 193 

more likely to develop dyslipidemia than females (21.49%). The mean age of males and females 194 

was 45.2 and 41.4, respectively. There were no significant differences in TC, MPV, and P-LCR 195 

between the males and females.  Except for these three variables, the differences of remaining 196 

variables between the patient groups were statistically significant. 197 

 198 

( Table 1 insert here ) 199 

 200 

Kaplan-Meier survival estimates comparing males and females were visualized in Figure 2. 201 

We observed a significant difference between male and female participants, with higher survival 202 

probabilities for females than males over time. Therefore, the prediction models were respectively 203 

constructed by males and females. 204 

 205 
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( Figure 2 insert here ) 206 

 207 

 208 

3.2. Risk model with Cox 209 

Table 2 shows the results of the Cox prediction model for dyslipidemia based on full-samples. 210 

The significant variables included age, BMI, BUN, GGT, GRA, HDL-C, LDL-C, TC, P-LCR, and 211 

TG. Except for HDL-C and P-LCR, other significant variables are positive factors in predicting 212 

dyslipidemia. BUA was a non-predictive variable in predicting dyslipidemia. 213 

 214 

( Table 2 insert here ) 215 

 216 

We further conducted the Cox prediction model for males and females in Figure 3, respectively. 217 

For males, the most predictive variables included HDL-C, TG, TC, and LDL-C. Four variables 218 

were found to be irrelevant for predicting dyslipidemia in males, including WBC, P-LCR, AMC, 219 

ALC. For females, LDL-C, ALC, GRA, and TG are the most influential factors in predicting 220 

dyslipidemia.  221 

  222 

( Figure 3 insert here )  223 

 224 

3.3. Comparisons of the performance in Cox, RSF, and DNN models 225 

Table 3 compared the prediction performance of Cox, RSF, and DNN models using Ctd-index 226 

values based on testing set and also by gender over time. The Ctd-index of the DNN model at the 227 

25th  percentile survival time was 0.802. The DNN model performed significantly better than Cox 228 
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and RSF model (Ctd-index: 0.735 and 0.770, respectively). Similarly, at the 50th and 75th percentile 229 

survival time, the DNN model showed higher predictive power than Cox and RSF models. 230 

Comparing the prediction performance of these models by gender, we also found DNN model 231 

achieved the highest performance than Cox and RSF models. In addition, our results showed that 232 

the DNN model significantly provided a better prediction of dyslipidemia for females than males.  233 

 234 

( Table 3 insert here ) 235 

 236 

Figure 4 visualized the predictive power of Cox, RSF, and DNN models over time based on 237 

testing set. Compared to Cox models and RSF, the DNN model shows a significantly higher 238 

performance over time. We further visualized the performance of the three models. For males, 239 

RSF exhibited a very similar predictive power with the Cox model, whereas our DNN model still 240 

largely outperformed the Cox and RSF. For females, at the beginning of the prediction time, no 241 

significant differences were observed in performance between Cox and RSF, while with the time 242 

evolved, RSF showed a performance improvement over Cox. DNN model always outperformed 243 

the Cox and RSF. 244 

 245 

( Figure 4 insert here ) 246 

 247 

In sum, DNN showed the highest predictive power and provided performance improvements 248 

in dyslipidemia prediction over Cox and RSF in this study.  249 

 250 

4. Discussion  251 
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This study aimed to apply a DNN based learning algorithm, DeepHit, to develop a more 252 

accurate risk prediction model for dyslipidemia. Several common predictors were extracted from 253 

the routine health check-up data to construct the prediction model. Our results showed that DNN 254 

fitted our data well and provided performance improvements measured by C-index score over the 255 

intuitive regression model and state-of-the-art data-mining methods in dyslipidemia prediction. 256 

We compared the predictive power of DNN with CPH and RSF and found DNN was a superior 257 

model in dyslipidemia prediction. The improved accuracy on dyslipidemia prediction of the 258 

DeepHit model could be attributed to its flexible processing ability, which can smoothly learn the 259 

nonlinear relationship between the variables and the disease risks [19]. The Cox regression model 260 

[14] follows a strict assumption that the underlying relationship between variables and the hazard 261 

rate is a linear function. However, the prevalence of dyslipidemia is rather complicated and beyond 262 

the applicable conditions of the Cox Model, which might significantly limit the accuracy of its 263 

predictive power. Although RSF [17] is a data-driven algorithm that can automatically learn the 264 

underlying patterns between the covariates and the risk events, it has a limited predictive capacity, 265 

particularly in the presence of many covariates. Thus, our DeepHit model, which makes no 266 

assumptions about the underlying stochastic process, can provide a more accurate prediction of 267 

dyslipidemia events. 268 

Our findings on the performance improvement of DNN in dyslipidemia prediction were 269 

consistent with existing literature, illustrating that DNN models were powerful techniques for 270 

disease prediction. For example, Zhao and Feng [22] found that the DNN model better performed 271 

than existing methods, such as a standard CPH and Cox-nnet model, in predicting the development 272 

and progression of cardiovascular disease among older populations. Lee et al. [23] presented a new 273 

DNN model for overcoming the major disadvantages of the CPH in predicting non-small cell lung 274 
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cancer patients’ recurrence probabilities after surgery; results demonstrated that semi-275 

unsupervised binned-time survival analysis (su-DeepBTS) model exhibited the best performance 276 

with a concordance index(C-index) of 0.7306 and an area under the curve (AUC) of 0.7677, better 277 

than supervised binned-time survival analysis (s-DeepBTS) and CPH (C-index of 0.7048 and 278 

0.7126 and AUCs of 0.7390 and 0.7420 respectively). For better predicting the progression from 279 

mild cognitive impairment(MCI) to Alzheimer’s disease(AD), Sebastian Pölsterl et al. [24] 280 

proposed a wide and deep neural network model that fused information of anatomical shape and 281 

tabular clinical data from survival analysis. Their study indicated that this model was superior to 282 

a baseline neural network on shapes and a linear model on common clinical biomarkers, which 283 

both enhanced clinical variables and improved prediction performance.  284 

DeepHit was developed in the late 2018 as a new deep learning approach to survival analysis. 285 

Although DeepHit exhibited high predictive power over previous intuitive regression model and 286 

state-of-the-art data-mining methods, up to present few studies have applied it to disease risk 287 

prediction. Except for two studies applying it to predict breast cancer [19] and cystic fibrosis [25], 288 

no applications has been developed to predict dyslipidemia risks. Therefore, to the best of our 289 

knowledge, this was the first application of the DNN model in predicting dyslipidemia based on 290 

the routine check-up data. We specifically confirmed that DNN was a useful tool in dyslipidemia 291 

risk prediction. In addition, given the high predictive power of DNN compared to other existing 292 

models, our research contributes to the current literature by indicating that nonlinear relationships 293 

between predictors and survival times are crucial for assessing the risk of dyslipidemia. Predictive 294 

models based on a linear assumption may limit the accuracy of their predictions and hinder 295 

practitioners’ ability to precisely evaluate the dyslipidemia risks of their patients. Thus, practically, 296 

our DNN predictive model provides a feasible and accurate approach for identifying the high-risk 297 
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population among undiagnosed dyslipidemia subjects based on their routine check-up data. Given 298 

the rapidly increasing prevalence of dyslipidemia in China [26], identifying the individual risk of 299 

dyslipidemia carries significant implications for early intervention strategies. In addition, 300 

dyslipidemia is an essential risk factor for a variety of diseases, such as cardiovascular disease, 301 

heart disease, and stroke [27,28]. The policy intervention plans against the prevalence of 302 

dyslipidemia will undoubtedly reduce the risk of those chronic diseases among the Chinese 303 

population. 304 

Despite these strengths, our research has some limitations. Firstly, our samples consist of 305 

patients from large medical institutions with high socioeconomic status, limiting the robustness of 306 

the model. It thus should be cautious about generalizing our findings to other groups with distinct 307 

geographic and socioeconomic features. Further validation utilizing other data sources, 308 

particularly a nationally representative dataset, could make the predictive power of the DNN model 309 

in dyslipidemia more accurate. Secondly, we excluded the patients who had already had 310 

dyslipidemia at the baseline, which might lead us to underestimate the actual survival time. Finally, 311 

our predicators of dyslipidemia were all from the routine check-up. Further work could consider 312 

possible environmental variables and other genetic-related factors. 313 

 314 

5.Conclusion 315 

In conclusion, our research confirms that DNN approaches are powerful tools to identify 316 

subjects with a high risk of dyslipidemia. In addition, our DNN significantly outperformed the 317 

other two models in predicting dyslipidemia for survival data. Based on our research, a more 318 

precise assessment can be performed in the health populations with DNN to guide the early 319 

classification of risks and thus effectively lower the incidence of dyslipidemia and other-related 320 
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disease.  321 
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Summary points 361 

What was already known on the topic: 362 

⚫ Early detection and prevention of dyslipidemia can markedly alter cardiovascular morbidity 363 

and mortality. 364 

⚫ Cox proportional hazard model (CPH) and Random Survival Forests (RSF) are two common 365 

tools to construct the predictive model for dyslipidemia. 366 
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⚫ The existing models usually have poor performance in dyslipidemia prediction as they strictly 367 

follow basic assumptions and values of parameters. 368 

 369 

What this study added to our knowledge: 370 

⚫ This study applies a DNN based learning algorithm, DeepHit, to develop a risk prediction 371 

model for dyslipidemia based on routine check-up data. 372 

⚫ DNN provides performance improvements measured by the C-index score over the COX 373 

regression model and RSF in dyslipidemia prediction. 374 

⚫ The DNN model may provide a feasible and accurate approach for identifying the high-risk 375 

population among undiagnosed dyslipidemia subjects based on their routine check-up data. 376 

 377 
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Table 1 Baseline Characteristics by Gender 464 

Variables Male Female P-value 

Dyslipidemia 1628(41.90%) 591(24.19%) <0.001 

Age 45.221(±14.414) 41.357(±12.53) <0.001 

ALC 2.245(±0.586) 2.081(±0.528) <0.001 

BUN 5.42(±1.202) 4.585(±1.095) <0.001 

AMC 0.352(±0.111) 0.304(±0.094) <0.001 

TC 4.704(±0.683) 4.7(±0.699) 0.814 

HDL-C 1.561(±0.299) 1.791(±0.327) <0.001 

ALT 23.613(±17.556) 16.368(±16.167) <0.001 

AST 21.221(±9.166) 18.868(±7.814) <0.001 

RBC 4.993(±0.357) 4.413(±0.309) <0.001 

HCT 0.449(±0.027) 0.392(±0.027) <0.001 

SCr 76.593(±10.769) 56.355(±8.47) <0.001 

BUA 351.888(±70.862) 257.086(±53.686) <0.001 

MCH 30.771(±1.447) 29.589(±2.193) <0.001 

MPV 10.464(±0.794) 10.47(±0.807) 0.791 

FBG 5.23(±0.627) 4.999(±0.481) <0.001 

HGB 153.379(±9.864) 130.336(±10.848) <0.001 

GRA 3.35(±1.074) 3.2(±1.093) <0.001 

TG 1.081(±0.341) 0.879(±0.334) <0.001 

LDL-C 2.648(±0.525) 2.427(±0.583) <0.001 

WBC 6.123(±1.427) 5.723(±1.394) <0.001 

P-LCR 28.487(±6.617) 28.464(±6.708) 0.896 

GGT 28.595(±22.144) 15.883(±14.402) <0.001 

SBP 129.361(±17.22) 118.84(±17.119) <0.001 

DBP 82.267(±11.004) 73.586(±10.048) <0.001 

BMI 24.589(±3.105) 22.25(±3.063) <0.001 
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 472 
Table 2 Cox Proportional Hazard Model for Predicting Dyslipidemia 473 

Variables Coe Z statistic P-value HR Lower Upper 

Age 0.004  2.080  0.038 1.004  1.000  1.007  

BMI 0.023  2.758  0.006 1.023  1.007  1.040  

BUA 0.001  1.477  0.140 1.001  1.000  1.001  

BUN 0.037  1.812  0.070 1.038  0.997  1.081  

GGT 0.004  3.859  0.000 1.004  1.002  1.006  

GRA 0.047  2.039  0.041 1.048  1.002  1.096  

HDL-C -1.437  -9.686  <0.00001 0.238  0.178  0.318  

LDL-C 0.519  3.995  <0.0001 1.681  1.303  2.169  

P-LCR -0.006  -1.711  0.087 0.994  0.987  1.001  

TC 0.571  5.462  <0.00001 1.769  1.442  2.171  

TG 0.642  7.656  <0.00001 1.901  1.613  2.241  

 474 
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Table 3 Ctd-index for Prediction Model with Cox, RSF and DNN Model 500 

Models  25% 50% 75% 

Full testing set    

Cox 0.735 0.735 0.732 

RSF 0.770 0.768 0.766 

DeepHit 0.802 0.798 0.794 

Testing set of 

male 
   

Cox 0.733 0.727 0.726 

RSF 0.744 0.738 0.737 

DeepHit 0.831 0.804 0.809 

Testing set of 

female 
   

Cox 0.771 0.786 0.780 

RSF 0.812 0.818 0.807 

DeepHit 0.851 0.849 0.834 
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Figure Legend 514 

Figure 1 The architecture of the DNN model 515 

Figure 2 Kaplan-Meier survival estimates comparing male with female participants 516 

Figure 3 Cox Proportional Hazard Model for Predicting Dyslipidemia in Male (A) and Female 517 

(B) 518 

Figure 4 Comparison of Ctd-index performance in Cox, RSF and DNN Models based on full 519 

testing set (A); by the male (B) and female (C) 520 
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 536 

Figure 1 The architecture of the DNN model 537 

 538 

 539 

Figure 2 Kaplan-Meier survival estimates comparing male with female participants 540 



26 

  541 

Figure 3 Cox Proportional Hazard Model for Predicting Dyslipidemia in Male (A) and Female (B) 542 

 543 

 544 

Figure 4 Comparison of Ctd-index performance in Cox, RSF and DNN Models based on full 545 

testing set (A); by the male (B) and female (C) 546 
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