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Abstract

Prompt learning, which focuses on learning soft prompts, has emerged as a promising
approach for efficiently adapting pretrained vision-language models (VLMs) to multiple
downstream tasks. While prior works have shown promising performances on common
benchmarks, they typically rely on labeled data samples only. This greatly discredits the
information gain from the vast collection of otherwise unlabeled samples available in the wild.
To mitigate this, we propose a simple yet efficient cross-model framework to leverage on the
unlabeled samples achieving significant gain in model performance. Specifically, we employ a
semi-supervised prompt learning approach which makes the learned prompts invariant to the
different views of a given unlabeled sample. The multiple views are obtained using different
augmentations on the images as well as by varying the lengths of visual and text prompts
attached to these samples. Experimenting with this simple yet surprisingly effective approach
over a large number of benchmark datasets, we observe a considerable improvement in the
quality of soft prompts thereby making an immense gain in image classification performance.
Interestingly, our approach also benefits from out-of-domain unlabeled images highlighting
the robustness and generalization capabilities. E]

1 Introduction

Recently vision-language models (VLMs) (Jia et al.,|2021} [Li et al.; 2022|2021} Radford et al.l 2021; Wu et al.,
2021} [Fini et al., 2023} |Jiang et al. |2023)) have shown encouraging progress on a number of downstream tasks.
These models are initially trained on large-scale data to align language and vision modalities. Such a paradigm
allows zero-shot transfer to downstream tasks since one can synthesize a natural language description known
as prompt of the new class (e.g., ‘a photo of a class name’) to be fed to the text encoder and compare the
generated text features with visual features. However, the non-trivial task of choosing the best hand-crafted
prompts is difficult, requiring a lot of time and domain-specific heuristics. This has led to prompt learning (Lu
et al., 12022} |Zhou et al., |2022bllal [Wang et al.,|2023). It aims to use soft prompts that are learned using labeled
samples from downstream tasks, keeping the pretrained model frozen. These approaches have demonstrated
comparable performance to full fine-tuning though learning only few parameters and are known to adapt to
new tasks quickly (He et al., 2022).

1Project page: https://cvir.github.io/projects/xpl


https://openreview.net/forum?id=oxAZv3QD6M
https://cvir.github.io/projects/xpl

Published in Transactions on Machine Learning Research (06/2024)

8 10 100
.. 6 .. 5]
% 2 % 95 g s CoQp =100 05 - Co0p- 1004
o 2 o 2 0 > =
o S 2 o o & 90 9 90+
e< 2T 5 s s
T o4 —_——— | H H
g S -. g & —10 - § =1 3 o
58777 5% )
—15 1
= —a = 8 Co0p 80 Coop
g _6 g —20] =8~ XPL (Ours) —e— XPL (Ours)
75
_s 55 3 s 10% % % 10%
Category Category Proportion of labeled data Proportion of labeled data
(a) EuroSAT (b) CropDiseases (c) EuroSAT (d) CropDiseases

Figure 1: @, |E[): Category-wise performance gap between two models leveraging same amount of labeled
and unlabeled data but with different number of learnable prompts (8 and 16 textual and visual prompts)
on EuroSAT and CropDiseases respectively. Accg and Accig denote the accuracy with 8 and 16 length
prompts respectively showing the complimentary knowledge acquired by the two models. E[): comparison
of XPL with the conventional text-only prompt learning CoOp (Zhou et all, 2022b) trained using different
percentages of labeled training data on the same datasets. With only 1% of labeled data, XPL surpasses the
fully supervised CoOp (shown with red dotted line). CoOp with same amount of labeled data fail to reach
the accuracy of XPL.

To the best of our knowledge, prompt learning has thus far relied only on supervised approaches, which makes
it critically dependent on heavily curated data requiring tedious human labeling effort. This motivates us to
look beyond traditional supervised prompt learning in order to not only minimize the annotation effort but
also to improve the performance on downstream tasks in extremely low labeled data regime. Semi-supervised
Learning (SSL) has shown promising results in visual scene understanding. Among these, self-training or
pseudolabeling (Arazo et all |2020) uses confident predictions of unlabeled samples as true label for further
training. Consistency regularization (Bachman et al. 2014]) transforms unlabeled samples to different views
and forces the model to learn invariant representations. However, in low-labeled data regime, the learned
representations tend to lack enough discriminative power for downstream tasks. To handle this issue, works
like (Xu et all 2022) employes not single, but multiple models towards cross-model representation learning
leveraging the complementary representations from these different models. Although these approaches have
shown promising results, the strength of semi-supervised learning has not been harnessed in prompt learning
for large VLMs. In this work, we show that semi-supervised prompt learning not only exploits the unlabeled
data present in hand but also helps learn richer representations without additional manual labeling.

While prompt learning is an efficient and quick adaptation paradigm, their low capacity may not allow a
single prompt learning model to achieve best performances in all. To better exploit multiple prompt learners,
we present a semi-supervised approach based on the complementary representations at the model level. We
observe that two models leveraging unlabeled data but with different number of learnable prompts exhibit
markedly different category-wise performance (ref. Figure [laj and . This indicates that the two models
learn complimentary knowledge and thus can complement in providing semi-supervision to each other. To
this end, we introduce our semi-supervised Cross-model Prompt Learning (XPL) approach that relies on the
invariance of the learned prompts to different views of unlabeled data. Given a pretrained VLM, we create a
set of augmented versions of the unlabeled data and pass them via two pathways (known as the primary
and the auxiliary pathways) each having a different length of soft prompts associated to them. Then, given
an unlabeled image, we bring a confident prediction from the auxiliary network as the pseudo-label for the
primary and vice versa facilitating a greater engagement of unlabeled images. To the best of our knowledge,
XPL is one of the first works in semi-supervised prompt learning in VLMs. We evaluate our approach on
different image classification tasks in 15 standard datasets from diverse categories including Aerial, Medical,
Natural, Illustrative, Texture, Symbolic and Structured images. We focus on learning prompts at significantly
low labeled data regime, which includes the conventional few-shot classification settings as well as settings
involving various proportions of labeled training data. Figure [ld and |d| show that using only 1% training data
with labels and rest as unlabeled data, XPL superseeds the performance of the supervised text-only prompt
learning approach CoOp (Zhou et al.l [2022b) that uses 100% training data with labels in the benchmark
datasets of EuroSAT (Helber et al., [2019) and CropDiseases (Mohanty et al., |2016)) respectively. XPL is also
shown to be consistently better than CoOp that uses the same amount of labeled data as ours showing the
advantage of multimodal, semi-supervised and cross-model approach for prompt learning.
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2 Related Works

Vision Language Models (VLMs). Development of VLMs employing single-stream (Su et al.| 2019
Chen et all, [2020b} [Li et all, 2019} [2020]) or dual-stream (Tan & Bansall, 2019} [Goel et al.l [2022; |Jia et al.
2021} [Li et al., 2022} [2021} |[Radford et al.| 2021; [Jiang et al. [2023]) paradigms have progressed significantly.
The prevailing dual-stream paradigm, which separates the image encoder and text encoder, forms the
backbone of our approach. By enabling zero-shot transfer to a range of downstream tasks, works like
CLIP (Radford et all, [2021)) and ALIGN have substantially changed computer vision lately.
Few methods have learned transferable features using additional supervision (Li et all, [2021} Mu et al., [2021)),
finer-grained interactions 2021), modern Hopfield networks (Fiirst et al., 2021)), optimal transport
distillation 2021)), cycle consistency (Goel et all, [2022)), and hierarchical feature alignment
. However, these use supervised training only. Ours is one of the first works that goes beyond the
supervised setting and learns prompts leveraging on unlabeled data alongside a few labeled samples.

Prompt Learning. There have been numerous studies on prompt tuning (Huang et al., 2022; Zhou et al.l
for effective adaption of VLMs. CoOp (Zhou et al, 2022b)), a well-known prompt tuning framework
draws its inspiration from NLP (Lester et al., 2021} |Zhong et al., 2021; Zhou et al., |2022c} [Sordoni et al., 2024)
and uses cross-entropy loss to learn prompt vectors. UPL (Huang et al.| [2022) proposes an unsupervised
prompt learning framework without necessitating any annotations of the target dataset, while, ProDA
learns various prompts from data to manage the variation of visual representations. Some
approaches like CLIP-Adapter (Gao et all, [2021)) and Tip-Adapter (Zhang et all [2021)) adjust VLMs by
training additional adapter networks using labeled data. In (Shu et al. [2022), a framework for test-time
prompt tuning is also proposed that does not require training data or annotations. These methods outperform
hand-crafted prompts in a reasonable variety of ways, but they frequently have low generalizability when
there are changes in the data distribution.

Semi-Supervised Learning. Semi-supervised learning (SSL) comprises of several techniques
to utilize unlabeled data for considerably reducing the dependency on annotations. Many
efficient approaches have been proposed over time. For instance, self-training with pseudo-labels
let al., 20205 \Grandvalet & Bengio, 2005; [2013)), contrastive learning (Singh et al. |2021)) and consistency
regularization (Bachman et al., [2014; Berthelot et al., [2019a4b}; Miyato et al.l 2018) have shown to significantly
enhance the performance over their supervised counterparts. Another current trend for SSL is the use
of self-supervised learning techniques like rotation prediction (Gidaris et al., 2018)), discriminative image
transformation (Dosovitskiy et al., [2014)) etc. Recently, several semi-supervised approaches have been proposed
which work both multi-modal (Alwassel et al., [2020) and cross-model settings. considers two
video models with different architectures to generate pseudo-labels that are used to train each other in a
cross-teaching fashion. Although semi-supervised image classification has made great strides, SSL for prompt
learning is still a new and understudied issue.

3 Methodology

Using a pretrained vision-language model e.g., CLIP (Radford et al. [2021)), the aim of our proposed approach
is to learn prompts in a semi-supervised setting for efficient and generalizable adaption of the model to various
downstream tasks.

3.1 Background

Revisiting Vision-Language Models. We build our approach on top of a pre-trained VLM, CLIP
, that combines a text encoder and an image encoder. Specifically, we adopt a vision transformer
(ViT) (Dosovitskiy et al., |2020) based CLIP model, which is consistent with current prompt learning
techniques (Zhou et al., 2022bia). As explained below, CLIP encodes an image alongside an associated text
description. The image encoder takes an image I, splits it into M fixed-size patches and embeds them into
patch embeddings e;, where p = 1,--- , M denotes spatial locations. We denote the collection of embeddings
E; = {ellp={1,---,M}} as input to the (i + 1)"" layer L;1; of the vision encoder. Together with an extra
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learnable classification token ([CLS]), the vision encoder can be compactly written as,
[xi, Ei] = L;([xi—1, Ei_1]) Vi = 1,2,3,...,1 (I is # of layers) (1)

where x; € R? denote [CLS] embedding at L;,;’s input space. Similarly, words from the text descriptions
are sent to the text encoder to produce text embedding w € R?. CLIP uses a contrastive loss during training
to find a combined embedding space for the two modalities. For a mini-batch of image-text pairs, CLIP
maximizes the cosine similarity for each image with the matched text while minimizing the cosine similarities
with all other unmatched texts.

Once the two encoders are trained, recognition can be performed by finding the similarity between an image
and its textual description in the joint embedding space. In place of only the classnames a more informative
natural language class description or prompts for these classnames can be used. Some of such carefully
designed prompts found to be useful in the literature are: ‘a photo of a {class}’, ‘a photo of a person
doing {activity class}’ etc. Given C class names, the text encoder generates C text embeddings {w.}$ ;
For a test image I with embedding x;, the prediction probability p(y|I) is calculated as:

exp(sim(x;, wy)/T) (2)

1) =
p(y[T) Ecczl exp(sim(x;, w.)/T)

where, 7 is a temperature hyperparameter and sim(.) denotes cosine similarity function.

Text and Visual Prompt Learning. To overcome the shortcomings of hand-engineered prompts, prompt
learning aims to learn continuous vectors at each input token using a small amount of labeled data. Given
a pre-trained model, a set of N learnable vectors are introduced in the input space. In order to learn the
language prompts, set of prompt vectors T = {t'}&, are introduced in the text branch of the VLM. Now,
the input embeddings take the form {t*,t2,...,tN c}< ;, where c¢ stands for the word embedding of the c¢*"
class label. Similarly, V = {vi}}V | is introduced in the vision branch together with the input image tokens
to learn the visual prompts. After introducing the prompts at the input layer of the vision encoder, the

formulation for the [ layers are modified as,

[Xl7 Zl, El] = Ll([Xo,V, Eo])

3
(xi, Zs, Ei] = Li([xi-1,Zi-1, Ei-1]) Vi = 2,3, ...,1 ®)

where, Z; represents the features computed by the i*" transformer layer. During training, only these

task-specific text prompt (T) and visual prompts (V) are updated, the VLM remains unchanged.

3.2 XPL

The proposed XPL framework leverages on the unlabeled data in a very low labeled data regime to learn
prompts that are more generalizable and enhance downstream classification performance. Though traditionally
not used in prompt learning, semi-supervised approaches like pseudo-labeling and consistency reqularization
have demonstrated great performance in recognition (Arazo et al., 2020 [Berthelot et al., 2019a3b; |Chen et al.)
2020a; Miyato et al., 2018} [Singh et al.l |2021). We propose to leverage on the huge pool of unlabeled images
to shine light into the gaps between handful of labeled examples. One idea in using unlabeled data is to
generate different views of the same input by augmenting it differently and force the deep network to predict
the same information from the two views.

Typically, a single model trained on a handful of labeled data is used for such semi-supervised learning. In
our cross-model approach we introduce an auxiliary network in addition to the primary VLM and ask them
to produce the supervision for each other that in effect, encourages to learn complementary representations
for the same unlabeled data. As seen in Figure 2] given an unlabeled image I, both the networks get two
distinct views I* and I**" of the image using a ‘weak’ and a ‘strong’ augmentation respectively. ‘Weak’
augmentation is standard flip-and-shift operation while Rand Augment (Cubuk et al.l [2020) is used for ‘strong’
augmentation. In our multi-modal approach, to achieve mutual collaboration between the text and visual
prompts, instead of using two distinct prompts in the text and visual branches, we derive the visual prompts
V directly from the text prompts T using a coupling function F(.), i.e., vi = F(t*). We implement F(.)
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Figure 2: Illustration of our XPL approach. Our approach consists of primary and auxiliary networks
that share the same pretrained frozen VLM. The primary network accepts text and visual prompts (T, and
V, respectively) with N tokens while the auxiliary network gets prompts (T, and V,, respectively) with half
the number of tokens. The visual prompts are generated from the textual prompts by a learnable coupling
function F(.). At first, the prompts are learned using limited labeled data (upper portion of the red dotted
line). Subsequently for the unlabeled samples (lower portion of the red dotted line), in absence of labels,
prompts are trained by encouraging representations to match in both networks. This is done by minimizing
the cross-entropy loss between pseudo-labels generated by the auxiliary network and the predictions made by
the primary and vice versa. Given an image at test time, only the primary network is used for inference.
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as a simple linear layer. For the primary network, the two prompts are denoted as T, and V, respectively.
Similarly, the same for the auxiliary network are T, and V, respectively.

Given a few labeled and large amount of unlabeled data, our goal is to learn a set of prompt vectors for both
T, and T, as well as the coupling function F(.). To better capitalize on the complementary information
from the two networks, we propose to use prompts of different lengths (i.e., different N) in them. Models
with different number of prompt vectors exhibit markedly different behaviors in regards to category-wise
performance. As the two models with different prompt lengths differ in what they learn, they can complement
in generating the supervision for each other. Our primary and auxiliary networks use N and N/2 prompt

vectors respectively, i.e., T, = {t{}, and T, = {t} }N/2

Supervised Training. A labeled image I; with groundtruth class ¢; is only weakly augmented and passed
through the model with associated text and visual prompts. Similar to Eq. 2} the prediction probabilities in
the primary and auxiliary networks are given by,

P2 IL) = gxp(szm(szWci)/T) @) Py |L) = exp(sim(x{;, we,)/T)

(5)

Zc:l exp(sim(xf’i, wh)/7) chzl exp(sim(xﬁi, wg)/T)
where, the superscripts p and a denote the primary and the auxiliary networks respectively. Given
the number of labeled images b in a batch7 the supervised losses of the two networks are given by,

SU, SU b a
Ly =—3% Zz 1 logp(yZ, |1;) and L3P = b i=1 108 P(y¢, [L)-
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Cross-model Unsupervised Training. For an unlabeled image I, the weak and strongly augmented
versions I¥* and IS*" are passed through both the networks along with the learnable text and visual
prompts. The final layer of the primary network’s vision encoder generates two [CLS] embeddings

X, vk and X} ’jStr respectively for I;”k and I3, The language encoder generates C' text embeddings

{wP}C ,. Probabilities of the weakly and strongly augmented images to belong to class c are given by,

Py ) = (6) pye ™) = (7)

c c
Y oia exp(szm(xfjwk7 w?)/7) > iy exp(sim( xf;tr, Py/T)

For all C classes, these are collected as the weak and strong probability distributions, q?’wk =

Py L), p(y (L)) and o2 = [p(yP L), -+ p(y°"L;)]. In a similar manner, the weak and

a,wk

exp(szm(xfjwk wb)/T) exp(szm(xf;” wh)/T)

strong probability distributions of the same image from the auxiliary network are obtained as q; and

q? ST respectively. The pseudo label from the weakly augmented image in the primary network is given by,

af "k which is an one-hot vector with a 1 in the position of arg max(qy kY Likewise, qj wk denotes the

pseudo label from the weakly augmented image in the auxiliary network. The cross-model unsupervised
losses are enforced as,

b ub
1
Lp Nb 2 : max(qa wk) > p)H(Aa wk7q§o str 76 E maX P wk > )H(qf wk7q?,st'r) (8)

where, p is the ratio of the number of unlabled to labeled examples in a minibatch, p is a suitable threshold
for getting the pseudolabels and H(,) denotes the cross-entropy function. Overall, the loss function for
learning the prompt vectors involving the limited labeled data and the unlabeled data is,

L= LM+ LM + ML, + L) 9)

where A denotes a hyperparameter for scaling the relative weights of the unlabeled losses.

Inference. After training, we only use the primary network for inference. At test time, an image is passed
through the vision encoder and the prompts along with different class names are passed through the text
encoder. The class giving the maximum cosine similarity with the extracted visual features is taken as the
predicted class of the test image.

4 Experiments

In this section, we investigate XPL and aim to address three primary research questions. @1: Do prompts
learned using XPL effectively leverage unlabeled data for semi-supervised classification? (2: How does XPL
benefit from the novel cross-model design over other methods? ()3: Is XPL robust towards various distribution
shifts in the training data and can it generalize to unseen classes?

4.1 Experimental Setup

Datasets. We evaluate XPL on 15 diverse classification datasets, namely, (a) Natural Images: CropDis-
eases (Mohanty et al., 2016]), DeepWeeds (Olsen et al., |2019)), Caltech101 (Fei-Fei et al., [2004), Oxford-
Pets (Parkhi et al., 2012)), Flowers102 (Nilsback & Zissermanl [2008), UCF-101 (Soomro et al., [2012),
ImageNet (Deng et al., 2009), StandfordCars (Krause et all [2013); (b) Aerial Images: EuroSAT (Helber et al.l
2019)); (c) Medical Images: ISIC (Codella et al., |2019), ChestX (Wang et al.l |2017); (d) lllustrative Images:
Kaokore (Tian et al. 2020); (e) Texture Images: DTD (Cimpoi et al. 2014)); (f) Symbolic Images: USPS (Hull,
1994)); (g) Structured Images: Clevr-Count (Johnson et all|2017)). For experiments under domain-shift, we
use the DomainNet (Peng et all 2019) dataset.

Baselines. Being one of the first works in multi-modal semi-supervised prompt learning, we carefully design
the baselines for a comprehensive assessment. The baselines we are going to describe are different in terms
of whether or not they 1. use unlabeled data, 2. learn text or visual prompts or both and 3. use auxiliary
network along with the primary network. Table [1] lists these baselines in terms of the above three aspects for
a quick reference. We start with the simplest of baselines first i.e., we neither use unlabeled data nor use the



Published in Transactions on Machine Learning Research (06/2024)

Baselines Data Prompts Networks
Labeled Unlabeled t Visual Primary Auxiliary

=
(0]
o

TPL
VPL

MPL

TPLY

vPLY

MpLY

XTPL

XVPL

XPL (Ours)

<A

N ENEENENEEN

v
v
v

e sglaas
NESNERNN

N AN AN
N EENENENENEN

v

Table 1: Baselines and our approach. First three rows (TPL, VPL and MPL) use only the primary network
and is trained using labeled data only. The baselines in the middle three rows (TPL*, VPL* and MPL") are
trained on both labeled and unlabeled data but still use only the primary network. TPL and TPL" learns only
text prompts whereas VPL and VPLY learns only visual prompts. Baselines MPL and MPL" learns both text and
visual prompts. The next two rows (XTPL and XVPL) use both labeled and unlabeled data as well as both
primary and auxiliary networks, but learn either text or visual prompts. The last row (XPL) is our proposed
approach which uses both labeled and unlabeled data, learns both text and visual prompts as well as uses
both primary and auxiliary networks.

auxiliary network. Specifically, we aim to learn prompts by passing only labeled data through the primary
network. The first such baseline is termed as Text Prompt Learning (TPL) which learns only textual prompts
following CoOp (Zhou et al., 2022b)), while the second one is Visual Prompt Learning (VPL) which learns
only visual prompts. After these two uni-modal baselines we go to the next baseline Multi-modal Prompt
Learning (MPL) which jointly learns both textual and visual prompts. Note that TPL, VPL, and MPL (first three
rows in Table [1)) operate on labeled data only and at the same time, uses only the primary network. We
now leverage unlabeled data in baselines TPL*, VPL", and MPL* (middle three rows in Table [I) which uses
unlabeled data along with the labeled data and employ two different augmentations to the unlabeled data.
However, in absence of the auxiliary network the pseudo-label for the strongly augmented image comes from
its weakly augmented view in same network i.e., the primary network. The next two baselines XTPL and XVPL
(two penultimate rows in Table [I)) use the cross-model architecture i.e., both primary and auxiliary networks
but learn only text prompts or only visual prompts respectively. Note that XTPL and XVPL uses both labeled
and unlabeled data in doing so. Finally, the proposed approach XPL explores the use of all three aspects i.e.,
unlabeled data, prompts from both modalities and the cross-model architecture. We show selected baselines
in the main paper while compare with the rest in the appendix.

Implementation Details. We randomly sample 1%, 5%, and 10% of labeled data from each class and
consider the rest as unlabeled, following (Sohn et al.l |2020). For few-shot evaluation, we follow CoOp (Zhou
et al., [2022b]) to obtain the splits. For the primary network, the number of learnable tokens for the text and
visual prompts is set to 16, while in the auxiliary network, it set to 8. We set the hyperparameters A = 1,
pw="7,and p = 0.7. We choose the hyperparameter values after a small-scale hyperparameter sweep which
are detailed in Section We train using a batch size of either 32 or 64 depending on the backbone. We
run all experiments for 250 epochs over three random seeds and report the mean values. We use 4 NVIDIA
Tesla V100 GPUs to conduct all our experiments.

4.2 Main Results and Comparisons

Figure 3| and [4| show the performance comparison of XPL with the baselines using ViT-B/16 backbone. In the
subsequent paragraphs, we present a summary of the experimental results and key findings that motivated
the development of the proposed framework.

Multimodal Prompt Learning. First, we discuss the superiority of multi-modal prompt learning in
extracting rich information from both text and images, highlighting its advantages over unimodal approaches.
As can be seen in Figure MPL outperforms TPL and VPL consistently on average e.g., with 10% of the data
labeled the improvements are 3.1% and 6.1%. In the extreme case of a single label per class (1-shot), MPL
outperforms TPL and VPL by 1.3% and 8.2%, respectively (ref. Appendix[A.1)). This finding corroborates that
adaptation of both the text and image encoder is more effective than adapting a single encoder.
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Figure 3: Performance of XPL on 15 datasets with ViT-B/16 using only a small percentage of labeled
training data. XPL leverages on the unlabeled data the most and boosts the performance across all scenarios.
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S U H S U H S U H S U H
TPL 74.43 40.53 49.17 TPL 92.19 54.74 68.69 TPL 74.30 19.20 30.51 TPL 19.00 24.41 21.37
VPL 74.75 41.43 50.73 VPL 93.30 54.83 69.05 VPL 74.32 20.89 32.61 VPL 22.40 24.48 23.39
MPL 77.28 44.67 54.47 MPL 93.49 55.12 69.45 MPL 74.90 26.91 39.59 MPL 28.78 25.32 26.94
XPL 80.79 53.32 62.06 XPL 97.80 58.90 73.52 XPL 78.40 80.80 79.58 XPL 32.70 33.00 32.85
(a) Average (b) EuroSAT (c) ISIC (d) Chest-Xray
S U H S U H S U H S U H
TPL 89.10 19.00 31.32 TPL 76.90 13.80 23.52 TPL 40.70 36.60 38.54 TPL 79.44 41.18 54.24
VPL 87.60 17.43 29.07 VPL 80.70 14.76 24.96 VPL 40.76 36.08 38.28 VPL 79.00 42.30 55.10
MPL 90.2 19.92 32.63 MPL 81.5 18.41 30.04 MPL 40.90 37.08 38.90 MPL 78.70 42.80 53.80
XPL 99.20 20.23 33.61 XPL 89.20 42.80 57.84 XPL 41.10 37.35 39.14 XPL 80.18 43.04 55.98
(e) CropDiseases (f) DeepWeeds (g) Kaokore (h) DTD
S U H S U H S U H S U H
TPL 88.00 35.10 50.18 TPL 49.10 21.80 30.19 TPL 64.69 56.05 60.06 TPL 98.00 89.80 93.70
VPL 89.23 37.08 52.39 VPL 48.70 15.08 23.03 VPL 66.24 58.96 62.39 VPL 96.70 86.70 91.43
MPL 94.50 42.20 58.35 MPL 51.60 17.00 25.57 MPL 75.41 57.76 65.42 MPL 98.50 91.60 94.92
XPL 96.00 47.20 63.28 XPL 58.40 22.50 32.48 XPL 88.50 67.70 76.72 XPL 99.01 92.52 95.62
(i) USPS (j) Clevr-Count (k) UCF-101 (1) Caltech101
S U H S U H S U H
TPL 92.19 54.74 68.69 TPL 78.12 60.40 68.13 TPL 97.60 59.67 74.06
VPL 93.60 56.10 70.15 VPL 77.4 57.60 66.05 VPL 96.60 57.80 72.32
MPL 94.30 56.80 70.90 MPL 81.20 60.30 69.21 MPL 97.54 63.20 76.70
XPL 97.80 58.80 73.44 XPL 74.59 71.82 73.18 XPL 98.24 69.87 81.66
(m) OxfordPets (n) StandfordCars (o) Flowers102

Table 2: Comparison of XPL with TPL, VPL and MPL in generalization from base to new classes.
For a given dataset, the text and visual prompts are learned using a subset of classes (S) and evaluated on
the rest of the classes (U). The results portray the strong generalizibility of our cross-model prompt learning
approach. H refers to the Harmonic mean.

Leveraging Unlabeled Data. Here, we demonstrate the sub-optimality of disregarding unlabeled data in
MPL, which can lead to a loss of valuable knowledge. With unlabeled data, MPL" achieves a significant gain
over MPL specifically in the low-labeled data regime. E.g., 3.5% average improvement in 1-shot scenario can
be seen in Figure [db] It also significantly helps in challenging datasets like EuroSAT and CropDiseases, e.g.,
performance improves by 11.9% and 17.9% respectively in 1-shot scenario, as can be seen in the same Figure.

Cross-Model Design. We now showcase the effectiveness of our cross-model design, which harnesses
complementary knowledge from both models. As can be seen in Figures [3] and [ XPL outperforms all the
baselines in all the settings showing the effectiveness of the cross-model design. E.g., in Figure [4b, XPL
provides 2.9% average improvement over the strongest baseline MPL* in 1-shot scenario. Moreover, XPL offers
a significant jump of 5% for the fine-grained DeepWeeds dataset in the same 1-shot setup validating the
importance of harnessing complementary knowledge through our unique design.

Robustness to Domain Shift in Unlabeled Data. Adapting models to downstream data often overfits
to that specific task and fails to generalize towards domain shifts. This behavior is specifically common in
low-labeled data regime. For a domain D with a given amount of labeled (|D;]) and unlabeled data (|D.|),
we define a mixture fraction 7 which signifies that 7 fraction of the unlabeled data (1 x |D,|) comes from a
different domain D while (1 — 7) fraction of it ((1—7) X |Dy|) comes from the same domain D. We consider
two scenarios: when all the unlabeled data belong to D (1 = 0), and when they belong to D (1 = 1). Table
shows the classification accuracy on D with 10% labeled training data from the same domain. We compare
with the strongest baseline MPL* on three pairs of domains from the Office-31 (Saenko et al., [2010]) and three
pairs of domains from the DomainNet (Peng et all |2019) dataset. As can be observed, XPL consistently
outperforms MPL" irrespective of the domain shift for both the datasets. F.gq., for D=qdr and ﬁ:skt, if we
compare the performance of the no domain shift scenario (n = 0) with that of the mazimum domain shift
(n = 1), MPL"’s accuracy drops by 2% (31.9% vs 29.9%) while XPL shows a drop of mere 0.7% (35.2% vs 34.5%)
while outperforming MPL* by 4.6%. This corroborates the robustness of XPL towards out-of-distribution data.

Generalization from Seen to Unseen Classes. In Table [2| for a given dataset, we train on a subset
of classes (seen) and show generalization performance to the rest of the classes (unseen). We compare XPL
with TPL, VPL and MPL for accuracy on the seen classes (S) and the unseen classes (U) and their harmonic
mean (H) which highlights the generalization trade-off (Xian et al., [2017)). XPL consistently outperforms
MPL on unseen classes across all the datasets, e.g. an improvement of 3.78% (55.12% vs 58.90%) and 7.68%
(25.32% vs 33.00%) on EuroSAT and Chest-Xray datasets respectively. Even on the average performance
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Office-31 DomainNet
Method (D=A, D=W) | (D=W, D=D) | (D=D, D=A) | (D=rel, D=pnt) | (D=clp, D=inf) | (D=qdr, D=skt)
(10% labeled data) | n=0 n=1 |[n=0 n=1|n=0 n=1][|n=0 n=1 n=20 n=1 n=20 n=1
MPL" 82.8 81.7 86.4 85.2 84.2 81.9 78.0 T 67.4 67.0 31.9 29.9
XPL (Ours) 84.7 84.0 88.2 87.1 85.5 84.6 79.1 78.6 68.0 67.9 35.2 34.5

Table 3: Performance under domain shift in Office-31 and DomainNet. Numbers show the accuracy
on test partition of domain D when the models are trained with 10% labeled data from D and two different
proportions of unlabeled data () between D and D. XPL achieves the best performance even in this challenging
scenario for both the datasets.
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Figure 6: Comparison with self-supervised baselines. Plots show the performance comparison of XPL
with PL which uses vanilla pseudo-label training and MoCo which uses momentum encoder for self-supervision.
XPL consistently outperforms both PL and MoCo across all the 4 datasets.

across all datasets, XPL surpasses MPL by a significant margin of 7.59 (62.06% vs 54.47%). Superior harmonic
mean across the datasets substantiates that learning multi-modal prompts with complementary knowledge
harnessed from the cross-model architecture helps improve the generalization to unseen classes.

Different VLM Backbones. We show the generalization = o
of XPL by replacing the VLM backbones and architectures.
In Figure |p| average accuracies on all datasets excluding
ImageNet using CLIP ViT-B/32 (Radford et all [2021)) and
DeCLIP ViT-B/32 (Li et al., |2021)) backbones are reported.

XPL consistently outperforms the baselines and obtains state- , - XPLm.D/ sl - - XPLM.O/
of-the-art performance for both models. FE.g., XPL outper- Proportion of labeled data ) )
forms MPL" by 1.9% (53.9% vs 52.0%) when 1% labeled data  (a) CLIP ViT-B/32

is used. This shows the effectiveness of XPL in harnessing

complementary information even from stronger backbones Figure 5: Performance with different VLM

like DeCLIP which has already been trained with extensive backbones. Plots show average accuracy using
self-supervision. CLIP ViT-B/32 and DeCLIP ViT-B/32. XPL out-

performs all baselines and obtains the best.
Comparison with self-supervised baselines. In order

to assess the effectiveness of the cross-model strategy, in Figure [6] we compare XPL with two self-supervised
baselines namely, PL and MoCo. In PL we have a single model and perform vanilla pseudo-label training (Lee,
2013)) on the unlabeled data in addition to the supervised loss on the labeled data. Similarly, in MoCo, we
employ the self-supervision strategy of (He et al 2020) using momentum encoder on a single model. The
performance of both MoCo and PL fails to reach that of XPL across the 4 datasets, e.g., on average PL and MoCo
shows 3.5% and 2.8% lower accuracy than XPL respectively for 1% labeled data (70.5% vs 71.2% vs 74.0%).
This signifies the importance of the cross-model strategy in alleviating noisy and incorrect pseudo-labels by
leveraging complementary information from both the networks.
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4.3 Ablation Studies

We perform ablation studies on 4 diverse datasets (unless otherwise specified) namely EuroSAT (Helber et al.,
2019), ISIC (Codella et al., [2019), ChestX (Wang et al., [2017)) and CropDiseases (Mohanty et all 2016) to
test the effectiveness of different components of XPL. For each ablation study we report the performance on
the individual dataset as well as the average performance across these 4 datasets.
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Different Prompt Lengths. In the main experiments we learn prompts of length 16 and 8 for the primary
and the auxiliary network respectively. Figure [7] shows the performance using prompts of lengths 8 and 4
respectively (XPL (8,4)), on 4 datasets. As expected, using shorter prompt lengths drops the performance
since the number of learnable parameters decreases. E.g., on average, the accuracy drops by 3.4% (70.6%
vs 74.0%) when we have 1% of labeled data. We also ran an experiment to see if using same number of
prompts in two paths can harness the complimentary information as well. In two different variations of this,
we used 16 prompts (XPL (16,16)) and 8 prompts (XPL (8,8)) in both primary and auxiliary paths. As seen,
compared to the proposed approach XPL (16,8), the performance diminishes in both XPL (16, 16) and XPL
(8,8) showing the utility of using different prompt lengths in primary and auxiliary models. Lastly, we tried
to see if increasing the ratio of the number of prompt vectors in the two paths helps more. As seen, if we use
32 and 8 prompts in the two paths (XPL (32, 8)) the performance diminishes which is possibly due to a large
mismatch in the capacities of the two paths.
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Figure 7: Different Prompt Lengths. Plots show the accuracy curves for XPL using different prompt
lengths. XPL (M, N) learns prompts of length M and N for the primary and auxiliary network.

Varying Prompt Positions. In this ablation study, we observe the effect of changing the relative positions
of the class token [CLS] and the prompt vectors, as an additional attribute instead of the length of the
learnable prompts. In XPL, the [CLS] token was placed at the ‘end’ of the learnable prompt vectors for
both primary and auxiliary branches. Here, we consider two setups with the same prompt lengths of 16 for
both the branches: (1) [CLS] token is positioned at the end i.e., after the prompt vectors in the primary
branch, while at the beginning in the auxiliary (‘beg’, ‘end’); (2) [CLS] token is positioned at the middle
of the prompt vectors in the primary branch, while at the end in the auxiliary (‘mid’, ‘end’). As can be
observed over all the 4 datasets across 2 different proportions of labeled data (1% and 5%), changing the
class token positions does not distinctively affect the performance of our approach. Rather we have seen that
the lengths of the prompts play a more significant role in the cross-model approach. The use of different
prompt lengths harnesses the most complementary information and provides the best performance.
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Figure 8: Varying the position of prompts in the two branches. Plots show the accuracies for XPL after
appending the class tokens, [CLS], at different positions of of the learnable prompt vectors for both primary and
auxiliary branches. XPL (M, N) (posl, pos2) learns prompts of length M and N with the [CLS] token appended
in the posl and pos2 positions for the primary and auxiliary network respectively. Here beg, mid and end refers to

8
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Figure 9: Effect of coupling function F(.). Accuracy across 14 datasets shows that mutual collaboration between
the text and visual prompts through F(.) is necessary for improved performance.

of unlabeled to labeled data p (ref. Eq.|8) is important in deciding the performance. We vary p to 5, 7, and 9.
The performance increases with higher values of 1, however, scaling up p often requires high computational
resources. We observe negligible improvement beyond p = 7 and hence use that for XPL. We also vary the
pseudo-label threshold p (ref. Eq. @, to 0.6, 0.7, and 0.95. We obtain the best performance at p = 0.7 and
use it for all the experiments.

Effect of coupling function F(.) As shown in Figure 2] we use a coupling function F(.) to ensure mutual
collaboration between the text and visual prompts (hence the encoders). In order to study its effect, we
remove F(.) and independently learn the text and visual prompts for XPL, MPL*, MPL, resulting in methods
XPL-I, MPL"~I, and MPL-I respectively. We show the individual performances of these baselines in all 14 the
datasets along with the average performance for 1%, 5% and 10% proportions of labeled data in Figure |§| and
2-shot and 1-shot performances in Appendix (Figure . As can be observed in both the settings, removing
F(.) decreases the average performance, e.g., 5.8% (72.4% vs 66.6%) for XPL with 1% labeled data and hence
ensuring that mutual coherence between the text and visual prompts is crucial for better performance.

5 Conclusion

We present XPL, a novel cross-model framework for multi-modal, semi-supervised prompt learning towards
parameter-efficient adaptation of large pretrained VLMs to different downstream tasks. We identify that
directly using the same adaptation model to produce confident pseudo-labels for the unlabeled data may
miss crucial category-wise information. A novel cross-model semi-supervision is pioneered to leverage the
complimentary knowledge learned by models with different length prompts significantly improving the
performance. We demonstrate the effectiveness of our proposed approach on fourteen benchmark datasets,
outperforming several competing methods. Our research can help reduce burden of collecting large-scale
supervised data in many real-world vision applications by transferring knowledge from large pretrained VLMs.
Limitations of our research are difficult to predict, however, using more data, albeit unlabeled may mean
more computation, but this comes with a lot of savings in human annotation efforts for a similar performance
gain in a fully supervised setup.
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A Appendix

Here we provide additional experiments and visualizations on the datasets to further explore the XPL approach.
These are summarized in the following Table [4]

Section Content

Al Leveraging Unlabeled Data for Uni-modal baselines
A2 XPL in Uni-modal setting

A3 Effect of Coupling Function in Fewshot Setting F ()
A | Different VLM Backbones

NG| Qualitative Results

A6 t-SNE Visualizations

Table 4: Overview of Appendix.
Code. Please refer to XPL__code.zip in the appendix material for our code submission. We will make the

code public.

A.1 Leveraging Unlabeled Data for Uni-modal baselines

In this section of the appendix, we demonstrate the sub-optimality of disregarding unlabeled data for the
uni-modal baselines TPL and VPL in a similar manner as shown for the multi-modal baseline in section 4.2 of
the main paper. Both TPL* and VPL" obtains a significant gain in performance as can be seen in Figure [T1]
On average, TPL* helps to perform better by 3% than TPL, whereas, VPL* shows 2% gain in accuracy over
VPL, when using only 1% labeled data. Similar trend is also observed for 2-shot and 1-shot scenarios as shown
in Figure XPL retains the supremacy across all the baselines in both few-shot setting and well as in low

percentages of labeled data.
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Figure 11: Performance of TPL, TPL*, VPL, VPL" and XPL on 14 datasets with ViT-B/16 using only a small
percentage of labeled training data. The uni-modal baselines TPL* and VPL" leverage on the unlabeled data to obtain
performance gain over TPL and VPL respectively across all scenarios. XPL leverages on the unlabeled data the most and

obtains maximum boost in the performance.
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Figure 12: Few-shot performance of TPL, TPL", VPL, VPL" and XPL on 15 datasets with ViT-B/16. Even
in 2-shot and 1-shot scenarios the uni-modal baselines TPL" and VPL" leverage on the unlabeled data to obtain
performance gain over TPL and VPL respectively across all scenarios. XPL leverages on the unlabeled data the most in
the few-shot setting to give the highest performance.

A.2 XPL in Uni-modal Setting

Here, we showcase the importance of multi-modal prompt learning to extract richer information from both
text and images compared to the unimodal approaches. As can be seen in Figure we consider two baselines
XTPL and XVPL, having only text prompts and only visual prompts respectively as the two uni-modal variants
of XPL. In both low proportions labeled data (Figure and few-shot settings (Figure , XPL obtains the
most hike in accuracy over both XTPL and XVPL. Even for challenging datasets like DeepWeeds (Olsen et al.,
2019) (refer Figure and Clevr-Count (Johnson et al.| [2017) (refer Figure [13])), XPL shows the supremacy
in performance by almost 10% and 35% gains respectively when using only 5% labeled data.

A.3 Effect of coupling function F(.) in fewshot setting

Here we explore the effects of using the coupling function F(.) on the individual performances of all 14 the
datasets in the fewshot scenarios. We compare the performances of XPL, MPL%, MPL with XPL-I, MPL*~I, and
MPL-I in 2-shot and 1-shot settings respectively in Figure As observed, following similar trend in Figure [J]
of the main paper, using F(.) boosts the average performance across all the datasets.

A.4 Different VLM Backbones

We have shown the supremacy of XPL with other VLM architectures, CLIP ViT-B/32 (Radford et al., [2021)
and DeCLIP ViT-B/32 (Li et al), 2021) in Figure 5 of the main paper. Here, we illustrate those plots
providing the variation in performance across the individual 14 datasets with low proportions of training data
for CLIP ViT-B/32 in Figure [16|and DeCLIP ViT-B/32 in Figure The average plots from the main paper
(refer Figure 5) have also been included in Figures and for CLIP ViT-B/32 and DeCLIP ViT-B/32
respectively, for reference. We explore the performances with the two VLM backbones under few-show setting
as well and plot the accuracies in Figures[17| for CLIP ViT-B/32 and DeCLIP ViT-B/32 respectively.

A.5 Qualitative Results

Figure 20 shows the qualitative examples for comparing the performance of XPL with the baselines of TPL,
VPL, MPL and also the next-best MPL“. As can be seen, XPL proves its supremacy in identifying diverse
image samples such as different landscapes in EuroSAT (Helber et all [2019) (Figure , flower types in
Flowers102 (Nilsback & Zissermanl, [2008) (Figure and also animals in OxfordPets (Parkhi et al. 2012)

(Figure [20c)
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Figure 13: Performance of XTPL, XVPL and XPL on 14 datasets with ViT-B/16 using only a small percentage
of labeled training data. XPL obtains higher performance gain over XTPL and XVPL respectively across all scenarios.
The adaptation of both the text and image encoder in XPL is more effective than adapting a single encoder as in XTPL

and XVPL.
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Figure 14: Few-shot performance of XTPL, XVPL and XPL on 14 datasets with ViT-B/16. XPL obtains higher
performance gain over XTPL and XVPL respectively in both 2-shot and 1-shot setting across all datasets. The adaptation
of both the text and image encoder in XPL is more effective than adapting a single encoder as in XTPL and XVPL.
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Figure 15: Effect of coupling function F(.). Fewshot performance across 14 datasets also shows mutual
collaboration through F(.) is necessary for performance gain.
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Figure 16: Performance using CLIP ViT-B/32. Plots show accuracy across 14 datasets using CLIP ViT-B/32.
XPL outperforms all the baselines for each dataset and obtains the best performance.
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Figure 17: Few-shot performance using CLIP ViT-B/32. Plots show accuracy across 14 datasets.
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Figure 18: Performance using DeCLIP ViT-B/32. Plots show accuracy across 14 datasets using CLIP ViT-B/32.
XPL outperforms all the baselines for each dataset and obtains the best performance.
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Figure 19: Few-shot performance using DeCLIP ViT-B/32. Plots show accuracy across 14 datasets. XPL
outperforms all the baselines for each dataset and obtains the best performance.

A.6 t-SNE Visualizations

Figure [21] shows the t-SNE visualizations of XPL along with the next-best baseline MPL* and also uni-modal

VPL, TPL across 3 datasets of EuroSAT

Helber et all, 2019) (Figure 21a)), Flowers102 (Nilsback & Zisserman|

2008) (Figure[21Db) and OxfordPets (Par

khi et all,2012) (Figure[21c]). Inspite of diverse datasets, XPL portrays

the most consistent clustering and class-wise discriminative acoss all the 3 datasets, showing the efficacy of
our cross-model approach in learning discriminative features in a multi-modal setting.
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Figure 20: Qualitative examples comparing XPL with TPL, VPL and MPL baselines. We compare the performances
on 3 datasets, EuroSAT (Helber et al [2019), Flowers102 (Nilsback & Zisserman), [2008)) and OxfordPets
trained using 1% labeled data with CLIP ViT-B/16. The correct predictions are marked in green while the
incorrect predictions have been marked red.
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(d) TPL
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Figure 21: Feature Visualization using t-SNE. Figure shows the t-SNE visualizations for XPL along with 3
different baselines of MPL", VPL and TPL on 3 diverse datasets, EuroSAT (Helber et al)|2019), Flowers102
and OxfordPets (Parkhi et all, [2012)) trained using 1% labeled data with CLIP ViT-B/16. XPL forms
most consistent clustering and performs better at classwise discrimination across the 3 diverse datasets. the Best
viewed in color.
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