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ABSTRACT

Adversarial perturbations substantially degrade the performance of Deep Rein-
forcement Learning (DRL) agents, reducing the applicability of DRL in practice.
Existing adversarial training for robustifying DRL uses the information of agent
at the current step to minimize the loss upper bound introduced by adversarial
input perturbations. It however only works well for single-agent tasks. The en-
hanced controversy in two-agent games introduces more dynamics and makes ex-
isting methods less effective. Inspired by model-based RL that builds a model
for the environment transition probability, we propose a dynamics model based
adversarial training framework for modeling multi-step state transitions. Our dy-
namics model transitively predicts future states, which can provide more precise
back-propagated future information during adversarial perturbation generation,
and hence improve the agent’s empirical robustness substantially under differ-
ent attacks. Our experiments on four two-agent competitive MuJoCo games show
that our method consistently outperforms state-of-the-art adversarial training tech-
niques in terms of empirical robustness and normal functionalities of DRL agents.

1 INTRODUCTION

Competitive Reinforcement Learning (CRL) is widely used in autonomous driving (Shalev-Shwartz
et al., 2016; Kendall et al., 2019), automated trading (Deng et al., 2016) and solving hard two(multi)-
player games, such as GO (Silver et al., 2016), Starcraft (Vinyals et al., 2019) and Dota 2 (OpenAI
et al., 2019). A notable body of work have shown that Deep Neural Networks (DNN) are vulnerable
to adversarial attacks (Goodfellow et al., 2014; Madry et al., 2017) in supervised learning tasks,
which stresses the importance of improving model robustness. Similarly, state-of-the-art CRL tech-
niques heavily rely on DNNs (e.g., in encoding agents policies), studying the robustness problem
is of great importance before their wide-spread deployment in safety-critical applications. Existing
research shows that a well-trained RL agent can be easily attacked by carefully-designed perturba-
tions in the observation and action spaces (Huang et al., 2017; Pattanaik et al., 2018; Kos & Song,
2017), or an adversarially-trained opponent (Gleave et al., 2020; Guo et al., 2021; Wu et al., 2021)
that can interact with the victim agent in the environment.

As a remedy, adversarial training methods have been proposed to improve RL agents robustness.
However, most of them focus on improving single-agent games in which the agent explores and in-
teracts with the environment. In (Huang et al., 2017), researchers studied the robustness problem of
Atari agent with pixel inputs and discrete actions based on the Fast Gradient Signed Method(FGSM)
attack. In (Zhang et al., 2020; Oikarinen et al., 2021), robustness verification algorithms in image
classification tasks were adapted to single-agent games to harden the agent’s policy. Although these
techniques are highly effective for single-agent games, their performance degrades a lot for two-
agent games. However in a two-agent competitive RL game, the agents observe each others actions
and respond accordingly. Specifically, a player aims to maximize the return while the other aims to
minimize it, and vice versa. The existence of an controversial opponent makes existing adversarial
training techniques less effective (see Section 3).

In this paper, we propose a novel adversarial training technique for two-agent competitive games. It
leverages a dynamics model to approximate the state transition function of the underlying environ-
ment, which allows predicting the near-future states and generating forward-looking perturbations
that can deteriorate victim’s long-term performance effectively. Based on the attack, we devise an
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adversarial training framework that aligns with the intrinsic characteristics of two-player games.
Our experiment results show that the proposed algorithm outperforms state-of-the-art RL adversar-
ial training techniques (Zhang et al., 2020; Oikarinen et al., 2021) under a wide range of attacks,
regarding the robustness and the preservation of performance.

Our contributions are summarized as follows.

• We propose a unique dynamics model based adversarial training framework for two-agent
competitive RL games, enabling the victim agent to evaluate future states better and bridg-
ing the gap that existing single-agent robust training algorithms cannot achieve satisfactory
performance when extended to two-agent scenario.

• We demonstrate the good performance of our method on improving the empirical robust-
ness against 4 different adversarial attacks on 4 different MuJoCo competitive two-agent
games, by a new metric to evaluate model robustness in the context of two-player RL
games.

• Experiments on attackers with different policies show that our techniques helps the victim
generalize the robustness to various adversaries.

Threat Model. We consider the empirical robustness against adversarial perturbations that are
added in the observation space, without changing the underlying environment parameters. They
could be black-box (Zhang et al., 2020) in which the adversary learns a separate Q-value network to
perform attacks, or while-box (Huang et al., 2017; Lin et al., 2017; Zhang et al., 2020), where the
attacker has full knowledge of the victim’s policy and value networks. We assume the attacker and
the victim follow their original policies during testing, while the attacker can achieve his malicious
target by adding perturbations to his own behaviors, which are equivalent to perturbations in the
observation space of the the victim agent. The robustness against an opponent with an adversarial
policy is out of the scope of this paper and one can leverage existing techniques(Gleave et al., 2020;
Guo et al., 2021) to harden the model.

2 RELATED WORK

2.1 RL MODEL HARDENING METHODS

For single-agent tasks, Kos & Song (2017); Behzadan & Munir (2017); Pattanaik et al. (2018) pro-
posed to improve agent’s robustness using perturbations that are based on adversarial example at-
tacks against deep learning models (Goodfellow et al., 2014; Papernot et al., 2016) in supervised
learning, since the discrete action outputs can be viewed as labels. Pinto et al. (2017) focused on the
robustness against environment parameter settings(mass, friction values), considering the attacker
as another agent that can apply forces on the victim with continuous actions. Zhang et al. (2020);
Oikarinen et al. (2021) studied the robustness against full observation space perturbation leveraging
the neural network verification techniques (Zhang et al., 2018; Gowal et al., 2018). Zhang et al.
(2021); Sun et al. (2022) consider robustness against the optimal adversarial perturbations and train
an agent whose state space depends on the victim agent to stress the challenge.

For CRL tasks, (Gleave et al., 2020) showed that attacker can induce out-of-distribution observation
of the victim, which can be used to retrain the victim policy. (Guo et al., 2021) further improved the
effectiveness of adversarial agents, considering imposing negative influence on victim agent besides
improving the reward of the attacker. Although they focused on two-agent games, we are under
different threat models and have different goals and evaluation methods as we show in Section 5.

2.2 ADVERSARIAL ATTACKS ON RL AGENTS

A line of works works (Huang et al., 2017; Lin et al., 2017; Weng et al., 2020; Kos & Song,
2017) proposed to manipulate victim’s whole observation to maximize the action change under
perturbation or to decrease the quality of action that the victim is going to take. Weng et al. (2020)
also incorporate a learned dynamics model to perform adversarial attacks. In contrast, our method
directly utilize the gradients based on the differentiable nature of the dynamics model to generate
perturbations for adversarial training.
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3 MOTIVATION

In this section, we use an example to illustrate the limitations of existing adversarial training for
deep RL agents and motivate our work.

A Two-agent Competitive Game and Robustness Our work focuses on two-agent competitive
games. The two players in such games have opposite goals and they compete with each other. They
are also called zero-sum games since the sum of the agents’ rewards will be zero. Both parties
have their own independent policy network, whose input is the observation of that agent (regarding
the other agent and the environment) and the output is the action the agent will take. In Figure 1,
we use the simulated robotics game You Shall Not Pass defined in (Bansal et al., 2018) as an ex-
ample. There are two players: the runner (in red) and the blocker (in blue). The runner wins if
it reaches the finish line; the blocker wins otherwise. An agent can observe its opponent’s infor-
mation, for example, the locations of different joints, and use it as the input to the policy network.

Figure 1: You Shall
Not Pass

We aim to improve the robustness of policy networks used in two-agent
games. Specifically, we study how an agent remains robust if its opponent is
adding adversarial perturbations to its behaviors (e.g., changing joint po-
sitions). Environmental perturbations are hence beyond our threat model.
Ideally, a robust victim agent would be able to maintain its original perfor-
mance, when it faces the malicious agent, and be resilient to the perturba-
tions that the adversary adds to itself.

Limitations of Existing RL Model Hardening Methods. Most existing
works (e.g., (Zhang et al., 2020; Oikarinen et al., 2021)) focus on training
a robust RL agent in single-agent games. SAPPO (Zhang et al., 2020) first generates the upper
bound of current action deviation when there are input perturbations at the current time step and
then updates the model weights to minimize that upper bound when the perturbations are applied.
RADIAL-PPO(Oikarinen et al., 2021) incorporates the upper bound of the perturbed loss to the final
training loss of the victim agent. Minimizing such loss practically discourages the overlap between
good action and bad action at the current time step under adversarial perturbation.

These techniques derive perturbations based on the input and the state of the current step. This may
not be sufficient for two-agent model hardening as two-agent games are much more dynamic due to
their zero-sum nature. In Figure 2, for illustrative purposes, we show the top view of both agents
to display the movement trajectory. We treat the blue runner as the attacker and the red blocker as
the victim. The attacker uses PGD (Madry et al., 2017) to generate adversarial perturbations and
adds them to its joints. The victim has been adversarially trained using SAPPO. Under the attack,
the victim agent tends to aggressively move towards the attacker (illustrated by the yellow arrows in
the figure), even though a better strategy may be to move side-way to block the attacker’s trajectory.
It suggests that the victim focuses on the situation at the current moment and lacks the ability to
evaluate the future possible results that the attacker exploits the aggressive move of the blocker and
eventually bypasses it. It is understandable since during adversarial training, the victim’s goal is to
follow its original action (in the presence of perturbation), which was to move towards the attacker.
However, the original action was out-dated due to the perturbations. In single-agent games, such
near-sighted weakness does not pose as severe threat as it would in two-agent games, since there
is not a proactively adjusting opponent. It is hence sufficient to stay in course given environmental
perturbations.

Our Method. The overarching idea of our method is to train the victim agent to foresee the future
possible adversarial motions of the adversary agent. Intuitively, instead of encouraging the agent
to follow its original action, we train the agent to be resilient to future adversarial perturbations
from the opponent that are able deteriorate the agent’s long-term performance. This requires the
agent to have a good understanding of ”what will happen in the adversarial future” and take action
accordingly.

Specifically, we start with generating adversarial perturbations that maximize the victim’s long-term
performance degradation. A naive method is to maximize the state value of the attacker while
minimizing that of the victim, i.e., maximizing the state value differences, at the current time step
t. However, this falls short in considering the enhanced controversy between the two parties. We
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Figure 2: Top view of the You Shall Not Pass game. The victim blocker (in blue) has been adver-
sarially trained by SAPPO and the runner (in red) is malicious, with its joint positions perturbed
by PGD to maximize the chance of penetrating the blocker. The yellow arrow denotes the moving
direction of the victim’s center of mass, i.e., the heading direction of its body. The attacker success-
fully passes the blocker.

hence take further steps and leverage the state value differences at t, t + 1, ... until t + h, with h
a hyper-parameter, when generating forward looking adversarial perturbations. To reduce errors
in forward looking, We learn a dynamics model to mimic the transitions between adjacent states
and feed the predicted future state to the value network of both agent’s to acquire the state value
differences of the following time steps. Summing up the state value differences from t to t+ h and
then backpropagating their gradients to the attacker’s state at t allows generating forward-looking
perturbations at t. As such, we minimize the victim’s total state value of immediate-future in the
presence of these perturbations.

Figure 3 presents the same initial states as Figure 2. The difference is that the victim has been ad-
versarially trained by our method. Observe that instead of running towards the attacker aggressively,
the victim moves side way to block the attacker’s trajectory. In other words, it has better anticipation
of the attacker’s movement, enabled by the dynamics model.

Figure 3: The same initial game states as Figure 2, with the victim blocker (in blue) adversarially
trained by our method. The blocker successfully stops the adversarial runner with perturbations
generated by PGD.

4 DESIGN

4.1 DEFINITIONS

In this subsection, we define the notations used in describing our adversarial training technique,
before we discuss our design in the following subsections. We use (α, v) to represent the attacker
and the victim agents, respectively. A two-player competitive game can be represented as a Markov
Decision Process (MDP) M = (S,A, P,R, γ), where S = (Sα,Sv),A = (Aα,Av) denote the
state sets and the action sets of the attacker and the victim, P : S × A → R denotes the probability

4



Under review as a conference paper at ICLR 2023

of transition between two states. Given the state s = (stα, s
t
v) and action a = (atα, a

t
v) at time step t,

the transition probability can be written as p(s′ | s, a) = Pr{St+1 = s′|St = s,At = a}. P is also
said defining the dynamics of MDP. The reward function R = (Rα, Rv), with Ri : Si × Ai → R
(i ∈ {α, v}) denoting a scalar function that outputs the numerical reward that an agent receives when
it transits from s to s′ with action a. Parameter γ ∈ [0, 1] is a discounting factor. In the framework
of MDP, the goal of training an agent in a competitive game is to learn a policy π(a|s) : (S × A →
R), which is a mapping from states to probabilities of selecting each possible action. This is by
maximizing the expected total return Ea∼π(a|s)[

∑∞
t γtR(s, a)]. when the agent behaves according

to π. Mathematically, the above objective can be translated to maximizing the state value function
of policy π defined as follows.

Vπ(s) = Eπ[

∞∑
k=0

γkRt+k+1|St = s], for all s ∈ S (1)

The value function of a state s under a policy π, is the expected total return when the agent starts in s
and follows π thereafter, representing how good it is for the agent to be in the current state. Although
constructing the perturbation based on the victim’s value function Vπ(st) at time step t reflects the
intention of deteriorating the agent’s long-term performance, looking forward solely based on the
value function at t is insufficient as we will show in the experiment. In our work, we assume the
victim uses a fixed policy πθ approximated by a neural network with parameters θ during test time.

4.2 DYNAMICS MODEL

The role of dynamics model in our adversarial training is to help the victim determine future state
transitions when both parties take actions according to their policies πα, πv . The victim and at-
tacker’s state values at t+1, .., and t+h are hence needed to generate perturbation that can maximize
the victim’s long-period performance degradation while preserving that of the attacker, with h the
hyper-parameter to denote the “horizon” of the victim, namely, how much further it can see. To pre-
dict the future states of both agents, a dynamics model fϕ : parameterized through a DNN is trained
to predict the environment dynamics. It takes the two agent’s states and actions (stα, s

t
v, a

t
α, a

t
v)

at time step t as the input, and predicts the difference ∆s between the current states and the next
time step’s states (st+1

α , st+1
v ). The advantage of using the difference as the target output lies in

the similarity between two adjacent states, which reduces the difficulty for the neural network to
approximate the underlying true dynamics. We concatenate the two agents’ observation states and
actions to st and at, respectively. The training loss of our dynamics model is hence the following.

ϵ(ϕ) =
1

|D|
∑

(st,at,st+1)∈D

1

2
||(st+1 − st)− fϕ(st, at)||2 (2)

Intuitively, the model encodes the law of physics, which is implemented by the underlying simulator.
The ground-truth training data is collected from trajectory rollouts that are used to train the policy
and value networks. We use the states without any adversarial perturbations to avoid noises stemmed
from robustness vulnerabilities of the model. Once a dynamics model fϕ is learned, we use fϕ to
transitively estimate the states from t+ 1 until t+ h given a sequence of actions.

st+h
α , st+h

v =

{
stα, s

t
v h = 0

(st+h−1
α , st+h−1

v ) + fϕ(s
t+h−1
α , st+h−1

v , at+h−1
α , at+h−1

v ) h > 0
(3)

Improving Future State Estimation by the Dynamics Model. The dynamics model helps the
agent’s value network to be more accurate on future state approximation, and thus can help the
adversary to generate stronger adversarial perturbations based on better evaluation of near-future
state values. Adversarially training the victim agent with the presence of such perturbations hence
explicitly extends its horizon, mitigating the shortsightedness problem. Figure 5 shows the mean
squared error between the ground truth state value V (st+1) and predicted V̂ (st+1) generated with
and without dynamics model when the blocker agent is at time step t. This error describes the value
estimation quality of future state ŝt+1. Specifically, the ground-truth state values V (st+1) are col-
lected from the trajectory. In the first case, we use the dynamics model to predict ŝt+1 and feed it to
the value network to get V (ŝt+1). In the second case (i.e., without the dynamics model), we acquire
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Figure 4: Overview

V (ŝt+1) using one-step Temporal Difference (TD) learning Tesauro et al. (1995) that we normally
do when training the value network. Experiment details are included in the Appendix. In Figure
5, we compute the above value errors for the first 50 time steps over 50 trajectories with different
random seeds. The shadow area denotes the standard deviations. Existing research (Feinberg et al.,
2018) on model-based RL has proven that incorporating an ideal dynamics model that can achieve
h-depth accuracy to model-free value estimation algorithms and leveraging these synthetic states to
update the value network improve it to be accurate on imagined states compared with the original
value network, which explains why our adversarial perturbation can help reach better robustness to
some extend.

4.3 ADVERSARIAL TRAINING FRAMEWORK

Figure 5: Incorporating dy-
namics model improves the
quality of value estimation
V̂ (st+1) on imagined state
ŝt+1.

Figure 4 presents the overview of our technique. As discussed above,
our dynamics model takes the states st = (stα, s

t
v) and actions at =

(atα, a
t
v) of the two agents as the inputs, transitively predicts ŝt+1,

..., ŝt+h when the attacker and the victim follow their current policy.
Then we leverage the imagined states to compute the sum of value
differences

∑t+h
i=t (V̂ (siα)− V̂ (siv)) between the attacker and the vic-

tim for the following h time steps. Backpropagating the gradients of
the sum wrt. the attacker’s current state stα generates forward-looking
perturbations δ at t, where δ = ϵ · sign(∇stα

∑t+h
i=t (V̂ (siα)− V̂ (siv)).

Here ϵ controls the l∞ norm of adversarial perturbation. We add δ
to the victim’s state input which contains its opponent’s information.
We also collect the new actions âv induced by perturbations to the
trajectory rollouts for later policy training.

The overall training procedure is similar to the common training pro-
cess of a clean opponent agent. For example, PPO (Schulman et al.,
2017) was implemented to learn the optimal policy for the victim
agent. It uses neural networks to learn a policy function π(a|s; θ)
and a state-value function Vπ(s; θv). The two agents in the game have a continuous action space,
and thus the outputs of their policies are the parameters µ and Σ of a Gaussian distribution, with
covariance being diagonal and independent of the input state s. We extend the training objective
of PPO by adding adversarial perturbations to the input of victim’s policy network, which can be
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formalized to a minimax optimization problem as follows.

minθE(ŝtv,â
t
v)∼πvold ,r

t
v
[−min(

πv(â
t
v|ŝtv)

πvoldv(â
t
v|ŝtv)

Ât
v, clip(1− η, 1 + η)Ât

v)], where ŝtv = stv +∆s, (4)

∆s = argmax
∥δ∥≤ϵ

(Va(s
t
a + δ)− Vv(s

t
v + δ)) +

t+k∑
i=t+1

(Va(fϕ(s
(i)
a ))− Vv(fϕ(s

(i)
v ))). (5)

Here, ŝtv and âtv denote the perturbed states and actions of the victim agent, respectively, after adding
the perturbation δ. The definition of advantage function for policy π is At

π(s, a) = Qπ(s, a)−Vπ(s),
where Qπ(s, a) is the Q value for action a in state s (Greensmith et al., 2004). It describes how
much better it is to take action a in s over randomly behaving according to π thereafter. We use
GAE (Schulman et al., 2016) to estimate the victim’s advantage Ât

v at t. Note that it is also com-
puted under the perturbed values of the agent. Equation 4 represents the final goal of the victim
agent, aiming to maximize its expected total reward (the negative sign transforms it to a minimiza-
tion problem), while the inner maximization (Equation 5) represents the goal of the adversary to
deteriorate its long-term performance.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

MuJoCo Games. Similar to the literature of multi-agent RL, we use four competitive two-agent
MuJoCo games defined in Bansal et al. (2018). Among them, You Shall Not Pass and Kick and
Defend are asymmetric games, and hence we use separate policies for the two agents in a game.

Baselines and Adversarial Attacks. We extend four existing adversarial attacks that are applicable
on continuous policy to the two-agent tasks and evaluate our proposed algorithm under these attacks.
The difference lies in which part of the victim’s inputs we are perturbing. In single-agent task, the
perturbation are added on the whole input space of the agent, while in two-agent task, we only add
noise on the part of the victim’s input that denotes the attacker’s information, representing the goal
of the malicious party to attack by changing its own position. Note that the underlying true states
are not changed, the noises are added in the observation space of the victim agent, which is a more
realistic setting consistent with the literature (Zhang et al., 2020; Sun et al., 2022). We consider
attacks with l∞ norm as in most literature.

For the VDiff attack in Pattanaik et al. (2018), we generate perturbations to minimize the state value
of the victim agent at t. Maximal Action Difference (MAD) in (Zhang et al., 2020) maximizes the
deviation between the original action and the perturbed action by maximizing the KL-divergence
between the original and perturbed policies. Robust Sarsa (RS) (Zhang et al., 2020) learns a robust
Q network to lead the agent to take the worst action that has the lowest Q value. RS+MAD (Zhang
et al., 2020) combines the above two techniques together, using a weight of loss to control the
balance between the two attacks. We use the perturbation bound of 1.5 and the attack steps of 5.
The l∞ used in our experiment is larger than the commonly-used bound 0.15 in existing adversarial
training methods for single-agent games (Zhang et al., 2020; Sun et al., 2022), since we are only
perturbing part of the victim’s state observation, requiring more aggressive perturbation to achieve
the attack goal. Note that we use the same bound in all experiments for fair comparison.

We compare our technique with two adversarial training baselines, SAPPO (Zhang et al., 2020) and
RADIAL (Oikarinen et al., 2021). These techniques were originally developed to harden models
in single-agent games. We extend them to two-agent games. In particular, we treat the attacker
with a fixed stochastic policy as part of the environment of the victim agent, which reduces the two-
party game to a single agent MDP, as how Gleave et al. (2020) and Guo et al. (2021) formalized
the problem when training an adversarial agent. Then we apply SAPPO and RADIAL to train the
victim agent.

Metric. A robust agent should maintain stable and satisfactory performance under any adversarial
perturbations. Previous works on single-agent games evaluate the robustness of an agent by the
reward value under various attacks. Larger reward values indicate better robustness. However, such
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metric is insufficient for two-agent games. For example, one may retrain an agent’s policy such that
it becomes much stronger and achieves a high win rate (i.e., beating its opponent). The resulted
larger reward values do not mean that its policy becomes more robust.

We propose to use the absolute win rate difference, i.e., the win rate when the agent is playing with a
benign opponent and the win rate playing with an opponent under adversarial attack, as the metric to
evaluate robustness. Intuitively, it illustrates how the policy is resilient to adversarial perturbations,
regardless the strength of the policy itself. In addition to the win rate difference, we also look at
whether our adversarial training incurs win rate degradation (when compared to without adversarial
training). We obtain the win rate of the victim agent over 500 random seeds.

5.2 EXPERIMENTAL RESULTS

In this section, we show that our methods produces victim agents with better robustness and less
performance degradation than two state-of-the-art adversarial training algorithms on four MuJoCo
competitive two-agent games. For the asymmetric games: You Shall Not Pass and Kick and Defend,
we treat agent with id 1 in each game as the victim.

The results are shown in Table 1. The first column describes the games. The second column presents
the models with PPO denoting the victim policy without any adversarial training, SAPPO, RADIAL,
and our method denoting models hardened by respective methods. The third column presents the
clean win rate (without any adversarial attack). The remaining columns denoting the results for var-
ious attacks, including Random in which the attacker sampled the noise from a uniform distribution,
MAD, RS, RS+MAD, and VDiff. The numbers in braces denote the dimension of the observation
of each game. Observe that RS+MAD can achieve almost strongest attacks on victim’s observation
space, our adversarial training can largely improve the agent’s empirical robustness against a wide
range of attacks and maintain high clean win rate on three games comparing with two baselines.

Environment Models Clean
Win Rate Random MAD RS RS+MAD VDiff

You shall not pass (380)

PPO 58.7 57.5(-1.2) 23.5(-35.2) 14.1(-44.6) 10.6(-48.1) 28.2(-30.5)

SAPPO 54.6(-4.1) 56.1(-2.6) 55.2(-3.5) 45.2(-13.5) 44.6(-14.1) 56.4(-2.3)

RADIAL 54.1(-4.6) 55.2(-3.5) 55.8(-2.9) 44.8(-13.9) 43.4(-15.3) 56.9(-1.7)

Our method 55.8(-2.9) 54.8(-3.9) 55.1(-3.6) 46.4(-12.3) 42.9(-15.8) 57.4(-1.3)

SumoHuman (395)

PPO 27.9 25.9(-2.0) 10.3(-17.6) 9.4(-18.5) 5.2(-22.7) 12.8(-15.1)

SAPPO 25.5(-2.4) 27.3(-0.6) 21.0(-6.9) 20.6(-7.3) 21.9(-6.0) 24.8(-3.1)

RADIAL 24.1(-3.8) 25.4(-2.5) 28.5(+0.6) 21.9(-6.0) 20.9(-7.1) 24.8(-3.1)

Our method 26.2(-1.7) 25.5(-2.4) 25.8(-2.1) 22.6(-5.3) 22.5(-5.4) 26.4(-1.5)

Kick and Defend (395)

PPO 64.6 67.1(+2.5) 24.5(-40.1) 18.3(-46.3) 15.6(-49.0) 32.3(-32.3)

SAPPO 57.5(-7.1) 59.4(-5.2) 50.4(-14.2) 41.3(-23.3) 40.7(-23.9) 60.5(-4.1)

RADIAL 56.6(-8.0) 60.4(-4.2) 50.3(-14.3) 40.1(-24.5) 39.7(-24.9) 61.2(-3.4)

Our method 55.5(-9.1) 61.2(-3.4) 49.8(-14.8) 42.3(-22.3) 41.1(-23.5) 61.4(-3.2)

SumoAnt (111)

PPO 41.2 38.2(-3.0) 33.1(-8.1) 14.8(-26.4) 10.1(-31.1) 29.5(-11.7)

SAPPO 34.1(-7.1) 36.8(-4.4) 33.5(-7.7) 30.4(-10.8) 27.3(-13.9) 32.6(-8.6)

RADIAL 39.1(-2.1) 42.0(+0.8) 37.8(-3.4) 26.4(-14.8) 24.2(-17.0) 37.2(-4.0)

Our method 39.3(-1.9) 36.9(-4.3) 40.8(-0.4) 27.5(-13.7) 29.5(-11.7) 40.5(-0.7)

Table 1: Win Rate(%) (absolute difference) of three different adversarial training agents under five
different attacks.

Ablation Study. The horizon h in dynamics model controls how much further we would like the
perturbation to deteriorate the victim’s performance. Intuitively, larger h leads to perturbations with
longer effect on the victim’s performance but the estimation quality for far-future states will be
sacrificed. We conduct ablation study on the influence of the hyper-parameter horizon used in the
dynamics model on the game SumoHuman. Based on Tabel 5.2, we could see that h = 1 achieves
the best result for SumoHuman agents, while h = 5 degrades the victim’s performance and the
reason could be that larger horizon will induce inaccurate prediction of future states. The robustness
without dynamics model, i.e. h = 0, is worse than h = 1, when we look further for one step during
adversarial training.
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Adversarial Attacks h = 0 h = 1 h = 3 h = 5

Random 21.2 26.2 23.8 18.6

MAD 20.9 25.8 23.2 18.4

RS 19.6 23.1 20.3 17.8

RS+MAD 18.3 21.7 19.8 17.6

VDiff 20.0 26.4 23.0 17.5

Table 2: Ablation Study on Horizon h, table shows the win rate of SumoHumans agent that is
adversarially trained by dynamics models with different horizon h under 5 adversarial attacks.

6 CONCLUSION

In this work we study the empirical robustness problem against adversarial attacks that are applied
in the context of competitive two-agent games. We propose a dynamics model based adversarial
training method that can improve the victim agent’s robustness against 4 existing adversarial attacks.
A potential future direction is to use dynamics model that incorporates environment uncertainty to
achieve better performance.
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oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

10

https://doi.org/10.24963/ijcai.2017/525
https://openreview.net/forum?id=JM2kFbJvvI


Under review as a conference paper at ICLR 2023

Tsui-Wei Weng, Krishnamurthy (Dj) Dvijotham*, Jonathan Uesato*, Kai Xiao*, Sven Gowal*,
Robert Stanforth*, and Pushmeet Kohli. Toward evaluating robustness of deep reinforcement
learning with continuous control. In International Conference on Learning Representations, 2020.

Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. Adversarial policy training against deep rein-
forcement learning. In 30th USENIX Security Symposium (USENIX Security 21), pp. 1883–1900,
2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in neural information
processing systems, 31, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. In
Advances in Neural Information Processing Systems, 2020.

Huan Zhang, Hongge Chen, Duane S. Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

11


	Introduction
	Related Work
	RL Model Hardening Methods
	Adversarial attacks on RL agents

	Motivation
	Design
	Definitions
	Dynamics Model
	Adversarial Training Framework

	Experiments
	Experiment Setup
	Experimental results

	Conclusion

