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ABSTRACT

A key challenge in analyzing neural networks’ robustness is identifying input
features for which networks are robust to perturbations. Existing work focuses on
direct perturbations to the inputs, thereby studies network robustness to the lowest-
level features. In this work, we take a new approach and study the robustness
of networks to the inputs’ semantic features. We show a black-box approach to
determine features for which a network is robust or weak. We leverage these
features to obtain provably robust neighborhoods defined using robust features
and adversarial examples defined by perturbing weak features. We evaluate our
approach with PCA features. We show (1) our provably robust neighborhoods are
larger: on average by 1.5x and up to 4.5x, compared to the standard neighborhoods,
and (2) our adversarial examples are generated using at least 12.2x fewer queries
and have at least 2.8x lower L2 distortion compared to state-of-the-art. We further
show that our attack is effective even against ensemble adversarial training.

1 INTRODUCTION

The reliability of deep neural networks (DNNs) has been undermined by adversarial examples: small
perturbations to inputs that deceive the network (e.g., Goodfellow et al. (2015)). A key step in
recovering DNN reliability is identifying input features for which the network is robust. Existing
work focuses on the input values, the lowest-level features, to evaluate the network robustness. For
example, a lot of work analyzes networks’ robustness to neighborhoods consisting of all inputs
at a certain distance from a given input (e.g., Boopathy et al. (2019); Katz et al. (2017); Salman
et al. (2019); Singh et al. (2019a); Tjeng et al. (2019); Wang et al. (2018)). Despite the variety of
approaches introduced to analyze robustness, the diameter ε (controlling the neighborhood size)
of the provably robust neighborhoods is often very small. This may suggest an inherent barrier of
the robustness of DNNs to distance-based neighborhoods. To illustrate, consider Figure 1(a) and
Figure 1(b) – which are visibly the same but in fact each of their pixels differs by ε = 0.026. That ε is
the maximal one for which the L∞ ball Bε(x) (x is Figure 1(a)) was proven robust by ERAN (Singh
et al., 2018; Gehr et al., 2018), a state-of-the-art robustness analyzer.

Feature-defined neighborhoods We propose to analyze network robustness to perturbations of
high-level input features. A small perturbation to a feature translates to changes of multiple input
entries (e.g., image pixels) and as such may produce visible perturbations. To illustrate, consider
a neighborhood around Figure 1(a) in which only the background pixels can change their color. It
turns out that, for this neighborhood, ERAN – the same robustness analyzer – is able to prove a
neighborhood which has 10672x more images. Figure 1(c) shows a maximally perturbed image in this
neighborhood, and Figure 1(d) illustrates two other images in it. These images are visibly different
from Figure 1(a). Proving such neighborhood robust, for many inputs, can suggest that the network is
robust to background color perturbations, thereby provide insights to the patterns the network learned.

Key idea: robust features An inherent challenge in finding robust feature-defined neighborhoods
is automatically finding good candidate features (e.g., background color). Part of this challenge stems
from the substantial running time of any robustness analyzer on a single neighborhood. This makes
brute-force search of feature-defined neighborhoods for a large number of features and inputs futile.
We propose a sampling approach to identify features which are likely to be robust for many inputs.
We call these robust features. We experimentally observe that our robust features generalize to unseen
inputs, even though they were determined from a (small) set of inputs.
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Figure 1: Network robustness to feature perturbations. (a) An image x from CIFAR10. (b) A
maximally perturbed input from the maximally L∞ neighborhood Bε(x) proven robust by ERAN.
(c) A maximally perturbed input (sky color is blue instead of gray) from the maximally feature-
defined neighborhood Nsky_color

δ (x) proven robust by ERAN. (d) Other images in Nsky_color
δ (x).

(e) A traffic light image from Imagenet, correctly classified by Inception-V3. (f) Our feature-based
adversarial example classified by the same model as crane. (g) A visualization of the difference.
(h) Perturbations to the image x using the second PCA feature (whose semantic meaning is sky color).

Feature-guided adversarial examples Dually to robust features, we define and identify weak
features. We show how to exploit them in a simple yet effective black-box attack. Our attack
perturbs a given input based on the weak features and then greedily reduces the number of modified
pixels to obtain an adversarial example which minimizes the L2 distance from the original input.
Figure 1 illustrates our attack on ImageNet with the Inception-V3 architecture (Szegedy et al., 2016).
Figure 1(e) shows a traffic light image (correctly classified), Figure 1(f) shows our feature-guided
adversarial example (classified as crane), and Figure 1(g) visualizes the difference between the
two images. We experimentally show that our attack is competitive with state-of-the-art practical
black-box attacks (AutoZoom by Tu et al. (2019) and GenAttack by Alzantot et al. (2019)) and fools
the ensemble adversarial training defense by Tramèr et al. (2018). Our results strengthen the claim
of Ilyas et al. (2019) who suggested that weak (non-robust) features of the data contribute to the
existence of adversarial examples. However, unlike Ilyas et al. (2019), we do not focus on features
that stem from the DNN. This allows us to expose interesting patterns, expressed via simple functions,
that the DNN has learned or missed.

PCA features We obtain an initial set of features by running principal component analysis (PCA).
PCA provides us with an automatic way to extract useful features from a dataset. For example, the
sky color feature of the airplane in Figure 1(a) is in fact the second PCA dimension of this class
of images in CIFAR10. Figure 1(h) shows the effect of perturbing this feature by small constants
(multiplied by δ = 5) in the PCA domain and projecting it back to the image domain. Our choice of
using PCA is inspired by earlier work. We hypothesized that DNN may learn (some) of the PCA
features by relying on works that showed that PCA can capture semantic features of the dataset (e.g.,
Zhoua et al. (2008); Jolliffe (2002)) and that DNNs learn semantic features (e.g., Zeiler & Fergus
(2014)). Further, PCA has been linked to adversarial examples: several works showed how to detect
adversarial examples using PCA (Hendrycks & Gimpel., 2017; Jere et al., 2019; Li & Li, 2017), others
utilized PCA to approximate an adversarial manifold (Zhang et al., 2020), and others constructed an
attack that modified only the first PCA dimensions (Carlini & Wagner., 2017). Computing the exact
PCA dimensions requires perfect-knowledge of the dataset and is time-consuming for large datasets
(e.g., ImageNet). We show that an approximation of the PCA dimensions is sufficient to obtain robust
and weak features and that these can be computed from a small subset of the dataset (not used for
training). The assumption that the attacker has access to a small dataset of similar distribution to the
training set is often valid in practice (e.g., for traffic sign recognition benchmarks, like GTSRB, or
face recognition applications).

We evaluate our approach on six datasets and various network architectures. Results indicate that
(1) compared to the standard neighborhoods, our provably robust feature-guided neighborhoods have
larger volume, on average by 1.5x and up to 4.5x, and they contain 1079x more images (average is
taken over the exponent), and (2) our adversarial examples are generated using at least 12.2x fewer
queries and have at least 2.8x lower L2 distortion compared to state-of-the-art practical black-box
attacks. We also show that our attack is effective even against ensemble adversarial training.

To conclude, our main contributions are:
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• Definitions of networks’ robustness and weakness to feature perturbations (Section 2).
• A sampling algorithm for finding the most robust and weakest features (Section 3).
• Feature-based neighborhoods and their robustness analysis (Section 4).
• Feature-based adversarial examples (Section 5).
• Instantiation with PCA features (Section 6).
• Extensive evaluation of our approach (Section 7).

2 ROBUST AND WEAK FEATURES

In this section, we define robust and weak features. We focus on classifiers, D : Rd → Rc, given as
a black-box, and trained on input-output pairs (x, z) sampled from a distribution T . We denote by
class(D(x)) the classification of x by D (i.e., the index i maximizing D(x)i).

Features A feature function f : Rd → Rd is a bijective function mapping inputs to real-valued
vectors. The assumption that f is bijective simplifies our definitions but these can be extended to
other kinds of feature functions. The ith component of a feature function f is called the feature i of f .

Feature perturbation For a feature function f : Rd → Rd, index i, and a scalar δ ∈ R, we define
the perturbation of x along feature i by δ as follows: xf,i,δ = f−1(f(x) + δ{i}), where δ{i} ∈ Rd is
a vector whose entries are zero except for the ith entry which is δ.

Network robustness to features perturbations Given a feature function f , an index i, and a scalar
δ ∈ R+, we say the feature i of f is δ-robust if any perturbation to the feature i up to δ does not
decrease the class confidence of D on x denoted by CC(D,x) (shortly defined). Formally:

P(x,z)~T ([∀δ′ ∈ [0, δ].class(D(xf,i,δ′)) = class(D(x)) and CC(D,xf,i,δ′) ≥ CC(D,x)]) = 1.

The expression [·] is the Iverson bracket: it is 1 if the formula evaluates to true, and 0 otherwise. We
define δ-robustness for δ ∈ R− similarly (except that δ′ ∈ [δ, 0]). If i is δ-robust and δ > 0, we say
the robustness direction of i is + (positive); otherwise if δ < 0 the direction is − (negative).

We define network weakness dually. The feature i of f is δ-weak if any perturbation to the feature i
up to δ changes the classification or decreases the class confidence. Formally, for δ ∈ R+:

P(x,z)~T ([∀δ′ ∈ [0, δ].class(D(xf,i,δ′)) 6= class(D(x)) or CC(D,xf,i,δ′) ≤ CC(D,x)]) = 1.

Class confidence The definition of class confidence CC(D,x) is orthogonal to our approach. One
can define it as the class probability. However, we experimentally observed that it is better to relax
the requirement about the absolute value and instead focus on the difference between the probability
of the highest ranked class and the second highest, that is:

CC(D,x) = D(x)class(D(x)) −max {D(x)i | i ∈ {0, . . . , c− 1} \ {class(D(x))}} .

Most robust and weakest features Generally, we do not expect to find robust features if the
features are defined orthogonally to the network’s structure and parameters. However, if we relax
the definition and quantify the robustness level of a feature, we can expose connections between the
feature and the network’s robustness behavior. We define the robustness level RL as:

RL = P(x,z)~T ([∀δ′ ∈ [0, δ].class(D(xf,i,δ′)) = class(D(x)) and CC(D,xf,i,δ′) ≥ CC(D,x)]).

We define the problem of finding the most robust features as finding k features maximizing the
robustness level. Dually, we define the weakness level and the problem of finding k weakest features.

3 MOST ROBUST AND WEAKEST FEATURES VIA SAMPLING

In this section, we present our approach to approximate the most robust and weakest features via
sampling. We approximate these features by checking robustness over inputs from a set S (drawn
from the distribution T ) and by sampling the intervals [0, δ] and [−δ, 0] at several points determined
by a step parameter η. Algorithm 1 depicts our computation. The time complexity of Algorithm 1 is

3



Under review as a conference paper at ICLR 2021

Algorithm 1: FindRobustWeakFeatures(D, S, f , d, k, δ, η)
Input: A classifier D, input-output pairs S, a feature function f , a number of features d, a

number k, scalars δ and η (precondition: 0 < η ≤ δ and k ≤ d ).
Output: k most robust features and k weakest features along with their direction.
RL = [0, . . . , 0]; WL = [0, . . . , 0];
for i ∈ [0, . . . , d− 1] do

for (x, z) ∈ S do
r = true; w = true;
for δ′ = η; δ′ ≤ δ; δ′+ = η do

if class(D(xf,i,δ′)) 6= class(D(x)) or CC(D,xf,i,δ′) < CC(D,x) then r=false;
else w=false;

if r then RL[(i,+)] = RL[(i,+)] + 1;
if w then WL[(i,+)] = WL[(i,+)] + 1;
// a similar check for the negative direction − (with −η and −δ) to update the key (i,−)

return The keys (index-direction pairs) of the k maximal entries in RL and WL

linear in d · |S| · dδ/ηe · (Tp + TD), where d is the number of features, Tp the time to compute the
feature perturbation xf,i,δ′ and TD the time to run xf,i,δ′ through the classifier D. The number of
queries to the network is at most 2 · d · |S| · dδ/ηe+ |S|. The term |S| counts the number of queries
for computing class(D(x)) and CC(D,x) for every (x, z) ∈ S, computed once at the beginning of
Algorithm 1 (this step is omitted from Algorithm 1 for simplicity’s sake).

Our algorithm supports a trade-off between precision and performance: the larger the S and the
smaller the η, the more precise the result, but with a higher number of queries to the network. In
practice, even though Algorithm 1 is executed once per dataset (after which many neighborhoods
can be analyzed for robustness or attacks), its running time can be high. Thus, in our experiments,
we set |S| to 100, d to 1, 000 (i.e., we do not scan all features), and η = δ. Despite these substantial
restrictions, we still observe good results in practice (see Section 7). This encourages us that even a
coarse search for robust and weak features is sufficient to obtain larger provably robust neighborhoods
and an adversarial example attack which is competitive with state-of-the-art attacks.

4 MAXIMALLY ROBUST FEATURE-GUIDED NEIGHBORHOODS

In this section, we define feature-guided neighborhoods and explain how we find maximally robust
neighborhoods. Given an input x, a feature i of f , and a scalar δ ∈ R+, the (f, i, δ)-neighborhood of
x is the set Nf,i

δ (x) = {xf,i,δ′ | δ′ ∈ [0, δ]} (the definitions for δ ∈ R− are similar and thus omitted).
Given a DNN D, we say that Nf,i

δ (x) is robust if D classifies all inputs in Nf,i
δ (x) the same. Our

goal is to find maximally robust (f, i, δ)-neighborhoods for a given x and feature i of f (i.e., we
look for a maximal scalar δ ∈ R+). To this end, we employ a binary search in a given range [0, uN ]
(where uN is a constant). In each iteration of the search, we reason about the robustness of the
current neighborhood using an existing analyzer, as shortly described. We note that for linear feature
functions (e.g., PCA), the binary search is optimal. We further note that although our definition is
general for any feature, larger neighborhoods are likely to be defined using the (most) robust features.

To verify robustness of a given (f, i, δ)-neighborhood, we translate it to an L∞-norm neighborhood.
This neighborhood can be then analyzed using an existing local robust analyzer (e.g., Gehr et al.
(2018); Katz et al. (2017); Singh et al. (2019b)). In L∞-norm neighborhoods, each input entry (e.g.,
a pixel) can be perturbed independently. Formally, given an input x and lower and upper bounds for
every jth entry εlj , ε

u
j , the L∞-norm neighborhood is: N(x) = {x′ | ∀j, x′j ∈ [x− εlj , x+ εuj ]}. (A

special case is Bε neighborhoods, in which all bounds are ε, i.e., for all j, εlj = εuj = ε.) For linear
feature functions (e.g., PCA), we translate (f, i, δ)-neighborhoods to L∞-norm ones as follows:

N∞f,i,δ(x) = {x′ | ∀j, x′j ∈ [min(xj , (xf,i,δ)j),max(xj , (xf,i,δ)j)]}.

For other feature functions, one has to obtain the minimal and maximal values of each input entry.
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Figure 2: (a) A frog x from CIFAR10. (b) A maximally perturbed frog from the Bε=0.024(x)
neighborhood – the maximal ε proven robust. (c) A maximally perturbed frog from the (PCA, 0, δ)-
neighborhood (δ = −6.66). (d)+(e) Two other images in the (PCA, 0, δ)-neighborhood of x.
(f) Perturbations to x using the PCA feature 0 (whose semantic meaning is background lighting level).

5 FEATURE-GUIDED ADVERSARIAL EXAMPLES

In this section, we present our feature-guided attack which perturbs the weakest features. Our attack
consists of two steps: perturbing the weakest features by a small δ and then greedily refining the
adversarial example. In addition to the expected parameters (the classifier D, the input-output pair
(x, z), and the feature function f ), the attack takes as input the set of weak features W consisting
of indices and directions, a step scalar δadvs , and a maximal distortion scalar δM . The first step of
the attack looks for the smallest δ ≤ δM , with granularity δadvs , for which xf,W,δ′ is an adversarial
example. Here, xf,W,δ′ = f−1(f(x) + δW ), where δW ∈ Rd is a vector whose entries are zero
except for indices from W whose entries are δ or −δ depending on their direction. If an adversarial
example is found, the second step of the attack refines it by greedily attempting to recover pixels to
their original value in x, while still guaranteeing that the example is misclassified by D. To reduce
the number of queries to D and converge faster to a minimal adversarial example, the attack attempts
to recover groups of adjacent pixels (e.g., of size 50) together. If it fails, it cuts the group size in half.
In practice, we observe that this approach provides a good balance between reducing the number of
queries and recovering many input entries to their original value.

6 INSTANTIATION WITH PCA

In this section, we explain how we use PCA to instantiate our approach. We begin with a brief
background, then present our instantiation and exemplify PCA-guided neighborhoods and attacks.

Background PCA projects inputs into an (interesting) set of features (dimensions), each represents
a different aspect of the data and captures a different amount of variance (information). Technically,
PCA is a statistical framework that projects a random variable x ∈ Rd onto a random variable y ∈ Rd,
such that the components {yi}di=1 are uncorrelated and have maximal variance values. The set
{yi}di=1 is defined by yi = uTi x ∈ R, such that ui ∈ Rd, where the ui-s are the principal components
of x. The principal components are computed with the goals of (1) maximizing the variance of the
components {yi}di=1 and (2) keeping these components uncorrelated. In practice, instead of the
random variable x, we consider a data matrix X , consisting of n input samples. Given the principal
components, we define the PCA transformation matrix by U = [u1, u2, . . . , ud]. We use U to project
the dataset into the PCA domain and vice versa: Y = XU ∈ Rn×d, X = Y UT ∈ Rn×d.

PCA feature functions We observed that PCA provides better features when computed for inputs
of the same class. Thus, for each class z, we define a feature function PCAz(x) = xTUz , where Uz
is the PCA transformation matrix computed from inputs with output z. As a result, Algorithm 1 is
executed c times, where c is the number of classes. The running time of computing the PCA feature
functions is c ·min(|S|3, d3). In practice, we only compute the first d = 1, 000 PCA dimensions.
Combined with the small size of S (|S| = 100 per class), the running time is a few minutes per class.

We next show an example of a (PCA, i, δ)-neighborhood (Appendix A shows more examples).
Figure 2(a) shows a frog image x from CIFAR10. The maximal ε for which the Bε(x) was proven
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Figure 3: PCA-guided adversarial examples.

robust by ERAN (Gehr et al., 2018) was ε = 0.024. Figure 2(b) shows a maximally perturbed image
in this neighborhood. The maximal δ for which the NPCA,0

δ (x) was proven robust by ERAN was
δ = −6.66 (the feature 0 represents lighting conditions). This PCA-guided neighborhood contains
10703x more images than the Bε(x) neighborhood. Figure 2(c) shows a maximally perturbed image
in this neighborhood, while Figure 2(d) and Figure 2(e) show two other images in it. Figure 2(f)
illustrates the semantic meaning of the feature we perturb (background lighting conditions): it shows
several images obtained by first perturbing this feature in the PCA domain by a small constant (a
multiplication of δ = 5) and then projecting the PCA perturbation back to the image domain.

Figure 3 shows examples of our PCA-guided attack (Appendix A has more examples). Each example
shows a correctly classified input, our adversarial example, and the perturbation (scaled for better
visualization). The leftmost example shows a traffic sign image from ImageNet whose adversarial
example is classified as a missile by Inception-V3. The middle example shows an ostrich image from
ImageNet whose adversarial example is classified as an hartebeest by the same model. The rightmost
image shows an image of Blair whose adversarial example is classified by RESNET20 as Bush.

7 EVALUATION

In this section, we evaluate our approach and the applications from Sections 4 and 5.

Setup We implemented our approach in Python using PyTorch (we also support Tensorflow models).
We trained models and ran most experiments on a Tesla K80 GPU with 12GB RAM. Only for running
ERAN (Gehr et al., 2018), we used a dual AMD EPYC 7742 server with 1TB RAM running Ubuntu
20.04.1. For computing the most robust and weakest features of a given class, we defined S as a
set of 100 random inputs of that class (which were not part of the training set), d = 1, 000 (i.e., we
considered only the first 1, 000 PCA features), k = 250, and δ = η = 1. For (f, i, δ)-neighborhoods,
we set uN = 100. For our attack, we set δadvs = 0.1 and δM = 10. As an optimization, our
attack iterates over k ∈ {50, 100, 250} to reduce the distortion level. We evaluate our approach
on six datasets (described in Appendix B). Each is split into a training set, a set for computing
PCA+Algorithm 1, and a set to evaluate our neighborhoods and attack. Our attack was tested on
state-of-the-art networks, and our robustness analysis was done on networks taken from ERAN’s
repository (denoted by E) and networks whose size is similar to the large networks from that repository.
We trained most models, except for Inception-V3 for ImageNet (Szegedy et al., 2016) and the C&W
models (Carlini & Wagner, 2017) for MNIST and CIFAR10 (and models marked with E).

PCA + Algorithm 1 analysis For each dataset, we computed the first d PCA features from the set
S containing 100 images. This step took less than two minutes for all datasets. Then, for each model,
we computed the most robust and weakest features among these dimensions. This step is executed
once, after which these features are used to define multiple neighborhoods and adversarial examples.
This step is executed separately for each class and thus can be naturally parallelized. The average
running time of Algorithm 1 was less than 90 seconds for most datasets and models, and at most ten
minutes for ImageNet. The number of queries is 2 · |S| · d · c = 2 · 105 · c, where c is the number of
classes. While this number is not negligible, it is done as a preprocessing step (similarly to training a
model as done by other attacks, e.g., Tu et al. (2019)). The amortized added queries of this step over
the dataset ranges from a handful of queries (for ImageNet) to a few dozens (for MNIST).

Feature-guided neighborhoods To evaluate robustness of (f, i, δ)-neighborhoods, we ran several
experiments. In each experiment, we fixed a model, a dataset, a class, and a robust feature i. We
considered small models (3×100 and 5×250), medium-sized models (LeNet5 with ~10,000 neurons),
models that are considered big for robustness analysis (C&W with ~77,000 neurons), convolutional

6



Under review as a conference paper at ICLR 2021

Table 1: PCA-guided neighborhoods vs. Bε neighborhoods: v is the neighborhood volume, #im the
number of images in it, and |u− l|max the maximal pixel range. Results are averaged over ten images.
We provide a graphical interpretation of our robust features in Figure 4.

Dataset Model Class i vPCA vε #imPCA #imε |u− l|max
PCA |u− l|max

ε

MNIST 3× 100E 2 1 21.0 20.8 10275 10620 0.247 0.046
MNIST ConvSmallE 0 1 62.6 66.7 10388 10979 0.76 0.149
MNIST ConvMaxpoolE 9 0 1.7 2.9 1048 1046 0.019 0.006
MNIST VGG-based 0 0 2.6 1.6 1070 1 0.026 0.003
FMNIST 5× 250 1 1 8.7 7.5 10248 10245 0.063 0.016
FMNIST C&W 2 7 3.2 2.4 1087 1 0.033 0.003
LFW LeNet5 2 9 9.4 6.6 10355 1046 0.038 0.008
LFW C&W 0 2 6.4 4.5 10231 1 0.023 0.004
LFW C&W 2 9 7.6 5.3 10283 1 0.031 0.005
GTSRB LeNet5 14 8 16.0 8.3 10481 10347 0.097 0.01
GTSRB C&W 3 0 3.5 1.5 10255 1 0.017 0.002
GTSRB C&W 15 3 3.6 0.8 10147 1 0.018 0.001
CIFAR10 LeNet5 9 1 5.5 4.3 10110 1 0.005 0.001
CIFAR10 ConvSmallE 0 1 235.4 186.4 103057 102941 0.176 0.063
CIFAR10 ConvSmallE 1 0 181.8 125.5 102944 102661 0.13 0.041
CIFAR10 ConvBigE 3 5 92.9 64.7 102085 101919 0.089 0.021
CIFAR10 ConvBigE 0 1 47.9 45.4 101644 101577 0.031 0.014
CIFAR10 C&W 1 0 6.4 4.9 1096 1 0.005 0.002

Table 2: Our attack vs. AutoZOOM and C&W. Qb/Q is the number of queries to the network
before/after postprocessing, and Lb2/L2 is the L2 distance from the original image before/after
postprocessing. We abbreviate RESNET with RES and Inception-V3 with IncV3.

Dataset Model Our attack AutoZOOM C&W
L2 Q Lb2 Qb L2 Q Lb2 Qb L2

×10−3 ×103 ×10−3 ×10−3 ×103 ×10−3 ×10−3

MNIST C&W 3.31 3.2 8.72 86 2.52 3.8 11.58 250 2.62
FMNIST VGG13 0.82 2.6 2.55 19 2.18 3.8 4.54 102 1.87
LFW RES20 0.40 0.9 1.82 9 1.60 3.8 3.70 56 0.16
GTSRB RES20 0.30 3.1 1.24 23 0.94 3.8 3.94 272 0.18
CIFAR10 C&W 0.29 2.9 1.67 57 0.70 3.8 1.98 103 0.12
CIFAR10 RES50 0.27 3.4 1.11 14 0.71 3.8 2.06 70 0.13
CIFAR10 VGG16 0.28 3.3 1.69 32 1.52 3.8 7.75 39 0.20
ImageNet Inc-V3 0.01 217 0.16 42 0.016 250 0.66 2654 0.003

models of different sizes from ERAN’s repository, and a VGG-based model that we trained (~141,000
neurons). We computed the maximally robust (PCA, i, δ)-neighborhoods for the first ten images of
that class. Table 1 reports the results: the average neighborhood volume (v= Σjε

u
j − εlj), the number

of images in the neighborhood (shown as a power of ten: 10e; we take the average over the exponent;
for average e = 0, we write 1), and the maximal pixel range (i.e., max{εuj − εlj | j}). We compare
our approach with the standard approach of computing maximally robust Bε(x) neighborhoods
(using binary search and ERAN). Results indicate that (1) our neighborhoods have larger volumes: on
average by 1.5x and up to 4.5x; (2) our neighborhoods have 1079x more images (average is over the
exponent) and, for deep networks or complex datasets, often the maximal Bε neighborhood contains
a single image, and (3) our neighborhoods have larger maximal pixel range. Figure 4 illustrates the
semantic meaning of the PCA features presented in Table 1. For each dataset, class, and feature, it
shows three images: an initial image (middle) and two images obtained by perturbing the feature by
±δ (for some δ). The three images are ordered by the feature’s robustness direction: if the direction
is positive, then the rightmost image is the perturbation with respect to +δ; otherwise, the rightmost
image is the perturbation with respect to −δ. The arrows in the figure show the robustness direction.
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Figure 4: Illustration of the semantic meaning of the PCA features used in Table 1.

Table 3: Our attack vs. AutoZOOM and GenAttack on models trained with ensemble adversarial
training. S% is the success rate and L2 is the L2 distance from the original image.

Dataset Our attack AutoZOOM GenAttack
S% L2 (×10−3) S% L2 (×10−3) S% L2 (×10−3)

MNIST 100 3.4 65 2.3 95 18.7
F-MNIST 100 0.8 100 2.1 94 11.9
CIFAR10 100 0.3 100 1.3 100 5.1

PCA-guided adversarial examples We next evaluate our attack. In each experiment, we fix a
dataset and model, and run our attack for 100 correctly classified inputs (not used during training or
computing the most robust/weakest features). For each adversarial example, we measure the number
of queries posed to the network and the L2 distance from the original image. We measure these
twice: (1) after perturbing the weakest features and obtaining the first adversarial example (denoted
Qb and Lb2) and (2) after the refinement postprocessing step (denoted Q and L2). We compare our
approach with state-of-the-art practical black-box attacks: AutoZOOM by Tu et al. (2019) (which
also has a refinement postprocessing step) and GenAttack by Alzantot et al. (2019) . We also compare
our attack to the C&W attack Carlini & Wagner (2017), which is a white-box attack (with a full
access to the model, including the internal layers – unlike our setting which assumes access only to
the input and output layers). Table 2 shows the results for our attack, AutoZoom, and C&W, all of
which have success rate of 100%. Results indicate that (1) our attack obtains the initial adversarial
examples (before postprocessing) with 12.2x fewer queries and with 2.5x less L2 distortion compared
to AutoZOOM, (2) considering postprocessing, our attack generates adversarial examples with fewer
queries and 2.8x less L2 distortion compared to AutoZOOM, and (3) our black-box attack has 1.8x
more L2 distortion than the white-box attack of C&W (this is expected as a white-box setting provides
the attacker with more knowledge). Due to lack of space, results for GenAttack are in Appendix C.
Compared to GenAttack: (1) our attack obtains the initial adversarial examples with 18.7x fewer
queries and with 4.1x less L2 distortion, and (2) our final adversarial examples have 16.7x less L2

distortion but with 29x more queries.

We next evaluate our attack for the same 100 inputs on models trained with ensemble adversarial
training (Tramèr et al., 2018). To this end, we trained defended models for three datasets using trained
RESNET50, RESNET20, and C&W models. We limited the query number to 10, 000. We compare
our approach with AutoZoom and GenAttack. Table 3 shows the results. Results indicate that our
attack has a higher success rate and in most cases it obtains smaller L2 distortion.

In Appendix D, we provide experiments comparing our approach to an attack which uses random
PCA features instead of the weakest features. These experiments show the advantage of our attack.
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8 RELATED WORK

Adversarial examples and PCA Several works consider PCA for finding and defending against
adversarial examples. Some works use it to detect adversarial examples (Hendrycks & Gimpel., 2017;
Jere et al., 2019; Li & Li, 2017). Bhagoji et al. (2018) train a model using the top-k PCA components,
while Carlini & Wagner. (2017) show that this approach is not immune to adversarial examples.
These works focus on employing PCA as a detector of adversarial examples. In contrast, we use PCA
as a feature extractor. Sanyal et al. (2020) show that encouraging DNNs to learn representations in
lower-dimensional linear subspaces (including PCA) increases their robustness. Jetley et al. (2018)
study classification quality versus vulnerability to adversarial attacks through principal directions
and curvatures of the decision boundary. Zhang et al. (2020) use PCA to approximate an adversarial
region which enables them to generate adversarial examples without a classifier. In contrast, we look
for connections between features and classifiers’ behavior.

Feature analysis of DNNs Many works analyze a DNN with respect to features. Goswami et al.
(2018) perturb face features manually, e.g., by covering the beard or eyes. Rozsa et al. (2019) focus
on face images with pre-labeled features to study DNNs’ robustness. Wicker et al. (2018) suggest
using SIFT to extract images’ local features and perturb them. Xie et al. (2019) suggest to denoise the
features of the hidden CNN layers to increase robustness. In contrast, we take a black-box approach
and automatically derive input features for which a DNN is robust. Ilyas et al. (2019) and Goh (2019)
define robust and non-robust features (differently from us) and show that adversarial examples are
linked to non-robust features. However, their features are inferred from the DNN, unlike our approach
which considers features computed from the dataset. Further, we provide an approach to approximate
the most robust and weakest features from a large set of features using a black-box access to the
DNN.

Adversarial examples Many adversarial example attacks were introduced. Some are white-box
attacks with full access to the model, e.g., FGSM (Goodfellow et al., 2015), IFGSM (Kurakin et al.,
2017), PGD (Madry et al., 2018), C&W (Carlini & Wagner, 2017), and EAD (Chen et al., 2018).
While successful, all rely on the assumption that the attacker has full access to the model’s parameters,
which is often not true in practice. This encouraged others to study black-box attacks which only
assume access to network’s input and output layers (i.e., with no information on the internal layers).
Papernot et al. (2017) show a black-box attack relying on a substitute technique, where the adversary
trains a representative network. Such methods suffer from low success-rate because they rely on the
assumption of adversarial example transferability, which does not always hold. Chen et al. (2017)
present a black-box attack relying on gradient-estimation. This approach obtains high success-rate,
however it is inefficient because it requires a high number of queries to the network. Recent works
introduce practical and efficient black-box techniques: AutoZoom (Tu et al., 2019) uses efficient
random gradient-estimation, while GenAttack (Alzantot et al., 2019) employs a genetic algorithm. In
contrast to these approaches, our black-box attack depends on weak dataset’s features.

Local robustness Several works present approaches to analyze local robustness of DNNs. An-
derson et al. (2019); Gehr et al. (2018); Ghorbal et al. (2009); Singh et al. (2018) rely on abstract
interpretation, Katz et al. (2017) extend the simplex method, Boopathy et al. (2019); Salman et al.
(2019) rely on linear relaxations, Dvijotham et al. (2018); Raghunathan et al. (2018) use duality,
and Singh et al. (2019c); Wang et al. (2018) combine solvers with approximate methods. These
works analyze the robustness of L∞-norm neighborhoods. Balunovic et al. (2019); Engstrom et al.
(2019); Fawzi et al. (2017); Singh et al. (2019b) analyze robustness to geometric transformations (e.g.,
rotation, scaling). In contrast, we analyze robustness of neighborhoods defined by input features.

9 CONCLUSION

We presented the concept of network robustness and weakness to feature perturbations. We approxi-
mated the most robust and weakest features via sampling and leveraged them to define feature-guided
neighborhoods and adversarial examples. Experimental results show that our provably robust feature-
guided neighborhoods are much larger than the standard provably robust neighborhoods and that our
adversarial examples require fewer queries and have lower L2 distortion compared to state-of-the-art.

9
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Figure 5: Examples of provably robust PCA-guided neighborhoods. (a) An input x. (b) A maximally
perturbed input from the Bε(x) neighborhood, for the maximal ε proven robust (ε is indicated to the
left). (c) A maximally perturbed input from the (PCA, 1, δ)-neighborhood of x (δ is indicated to the
left). (d)+(e) Two input examples in the (PCA, 1, δ)-neighborhood of x.

A ADDITIONAL EXAMPLES

In this section, we show more examples of provably robust feature-guided neighborhoods and
PCA-guided adversarial examples.

In Figure 5, we show for each dataset:

• an image;
• a maximally perturbed input from the Bε(x) neighborhood, for the maximal ε that ERAN

proved robust (ε is shown in the figure);
• a maximally perturbed input from the (PCA, 1, δ)-neighborhood (δ is shown in the figure);
• two more input examples from the (PCA, 1, δ)-neighborhood.

In the figure, we also indicate the average range of pixels (when translating the PCA features to
the input domain) |u− l|avg

PCA, and the maximal range of pixels |u− l|max
PCA. In Bε(x) neighborhoods,

|u− l|ε = 2 · ε, for all pixels.

These examples demonstrate that (1) provably robust PCA-guided neighborhoods are larger than their
corresponding Bε(x) neighborhoods and (2) provably robust PCA-guided neighborhoods contain
inputs which are semantically similar to the original image but are also visually different from it.

In Figure 6, we show PCA-guided adversarial examples, for ImageNet and an Inception-V3 model,
computed on correctly classified inputs. The figure shows: the original image (left), the PCA-guided
adversarial example (center), and the perturbation (right).

B DATASETS

In this section, we describe the datasets we used in our evaluation.

• MNIST: 28× 28 images of 0-9 digits, ten classes.
• Fashion MNIST (F-MNIST): 28× 28 pixel images of fashion items, ten classes.
• CIFAR10: 32× 32× 3 pixel images, ten classes.

We imported these datasets from the PyTorch library. We also considered the following datasets:

• LFW sklearn version: 62 × 47 images of funneled faces, each classified as a person. In
total, there are 5,749 different people (i.e., classes) and the dataset contains 13,233 images.
We ignored classes with fewer than 100 samples, and thus remained with 1,140 samples
and five classes (Colin Powell, Donald Rumsfeld, George W. Bush, Gerhard Schroeder, and
Tony Blair). We imported this dataset from the sklearn library.
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Figure 6: PCA-guided adversarial examples for ImageNet on an Inception-V3 model.

Table 4: Our attack vs. GenAttack. S is success rate, Qb/Q is the number of queries before/after
postprocessing, and Lb2/L2 is the L2 distance from the original image before/after postprocessing.

Dataset Model Our attack GenAttack
S L2 Q Lb2 Qb S L2 Q
×10−3 ×103 ×10−3 ×10−3

MNIST C&W 1 3.31 3.2 8.72 86.25 1 13.8 71.4
F-MNIST VGG13 1 0.82 2.6 2.55 18.9 0.95 11.3 158.8
LFW RESNET20 1 0.40 0.9 1.82 8.8 1 11.2 236.4
GTSRB RESNET20 1 0.30 3.1 1.24 22.8 1 6.4 200.8
CIFAR10 C&W 1 0.29 2.9 1.67 57.1 1 5.7 56.6
CIFAR10 RESNET50 1 0.27 3.4 1.11 14.1 1 5.5 37.2
CIFAR10 VGG16 1 0.28 3.3 1.69 31.6 0.97 5.8 402.8
ImageNet Inception-V3 1 0.11 5 0.16 42.3 1 0.66 3762.5

• The German Traffic Sign Recognition Benchmark (GTSRB): 60,000 images of 43 differ-
ent traffic signs (taken from http://benchmark.ini.rub.de/). We cropped the
images using the coordinates that the dataset provided, and resized to 32× 32.

• ImageNet: 299 × 299 × 3 images of 1,000 different objects. Our attack was eval-
uated on a small subset, taken from http://www-personal.umich.edu/
~timtu/Downloads/imagenet_npy/imagenet_test_data.npy/, with
images from 10 classes. We used a pretrained Inception-V3 model, taken from
http://jaina.cs.ucdavis.edu/datasets/adv/imagenet/inception_
v3_2016_08_28_frozen.tar.gz.

C COMPARISON TO GENATTACK

In this section, we compare our attack to GenAttack (Alzantot et al., 2019) on 100 correctly-classified
inputs. Since GenAttack has no postprocessing step, we only report the number of queries Q and the
L2 distortion. We limited the query number of both approaches to 5,000 (for lower number of queries,
GenAttack has lower success rate). Table 4 shows the results. Results indicate that (1) our attack
obtains the initial adversarial examples with 18.7x fewer queries and with 4.1x less L2 distortion,
and (2) our final adversarial examples have 16.7x less L2 distortion but with 29x more queries.
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Figure 7: Success rate of PCA-guided adversarial examples vs. a random baseline as a function of k.

Table 5: Our L2 distortion in the PCA domain.
Dataset Model LPCA2

×10−3

MNIST C&W 3.35
F-MNIST VGG13 0.83
LFW RESNET20 0.28
GTSRB RESNET20 0.23
CIFAR10 C&W 0.204
CIFAR10 RESNET50 0.201
CIFAR10 VGG16 0.206
ImageNet Inception-V3 0.0026

D COMPARISON TO RANDOM BASELINE

In this section, we show the advantage of using the weakest PCA features in our attack over randomly-
picked PCA features. In each experiment, we fix a dataset and a model and run our attack. Figure 7
shows the success rate (S) as a function of the number of weak features (k). The success rate is
the fraction of inputs for which the PCA-guided perturbation (Section 5) resulted in an adversarial
example. We compare our approach to a random baseline which generates perturbations using k
random PCA features. Results indicate that: (1) our approach succeeds in generating adversarial
examples for all models (though smaller models are easier to fool); (2) using weak features has
significantly better success rate than randomly selected features: on average 6x higher and up to 32x;
(3) in most cases, the higher the k, the higher the success rate.

E DISTORTION IN THE PCA DOMAIN

In this section, we report the L2 distortion of our attack in the PCA domain. Table 5 summarizes the
results for all the benchmarks in Table 2.
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