
Object Registration in Neural Fields

David Hall1, Stephen Hausler1, Sutharsan Mahendren1,2, Peyman Moghadam1,2

Abstract— Neural fields provide a continuous scene represen-
tation of 3D geometry and appearance in a way which has great
promise for robotics applications. One functionality that unlocks
unique use-cases for neural fields in robotics is object 6-DoF
registration. In this paper, we provide an expanded analysis
of the recent Reg-NF neural field registration method and its
use-cases within a robotics context. We showcase the scenario
of determining the 6-DoF pose of known objects within a scene
using scene and object neural field models. We show how this
may be used to better represent objects within imperfectly
modelled scenes and generate new scenes by substituting object
neural field models into the scene.

I. INTRODUCTION

For robotics applications, the six degree of freedom (6-DoF)
registration between two scenes of interest is a crucial step,
for tasks such as localisation, object pose estimation and 3D
reconstruction. While many methods exist for representing 3D
scenes, including point clouds, voxels and meshes, recently
implicit representations have emerged, which can compactly
represent 3D scenes with unprecedented fidelity [1]–[8]

Neural field (NF) registration is important for their use in
robotic applications, as it enables uses such as the fusion of
multiple implicit maps, and the ability to dynamically update
an existing implicit field. Multiple works have looked to
utilising NFs for registration [9]–[11] but the first to look at
direct registration of neural fields was nerf2nerf [9]. However,
nerf2nerf does not suit the robotics domain as it relies on
human-annotated keypoints for initialisation and assumes the
scale of two neural fields are the same. Our recent work Reg-
NF [12], overcomes these limitations to estimate the relative
6-DoF pose transformation between two objects of interest
which are located in two different neural fields. Reg-NF does
not rely on human-annotated keypoints, operates directly on
the continuous neural fields, and is capable of estimating
transformation between two models with arbitrary scales. It
builds upon the work on nerf2nerf, proposing a bidirectional
registration loss, the use of multi-view sampling of the NF
surface, and the use of SDFs [3], [5], [6], [13], [14] as the
implicit model of choice. These increase registration accuracy,
take advantage of NFs ability to render data from any view,
and ensure a consistent and clear geometric representation of
implicit models respectively.

This paper is a companion to the original where we provide
a condensed overview of our Reg-NF algorithm [12] and
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Fig. 1. The use-case for object registration in neural fields examined in this
paper. After an object neural field (NF) is registered with its counterpart in
a scene and 6-DoF pose has been attained, the library NF can be substituted
into the scene to fix errors in the scene NF or new scenes can be generated
using other object NFs and the known object pose in the scene.

then extend the analysis of the original paper’s results. These
consider the use-case scenario where Reg-NF is used to
register a large scene NF with high-fidelity object-centric NFs
stored in an object library, enabling both substitution of library
objects into the scene, and replacement of object instances
within the scene. This provides two particular benefits for NF
object registration in robotics highlighted in Fig. 1. The first
is object completion, using library substitution to improve
the representation of scenes that have only partially observed
objects. The second is using instance replacement as a way
to enable data-driven simulation where any scene NF can be
edited (by replacing objects instances), generating new scene
data for training in simulated NF environments.

II. REG-NF

Reg-NF [12] provides a technique for aligning the surfaces
of two different SDF NFs, by minimising the difference
between their surfaces values. This can be used to provide
the 6-DoF pose of an object within a scene given both are
represented as neural fields. Here, we provide an overview
of Reg-NF but invite readers to check the original paper [12]
for full details.

For object registration, Reg-NF calculates the 6-DoF pose
transformation T of a detected object from a pre-existing
NF object library within a larger scene NF. This uses
a differentiable optimisation function, initialised with an
automated procedure. We denote a as the notation of an
implicit representation of a scene, and bq as the qth object-
specific implicit model from a library of object neural fields
where q ∈ {1, ..., Q}. For our work, we utilise volumetric
implicit surface fields, specifically NeuS [3] for all NFs in our
work. These provide colour c(x, v) and signed surface distance
S(x) mapping functions derived from a shared backbone
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Fig. 2. Overview of the Reg-NF registration process [12]. Blue and orange
denotes surface sample points from the scene and library NFs for a matched
object respectively. Green points represent the target alignment during
optimisation. After surface extraction and an initial registration estimate,
bi-directional optimisation iterates till convergence. Final output is a 6-DoF
transformation matrix between models.

Fig. 3. Example of multiple views used for surface point extraction.

network with separate SDF and colour output heads when
given a 3D point x and viewing direction v. For full details
on NeuS, please refer to [3]. An overview of Reg-NF is
provided in Fig. 2.

A. Initial Registration

Reg-NF begins by establishing approximate correspon-
dences between objects of interest within a and bq . Assuming
an object detection provides approximate location and classi-
fication of an object in a that matches to bq , we calculate a
set of N camera views pointed at the centroid of the detected
object of interest as shown in Fig 3. We generate a grid
pattern of rays travelling from each camera pose and return
surface sample points Pa and P q

b for our two respective neural
fields. This multi-view sampling approach provides a clear
geometric representation of the object for initialisation and
leaves it less susceptible to poor surface sample initialisation
from a single poor camera view.

Once surface samples are found for both NFs, we employ
RANSAC [15] with Fast Point Feature Histogram (FPFH) [16]
descriptors to estimate the correspondence between source
and target, further refined via the point-to-point Iterative
Closest Point (ICP) [17] method. Through this, we attain the
initial six-degree-of-freedom (6-DoF) pose transformation T̂.
Our initial registration takes ≈ 14 seconds on average.

B. Bi-directional Optimization

Reg-NF treats registration as an optimisation function that
uses gradient decent to find the optimal pose transformation T
between two surface fields initialised using T̂, and assuming
an initial scale factor of s = 1 that minimizes a loss function
Ls. Building on nerf2nerf [9], optimisation is performed over
a discrete set of samples, with a robust kernel κ with learnt
parameters p and α used to improve the robustness against

end table (et) table (t) willow table (wt) chair (c)

fancy chair (fc) dining chair (dc) fancy chair w/o
pillow (fc-nop)

matrix chair (mc)

Fig. 4. Example images of object model images in ONR dataset.

outlier samples. However, Reg-NF improves optimisation by
collecting surface samples points from both a and bq (A and
Bq), and performing a bidirectional optimisation over the
model SDF outputs (Sa and Sq

b ), as well as by including a
regulariser designed to penalise when A and Bq deviate after
transformation. Given this, the loss function is expressed as :

Ls(Sa, S
q
b ;T) = Ex∈Aκ(r(x;Sa, S

q
b ,T); p, α)

+Ex∈Bqκ(r(x;Sq
b , Sa,T−1); p, α) + wLr,

(1)

where registration residuals r are expressed as:

r(x;Sa, S
q
b ,T) = ∥Sa − Sq

bT∥ x ∈ A, (2)

and

r(x;Sq
b , Sa,T−1) = ∥Sq

b − SaT−1∥ x ∈ Bq, (3)

and Lr is our regulariser weighted with weight factor w
expressed as:

Lr =
∑ minBq D2

A,Bq

|A|
, D2

A,Bq = ∥A−BqT∥2, (4)

where |A| denotes the number of samples in A. Our loss
function Ls is calculated using the current estimated 6-DoF
pose transform T composed from translation components
along all axes [tx, ty, tz], roll, pitch and yaw Euler angles
[rr, rp, ry], and a scaling factor σ applied to all axes. Our
loss function is then optimised over the learnt parame-
ters: (tx, ty, tz, rr, rp, ry, s, p, α). Our optimization procedure
takes ≈ 16 seconds on average.

III. EXPERIMENTAL DESIGN

Dataset: The dataset we use for our experiment comprises
high-fidelity simulated images and corresponding camera
poses of objects and scenes, collected using NVIDIA’s
Omniverse Isaac Sim platform. We will refer to this dataset
as our Object NF Registration (ONR) dataset. Object data is
of single objects in a “void” and scene data is a standardised
room with different object models placed within. Object data
becomes the basis for our object NF library and contains
data for 5 chair and 3 table models learnt at varying scales to
maximize fidelity. ONR objects are outlined in Fig 4 There are
three scenes collected: 1) containing all chair models stored
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TABLE I
COMPARISON BETWEEN REG-NF OTHER REGISTRATION METHODS.

All Chairs Room All Tables Room Mix Room
c dc fc fc-nop mc et t wt dc fc t

∆t ↓
FGR [18] 0.868 1.084 0.3715 0.485 0.152 0.368 0.819 0.219 1.351 0.226 0.636

nerf2nerf [9] 0.278 0.291 0.127 0.117 0.0007 0.525 0.084 0.106 0.343 0.154 0.086
Reg-NF-init (ours) 0.300 0.322 0.093 0.110 0.125 0.383 0.210 0.144 0.447 0.138 0.100

Reg-NF (ours) 0.04 0.035 0.018 0.014 0.007 0.398 0.044 0.022 0.292 0.029 0.009

∆R ↓
FGR [18] 1.130 1.669 1.020 1.449 0.1389 2.513 1.656 1.282 1.669 0.395 2.297

nerf2nerf [9] 0.041 0.088 0.050 0.034 0.002 2.396 0.002 0.221 0.050 0.034 0.026
Reg-NF-init (ours) 0.213 0.196 0.044 0.074 0.032 2.566 0.235 0.140 0.195 0.099 0.016

Reg-NF (ours) 0.048 0.039 0.031 0.020 0.009 2.6 0.053 0.025 0.641 0.030 0.012

∆s ↓
FGR [18] NA NA NA NA NA NA NA NA NA NA NA

nerf2nerf [9] NA NA NA NA NA NA NA NA NA NA NA
Reg-NF-init (ours) NA NA NA NA NA NA NA NA NA NA NA

Reg-NF (ours) 0.019 0.007 0.007 0.060 0.003 0.019 0.004 0.006 0.021 0.009 0.005

(a) ac-room (b) atbl-room (c) mix-room

Fig. 5. Scene models in ONR dataset.

as object data (ac-room); 2) containing all table models stored
as object data (atbl-room); 3) a scene with a mixture of two
chairs and a cluttered table (mix-room). Example images
from each scene are shown in Fig. 5.
Metrics: We follow the metrics in nerf2nerf [9] for our
work. We report the root mean squared error (RMSE)
between the ground-truth and predicted scene to object
transformation matrices. Rotation error ∆R is calculated in
radians and translation error ∆t is calculated in normalised
object frame units. We also report the absolute difference
between estimated and true scale between scene and object
models ∆s. Note that this is given instead of RMSE as scale
factor is assumed consistent across all axes.
Nerf2nerf on ONR dataset: To evaluate nerf2nerf on the
ONR dataset, we enabled nerf2nerf to utilise the same surface
fields from our SDF models as used by Reg-NF. We manually
generated new human annotated keypoints for the initialisation
procedure used in nerf2nerf.
Training models: All NF models were trained using the
sdfstudio [19] implementation of NeuS which includes the
proposal network from MipNeRF-360 [20] for training speed-
up (neus-facto). For more details please refer to sdfstudio [19].
Object Proposals: Reg-NF assumes a detection has already
been made within a scene’s NF through some pre-existing
method. As object proposal generation is not within the scope
of this work, we utilise ground-truth object 3D bounding
boxes to calculate initial set of N camera extrinsics for
generating the initial surface samples.
Reg-NF hyperparameters: We provide the following hyper-
parameters for Reg-NF. For our sampler, we use ω1 = 0.01,
ω2 = 0.02 and ξ = 0.02. We set ρ to r/20, where r is the
scene radii and generate new samples every 10 iterations. We
use a learning rate of 0.02 for rotation, 0.01 for translation,
0.01 for scale, and 0.005 for adaptive kernel parameters, for
a maximum of 200 iterations. We also have early stopping

(a) nerf2nerf [9] (b) Reg-NF [12]

Fig. 6. Qualitative comparison of NF object registration methods for dc
library model (red) in ac-room scene. Scale of dc in library starts much
larger than within the scene causing nerf2nerf [9] to fail.
criteria, when

∑
(r(x;Sa, S

q
b ,T), x∀A)/|A| ≤ 0.0005.

IV. RESULTS

We first perform a quantitative analysis of Reg-NF, compar-
ing it to nerf2nerf, FGR, and the output of our initialisation
step to demonstrate that we are outperforming them while
not requiring manually annotated keypoints or an assumption
that all objects are of the same scale as the scene. This
is followed by experiments showing the benefit of Reg-NF
multi-view surface extraction. Finally, we demonstrate the
benefits of Reg-NF for modelling imperfect scene NFs with
known object NF replacement, and show how Reg-NF can
enable object instance replacement for generating alternative
NF scenes with the same underlying object arrangements but
different object NF models.

A. Comparison to nerf2nerf

We evaluate and compare the performance of Reg-NF,
nerf2nerf [9], FGR [18], and our Reg-NF initialisation on
our ONR dataset. In Table I we see that Reg-NF is typically
at least an order of magnitude better than nerf2nerf in terms
of ∆t and is still generally superior in ∆R. We attribute the
large increase of errors for nerf2nerf as being primarily due
to the inherent scale differences between scene and database
object models, for which nerf2nerf has no functionality to
handle. An example of a nerf2nerf failure case is shown in
Fig. 6

We also observe that despite the Reg-NF initialisation
providing improved results over FGR, that the initialisation
is rough and requires Reg-NF optimization to provide a
close-fitting registration. Focusing on Reg-NF, we note that
failures can still occur, such as when we match object dc

Accepted to the IEEE ICRA Workshop On Neural Fields In Robotics (RoboNerf) 2024



TABLE II
SINGLE VIEW VS MULTI-VIEW TESTS.

c dc fc fc-nop mc et t wt

∆t ↓ Single 0.307 0.674 0.378 0.681 0.147 0.449 0.632 0.733
Multi. (ours) 0.040 0.035 0.018 0.014 0.007 0.398 0.044 0.022

∆R ↓ Single 0.931 2.201 2.182 0.842 0.144 1.562 0.731 2.527
Multi. (ours) 0.048 0.039 0.031 0.020 0.009 2.600 0.053 0.025

∆s ↓ Single 0.044 0.047 0.498 0.339 0.178 0.121 0.470 0.060
Multi. (ours) 0.019 0.007 0.007 0.060 0.003 0.019 0.004 0.006

Fig. 7. Example of library substitution using Reg-NF for all objects shown
in Fig 5. Substitutions are based on Reg-NF outputs. Colours are added to
object NFs during render to provide visual distinction.

Fig. 8. Highly uninformative and/or partial views of models in ac-room
and at-room from training data used for single-view experiments. In order:
et, t, wt, c, fc, dc, fc-nop and mc objects.

to scene mix Room or et to scene at-room. In both these
cases, we note the cause of failure being poor initialisation
that proved inescapable for Reg-NF, even if the error metrics
of initialisation are lower than for some that were able to
improve (e.g. c in ac-room). A qualitative analysis of the
Reg-NF registration can be seen in Fig 7.

B. Effect of multi-view sample initialisation

The benefit of multi-view sampling during initialisation is
most felt when an object has no distinguishing characteristics
or is only partially seen from a single viewing angle taken
from the training data. Using a single view introduces a high
level of variability in object coverage. Using views shown
in Fig 8 from neural field training data that only view part
of the desired object for sampling the surface field, we test
the worst-case scenario of single-view experiments. The rest
of the Reg-NF pipeline is kept consistent and quantitative
results are shown in Table II. This shows using bad viewpoints
drastically reduces performance as no meaningful features
could be extracted to enable effective registration.

C. Substitution within imperfect scene models

To demonstrate practical applications for substitution using
Reg-NF, we consider when a robot may not be able to fully
traverse a scene to get “full coverage” of an object for the
scene’s NF. We can see in Fig. 9 that a scene NF trained
from a low-coverage trajectory cannot render the back of
the chair clearly as it never saw that during training. Using

(a) Original scene (b) Library substitution

Fig. 9. Example of library substitution in a scene with low coverage.
Original NF (a) cannot correctly render regions unseen during training. (b)
library substitution after Reg-NF registration. Geometry of the object within
the scene can be fully rendered from only partial initial view.

Fig. 10. Example of object instance replacement for generating new
scenes. Original layout with coloured substitutions (left) followed by random
replacement of chair models with others in the model library.

Reg-NF, we register the object NF for the imperfect chair
within the scene and substitute it in the scene to render a
clear view of the back of the chair.

D. Instance replacement for scene generation

Finally, we demonstrate the benefits of using a library of
pre-trained NF objects for creating new scenes. Once Reg-NF
derives the transform between a matched object NF and the
scene NF, the known relative shapes/poses of objects within
the NF library of the same class can be used to replace
registered scene objects with any other object instance. We
demonstrate this in Fig. 10 showing where, after a scene has
been turned into a neural field, objects within that scene can
be changed to provide new data based on the layout of the
original scene.

V. CONCLUSIONS

This paper provides an extended analysis of Reg-NF, a
novel method for registration between neural field (NF)
representations. Specifically, we examine the scenario where
Reg-NF calculates the 6-DoF transform between objects
found in a scene NF and object-centric NF counterparts
stored in an NF object library. We analyse the effectiveness
of Reg-NF, showcasing how it’s bi-directional optimization
improves upon initial registration, and how it’s multi-view
surface sampling provides robustness against naive single-
view sampling. We demonstrate its advantages for modelling
objects within imperfect scene NFs and for enabling data-
driven robotics research by generating modified scene NFs
for robots to train in.
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