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Abstract

Uncertainty quantification (UQ) is an essential tool for applying deep neural1

networks (DNNs) to real world tasks, as it attaches a degree of confidence to2

DNN outputs. However, despite its benefits, UQ is often left out of the standard3

DNN workflow due to the additional technical knowledge required to apply and4

evaluate existing UQ procedures. Hence there is a need for a comprehensive5

toolbox that allows the user to integrate UQ into their modelling workflow, without6

significant overhead. We introduce Lightning UQ Box: a unified interface for7

applying and evaluating various approaches to UQ. In this paper, we provide a8

theoretical and quantitative comparison of the wide range of state-of-the-art UQ9

methods implemented in our toolbox. We focus on two challenging vision tasks:10

(i) estimating tropical cyclone wind speeds from infrared satellite imagery and11

(ii) estimating the power output of solar panels from RGB images of the sky. By12

highlighting the differences between methods our results demonstrate the need for13

a broad and approachable experimental framework for UQ, that can be used for14

benchmarking UQ methods. The toolbox, example implementations, and further15

information are available at: https://github.com/lightning-uq-box/lightning-uq-box.16

1 Introduction17

In real world applications, deep learning (DL) models are often deployed in safety-critical domains18

such as healthcare [45], robotics [56], and Earth observation [55, 60], with relevant areas includ-19

ing flood monitoring [7], wildfire mapping and forecasting [58], and weather forecasting [59]. In20

these fields, an incorrect prediction can cause significant damage and corresponding consequences.21

Uncertainty quantification (UQ) aims to provide a measure of confidence about a neural network’s22

prediction and to support practitioners in identifying potentially false predictions to better guide anal-23

yses and decision-making processes [21]. Besides this, UQ can even improve predictive performance24

via regularization [16, 39].25

The direct application of UQ to DL is often not straightforward for practitioners. Besides the26

implementation challenges associated with probabilistic modelling and stochastic training algorithms,27

the performance of UQ methods can fluctuate, depending on the data and the task [50]. Moreover,28

there is a lack of clear guidance on which methods are promising for specific tasks, given the ever-29

increasing zoo of UQ methods for DL [1, 21]. These challenges are particularly prominent for data30

modalities of higher dimensions, such as vision, where uncertainty modelling adds a further layer of31

complexity. Therefore, various approaches need to be considered, which usually involve different32

loss functions, training procedures, and model architectures. The need of accessible and open-source33

UQ frameworks is also called upon in a recent position paper on Bayesian Deep Learning (BDL)34

by leading experts in this field [53]: "Software development is key to encouraging DL practitioners35

to use Bayesian methods. More generally, there is a need for software that would make it easier for36
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practitioners to try BDL in their projects. The use of BDL must become competitive in human effort37

with standard deep learning." [53].38

Lightning UQ Box provides users with all the tools needed to equip deep neural networks (DNNs)39

with UQ. We created Lightning UQ Box to tackle the gap between theoretical researchers and40

actual practitioners in the field of UQ in DL. The toolbox offers a comprehensive framework, building41

on top of PyTorch [54] and Lightning [18], as an accessible end-to-end solution. The toolbox42

is particularly suited for vision applications (see Section 3): it offers flexible layer configurations43

like Bayesian convolution layers that can be modularly placed in backbone architectures, which44

streamline UQ.45

We underline the usefulness of the presented toolbox with two example applications: estimating the46

maximum sustained wind speed of tropical cyclones from satellite imagery and predicting the power47

voltage output of solar panels from a time series of sky images. These applications contain different48

sources and types of uncertainties in the input and target variables and illustrate the stochastic nature49

of real world phenomena and measurement systems practitioners are confronted with. Simultaneously,50

these applications carry an associated inherent risk that demands reliable predictive uncertainties.51

The central contributions of our work all aim to equip practitioners with the necessary tools to apply52

UQ methods for DL on their specific (real world) problem:53

• Comprehensive End-to-End UQ Toolbox: Lightning UQ Box enables practitioners to ef-54

ficiently iterate over ideas without having to re-implement the provided UQ methods. To do55

so, it provides backbone architecture- and dataset-agnostic implementations of a wide array of56

UQ methods and corresponding evaluation schemes for DL, covering regression, classification,57

semantic segmentation, and pixel-wise regression tasks.58

• Adaptability and Expandability: The modular implementation using Lightning encourages59

practitioners and the community to an individual adaptation and a continuous expansion and60

growth of the toolbox. Additionally, the implementation is adapted to vector or vision data.61

Specifically, partial stochasticity [65] is supported when applicable. This supports any larger62

architectures used for vision, and the "frozen" functionality enables retraining only a few layers.63

• Practical and Theoretical Introductions:The toolbox contains comprehensive practical and64

theoretical introductions to the field of UQ and the application of the toolbox. UQ Tutorials and65

case studies on designing downstream tasks to compare various UQ methods are provided. A66

comprehensive theory guide provides methodological backgrounds on the implemented methods.67

Related Work Frameworks for UQ in DL already exist in the PyTorch [54] ecosystem. However,68

they are limited to either a handful of UQ methods or a specific class of approaches, such as BDL.69

Several libraries exist for BDL, most notably TorchBNN [38], BLiTZ [17], and Bayesian-Torch [35].70

Yet BNNs are only one approach to UQ and require choosing a prior distribution. When an abundance71

of data is available, frequentist procedures, such as conformal prediction, can be a more attractive72

alternative. The library Fortuna [14] supports several approaches to conformal prediction (CP), of73

which we currently support a subset (with plans to incorporate more). The primary difference between74

our work and Fortuna is that Fortuna is primarily compatible with JAX [9] and only supports post-75

hoc calibration of PyTorch models. TorchCP [71] is another framework that implements conformal76

prediction [4], but it does not support other UQ methods (such as BDL). The most closely related77

package to ours is torch-uncertainty [36], which implements both frequentist and Bayesian UQ78

methods in addition to common benchmarks. Yet our Lightning UQ Box, to date, implements the79

largest number of UQ methods across different theoretical frameworks, such as BDL and CP, while80

including cutting-edge techniques as partially stochastic networks [65], and additionally supports UQ81

methods for semantic segmentation tasks. Table 1 gives a comparison with previous libraries.82

2 Benchmarking UQ Methods: the Lightning UQ Box83

The underlying design of Lightning UQ Box is based on three pillars:84

• provide a comprehensive set of reference implementations of state-of-the-art UQ methods,85

• optimally fit in the wide open-source landscape for DL based on PyTorch, and86

• enhance automation, scalability, and reproducibility of experiments with Lightning.87

2



  Lightning UQ Toolbox

 

 Lightning

 

 PyTorch Environment
 

Module

Task Specific 
Data Module

Uncertainty
Quantification

Lightning 
Module

 UQ Core
 

(partial) BNNs, Deep Ensembles,
Evidential approaches, Conformal
Predictions, ... 

Implementations and functionalities
provided in PyTorch and wide PyTorch
related open-source landscape. 

Data handling management, deep
learning pipeline management, logging,
GPU-Distribution, ... 

Automated
Training and
Evaluation

Data 
ModuleTrainer UQ 

Methods
(Pre-Trained)

Networks

Losses,
Evaluation 

Metrics

Lightning 
Trainer

Experiment
User Managed Pipeline

Functionalities to be
included in Notebooks or 
user managed pipelines. 

Automated Pipeline

Performance Logs, Saved
Checkpoints, Evaluation, ...

Output

User Specific
Configurations

Task Specific 
Dataset

Input

Figure 1: The structure of Lightning UQ Box. The experiments can be built and evaluated at
scale or manually tailored to specific use cases. For large experiments at scale, only a dataset and a
configuration file have to be provided.

These design goals are reflected in the structure of the toolbox, as visualized in Figure 1, and build88

up on the three core components of the available DL functionalities provided within the Lightning89

framework for structuring and pipeline managing, the UQ Core, which contains the UQ method90

implementations, and the PyTorch ecosystem.91

The UQ Core contains a comprehensive collection of UQ methods for DL with different theoretical92

underpinnings consolidated and implemented for this toolbox. The theoretical backgrounds are very93

diverse and cover, for example, mean-field estimation and various Bayesian-motivated approaches,94

including kernel-based approaches and partially stochastic networks, ensemble methods, and evidence-95

motivated approaches (cmp. Section 2.1). Besides the diversity in methodological approaches, the96

toolbox provides unified interfaces and configuration patterns, thereby improving accessibility and,97

importantly, enabling comparability between the methods.98

The toolbox is compatible with common DL libraries and frameworks from the PyTorch ecosystem.99

The provided UQ methods can be combined with user-specific architectures and implementations100

provided in the PyTorch ecosystem, including pre-trained networks and foundation models. This is101

especially useful as our framework can build upon or be included in existing code and pipelines based102

on PyTorch-based libraries, such as timm [72]. In order to scale BDL to modern-sized architectures,103

we offer functionality to convert existing deterministic architectures, or specified components thereof,104

automatically to a Bayesian framework. As a result, the collection of UQ methods goes beyond105

mere method compilation, offering not only comprehensiveness but also removing time-consuming106

implementation overhead. This enables users to use the UQ toolbox as a simple extension of their107

existing DL pipelines.108

The toolbox utilizes the Lightning framework to enhance experiment automation, scalability, and re-109

producibility. Lightning offers a flexible and user-friendly interface for the automated management110

of complex pipelines. It is specifically designed to support practitioners in managing experiments111

by providing functionalities to enhance their scalability and reproducibility. These include manag-112

ing configurations, training loops, evaluation steps, and logging processes. To this end, each UQ113

method is implemented as a LightningModule that can be used with a LightningDataModule114

and a Trainer to execute training, evaluation, and inference for a desired task. The toolbox also115

utilizes the Lightning command line interface (CLI) for better experiment reproducibility and for116

setting up experiments at scale. This provides an end-to-end configuration, such that a full pipeline117

of experiments can be built with minimal overhead. Many optional configurations and user-specific118

objects, such as logging functionalities or models, can be included but are not mandatory. The general119

concept of the toolbox is illustrated in Figure 1.120

2.1 Provided Types of UQ Methods121

Lightning UQ Box provides the most comprehensive collection of the extensive and versatile122

landscape of UQ methods for DL. The following section gives an overview of these different UQ123
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Table 1: The methods provided with Lightning UQ Box and other available frameworks and
reviews. The table represents the status at the time of publication and will be extended in the future.
All currently available methods can be found in the provided repository.

Publication [26] [63] [15] [31] [64] [50] [46] [36] Lightning
UQ Box

Deterministic Methods
Gaussian (MVE) ✓ ✓ ✓

Deep Evidential Networks (DER) ✓ ✓

Neural Network Ensembles ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bayesian Neural Networks
MC Dropout (GMM) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
BNN with VI ELBO ✓ ✓ ✓ ✓ ✓

BNN with VI (alpha divergence) ✓
VBLL ✓

Laplace Approximation ✓ ✓
SWAG ✓ ✓ ✓

DVI, SI ✓
HMC ✓

Radial BNN ✓
Rank-1 BNN ✓

Gaussian Process based
Deep Kernel Learning (DKL) ✓
Det. Unc. Estimation (DUE) ✓

Spectral Normalized GPs (SNGP) ✓ ✓ ✓

Quantile based
Quantile Regression (QR) ✓ ✓ ✓

Conformal Prediction (CQR) ✓ ✓ ✓

Diffusion Model
CARD ✓

Post-hoc Calibration
RAPS ✓

TempScaling ✓ ✓ ✓

methods, which are listed in Table 1. For comprehensive explanations, we refer to the theory guide in124

the supplement and to existing reviews [1, 21]. For regression tasks NNs predict a continuous target125

y⋆. Currently, the toolbox supports six classes of UQ methods for regression: deterministic, quantile,126

ensemble, Bayesian, Gaussian Process, and diffusion-based methods.127

1. Deterministic methods: use a DNN, fθ : X → P(Y ), that map inputs x to the parameters of128

a probability distribution fθ(x
⋆) = pθ(x

⋆) ∈ P(Y ), and include methods like Deep Evidential129

Regression (DER) [2] and Mean Variance Estimation (MVE) [49]. The latter, for example, outputs130

the mean and standard deviation of a Gaussian distribution fMVE
θ (x⋆) = (µθ(x

⋆), σθ(x
⋆)).131

2. Quantile based models: use a DNN, fθ : X → Y n, that map to n quantiles, fθ(x
⋆) =132

(q1(x
⋆), ..., qn(x

⋆)) ∈ Y n, and include Quantile Regression [33] (Quantile Regression) and the133

conformalized version thereof (ConformalQR) [62].134

3. Ensembles: Deep Ensembles [37], which utilize an ensemble over MVE networks.135

4. Bayesian methods: model the network parameters as random variables. Multiple principles and136

techniques to approximate BNNs have been introduced. We include BNNs with Variational137

Inference (VI) (BNN VI ELBO) [8], BNNs with VI and alpha divergence (BNN VI) [13],138

Variational Bayesian Last Layers (VBLL) [28], MC-Dropout (MCDropout) [20], the Laplace139

Approximation (Laplace) [61][12] and SWAG [43] with partially stochastic variants [65].140

5. Gaussian Process-based methods: these model a joint distribution over a set of functions in a141

data-driven manner that approximates the first and second moment of the marginalized distribution.142

These include Deep Kernel Learning (DKL) [73], an extension thereof Deterministic Uncertainty143

Estimation (DUE) [69, 70], and Spectral Normalized Gaussian Process (SNGP) [40].144

6. Conditional Generative model: Classification and Regression Diffusion (CARD) [27].145

For classification, the toolbox currently supports six classes of UQ methods. Vanilla softmax proba-146

bilities can be directly used to obtain predictive uncertainties. However, they are often miscalibrated147

and have lead to post-hoc recalibration methods being proposed [25].148
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1. Deep Ensembles (DeepEnsembles) [37]: utilize an ensemble over independent standard classifi-149

cation networks.150

2. Bayesian methods: BNN VI ELBO [8], VBLL [28], MCDropout [20], Laplace [61][12],151

SWAG [43].152

3. Gaussian Process based methods: DKL [73], DUE [69] and Spectral-normalized Neural Gaussian153

Processes (SNGP) [40].154

4. Conformal Prediction: [62], Regularized Adaptive Prediction Sets (RAPS) [3].155

5. Other: Test-time Augmentation (TTA) [41], Temperature Scaling [25].156

Additionally to the general purpose tasks of regression and classification, Lightning UQ Box157

supports UQ methods for vision-specific tasks. These include segmentation and pixel-wise regression,158

where an extensive overview of supported UQ methods can be found on our documentation page.159

(a) Example code to fit SWAG method. (b) SWAG regression toy example.

Figure 2: Example code and visualization on toy regression dataset.

Quantifying Predictive Uncertainty: By default, we quantify predictive uncertainty via the standard160

deviation for regression and via the entropy of the predictive distribution for classification. In general,161

for UQ in DL, two main types of uncertainties can be considered: aleatoric and epistemic [13, 21].162

Aleatoric uncertainty originates from random, or partially observable, effects in the data itself and is163

not reducible: for instance, the Earth covered with clouds does not contain enough information to164

surely assign the land cover type to one of multiple given options. In contrast, epistemic uncertainty165

quantifies the model’s predictive uncertainty originating from uncertainty over its parameters: it will166

typically shrink as more data becomes available [30]. See Figure 2b for an example decomposition.167

Depending on the underlying theoretical assumptions, UQ methods model these types of uncertainties168

individually or mutually [30]. From a statistical perspective, Gruber et al. [24] allude that such a169

distinction is often not possible. Thus, in the examples given here, we focus on the approximate170

predictive distributions of the UQ methods pθ(y⋆|x⋆), from which we derive the aforementioned171

uncertainty measures. However, where applicable, the toolbox also enables researchers to decompose172

these two types of uncertainties.173

Limitations: Despite the robustness and versatility of the Lightning UQ Box, it is tightly inte-174

grated within the PyTorch ecosystem, limiting its applicability to other existing DL frameworks175

like Tensorflow and JAX. Furthermore, merely using UQ methods does not guarantee complete176

reliability, and applications nevertheless require proper experimental design and evaluation.177

3 Experimental Setup for Validation178

We now showcase Lightning UQ Box as a valuable tool for conducting experimental studies179

including benchmarking. We exemplify this by comparing UQ methods on three challenging computer180

vision datasets from two different domains. More concretely, we evaluate the methods on selected181

downstream tasks that highlight the efficacy of UQ and the usefulness of a unified framework1. Each182

experiment was completed using the UQ toolbox in less than 10 hours (6 hours on average) on a183

single A100 40GB GPU.184

1Code for all experiments available at this link: Github Repo.
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3.1 Datasets185

For our experiments, we consider three datasets: the Tropical Cyclone Driven Data Challenge dataset186

(TC) [44], the Digital Typhoon (DT) dataset [32], and the SKy Images and Photovoltaic Power187

Generation Dataset (SKIPP’D) [47]. An overview of the datasets is given in Table 2. For a detailed188

explanations of the datasets see supplementary section 1.

Table 2: Dataset Overview.
Dataset Image source/Satellite Spatial Res. Temporal Res. Train Samples Val. Samples Test Samples

Tropical Cyclone GOES 2 km 15 min 53k 11k 43k
Digital Typhoon Himawari 5 km 60 min 64.5k 14k 20k
SKIPP’D Fisheye camera - 1 min 280k 63k 14k

189

(a) Label distribution and storm categories. (b) Label distribution and storm categories.

(c) Samples from the Tropical Cyclon Dataset. (d) Samples from the Digital Typhoon Dataset.

Figure 3: Visualization of the Tropical Cyclon (left) and the Digital Typhoon Dataset (right).

Cyclone and Typhoon Dataset: The TC and DT datasets consist of infrared measurements that190

capture the spatial structure of storms. Corresponding wind speed targets are matched based on191

hurricane databases. There are varying sources of uncertainty in the inputs, such as missing pixels due192

to the swath of the satellites, and in the targets, such as measurement uncertainties and interpolations193

over time with respect to non-uniform time steps. As such, these datasets exemplify real world194

stochastic phenomena, where predictive uncertainties are essential for decision-making due to the195

inherent risk associated with these potentially extreme events. The magnitude of rapid intensification196

events has been increasing [6], thus causing more damage if not properly detected and predicted. One197

such recent example is Hurricane Otis in October 2023, where existing models had to disproportionally198

rely on satellite data, due to limited in-situ data, which lead to erroneous forecasts [34]. Given the199

extensive availability of satellite imagery, research efforts using this modality are a promising avenue200

to enhance existing forecasts.201

(a) Statistics of SKIPP’D test and train set [47]. (b) Example Image of the SKIPP’D dataset.

Figure 4: Visualization of SKIPP’D Dataset.

Photovoltaic Dataset: The SKIPP’D dataset consists of ground-based fish-eye RGB images over202

a 3-year period (2017–2019), where associated targets are power output measurements from a203

30 kilowatt (kW) rooftop photovoltaic array [47]. Given the urgent necessity to transform the world’s204

energy sector to more sustainable solutions [5], this dataset aims to support research efforts of205

large-scale integration of power voltage into electricity grids, where the main problem is to manage206

the non-constant and intermittent power source [47].207
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3.2 Methodological Setup208

Cyclone and Typhoon Dataset: Various works have framed the wind speed estimation of tropical209

cyclones from a satellite image as both a regression [10, 42, 75] and classification [57, 74] task.210

We apply all UQ methods provided by the toolbox to the regression and classification task. For211

all wind speed experiments, we use the same ResNet-18 [29] pre-trained on ImageNet2 as the212

backbone architecture of compared UQ methods. For the TC and DT datasets, the chosen task is213

selective prediction, as introduced by Geifman et al. [22]. Here, samples with a predictive uncertainty214

above a given threshold are omitted and can be referred to domain experts or further decision-making215

pipelines. If the corresponding UQ method has higher uncertainties for inaccurate predictions, leaving216

out the predictions for these samples should increase the overall accuracy, indicating a correlation217

between predictive uncertainty and model error. This can be beneficial in a deployment setting where218

automated analysis systems are paired with human expertise. Examples are visualized in Figure 6.219

Photovoltaic Dataset: Previous work have demonstrated promising results of such image data for220

photovoltaic power generation estimation modeled as a regression task [67, 76, 68, 48, 19, 51, 52].221

We apply all UQ methods provided by the toolbox (see Table 1) to this regression task. Here, we use222

the proposed CNN architecture of Nie et al. [47], which requires only a single line code change in223

experiment configuration for each respective UQ method.3 Given the central problem of photovoltaics224

being a non-constant power source, we analyze the additional benefits of UQ by evaluating predictive225

uncertainty on annotated sunny and cloudy days. From a reliable model, we expect that both the226

predictive error as well as the predictive uncertainty is larger on the cloudy samples because the227

partial occlusions make it more difficult to estimate the corresponding power voltage output.228

Evaluation Metrics: As evaluation metrics, we use the root mean squared error (RMSE), as well as229

proper scoring rules such as the negative log-likelihood (NLL) [23]. Furthermore, we also consider230

the mean absolute calibration error (MACE) and correlation between the predictive uncertainties and231

mean absolute error (MAE).4 A detailed description of the employed metrics is in the supplementary.232

4 Results: Examples of UQ Method Analysis233

The following section provides a quantitative performance comparison of different UQ methods234

under a possible benchmark setting, easily enabled by our proposed framework.235

4.1 Selective Prediction for Wind Speed Estimation236

(a) (b)

Figure 5: Selective Prediction RMSE improvement per category on the Digital Typhoon Dataset (left)
and Tropical Cyclone Dataset (right).
Table 3 shows that most UQ methods improve model accuracy when applying selective prediction237

with respect to a deterministic baseline, which cannot express any uncertainty. Compared to Table238

3, Figure 5 demonstrates a different ranking of the UQ methods, with respect to the accuracy239

improvement due to selective prediction, when evaluated per category, according to the Saffir-240

Simpson scale [66]. This ranking also differs on the DT and TC dataset, as Figure 5 shows. The241

skewed data distribution of both datasets, 3a and 3b, and the different uncertainty sources in the242

2As available in the timm library [72]
3More examples are shown in the Github Repo for these experiments.
4Metrics computed with the library provided by [11]
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TC and DT datasets 3.1 may contribute to these observations of aggregation pathologies. For the243

classification task the ranking of methods varies with Gaussian Process based methods performing244

better, see supplementary section 2.245

Table 3: Evaluation of Regression Results on the test set. Note that [64] observe a similar ranking
in terms of accuracy, also with respect to Deep Ensembles. RMSE ∆ shows the improvement after
selective prediction, while Coverage denotes the fraction of remaining samples that were not omitted.
Selective prediction is based on the 0.8 quantile of predictive uncertainties on a validation set.

UQ group Method RMSE ↓ RMSE ∆ ↑ NLL ↓ MACE ↓
None Deterministic 9.64 0.00 NaN NaN

Deterministic
MVE 10.10 0.64 3.74 0.06
DER 9.59 1.07 4.32 0.30

Quantile QR 9.54 1.03 3.64 0.05
CQR 9.54 1.03 3.72 0.10

Ensemble Deep Ensemble 14.37 0.77 4.05 0.01

Bayesian

MC Dropout 9.77 1.03 3.75 0.10
SWAG 9.10 0.97 3.67 0.12
Laplace 9.64 0.44 3.69 0.03
BNN VI ELBO 9.15 0.17 15.82 0.35
BNN VI 10.74 0.94 3.76 0.03
SNGP 9.33 -0.05 14.00 0.36
VBLL 9.72 0.06 3.70 0.03
DKL 10.35 -0.31 3.77 0.01
DUE 9.46 -0.10 3.68 0.01

Diffusion CARD 9.57 0.09 9.35 0.30
(a) Digital Typhoon Dataset.

UQ group Method RMSE ↓ RMSE ∆ ↑ NLL ↓ MACE ↓
None Deterministic 10.50 0.00 NaN NaN

Deterministic MVE 9.95 1.15 3.64 0.04
DER 10.14 1.17 4.60 0.35

Quantile QR 10.95 1.05 3.73 0.01
CQR 10.95 1.05 3.79 0.10

Ensemble Deep Ensemble 16.19 3.30 4.15 0.05

Bayesian

MC Dropout 10.23 0.87 3.81 0.16
SWAG 9.78 1.13 3.71 0.13
Laplace 10.53 0.60 4.31 0.28
BNN VI ELBO 11.82 1.56 5.57 0.23
BNN VI 11.20 1.45 3.74 0.02
SNGP 12.01 0.28 5.53 0.18
VBLL 10.79 0.51 3.80 0.07
DKL 12.59 0.21 3.95 0.06
DUE 9.95 -0.21 3.73 0.08

Diffusion CARD 10.86 0.45 3.92 0.05
(b) Tropical Cyclone Dataset.

Figure 6 gives a visual intuition of the selective prediction scheme. If the predictive uncertainty246

(red-shaded region) exceeds the established threshold (blue-shaded region), individual predictions are247

deferred to an expert. The models provide a reasonable mean estimate of a storm track, even though248

predictions are made for single image instances and the regression task is modeled by ResNet-18249

without a notion of time. Figure 6 additionally showcases the effect of conformalizing the predictive250

uncertainty of an underlying model. Conformal prediction aims to calibrate prediction sets while251

providing theoretical coverage guarantees; it can be particularly interesting in the case of a high-risk252

task such as wind speed estimation. Figure 6b demonstrates the effectiveness of the procedure, as the253

coverage has increased from 0.73 to 0.97, which is also reflected in the wider prediction intervals that254

cover the targets without sacrificing any accuracy.255

(a) Quantile Regression. (b) Conformalized Quantile Regression.

Figure 6: Individual nowcasting predictions are stitched together to recover a time series. Areas
where the red-shaded regions exceed the blue denote samples that would be omitted during selective
prediction. The example showcases the effect of the conformal procedure, where conformalized
prediction intervals increase the desired empirical coverage.

4.2 Photovoltaic Power Output Estimation Under Cloudy and Sunny Conditions256

Figure 7 demonstrates that model performance differs under cloudy or sunny conditions. Across257

methods the NLL demonstrates differences in the model performance and related calibration between258

cloudy and sunny days. The consideration of uncertainty improved the accuracy of models compared259

to the deterministic baseline, as shown in the supplementary material. The correlation between the260

model error (in terms of MAE) and the predictive uncertainty shows a clear positive correlation261

(>0.45) across all methods. However, there are differences in the magnitude between methods and262

cloud conditions. Stakeholders might prefer good UQ estimates on more complex days, i.e., the263

cloudy ones, than for sunny days, where the output is much easier to predict. Exhaustive results can264

be found in the supplementary material.265

8



Figure 7: Negative Log Likelihood (left) and correlation between model error (measured by MAE)
and predictive uncertainty for different methods on cloudy and sunny test examples.

Figure 8 showcases concrete examples with power voltage estimates plotted over the duration of a266

cloudy and a non-cloudy day. Compared to the smooth and consistent power output on a sunny day267

8a, the predictive uncertainty is larger under cloudy conditions. This may reflect the uncertainty in268

the input images due to cloudiness changing faster than the time step resolution.269

(a) MC Dropout prediction: sunny day example. (b) MC Dropout prediction: cloudy day example.

Figure 8: Individual nowcasting predictions stitched together to recover a time series. The plot shows
qualitative and quantitative differences between the two methods for the same set of predictions.

5 Conclusion270

We have introduced Lightning UQ Box, a comprehensive framework for enhancing neural networks271

with uncertainty estimates. Additionally, we have showcased its usefulness for comparing a broad272

range of methods from different theoretical foundations on three relevant tasks with various sources273

of uncertainty. Our framework not only makes it easier for practitioners to use Bayesian methods for274

DL as demanded by [53] but goes beyond this by supporting UQ methods stemming from various275

theoretical frameworks and assumptions. Our experimental results demonstrate the differences and276

variability between UQ methods and, therefore, the benefit of this benchmarking framework. In277

conclusion, our open-source framework and the accompanying resources can be both an entry point278

for researchers to the field of UQ and also aid the development of new methods that address the279

shortcomings of existing ones [50].280

6 Ethics and Broader Impact Statement281

Including UQ in DL applied to real world and safety critical applications is of significant importance.282

UQ can provide the means to reduce risks, yet practitioners should not succumb to a false sense283

of security provided by such methods. The performance and reliability of UQ methods may be284

dataset and task dependent. Exactly for that reason we provide our framework under the open-source285

Apache-2.0 license to support open science, transparency, and collaborative research efforts.286
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NeurIPS Paper Checklist491

1. Claims492

Question: Do the main claims made in the abstract and introduction accurately reflect the493

paper’s contributions and scope?494

Answer: [Yes]495

Justification: We introduce the toolbox in Section 2 and analyze its usefulness on three496

example datasets in Section 4.497

Guidelines:498

• The answer NA means that the abstract and introduction do not include the claims499

made in the paper.500

• The abstract and/or introduction should clearly state the claims made, including the501

contributions made in the paper and important assumptions and limitations. A No or502

NA answer to this question will not be perceived well by the reviewers.503

• The claims made should match theoretical and experimental results, and reflect how504

much the results can be expected to generalize to other settings.505

• It is fine to include aspirational goals as motivation as long as it is clear that these goals506

are not attained by the paper.507

2. Limitations508

Question: Does the paper discuss the limitations of the work performed by the authors?509

Answer: [Yes]510

Justification: We discuss limitations, which is the embedding into the PyTorch framework,511

within a paragraph of Section 2.512

Guidelines:513

• The answer NA means that the paper has no limitations, while the answer No means514

that the paper has limitations, but those are not discussed in the paper.515

• The authors are encouraged to create a separate "Limitations" section in their paper.516

• The paper should point out any strong assumptions and how robust the results are to517

violations of these assumptions (e.g., independence assumptions, noiseless settings,518

model well-specification, asymptotic approximations only holding locally). The authors519

should reflect on how these assumptions might be violated in practice and what the520

implications would be.521

• The authors should reflect on the scope of the claims made, e.g., if the approach was522

only tested on a few datasets or with a few runs. In general, empirical results often523

depend on implicit assumptions, which should be articulated.524

• The authors should reflect on the factors that influence the performance of the approach.525

For example, a facial recognition algorithm may perform poorly when image resolution526

is low or images are taken in low lighting. Or a speech-to-text system might not be527

used reliably to provide closed captions for online lectures because it fails to handle528

technical jargon.529

• The authors should discuss the computational efficiency of the proposed algorithms530

and how they scale with dataset size.531

• If applicable, the authors should discuss possible limitations of their approach to532

address problems of privacy and fairness.533

• While the authors might fear that complete honesty about limitations might be used by534

reviewers as grounds for rejection, a worse outcome might be that reviewers discover535

limitations that aren’t acknowledged in the paper. The authors should use their best536

judgment and recognize that individual actions in favor of transparency play an impor-537

tant role in developing norms that preserve the integrity of the community. Reviewers538

will be specifically instructed to not penalize honesty concerning limitations.539

3. Theory Assumptions and Proofs540

Question: For each theoretical result, does the paper provide the full set of assumptions and541

a complete (and correct) proof?542
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Answer: [NA]543

Justification: The paper provides a toolbox and does not include theoretical results.544

Guidelines:545

• The answer NA means that the paper does not include theoretical results.546

• All the theorems, formulas, and proofs in the paper should be numbered and cross-547

referenced.548

• All assumptions should be clearly stated or referenced in the statement of any theorems.549

• The proofs can either appear in the main paper or the supplemental material, but if550

they appear in the supplemental material, the authors are encouraged to provide a short551

proof sketch to provide intuition.552

• Inversely, any informal proof provided in the core of the paper should be complemented553

by formal proofs provided in appendix or supplemental material.554

• Theorems and Lemmas that the proof relies upon should be properly referenced.555

4. Experimental Result Reproducibility556

Question: Does the paper fully disclose all the information needed to reproduce the main ex-557

perimental results of the paper to the extent that it affects the main claims and/or conclusions558

of the paper (regardless of whether the code and data are provided or not)?559

Answer: [Yes]560

Justification: All experiments are reproducible with the presented toolbox and the provided561

code. Further, we describe the experimental setups in Section 3 and in the supplement and562

reference related works.563

Guidelines:564

• The answer NA means that the paper does not include experiments.565

• If the paper includes experiments, a No answer to this question will not be perceived566

well by the reviewers: Making the paper reproducible is important, regardless of567

whether the code and data are provided or not.568

• If the contribution is a dataset and/or model, the authors should describe the steps taken569

to make their results reproducible or verifiable.570

• Depending on the contribution, reproducibility can be accomplished in various ways.571

For example, if the contribution is a novel architecture, describing the architecture fully572

might suffice, or if the contribution is a specific model and empirical evaluation, it may573

be necessary to either make it possible for others to replicate the model with the same574

dataset, or provide access to the model. In general. releasing code and data is often575

one good way to accomplish this, but reproducibility can also be provided via detailed576

instructions for how to replicate the results, access to a hosted model (e.g., in the case577

of a large language model), releasing of a model checkpoint, or other means that are578

appropriate to the research performed.579

• While NeurIPS does not require releasing code, the conference does require all submis-580

sions to provide some reasonable avenue for reproducibility, which may depend on the581

nature of the contribution. For example582

(a) If the contribution is primarily a new algorithm, the paper should make it clear how583

to reproduce that algorithm.584

(b) If the contribution is primarily a new model architecture, the paper should describe585

the architecture clearly and fully.586

(c) If the contribution is a new model (e.g., a large language model), then there should587

either be a way to access this model for reproducing the results or a way to reproduce588

the model (e.g., with an open-source dataset or instructions for how to construct589

the dataset).590

(d) We recognize that reproducibility may be tricky in some cases, in which case591

authors are welcome to describe the particular way they provide for reproducibility.592

In the case of closed-source models, it may be that access to the model is limited in593

some way (e.g., to registered users), but it should be possible for other researchers594

to have some path to reproducing or verifying the results.595

5. Open access to data and code596
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Question: Does the paper provide open access to the data and code, with sufficient instruc-597

tions to faithfully reproduce the main experimental results, as described in supplemental598

material?599

Answer: [Yes]600

Justification: The whole toolbox is under Apache-2.0 license. The full code for the presented601

example experiments, utilizing the toolbox, is provided together with instructions and602

explanations: https://github.com/lightning-uq-box/experiments.603

Guidelines:604

• The answer NA means that paper does not include experiments requiring code.605

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/606

public/guides/CodeSubmissionPolicy) for more details.607

• While we encourage the release of code and data, we understand that this might not be608

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not609

including code, unless this is central to the contribution (e.g., for a new open-source610

benchmark).611

• The instructions should contain the exact command and environment needed to run to612

reproduce the results. See the NeurIPS code and data submission guidelines (https:613

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.614

• The authors should provide instructions on data access and preparation, including how615

to access the raw data, preprocessed data, intermediate data, and generated data, etc.616

• The authors should provide scripts to reproduce all experimental results for the new617

proposed method and baselines. If only a subset of experiments are reproducible, they618

should state which ones are omitted from the script and why.619

• At submission time, to preserve anonymity, the authors should release anonymized620

versions (if applicable).621

• Providing as much information as possible in supplemental material (appended to the622

paper) is recommended, but including URLs to data and code is permitted.623

6. Experimental Setting/Details624

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-625

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the626

results?627

Answer: [Yes]628

Justification: The paper mentions experimental setups that is needed to understand the629

presented results and further references to works on which the experimental setup builds630

upon.631

Guidelines:632

• The answer NA means that the paper does not include experiments.633

• The experimental setting should be presented in the core of the paper to a level of detail634

that is necessary to appreciate the results and make sense of them.635

• The full details can be provided either with the code, in appendix, or as supplemental636

material.637

7. Experiment Statistical Significance638

Question: Does the paper report error bars suitably and correctly defined or other appropriate639

information about the statistical significance of the experiments?640

Answer: [NA]641

Justification: The experiments are utilized to represent the usability and potential advantages642

of the toolbox.643

Guidelines:644

• The answer NA means that the paper does not include experiments.645

• The authors should answer "Yes" if the results are accompanied by error bars, confi-646

dence intervals, or statistical significance tests, at least for the experiments that support647

the main claims of the paper.648
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• The factors of variability that the error bars are capturing should be clearly stated (for649

example, train/test split, initialization, random drawing of some parameter, or overall650

run with given experimental conditions).651

• The method for calculating the error bars should be explained (closed form formula,652

call to a library function, bootstrap, etc.)653

• The assumptions made should be given (e.g., Normally distributed errors).654

• It should be clear whether the error bar is the standard deviation or the standard error655

of the mean.656

• It is OK to report 1-sigma error bars, but one should state it. The authors should657
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of Normality of errors is not verified.659
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error rates).662

• If error bars are reported in tables or plots, The authors should explain in the text how663

they were calculated and reference the corresponding figures or tables in the text.664

8. Experiments Compute Resources665

Question: For each experiment, does the paper provide sufficient information on the com-666

puter resources (type of compute workers, memory, time of execution) needed to reproduce667

the experiments?668

Answer: [Yes]669

Justification: We stated the resources (Nvidia A100 GPU 40GB) and the computation time670

for all experiments of less than 10 hours when automated run with the UQ toolbox.671
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• The answer NA means that the paper does not include experiments.673
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or cloud provider, including relevant memory and storage.675
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9. Code Of Ethics681
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Answer: [Yes]684
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Answer: [Yes]696
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13. New Assets763
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Answer: [Yes]766
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source. For the experiments there is further code for reproduction of the experiments768
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• Researchers should communicate the details of the dataset/code/model as part of their772
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limitations, etc.774
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create an anonymized URL or include an anonymized zip file.778

14. Crowdsourcing and Research with Human Subjects779

Question: For crowdsourcing experiments and research with human subjects, does the paper780

include the full text of instructions given to participants and screenshots, if applicable, as781

well as details about compensation (if any)?782

Answer: [NA]783

Justification: The work does not contain crowdsourcing experiments and research with784

human subjects.785
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approvals (or an equivalent approval/review based on the requirements of your country or799
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Answer: [NA]801
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• The answer NA means that the paper does not involve crowdsourcing nor research with804

human subjects.805

• Depending on the country in which research is conducted, IRB approval (or equivalent)806

may be required for any human subjects research. If you obtained IRB approval, you807
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guidelines for their institution.811
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applicable), such as the institution conducting the review.813
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