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Abstract

In this note, we present non-asymptotic two-sided bounds to the log-marginal likelihood
in Bayesian inference. The classical Laplace approximation is recovered as the leading
term. Our derivation permits model misspecification and allows the parameter dimension
to grow with the sample size. We do not make any assumptions about the asymptotic
shape of the posterior, and instead require certain regularity conditions on the likelihood
ratio and that the posterior is sufficiently concentrated. We envision the derived bounds to
be widely applicable in establishing model selection consistency of Bayesian procedures in
non-conjugate settings, especially when the true model potentially lies outside the class of
candidate models considered.

1 Introduction

Suppose data Y is modeled according to a probability distribution Pθ, with the parameter space Θ ⊆ <d
a closed convex set. For each θ, suppose Pθ admits a density pθ = (dPθ/dµ) with respect to a common
σ-finite measure µ on the sample space Y. Assume the map (y, θ) 7→ pθ(y) is jointly measurable, and let
`(θ) = log pθ(Y ) be the log-likelihood function. Let π(·) be a continuous proper prior on Θ and let γ(·)
denote the corresponding posterior distribution so that for any measurable set B,

γ(B) =
∫
B
e`(θ) π(θ)dθ
Zγ

, Zγ =
∫

Θ
e`(θ) π(θ)dθ. (1)

The posterior normalizing constant Zγ in (1) is commonly referred to as the marginal likelihood or evidence
(Robert, 2007). The marginal likelihood is an ubiquitous tool for model comparison and selection in Bayesian
statistics as it encapsulates an automatic penalty for model complexity.

Barring conjugate settings, the multivariate integral in (1) is rarely available in closed form, necessitating
approximations to the marginal likelihood for computation as well as theoretical analysis. Laplace’s integral
approximation method, commonly referred to as the Laplace approximation (Tierney & Kadane, 1986), is
arguably the most well-known and widely used approximation; see Robert (2007); Ghosh et al. (2007) for
book level treatments. In regular parametric models with n independent and identically distributed samples
and θ̂ the maximum likelihood estimator, the Laplace approximation takes the form logZγ ≈ `(θ̂)−d logn/2.
The quantity on the right hand side is, up to a scale factor, the celebrated Bayesian information criterion
(Schwarz, 1978), which is thus realized as an asymptotic approximation to the log-marginal likelihood.
Throughout the article, we reserve the phrase Laplace approximation to exclusively refer to the above and
not the closely related problem of approximating posterior expectations of functionals (Tierney & Kadane,
1986; Tierney et al., 1989; Miyata, 2004; Ruli et al., 2016).

The usual heuristic derivation of the Laplace approximation proceeds by performing a Taylor series expansion
of the log-likelihood function on a neighborhood of the maximum likelihood estimator or the posterior mode
to reduce the integral to a Gaussian integral. This argument can be made rigorous (Chen, 1985; Kass
et al., 1990) under the assumptions of a Bernstein–von Mises theorem guaranteeing the posterior assuming
a Gaussian shape asymptotically; see also Remark 1.4.5. of Ghosh & Ramamoorthi (2003) for an exposition
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along these lines. Shun & McCullagh (1995) showed that if the dimension is comparable with the sample
size, then the usual Laplace approximation is not valid.

In this article, we present a derivation of the Laplace approximation without assuming an asymptotic Gaus-
sian shape of the posterior. Specifically, we obtain non-asymptotic two-sided bounds on logZγ with the same
leading term, valid with high probability under the true data distribution. While the assumption of a true
data generating distribution is standard in existing derivations (Kass et al., 1990; Cavanaugh & Neath, 1999),
we refrain from assuming the model to be correctly specified. In such misspecified settings, the parameter
value in the model class closest to the true distribution in Kullback–Leibler divergence assumes the role of
the true parameter in well-specified settings.

Our derivation crucially exploits the concentration of the posterior distribution (Kleijn & van der Vaart, 2006)
around this pseudo-true parameter, which typically requires milder assumptions compared to asymptotic
normality. For example, even in the linear regression setup, one needs strong prior flatness conditions
for asymptotic normality when the parameter dimension grows with the sample size (Bontemps, 2011).
We show that the concentration phenomenon is sufficient to localize the assumptions on the likelihood
surface on a neighborhood around the pseudo-true parameter, unlike the global assumptions in Cavanaugh
& Neath (1999). We verify our conditions in the setting of a generalized linear model with growing parameter
dimension, and the same template can be used in other settings such as quantile regression and more generally,
for model selection beyond the Gaussian linear model (Rossell & Rubio, 2018).

2 Main result

As noted in the introduction, we operate in misspecified framework allowing the true data distribution P to
lie outside the model class {Pθ : θ ∈ Θ}. Without loss of generality, assume P� µ and let p(·) = dP/dµ(·).
We shall reserve the symbol E to denote an expectation with respect to P. Let

θ∗ = arg min
θ∈Θ

D(p || pθ) = arg max
θ∈Θ

E`(θ) (2)

be the closest Kullback–Leibler point to the truth inside the parameter space, withD(p || q) = Ep(log p/q) the
Kullback–Leibler divergence between densities p and q. In a misspecified setting, the pseudo-true parameter
θ∗ plays the role of the true parameter in well-specified models.

We now lay down the assumptions underlying our main result. For any θ, θ† ∈ Θ, we let `(θ, θ†) = `(θ)−`(θ†)
denote the log-likelihood ratio. Throughout C,C1, C2, . . . denote global positive constants. Let `r(θ) =
`(θ)− E`(θ) and B∗ ≡ B∗W,R = {θ ∈ Θ : (θ − θ∗)TW (θ − θ∗) ≤ Rd} for a fixed positive definite matrix W
and a constant R > 0.
Assumption 1 (Likelihood ratio: deterministic part). There exists a fixed d× d positive definite matrix H
and a constant c ∈ (1/2, 1) such that for all θ ∈ B∗,

(θ − θ∗)TH(θ − θ∗)/(2c) ≥ −E `(θ, θ∗) ≥ (θ − θ∗)TH(θ − θ∗)/2. (3)

Assumption 2 (Likelihood ratio: stochastic part). There exists a positive constant C and δ̃ ∈ (0, 1/4) such
that P

{
supθ∈B∗ |`r(θ)− `r(θ∗)| ≤ C d

}
≥ 1− δ̃.

Assumption 3 (Prior). The prior distribution π is continuous and nowhere zero on Θ.
Assumption 4 (Posterior concentration). There exists constants η, δ ∈ (0, 1/4) such that P

{
γ(B∗) ≥

1− η
}
≥ 1− δ.

Assumptions 1 and 2 together posit conditions on the log-likelihood ratio `(θ, θ∗) on a neighborhood B∗ of
θ∗. We separate the conditions into stochastic and deterministic components by writing `(θ, θ∗) = E`(θ, θ∗)+
`r(θ)− `r(θ∗).

Assumption 1 posits that −E `(θ, θ∗) can be approximated by a quadratic form in (θ−θ∗) in a local neighbor-
hood of θ∗. This is a standard assumption in parametric models; see, e.g. Spokoiny (2012a). If θ 7→ E`(θ)
is twice differentiable, a natural choice to find H is to perform a Taylor expansion. Since ∇E`(θ∗) = 0,
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the condition (3) is satisfied if c−1H & −∇2E`(θ) & H for all θ ∈ B∗, where A1 & A2 denotes A1 − A2
is nonnegative definite. Thus in well-specified regular models, the matrix H plays the role of the Fisher
Information matrix. Another particular simplification arises for well-specified models where −E`(θ, θ∗) is
the Kullback–Leibler divergence D(pθ∗ || pθ), which is known to be locally equivalent to a weighted Euclidean
metric in many parametric models.

Assumption 2 requires control over the supremum of the centered empirical process `r(θ) as θ varies over the
set B∗. In specific examples, this can be achieved by first bounding the expected supremum E supθ∈B∗ `r(θ)−
`r(θ∗) using a standard chaining argument and then use a concentration inequality for the supremum around
its expectation. Refer to Talagrand (2006); Boucheron et al. (2013); Vershynin (2018) for such arguments
for general empirical processes and van de Geer (2006); Spokoiny (2012b) for a more specialized statistical
context. We also mention the more recent work (Dirksen, 2015) which directly obtains a high-probability
bound for the supremum of an empirical process using generic chaining. Some smoothness assumption on the
likelihood surface is necessary to apply these results, which may be posed on the increments or alternatively,
on the gradient, of the likelihood process. We provide some specific examples in the next section.

Assumption 3 is broadly satisfied and Assumption 4 requires the posterior distribution γ(·) to place sufficient
mass around the pseudo-true parameter θ∗. A set of general conditions for posterior concentration in
misspecified models can be found in Kleijn & van der Vaart (2006); see also De Blasi & Walker (2013);
Sriram et al. (2013); Ramamoorthi et al. (2015); Atchadé (2017); Bhattacharya et al. (2019). We prove a
general theorem for misspecified high-dimensional generalized linear models in the Appendix. With these
ingredients in place, we state a two-sided bound on the log-marginal likelihood in Theorem 1 below.
Theorem 1. Recall Zγ from (1), and assume Assumptions 1–4 are satisfied. Then, with P-probability at
least (1− δ − δ̃), the following bounds in (4) and (5) hold:

logZγ ≤ `(θ∗)−
log |H|

2 +
[
C1d+ log

{
supθ∈B∗ π(θ)

1− η

}
+ logP (‖ξ‖2 ≤ Rd)

]
, (4)

where C1 = C + log(2π)/2 and ξ ∼ Nd(0,W 1/2H−1W 1/2). Also,

logZγ ≥ `(θ∗)−
log |H|

2 +
{
C2d+ log inf

θ∈B∗
π(θ) + logP (‖ξ‖2 ≤ Rc−1d)

}
, (5)

where C2 = −C + log(2π)/2 + c/2 and ξ is the same as before.

A proof of Theorem 1 is provided in the Appendix. An inspection of the proof will reveal that the con-
centration of the posterior in Assumption 4 is only utilized for the upper bound. Some additional remarks
regarding the result are in order. We state the bounds in terms of `(θ∗), and not `(θ̂), for convenience of
theoretical analysis. When comparing models, this helps to get rid of one layer on randomness stemming
from the respective θ̂ for each model. It is straightforward to modify the argument and state the bounds
in terms of `(θ̂) as detailed in the proof. In regular parametric models with n independent and identically
distributed samples, |H| � n−d/2, leading to the recognizable −d logn/2 penalty in the Bayesian information
criterion. Lv & Liu (2014) defined a generalized Bayesian information criterion for misspecified models with
an additional term containing the sandwich covariance appearing in the asymptotic distribution of the max-
imum likelihood estimator under misspecification. However, the sandwich covariance term does not appear
in the asymptotic limit of the posterior under misspecification (Kleijn & Van der Vaart, 2012), and also does
not show up in our calculations.

3 Verification of assumptions

In this section, we verify the Assumptions in §2 for a generalized linear model, which subsumes a wide array
of examples encountered in practice. For a more direct approach for the special case of i.i.d. exponential
family models, refer to Schwarz (1978); Haughton (1988). Consider covariate-response pairs {(yi, xi)}ni=1
with yi ∈ < and xi ∈ <d. We consider the moderately high-dimensional regime where d is less than n,
but allowed to grow with n. Let y = (y1, . . . , yn)T and let X denote the n × d matrix of covariates. We
assume a model on yi conditional on the covariates xi independently according to a generalized linear model
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PxT
i
β in canonical form, with the log-likelihood `(β) = log pβ(y) =

∑n
i=1
{
yix

T
i β − a(xT

i β)
}
, where β ∈ <d

is the unknown vector of regression parameters. The function a : < → < is convex; we shall denote its first
and second derivatives by a(1) and a(2) respectively. We operate in a misspecified framework and do not
assume the existence of a true regression parameter, and instead only make tail assumptions on the true
data distribution. The pseudo-true parameter β∗ satisfies

∇E`(β∗) =
n∑
i=1
{Eyi − a(1)(xT

i β
∗)}xi = 0d. (6)

3.1 Verification of Assumptions 1 and 2

Let us consider Assumption 1 first. We have,

−E`(β, β∗) =
n∑
i=1

{
a(xT

i β)− a(xiβ∗)− xT
i (β − β∗) a(1)(xT

i β
∗)
}

= 1
2 (β − β∗)T

{ n∑
i=1

a(2)(xT
i β̃)xixT

i

}
(β − β∗),

for some β̃ in the line segment joining β and β∗. The first equality in the above display utilizes the
identity (6). Letting u2

i = infβ∈B∗ a(2)(xT
i β) and v2

i = supβ∈B∗ a(2)(xT
i β) for i = 1, . . . , n, we have

(β − β∗)T
{∑n

i=1 u
2
ixix

T
i

}
(β − β∗) ≤ −E`(β, β∗) ≤ (β − β∗)T

{∑n
i=1 v

2
i xix

T
i

}
(β − β∗)T for all β ∈ B∗.

Thus, we can set H =
∑n
i=1 u

2
ixix

T
i and c = mini u2

i /v
2
i to satisfy Assumption 1.

The quantity `r(β)− `r(β∗) appearing in Assumption 2 equals 〈y − Ey,X(β − β∗)〉 in the present context.
Define an index set T = {x ∈ <d : ‖x‖ ≤ 1}, and a stochastic process Zα = 〈y − Ey,Xα〉 for α ∈ T .
Observe that for any β 6= β∗ ∈ B∗,∣∣〈y − Ey,X(β − β∗)〉

∣∣ =
∣∣∣∣〈y − Ey,

X(β − β∗)
‖β − β∗‖

〉
∣∣∣∣ ‖β − β∗‖

≤
(

sup
α∈Sd−1

|〈y − Ey,Xα〉
∣∣)R( d

n

)1/2
,

where Sd−1 = {x ∈ <d : ‖x‖ = 1}. Letting α0 = 0d, we can thus bound supβ∈B∗ |`r(β) − `r(β∗)| ≤
R(d/n)1/2 ( supα∈T |Zα−Zα0 |

)
. The verification of Assumption 2 thus requires control over the supremum of

the stochastic process (Zα), which in turn depends on the moment assumptions on the true data distribution.
We illustrate this through two different examples below.

As a first example, assume that (y − Ey) is a centered sub-Gaussian random variable (Vershynin, 2018),
that is, there exists a constant τ > 0 such that for any v ∈ <n, E exp〈y − Ey, v〉 ≤ exp(τ2‖v‖2/2). If
the coordinates yi are independent, one may take τ = maxi ‖yi − Eyi‖ψ2 to be the maximum of the sub-
Gaussian norms of (yi−Eyi); see Vershynin (2018) for definition of the sub-Gaussian norm ‖ · ‖ψ2 . However,
independence is not necessary for the above condition to hold and it can be verified for various dependence
structures. In particular, if y has a joint Gaussian distribution, then τ equals the largest eigenvalue of
cov(y). Under the above sub-Gaussian assumption, the process (Zα) has sub-Gaussian increments, since for
any λ ∈ <,

Eeλ(Zα−Zα̃) ≤ eλ
2τ2‖Xα−Xα̃‖2/2 ≤ eλ

2τ2‖X‖2
2‖α−α̃‖

2
,

where ‖X‖2 is the operator norm of X. For processes with sub-Gaussian increments, a convenient high-
probability bound for the supremum was developed in Liaw et al. (2017, Theorem 4.1) as a corollary to the
more general tail bound of Dirksen (2015). In preparation for applying their bound, we have ‖Zα−Zα̃‖ψ2 ≤
τ‖X‖2‖α − α̃‖ for any α, α̃ ∈ T . Also, diam(T ) = supα,α̃∈T ‖α − α̃‖ ≤ 2 and the Gaussian width of T ,
E supα∈T 〈g, α〉 for g ∼ Nd(0, Id), is in the order of d1/2. Thus, with probability at least 1−e−d, supα∈T |Zα−
Zα0 | ≤ Cτ‖X‖2 d1/2. It then follows that with probability at least 1− e−d, supβ∈B∗ |`r(β)− `r(β∗)| ≤ Cd.
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Alternatively, suppose (yi − Eyi) are independent sub-exponential (Vershynin, 2018) random variables, so
that there exist gi > 0 and νi such that

Eeλ(yi−Eyi) ≤ eλ
2ν2
i /2, |λ| < gi, i = 1, . . . , n.

Fix λ such that |λ| ≤ mini gi := ḡ−1. Under the above assumption, we have, for any α, α̃ ∈ T that

Eeλ
Zα−Zα̃
‖Xα−Xα̃‖ =

n∏
i=1

Eeλ
xT
i

(α−α̃)
‖Xα−Xα̃‖ (yi−Eyi) ≤ eλ

2
∑n

i=1

ν2
i
{xT
i

(α−α̃)}2

‖Xα−Xα̃‖2

≤ eλ
2ν2/2 ≤ eλ

2ν2/{2(1−|λ|ḡ)},

where ν = maxi νi. From the second to the third step, we used that |xT
i (α − α̃)|/‖Xα −Xα̃‖ ≤ 1. Hence

Zα is a centered process on T with sub-exponential increments. Define a norm d(α1, α2) = ‖Xα1 −Xα2‖.
Clearly, d(α1, α2) ≤ ‖X‖2 for α1, α2 ∈ T . From Theorem 2.1 of Baraud (2010),

P
[

sup
α∈T
|Zα − Zα0 | > ‖X‖2

√
1 + x+ ḡx

]
≤ 2e−x, x > 0,

thereby verifying Assumption 2 by setting x = d.

3.2 Verification of Assumptions 3 and 4

Although literature on posterior contraction of regression parameters in linear models is abundant, both in
moderately high-dimensional and ultra-high dimensional settings; see the introduction of Gao et al. (2015)
for a general list of references; analogous results for generalized linear models are comparatively sparse, with
the exception of Jiang et al. (2007). However, special cases including high dimensional logistic regression
using a pseudo likelihood (Atchadé, 2017) and high-dimensional logistic regression using shrinkage priors
(Wei & Ghosal, 2020) are available. Although it is possible to use such results directly to verify Assumption
4, this would typically come with additional restriction necessitated by the specific goals targeted in these
papers. Jiang et al. (2007) operated in a well-specified setting where the use of a Gaussian prior leads to
a restrictive assumption on the growth of the true coefficients; refer to the assumptions of Theorem 1 in
pg. 1493. Atchadé (2017) considered a Laplace-type prior for the coefficients which obviated the need for
such a restriction, but their results are specific to logistic regression. We focus on extending the result
of Atchadé (2017) to accommodate other families and allow for model misspecification in the moderately
high-dimensional regime with no sparsity assumption on the coefficients. We prove this result (Theorem 2)
in the C; a sketch of the main ingredients is given below.

A posterior contraction result requires non-local versions of Assumptions 1 and 2 in the complement of the
neighborhood under consideration. A fundamental technique (Ghosal et al., 2000) to prove such a result
is to enforce that the likelihood ratio is appropriately small in (B∗)c and that the prior assigns sufficient
probability around the true parameter in B∗. The first condition ensures that the numerator of the posterior
probability of (B∗)c is small and the second condition prevents the denominator from becoming too small.

The separation of the likelihood in (B∗)c relies on the decomposition `(β, β∗) = `r(β) − `r(β∗) + E`(β, β∗)
and then ensuring that E`(β, β∗) is sufficiently negative to offset the stochastic variation in `r(β)− `r(β∗).
Although E`(β, β∗) has a local quadratic shape for any member of the generalized linear model in B∗,
E`(β, β∗) fails to be so outside B∗ for certain members in the family. For instance, E`(β, β∗) is approximately
linear outside B∗ for logistic regression. Hence a suitable modification to the lower bound in Assumption
1 in required. This can be encapsulated through an assumption on a as a(t + h) ≥ a(t) + h a(1)(t) +
r(|h|) a(2)(t)/2 for all t, h, where r(·) is a rate function (Atchadé, 2017) from R+ to R+ satisfying i) r(0) = 0,
ii) limh→0 r(h) = 0 and iii) r(h) ≥ h2/(r1 + r2h) for r1, r2 ≥ 0 not simultaneously 0. This class of a functions
includes the Gaussian a(t) = t2, r(h) = h2; logistic a(t) = − log(1 + e−t), r(h) = h2/(h + 2); and Poisson
a(t) = et, r(h) = h2, among others. Using such a lower bound on a it is possible to develop sharp lower
bounds for −E`(β, β∗) on (B∗)c leading to a dominating negative term in the numerator. The stochastic
term on the other hand can be controlled by assuming y−Ey to be sub-Gaussian, in a very similar way the
term `r(β)− `r(β∗) is controlled in B∗.
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The treatment of the denominator needs extra care to avoid any assumption on the growth of the true
coefficients. Motivated by Atchadé (2017); Castillo & van der Vaart (2012); Castillo et al. (2015), we
consider a Laplace-type prior (∝ exp{−κh}, where h is Lipschitz outside a neighborhood around zero and
κ > 0 is a constant) on the regression coefficients β. The right amount of tail thickness associated with such
priors leads to an assumption free estimation of the regression coefficients β.

4 Discussion

Consider the general setup of Bayesian model selection (Bishop, 2006; Hoeting et al., 1999), where we are
given a set of K candidate models {Mk}Kk=1 with prior probabilities {pk}Kk=1. The kth model postulates a
probability model fk(Y | θk,Mk) for the data with model parameters θk ∈ Θk, which is endowed with a
prior πk(·). Then, the posterior probability of the kth model given data Y is given by

pk(Y ) : = pkmk(Y )∑
j pjmj(Y ) , mk(Y ) =

∫
fk(Y | θk,Mk)πk(dθk).

In particular, the maximum a posteriori model k̂ = arg maxk pk(Y ) reports the model with the highest
posterior probability. Note that one can express 1/pk(Y ) = 1 +

∑
j 6=k(pj/pk) BFjk, where BFjk(Y ) = mj(Y )

mk(Y )
is the Bayes factor between models j and k, which is simply the ratio of the marginal likelihoods. Asymptotic
analysis of the posterior model probabilities necessarily require control over the behavior of log BFjk(Y ) under
the true data distribution, which may lie outside any of the candidate models considered. In such scenarios,
our bounding technique can be generally applied.
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A Appendix

B Proof of Theorem 1

Let Yg denote the subset of the sample space Y where the events in Assumptions 1 and 2 both hold. We
shall work inside the set Yg, with P(Yg) ≥ 1− δ − δ̃ by Bonferroni’s inequality.

We first prove the upper bound (4). By Assumption 1,

(1− η) ≤ γ(B∗) =
∫
B∗
e`(θ,θ

∗) π(θ)dθ∫
Θ e

`(θ,θ∗) π(θ)dθ
.

Rearranging terms, this gives

logZγ ≤ `(θ∗) + log
(

1
1− η

)
+ log

∫
B∗
e`(θ,θ

∗) π(θ)dθ.

We now bound the integral in the right hand side of the above display. We have,∫
B∗
e`(θ,θ

∗) π(θ)dθ =
∫
B∗
e`r(θ)−`r(θ∗)+E`(θ,θ∗)π(θ)dθ ≤ eCd

∫
B∗
e−(θ−θ∗)TH(θ−θ∗)/2π(θ)dθ

≤ { sup
θ∈B∗

π(θ)} eCd (2π)d/2 |H|−1/2
∫
B∗
φd(θ; θ∗, H−1)dθ,

where φd(x;µ,Σ) denotes a d-variate normal density with mean µ and covariance Σ evaluated at x ∈ <d.
The bound (4) follows since

∫
B∗
φd(θ; θ∗, H−1)dθ = P (‖ξ‖2 < Rd) for ξ ∼ Nd(0,W 1/2H−1W 1/2).

For the lower bound, we use

logZf = `(θ∗) +
∫

Θ
e`(θ,θ

∗) π(θ)dθ ≥ `(θ∗) +
∫
B∗
e`(θ,θ

∗) π(θ)dθ.

We now bound the integral in the right hand side of the above display from below. We have,∫
B∗
e`(θ,θ

∗) π(θ)dθ =
∫
B∗
e`r(θ)−`r(θ∗)+E`(θ,θ∗)π(θ)dθ

8
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≥ e−Cd
∫
B∗
e−(θ−θ∗)TH(θ−θ∗)/(2c) π(θ)dθ

≥ { inf
θ∈B∗

π(θ)} e−Cd (2π)d/2 cd/2 |H|−1/2
∫
B∗
φd(θ; θ∗, cH−1)dθ.

Finally, we have
∫
B∗
φd(θ; θ∗, cH−1)dθ = P (‖ξ‖2 < Rc−1d) where ξ ∼ Nd(0,W 1/2H−1W 1/2).

C Posterior concentration in generalized linear models

Consider a generalized linear model with the canonical parameterization: yi
ind.∼ PxT

i
β for i = 1, . . . , n, and

the log-likelihood as L(β) := log pβ(y) =
∑n
i=1
{
yix

T
i β − a(xT

i β)
}
, where (yi, xi) ∈ < × <p, β ∈ <p is the

parameter of interest, and a is a real valued convex function. We allow the true density p0(y) of yi to be
misspecified and let E(yi) = Ai and Var(Y ) = Σ. We note some important properties of the model.

C.1 Properties of various aspects of the model

We define the pseudo-true parameter β∗ as β∗ = arg maxβ∈RpEL(β). Under PxT
i
β∗ , E(yi) = a(1)(xT

i β
∗) and

Var(yi) = a(2)(xT
i β
∗). Also, ∇EL(β∗) = 0 which implies

∑n
i=1{Ai−a(1)(xT

i β
∗)}xi = 0. V 2

0 := Var{∇L(β∗)}
and D2

0 := −E{∇2L(β∗)} = XTWX, where W = diag{a(2)(xT
1β
∗), . . . , a(2)(xT

nβ
∗)}. Next, we look at some

important divergences/distance measures defined as follows. A subscript 0 will indicate the divergence
measure to be misspecified.

D0(β∗, β) := E
{

log pβ
∗(y)

pβ(y)

}
=

n∑
i=1

{
a(xT

i β)− a(xT
i β
∗)− a(1)(xT

i β
∗)xT

i (β − β∗)
}

= D(β∗, β),

V0(β∗, β) := E
{

log pβ
∗(y)

pβ(y) −D0(β∗, β)
}2
,

D0,α(β∗, β) := 1
α− 1 logA0,α(β∗, β) := 1

α− 1 log
∫ {

pβ(y)
pβ∗(y)

}α
p0(y)dy,

A0,α(β∗, β) = E exp
[
α〈y − Ey,X(β − β∗)

]
exp{−αD(β∗, β)}.

Note that we define the misspecified divergences only for the pair β∗, β which forces D0(β∗, β) ≥ 0.
D0,α(β∗, β) is not necessarily a divergence and we shall impose assumptions on the true distribution of
yi which allows D0,α(β∗, β) ≥ 0. For any β1, β2, H2(β1, β2) := 1−A1/2(β1, β2). Noting that

log
p∗β(y)
pβ(y) = (β − β∗)TXTY −

n∑
i=1

[a(xT
i β)− a(xT

i β
∗)]

and V ar(Y ) = Σ, we have V0(β∗, β) ≤ (β−β∗)TXTΣX(β−β∗). Note that D0(β∗, β) ≤ K(β, β∗)n‖β∗−β‖2,
where K(β, β∗) = supβ̃∈L(β∗,β) λp{XTW (β̃)X/n},
W (β̃) = diag{a(2)(xT

1 β̃), . . . , a(2)(xT
nβ̃)} and L(β∗, β) is the line-segment connecting β∗ and β.

C.2 Assumptions on the generalized linear model

We set our model assumptions to control the log-likelihood ratio
pβ(y)
pβ∗(y) = exp

[
〈y − Ey,X(β − β∗)−D(β∗, β)

]
. (7)

The first part in the right hand side of (7) is a stochastic term which can be controlled using appropriate sub-
Gaussian assumption on y − Ey. The second term involves a deterministic quantity which can be bounded
using an appropriate condition on the second derivative of the a function. The following assumptions achieve
this in a concrete fashion.

9
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Assumption 5. Let κ1 := λ1(XTWX/n) > 0.
Assumption 6. Assume a satisfies a(t + h) ≥ a(t) + h a(1)(t) + r(|h|) a(2)(t)/2 for all t, h, where r(·) is a
rate function from R+ to R+ satisfying i) r(0) = 0, ii) limh→0 r(h) = 0 and iii) r(h) ≥ h2/(r1 + r2h) for
r1, r2 ≥ 0 not simultaneously 0.
Assumption 7. K := supβ:‖β−β∗‖≤εn K(β, β∗) <∞ where εn is the rate of posterior convergence.
Remark 1. Assumption 6 can be used to provide a lower bound for D(β∗, β) in the following manner. If a
satisfies Assumption 6,

D(β∗, β) =
n∑
i=1

{
a(xT

i β)− a(xT
i β
∗)− a(1)(xT

i β
∗)xT

i (β − β∗)
}

≥
n∑
i=1

r(|xT
i (β − β∗)|)a(2)(xT

i β
∗).

Defining k(h) = h2/r(h),

D(β∗, β) ≥ (β − β∗)T

[ n∑
i=1

a(2)(xT
i β
∗)

k(|xT
i (β − β∗)|)xix

T
i

]
(β − β∗)

≥ (β − β∗)TXTWX(β − β∗)
r1 + r2‖X‖∞

√
d‖β − β∗‖

,

where the last inequality follows from the fact that k(h) ≤ r1 + r2h and |xT
i (β − β∗)| ≤ ‖X‖∞

√
d‖β − β∗‖.

C.3 Assumption on the data generating distribution

We assume that (y − Ey) is a centered sub-Gaussian random vector.
Assumption 8. Assume that there exists a constant τ > 0 such that for any v ∈ Rn,

E exp 〈y − Ey, v〉 ≤ eτ
2‖v‖2/2.

Remark 2. For example, if y has a joint Gaussian distribution with covariance matrix Σ, then we may take
τ = ‖Σ‖2. Under this assumption, we revisit the quantity 〈y−Ey,X(β−β∗)〉. We claim the following: with
probability at least 1− e−d,

|〈y − Ey,X(β − β∗)〉| ≤ τ ‖X‖2
√
d ‖β − β∗‖, ∀ β ∈ Rd.

Note that the probability statement is uniform in β. The proof uses a majorizing measure theorem (see
Theorem 4.1 of Liaw et al. (2017)). To prepare for the proof, note first that for any β ∈ Rd,

|〈y − Ey,X(β − β∗)〉| ≤
(

sup
u∈T
|〈y − Ey,Xu〉|

)
‖β − β∗‖,

with T = Sd−1 ∪ {0d}. Define a stochastic process Wu = 〈y − Ey,Xu〉 for u ∈ T . Note that

sup
u∈T
|〈y − Ey,Xu〉| = sup

u∈T
|Wu −W0| ≤ sup

u,ũ∈T
|Wu −Wũ|.

We shall invoke Theorem 4.1 to obtain a high probability bound to the quantity in the right most side of the
above display. The process W has sub-Gaussian increments. We have, for any u, ũ ∈ T ,

Eeλ(Wu−Wũ) ≤ eλ
2τ2‖Xu−Xũ‖2/2 ≤ eλ

2τ2‖X‖2
2‖u−ũ‖

2/2.

Hence, for any u, ũ ∈ T ,

‖Wu −Wũ‖ψ2 ≤ τ‖X‖2 ‖u− ũ‖2.

This implies the constant M in their theorem can be taken as M = τ‖X‖2. Finally, note that diam(T ) ≤ 2
and the Gaussian width of T , E supx∈T 〈g, x〉 for g ∼ N(0, Id), is of the order

√
d. The proof is completed by

taking u =
√
d.

10



Under review as submission to TMLR

Assumption 9. There exists φ ∈ (0, 1) such that

n ≥ τr2d‖X‖2‖X‖∞
φκ1

,
(1− φ)r1

φ(r2‖X‖∞
√
d)
≥ εn.

Since ‖X‖2 ≤
√
n‖X‖∞, Assumption 9 allows d to increase with n at a rate slightly slower than

√
n.

C.4 Assumptions on the prior

We assume that π is a product of d densities of the form e−κh, for a function h satisfying for some constant
c > 0,

|h(x)− h(y)| ≤ D +D|x− y|,∀x, y ∈ R,

for some constant D > 0. This covers Laplace and Student densities, which corresponds to uniformly Lips-
chitz h. It also covers other smooth densities with polynomial tails, and densities of the form cα exp{−κ|x|α}
for some α ∈ (0, 1] which corresponds to Lipschitz h outside a neighborhood of the origin. On the other
hand the standard normal density is ruled out.

C.5 Main result on posterior contraction

In the following, we state our main theorem on posterior contraction using the assumptions on the data
generating process in §C.3, the model in §C.2 with the prior in §C.4.
Theorem 2. Assume Assumption 8 on the data generation mechanism and Assumptions 7, 5, 9 and
6 on model and the prior assumptions in §C.4. Then there exists positive constants C1, C2, such that
for any η ∈ (0, 1) there exists δ = e−C2d/η such that P

{
γ(B∗) ≥ 1 − η

}
≥ 1 − δ, where the set

B∗ = {β : ‖β − β∗‖ ≤ C1
√
d/n}.

In Theorem 2 we make no sparsity assumptions on β and let the dimension d to increase with n at a rate
slightly slower than

√
n. Notably, the convergence rate we obtained is sharp minimax (

√
d/n) without any

logarithmic term. Our non-asymptotic version of the Laplace approximation as Theorem 1 in the main
document is valid for d growing at this rate. This is in stark contrast with Shun & McCullagh (1995) who
showed that the remainder terms of the Laplace approximation do not vanish unless d3/n → 0. This is
due to difference in assumptions in the likelihood and the prior. Also our Laplace approximation does not
require maximizing the likelihood as in Shun & McCullagh (1995), instead we evaluate the likelihood at the
pseudo-true parameter θ∗.

Another salient feature of our result is the absence of any assumption on the norm of β which is possible
due to the use of a heavier tailed prior distribution on β. We conjecture that the use of a Gaussian prior
will lead to a degradation of the convergence rate unless the norm of the true coefficients is appropriately
bounded.

C.6 Proof of Theorem 2

We divide up the proof into two separate parts.
Treatment of the denominator: In the following, we lower bound the normalizing constant of the
posterior distribution. The technical details are fairly standard modification of
Lemma 1. Under Assumption 7 and assuming π satisfies the assumption in §C.4, we have for any sequence
of numbers εn going to 0,∫

pβ(y)
pβ∗(y)π(β)dβ ≥ cdκe

−κ
∑d

j=1
{h(β∗j )+D}

∫
‖z‖≤εn

e
−Kn‖z‖2/2−κD

∑d

j=1
|zj |dz,

where cκ is the normalizer of π for d = 1.

11
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Treatment of the numerator: In this section, we assume Assumptions 8, 7, 5, 9 and 6 and the prior
assumptions in §C.4 Define Ωn be the set

sup
u∈T
|〈y − Ey,Xu〉| ≤ τ ‖X‖2

√
d.

We first detail our main result for test construction. Define a mapping from pβ to the space of finite measures
as

pβ 7→ qβ := p0

pβ∗
pβ1Ωn

For any ε > 0, define B(β1; ε) = {pβ : ‖β − β1‖ < ε}. Denote by conv{B(β1; ε)} the convex hull of B(β1; ε).
Pick any β1 such that ‖β1 − β∗‖ = r. Then the following holds.
Lemma 2. Assume Assumption 8 on the data generation mechanism and Assumptions 7, 5, 9 and 6 on
model. Then for r ≥ (1−φ)r1

φ(r2‖X‖∞
√
d) , there exists measurable functions 0 ≤ Φn,β1 ≤ 1 such that for every n ≥ 1

sup
pβ∈conv{B(β1;r/2)}

E0Φn,β1 + Eqβ (1− Φn,β1) ≤ exp
{
− nκ1(1− φ)α‖β1 − β∗‖

2r2‖X‖∞
√
d

}
.

Now consider the following decomposition for any sequence of measurable functions Φ̃n (functions of y(n)),

E0γ{(B∗)c} ≤ E0Φ̃n + E0
{
γ{(B∗)c}1Ωn(1− Φ̃n)

}
+ P0(Ωcn), (8)

where P0(Ωcn) ≤ e−d from Remark 2. Let D(β∗) = cdκe
−κ
∑d

j=1
{h(β∗j )+D} ∫

e
−K‖z‖2/2−κD

∑d

j=1
|zj |dz. Writing

for fixed M > 0,

U := {β : ‖β − β∗‖ > Mεn} =
∞⋃
j=1

Uj,n (9)

where Uj,n = {β : jMεn < ‖β − β∗‖ < (j + 1)Mεn}, the second term in the rhs of (8) can be further
decomposed as

E0
{
γ{(B∗)c}1Ωn(1− Φ̃n)

}
≤ D(β∗)−1

∞∑
j=1

∫
Uj,n

E0

[
1Ωn(1− Φ̃n) pβ(y)

pβ∗(y)

]
π(β)dβ. (10)

Let Nj,n := N(jMεn/2, Uj,n, ‖ ·‖) denote the jMεn/2-covering number of Uj,n with respect to ‖ ·‖. For each
j ≥ 1, let Sj be a maximal jMεn/2-separated points in Uj,n and for each point β̃k ∈ Sj we can construct a
test function Φn,β̃k as in Lemma 2, with r = jMεn. Then we set Φ̃n to

Φ̃n = sup
j≥1

max
β̃k∈Sj

Φn,β̃k .

From Lemma 2 since (1−φ)r1

φ(r2‖X‖∞
√
d) ≥ εn,

E0{Φ̃n} ≤
∑
j=1

Nj,n exp
{
− nκ1(1− φ)αjMεn

2r2‖X‖∞
√
d

}
,

E0
{
γ(B∗)1Ωn(1− Φ̃n)

}
≤

∞∑
j=1

{
Π(Uj,n)
D(β∗)

}
exp

{
− nκ1(1− φ)αjMεn

2r2‖X‖∞
√
d

}
.

Clearly Nj,n ≤ 9d and

Π(Uj,n)
D(β∗) ≤ I

−1 × eκdD
∫
Uj,n

e
κ
∑d

j=1
{h(β∗j )−h(βj)}dβ

12
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where I =
∫
‖z‖≤εn e

−Kn‖z‖2/2−κD
∑d

j=1
|zj |dz. Also the assumption in §C.4 entails

d∑
j=1
{h(β∗j )− h(βj)} ≤ dD +D‖β − β∗‖1 ≤ dD + 2D

√
d‖β − β∗‖2 −D‖β − β∗‖1.

Hence
Π(Uj,n)
D(β∗) ≤ Ie2κdD+2D

√
d(j+1)Mεn

∫
Uj,n

e−D‖β−β
∗‖1dβ

≤ (Id2/I) exp{2κdD + 2D
√
d(j + 1)Mεn}. (11)

where I2 =
∫
R e
−D|x|dx. Note that

I ≥ e−
√
dεn

∫
‖z‖≤εn

e−Kn‖z‖
2
dz = e−

√
dεn

∫ εn

0
e−Knr

2
rd−1dr

= 1
2ε
d
n(Knε2n)−d/2

[
Γ(d/2)− Γ(d/2,Knε2n)

]
, (12)

where Γ(a, x) is the incomplete Gamma function defined by
∫∞
x
ta−1e−tdt. From (8)-(11), and noting from

(12) that I ≥ exp{−cd logn} for some constant c > 0, we have

E0
{
γ{(B∗)c}1Ωn(1− Φ̃n)

}
≤

∞∑
j=1

(Id2 /I) exp
{

2κdD + (13)

2D
√
d(j + 1)Mεn −

nκ1αjMεn

2r2‖X‖∞
√
d

}
(14)

≤
∞∑
j=1

exp
{
− C1

nκ1(1− φ)αjMεn

r2‖X‖∞
√
d

}
(15)

and

E0Φ̃n ≤
∞∑
j=1

9d exp
{
− nκ1αjMεn

r2‖X‖∞
√
d

}
(16)

≤
∞∑
j=1

exp
{
− C2

nκ1αjMεn

r2‖X‖∞
√
d

}
(17)

for some constants C1, C2 > 0, by Assumption 9. Hence E0γ(B∗) > 1−e−Cd for some constant C > 0. An application
of Markov’s inequality concludes the proof of Theorem 2.

D Some auxiliary results

D.1 Proof of Lemma 2

Set λd := τ‖X‖2
√
d and Ur + λd := nκ1/{r2‖X‖∞

√
d}. Then Ur + λd ≥ (1− φ) nκ1

r2‖X‖∞
√
d
, then

(Ur + λd)r1

nκ1 − (Ur + λd)
√
dr2‖X‖∞

≥ (1− φ)r1

φ(r2‖X‖∞
√
d)

= Lr

Due to Assumption 9, Ur ≥ (1−φ)nκ1
r2‖X‖∞

√
d
and hence for x ≥ Lr,

λd −
nκ1x

r1 + r2‖X‖∞
√
dx

< −(1− φ) nκ1x

r2‖X‖∞
√
d
.

Then from Remark 2, it follows if ‖β − β∗‖ > Lr,∫
Ωn

(
pβ
pβ∗

)α
p0dy ≤ exp

{
αλd‖β − β∗‖ −

nκ1α‖β − β∗‖2

r1 + r2‖X‖∞
√
d‖β − β∗‖

}

13
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≤ exp
{
− nκ1α(1− φ)‖β − β∗‖

r2‖X‖∞
√
d

}
.

By Theorem 6.1 of Kleijn & van der Vaart (2006), there exists test functions Φn,β1 such that for every n ≥ 1

sup
pβ∈conv{B(β1;r/2)}

E0Φn,β1 + Eqβ (1− Φn,β1 ) ≤ sup
pβ∈conv{B(β1;r/2)}

∫
Ωn

(
pβ
pβ∗

)α
p0dy

≤ exp
{
− nκ1α(1− φ)‖β1 − β∗‖

2r2‖X‖∞
√
d

}
.

D.2 Proof of Lemma 1

The proof follows along the lines of Lemma 11 of Atchadé (2017). We have,∫
pβ(y)
pβ∗(y)π(β)dβ = cdκ

∫
pβ(y)
p0(y) e

−κ
∑d

j=1
h(βj)

dβ

≥ cdκ
∫
β:‖β−β∗‖≤εn

e

{∑n

i=1
(yi−Eyi) xT

i (β−β∗)−Kn‖β−β∗‖2/2−κ
∑d

j=1
h(βj)

}
dβ.

Substituting z = β − β∗, we obtain∫
pβ(y)
pβ∗(y)π(β) ≥ cdκ

∫
‖z‖≤εn

e

{∑n

i=1
(yi−Eyi) xT

i z−Kn‖z‖
2/2−κ

∑d

j=1
h(zj+β∗j )

}
dz

≥ cdκe
−κ
∑d

j=1
{h(β∗j )+D})

∫
‖z‖≤εn

e

{∑n

i=1
(yi−Eyi) xT

i z−Kn‖z‖
2/2−κD

∑d

j=1
|zj |
}
dz

≥ cdκe
−κ
∑d

j=1
{h(β∗j )+D}

∫
‖z‖≤εn

e
−Kn‖z‖2/2−κD

∑d

j=1
|zj |

dz (18)

× exp
∫
‖z‖≤εn

{ n∑
i=1

(yi − Eyi)xT
i z
}
π̃(z)dz, (19)

where the second last inequality follows from the fact that h(zj +β∗j ) ≤ h(β∗j )+D|zj |+D. The last inequality follows
from an application of Jensen’s where the expectation is taken with respect to π̃ given by

π̃(z) = e
−Kn‖z‖2/2−κD

∑d

j=1
|zj |∫

‖z‖≤εn
e
−Kn‖z‖2/2−κD

∑d

j=1
|zj |

dz

1‖z‖≤εn .

Noting that the integrand in (19) is an odd function, we have obtained the final result.
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