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Abstract

In the study, we aim to investigate current001
LLMs’ mastery of medical factual knowledge002
with a dynamic evaluation schema, which can003
automatically generate multiple test samples004
for each medical factual knowledge point. Test005
samples produced directly by LLMs always in-006
troduce factual errors and lack diversity in the007
manner of knowledge expression. To overcome008
the drawbacks, here we propose a novel evalua-009
tion method, Predicate-text Dual Transforma-010
tion (PretextTrans), by introducing predicate011
transformations into the dynamic evaluation012
schema. Specifically, each medical knowledge013
point is firstly transformed into a predicate ex-014
pression; then, the predicate expression derives015
a series of variants through predicate transfor-016
mations; lastly, the produced predicate variants017
are transformed back into textual expressions,018
resulting in a series of test samples with both019
factual reliability and expression diversity. Us-020
ing the proposed PretextTrans method, we sys-021
tematically investigate 12 well-known LLMs’022
mastery of medical factual knowledge based on023
two medical datasets. The comparison results024
show that current LLMs still have significant025
deficiencies in fully mastering medical knowl-026
edge, which may illustrate why current LLMs027
still perform unsatisfactorily in real-world med-028
ical scenarios despite having achieved consid-029
erable performance on public benchmarks. Our030
proposed method serves as an effective solution031
for evaluation of LLMs in medical domain and032
offers valuable insights for developing medical-033
specific LLMs.034

1 Introduction035

Recent years have witnessed the rapid advancement036

of large language models (LLMs), which have ex-037

hibited potential across various domains (Brown038

et al., 2020; Ouyang et al., 2022; Touvron et al.,039

2023; OpenAI, 2023; Madani et al., 2023; Boiko040

et al., 2023), including medicine. Solving medical041

problems requires LLMs to master medical factual042

Figure 1: Drawbacks of test samples produced directly
by LLMs.

knowledge comprehensively and in-depth. Recent 043

studies (Singhal et al., 2023; Nori et al., 2023; Pal 044

and Sankarasubbu, 2024) showed that some LLMs 045

(e.g., GPT-4) encode substantial medical factual 046

knowledge, significantly outperforming previous 047

SOTAs across multiple medical benchmarks (e.g., 048

MedQA (Jin et al., 2021)). However, these LLMs 049

are found to perform unsatisfactorily on real-world 050

medical tasks (Thirunavukarasu et al., 2023; Clus- 051

mann et al., 2023; Wornow et al., 2023), falling far 052

short of their benchmark performance. This indi- 053

cates that current benchmarks do not accurately and 054

comprehensively reflect LLMs’ mastery of medical 055

factual knowledge. Therefore, we aim to develop 056

a new evaluation method that more precisely and 057

comprehensively investigates LLMs’ mastery of 058

medical factual knowledge. 059

Current evaluations of LLMs’ medical knowl- 060

edge mastery primarily rely on medical bench- 061

marks (Jin et al., 2019, 2021; Pal et al., 2022; Sing- 062

hal et al., 2023; Sung et al., 2021; Meng et al., 063

2022), which are reliable but not comprehensive 064

enough for LLM evaluation. Although some newer 065

benchmarks (He et al., 2023; Cai et al., 2024) ad- 066

dress this issue by collecting the latest data from 067

diverse sources, constructing these benchmarks can 068
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Figure 2: Schema of the proposed Predicate-text Dual
Transformation (PretextTrans) method (Top) compared
with directly generating test variants by LLMs (Bottom).

be costly, and they will face problems such as be-069

coming outdated or leaked to LLMs over time. Re-070

cently, several researchers have developed a series071

of methods (Zhu et al., 2023; Li et al., 2024; Zhu072

et al., 2024b) to dynamically generate test samples073

for LLM evaluation, effectively avoiding issues of074

outdated data and leakage. Therefore, dynamically075

generating multiple test samples based on each076

knowledge point in medical knowledge resources077

is a promising way to comprehensively evaluate078

LLMs’ medical knowledge mastery. A straightfor-079

ward method is to directly generate test samples080

using LLMs based on knowledge points. However,081

this method has two drawbacks as illustrated in082

Figure 1: (1) factual error introduction: factual083

errors (e.g., incorrect relations) may be introduced084

during sample generation, affecting the reliabil-085

ity of evaluation; and (2) low diverse expression:086

samples generated from the same knowledge point087

primarily differ in wording (e.g., synonym replace-088

ment) rather than in knowledge expression struc-089

ture, compromising the diversity of evaluation.090

The purpose of this study is to comprehensively091

investigate LLMs’ mastery of medical factual092

knowledge using a dynamical evaluation method.093

Because medical factual knowledge primarily in-094

volves relationships between medical entities, it095

can be effectively expressed through predicates. In-096

spired by this, we propose a Predicate-text Dual097

Transformation method (PretextTrans) that dy-098

namically generates multiple test samples based099

on the medical knowledge points being evaluated.100

Figure 2 presents the schema of our method. Specif-101

ically, we first express each knowledge point using102

a predicate expression. Then, we derive a series103

of structurally diverse variants from this predicate 104

expression through logical implication. Finally, 105

an LLM is employed to transform these variants 106

back to the textual space for generating test sam- 107

ples. The logical implication process ensures the 108

structural diversity of generated test samples and 109

also effectively prevents the introduction of factual 110

errors. Additionally, the LLM-based predicate-to- 111

text transformation ensures that the generated sam- 112

ples are fluent and natural, while also enhancing 113

their syntactic and lexical diversity. 114

Using the proposed method, we conduct a sys- 115

tematic medical knowledge evaluation of current 116

LLMs based on two medical datasets. Experimen- 117

tal results show that the performance of current 118

LLMs on the multi-sample datasets generated by 119

our method, where each knowledge point is evalu- 120

ated by multiple samples, is much lower than those 121

on the original single-sample datasets. Further- 122

more, these LLMs exhibit inconsistency in han- 123

dling test samples derived from the same knowl- 124

edge point, failing to achieve the expected perfor- 125

mance. These findings indicate that current LLMs 126

have not comprehensively mastered medical fac- 127

tual knowledge, failing to perform satisfactorily in 128

real-world medical scenarios. Our contributions 129

are summarized as follows: 130

• We introduce a dynamic evaluation method 131

(PretextTrans) for comprehensively evaluat- 132

ing LLM medical factual knowledge mastery. 133

Our method generates a series of diverse and 134

reliable test samples for each knowledge point 135

using predicate-text dual transformation. 136

• Employing the proposed method, we system- 137

atically investigate the medical factual knowl- 138

edge mastery of 12 well-known LLMs. 139

• Furthermore, we compare LLMs’ perfor- 140

mance on samples derived from different 141

types of logical implications, shedding light 142

on developing medical foundation models. 143

2 Related Work 144

LLM Medical Evaluation Current medical eval- 145

uation benchmarks for LLMs can be divided into 146

two categories: (1) QA datasets that evaluate 147

LLMs’ comprehensive medical capabilities with 148

questions collected from medical literature (Jin 149

et al., 2019), exams (Jin et al., 2021; Pal et al., 150

2022), or online websites (Singhal et al., 2023); (2) 151
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datasets for probing LLM medical knowledge mas-152

tery (Sung et al., 2021; Meng et al., 2022). These153

static benchmarks are meticulously created by med-154

ical experts and possess high reliability. However,155

they may face problems such as becoming outdated156

or leaked to LLMs, affecting the comprehensive-157

ness of evaluation. While constructing new bench-158

marks can alleviate these problems, they will also159

become obsolete over time.160

Dynamic Evaluation Schema Several studies161

have proposed dynamic evaluation methods that162

automatically generate new test samples, effec-163

tively avoiding data obsolescence and leakage is-164

sues. Some works leverage algorithms to dynami-165

cally generate test samples for specific tasks, such166

as mathematics (Zhu et al., 2024a) and SQL exe-167

cution (Lei et al., 2023). Others (Zhu et al., 2023,168

2024b) generate test samples by paraphrasing ex-169

isting benchmarks. However, there is currently no170

related work utilizing dynamic evaluation methods171

to evaluate LLMs’ factual knowledge mastery. To172

our knowledge, our proposed method is the first to173

apply the dynamic evaluation schema for evaluat-174

ing LLMs’ mastery of medical factual knowledge.175

176

3 Method177

3.1 Evaluation Schema178

In this section, we introduce the schema of our Pre-179

textTrans method, which generates more diverse180

and reliable test samples for LLM factual knowl-181

edge evaluation. Given a knowledge point P, a182

straightforward idea is to directly generate a test183

sample using an LLM:184

S = GLLM (P) (1)185

Here, GLLM denotes the LLM generation process,186

and S refers to the generated test sample. As intro-187

duced above, GLLM may create samples that lack188

diversity and reliability. In contrast, our method189

first expresses the knowledge point using a predi-190

cate expression and then derives a series of variants191

via logical implication:192

p = Ttext2pre(P) (2)193

[q1, q2, · · · , qK ] = TImp(p) (3)194

Here, Ttext2pre denotes a mapping that projects195

the original knowledge point P into the predicate196

expression p. TImp refers to the logical implica-197

tion, and {qi}Ki=1 are the variants derived from the198

Types Form
Origin R(A,B)

Inversion R−1(B,A)
Instantiation P(A, x) ⇒ Q(x,B)
Double Negation ¬(¬R(A,B))

Table 1: Three types of logical implication employed in
PretextTrans. Here, x is a specific entity (e.g., a patient),
and P,Q describe the relations between x and A,B
(e.g., has a disease, may be treated by a drug).

original expression p. The property of logical im- 199

plication ensures the reliability of these variants, 200

provided that the original expression p is true: 201

(p = T) ⇒ (qi = T), 1 ≤ i ≤ K (4) 202

Finally, we convert each predicate variant back to 203

a textual test sample for evaluation: 204

Si = Tpre2text(qi), 1 ≤ i ≤ K (5) 205

Here, Tpre2text maps each predicate variant qi into 206

a corresponding test sample (textual variant). Since 207

these samples are derived from predicate variants 208

with diverse structures, the predicate-text duality 209

ensures they exhibit substantial diversity while 210

maintaining reliability. 211

3.2 Evaluation Framework 212

Building on the proposed evaluation schema, we 213

develop a novel evaluation framework to evaluate 214

LLMs’ mastery of medical factual knowledge com- 215

prehensively. Figure 3 presents an overview of this 216

framework. 217

3.2.1 Predicate Variant Generation 218

A single knowledge point can be denoted as P = 219

(A,R,B), where A, R, and B refer to the head 220

entity, the relation, and the tail entity, respectively. 221

In predicate logic, such a relation can be effectively 222

presented by: 223

p = R(A,B) (6) 224

Here, R(x, y) is a predicate derived from the rela- 225

tion R, representing the statement "x has the rela- 226

tion R with y". p represents its value at the point 227

(A,B). Next, the framework employs three types 228

of logical implications that are widely employed 229

in practical medical applications. Table 1 lists the 230

forms of these implications, including: 231
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Figure 3: An overview of the proposed framework using PretextTrans for LLM medical factual knowledge
evaluation.

• Inversion: The inverse expression presents the232

original expression from another direction. For233

example, if the statement “Drug A may treat dis-234

ease B" holds, then “Disease B’s prescribed drug235

includes drug A" also holds.236

• Instantiation: This type of logical implication237

applies a general knowledge point to a specific238

case. For example, the statement “Drug A may239

treat disease B" can be instantiated as “If a pa-240

tient has disease B, drug A may cure them." Such241

transformation is commonly used in disease di-242

agnosis and treatment.243

• Double Negation: The double negation rule is244

widely utilized to obtain logically equivalent ex-245

pressions. In our framework, this rule is applied246

to construct negative expressions. For exam-247

ple, if “Drug A may treat disease B" holds, then248

“Drug A cannot treat disease B" must be false.249

It is noteworthy that these three types of logical250

implication can be further combined to produce251

additional expressions based on the transitive prop-252

erty of logical implication. As a result, a total of K253

variants are generated in this process:254

qi = Ti
Imp(R(A,B)), 1 ≤ i ≤ K (7)255

where Ti
Imp denotes the ith logical implication.256

3.2.2 Textual Sample Generation257

A straightforward method to generate test samples258

from predicate variants is by directly prompting259

LLMs. However, this method may also introduce260

factual errors, affecting the reliability of the gener-261

ated samples. To address this issue, we designed a262

prototype-based sample generation strategy, as de-263

picted in Figure 4. Specifically, for each predicate264

variant Ti
Imp(R(A,B)), we initially retrieve the265

Figure 4: Test sample construction process in the pro-
posed framework. Up: directly generating samples by
LLMs may affect the reliability; Down: the proposed
prototype-based sample construction strategy.

corresponding prototype from a pre-constructed 266

prototype pool based on the predicate Ti
Imp ·R. 267

For predicate variants obtained through double 268

negation, we retrieve prototypes based on their 269

negated form (i.e., single negation form) to gen- 270

erate negated samples for LLM evaluation. Sub- 271

sequently, the prototype is instantiated by the argu- 272

ments (A,B). The instantiated prototype precisely 273

conveys the predicate variant in the textual space. 274

Finally, the prototype is further rephrased by an 275

LLM to obtain the final test sample Si. Since cur- 276

rent LLMs possess strong language capabilities and 277

rarely make mistakes in sentence rephrasing, the 278

proposed sample generation strategy can ensure the 279

reliability and diversity of the generated samples. 280

3.2.3 Evaluation Metrics 281

In our framework, we evaluate LLMs using state- 282

ment verification tasks, asking them to determine 283

whether a given statement is true or false: 284

Score(M, Si) = 1(M(Si) = li), 1 ≤ i ≤ K (8) 285
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Here, M is the evaluated LLM, Si is the textual286

variant (statement) generated by our framework,287

and M(Si) ∈ {T,F} denotes LLM’s prediction for288

Si. li ∈ {T,F} is the label of Si, and the function289

1(·) is a characteristic function that equals 1 when290

the enclosed expression is true, and 0 otherwise.291

For a dataset with N knowledge points {Pj}Nj=1,292

we initially use the metric average accuracy to293

compute the accuracy across all test samples:294

aavg =
1

N

1

K

N∑
j=1

K∑
i=1

Score(M, Sji ) (9)295

Here, Sji denotes the ith test sample derived from296

the jth knowledge point Pj . While this metric is297

widely applied in various benchmarks, it cannot298

evaluate the consistency of LLMs in predicting299

all test samples derived from the same knowledge300

point, which is crucial for high-risk applications301

in the medical domain. Therefore, we also utilize302

another metric, joint accuracy, which considers303

a knowledge point as mastered if all the related304

samples are predicted correctly:305

ajoint =
1

N

N∑
j=1

K∏
i=1

Score(M,Sji ) (10)306

By applying these metrics, we can achieve a com-307

prehensive evaluation of LLMs’ mastery of medical308

factual knowledge.309

4 Experiments310

4.1 Experiment Setup311

Datasets Introduction To investigate the mas-312

tery of medical factual knowledge in current LLMs,313

we applied the proposed framework to two datasets:314

a biomedical evaluation benchmark MedLAMA315

(Meng et al., 2022) and a clinical knowledge base316

DiseK (Zhou et al., 2024). MedLAMA is a large-317

scale biomedical evaluation benchmark containing318

39,053 knowledge triplets across 19 relations, all319

manually selected from the UMLS Metathesaurus320

(Bodenreider, 2004) to ensure high quality. DiseK321

is a clinical knowledge base containing 24,413322

triplets, covering 1,000 high-frequency diseases323

across four crucial relations related to disease diag-324

nosis and treatment. Mastering this disease-related325

knowledge is essential for LLMs to be applicable326

in real medical scenarios.327

Considering computational costs and dataset328

size, we select a subset from each dataset for eval-329

uation. Specifically, we randomly select a single330

Dataset MedLAMA DiseK
Type Biomedical Clinical
# Rel Types 17 4
# Triplets 34,000 6,348

Table 2: Statistics of the sampled datasets.

entity from the corresponding tail entities for each 331

pair of a head entity and a relation. This approach 332

aims to reduce the evaluation scale while maximiz- 333

ing the diversity of the evaluated knowledge. We 334

also excluded two relations in MedLAMA, which 335

are the inversion of the other two relations in Med- 336

LAMA. Furthermore, for each head-relation pair 337

(A,R), we randomly sample a negative entity C 338

that satisfies ¬R(A,C) to create a negative triplet 339

(A,R,C). Test samples generated from this neg- 340

ative triplet possess a similar structure to those 341

generated from the positive triplet but with oppo- 342

site labels. By introducing negative triplets, we 343

can further evaluate the ability of LLMs to discern 344

non-knowledge, which is also essential for practi- 345

cal application. Table 2 presents the basic statistics 346

of the sampled datasets. More detailed statistics 347

about these datasets and the relation types involved 348

are provided in Appendix A. 349

Method Setting To ensure the diversity of evalu- 350

ation, we combined the three types of logical impli- 351

cation and generated K = 8 expressions (variants) 352

for each knowledge point, including the original 353

expression. We crafted a prototype for each com- 354

bination of relation and logical implication type 355

to generate test samples. Moreover, we utilize 356

Llama3-70B-Instruct (AI@Meta, 2024) to rephrase 357

the instantiated prototypes since it exhibits strong 358

performance on LLM leaderboards. More details 359

of the logical implication process, prototypes, and 360

the prompt format are provided in Appendix B. 361

For LLM evaluation, we employ the popular 362

5-shot in-context learning setting (Brown et al., 363

2020), where five examples are presented before 364

the test sample, guiding LLMs to produce answers 365

in consistent format with the provided examples. 366

We calculate the average and joint accuracies (in- 367

troduced in Sec 3.2.3) for each LLM. Appendix C 368

provides more details, including the prompt format. 369

Baselines We initially compare our method with 370

the original datasets. For original datasets, we lever- 371

age the templates provided in the benchmarks to 372

generate statements for evaluation. We also im- 373
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Model
MedLAMA DiseK

Origin LLMEval PretextTrans Origin LLMEval PretextTrans
Random 50.0 50.0 50.0 50.0 50.0 50.0
ChatGLM3-6B 72.4 64.1↓8.2 55.0↓17.4 76.1 68.5↓7.6 56.1↓20.0
Llama2-7B 56.4 58.3↑1.9 53.1↓3.4 61.7 52.7↓9.0 52.8↓8.9
Vicuna-7B 76.4 68.0↓8.4 57.5↓18.9 59.9 60.9↑1.0 53.9↓6.0
Vicuna-13B 77.0 69.3↓7.7 60.7↓16.3 62.5 57.4↓5.0 55.7↓6.7
Gemma-7B 73.3 61.1↓12.2 59.4↓13.9 59.0 54.8↓4.2 55.0↓4.1
Llama3-8B 78.5 69.1↓9.4 66.6↓11.9 67.9 65.3↓2.6 59.3↓8.6

Llama2-70B 82.0 69.2↓12.8 63.8↓18.2 70.5 67.3↓3.2 59.0↓11.5
ClinicalCamel-70B 84.8 73.7↓11.1 71.9↓13.0 74.5 70.6↓3.8 66.1↓8.4
Meditron-70B 79.4 70.0↓9.4 64.7↓14.6 71.1 62.8↓8.3 60.2↓10.9
Med42-70B 81.8 69.3↓12.5 70.0↓11.8 73.3 69.1↓4.2 64.8↓8.5
GPT-3.5-turbo 82.1 76.7↓5.4 66.2↓16.0 73.5 67.6↓6.0 60.3↓13.3
Llama3-70B 86.6 76.9↓9.7 76.9↓9.7 79.7 78.2↓1.5 70.9↓8.8

Table 3: Performance (average accuracy) of LLMs on the original datasets (Origin), datasets directly generated by
LLM (LLMEval), and datasets generated by our framework (PretextTrans). Bold: Best performance under the same
evaluation method; Underline: LLM achieved the lowest performance in this evaluation method.

plemented a dynamic evaluation baseline (named374

as LLMEval) that directly generates test sam-375

ples from triplets using an LLM. Specifically, we376

prompt Llama3-70B-Instruct1 to generate K = 8377

statements, presenting the given triplet in differ-378

ent ways. We carefully crafted the prompt to en-379

sure maximum diversity in generated samples. Ap-380

pendix D details the prompt and other settings.381

Evaluated LLMs In our study, we evaluate 12382

well-known general and medical-specific LLMs:383

(1) general LLMs: ChatGLM3-6B (Du et al.,384

2022), Gemma-7B (Team et al., 2024), Llama2385

(7B,70B) (Touvron et al., 2023), Llama3 (8B,70B)386

(AI@Meta, 2024), Vicuna (7B,13B) (Zheng et al.,387

2023), and GPT-3.5-turbo (Ouyang et al., 2022); (2)388

medical-specific LLMs: ClinicalCamel-70B (Toma389

et al., 2023), Meditron-70B (Chen et al., 2023) and390

Med42-70B (Christophe et al., 2023). We have not391

evaluate LLMs that are either too expensive (e.g.,392

GPT-4 (OpenAI, 2023)) or not publicly available393

(e.g., MedPaLM (Singhal et al., 2023)).394

4.2 Results395

4.2.1 Comparison Study396

We first conduct a comparison study across dif-397

ferent evaluation methods and LLMs. Table 3398

lists LLMs’ performance (average accuracy) on the399

MedLAMA and DiseK datasets evaluated by differ-400

ent methods. The experimental results demonstrate401

1We choose the same LLM utilized in our framework to
make a fair comparison.

that all evaluated LLMs achieve much lower perfor- 402

mance on datasets generated by PretextTrans com- 403

pared to the original datasets. This suggests that 404

dynamically generating multiple samples for 405

each knowledge point can significantly enhance 406

the comprehensiveness of evaluation. Moreover, 407

compared to datasets directly generated by an LLM 408

(LLMEval), almost all LLMs achieve lower perfor- 409

mance on datasets created by PretextTrans, with 410

some models (e.g., ChatGLM3-6B and GPT-3.5- 411

turbo) experiencing over 10% degradation. These 412

findings indicate that PretextTrans is capable of 413

generating test samples that are more compre- 414

hensive than those directly generated by LLMs. 415

Among all the evaluated LLMs, Llama3-70B 416

outperforms the others across all datasets and eval- 417

uation methods, achieving accuracies of 76.9 and 418

70.9 evaluated by PretextTrans. Llama3-8B also 419

performs best on PretextTrans-generated datasets 420

among LLMs with around 10B parameters, even 421

slightly surpassing the 10x larger Llama2-70B. 422

These results indicate that Llama3 model se- 423

ries encodes significantly more medical knowl- 424

edge than other evaluated LLMs. Additionally, 425

while some medical-specific LLMs (ClinicalCamel, 426

Med42) perform similarly to their backbone model 427

(Llama2-70B) on original datasets, they notably 428

outperform it by around 7% on PretextTrans- 429

generated datasets. This suggests that training on 430

medical corpora can notably improve the depth 431

of medical knowledge mastery. 432

We also study the joint accuracies of LLMs 433
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Figure 5: Performance (joint accuracy) of 7 LLMs evaluated by increasing the number of expressions per knowledge
point. Top: overall performance trend averaged across LLMs; bottom: detailed performance for each LLM.

evaluated by increasing numbers of expressions434

per knowledge point. The results of seven typical435

LLMs are illustrated in Figure 5, with the full re-436

sults provided in Appendix E. To eliminate the437

impact of sample addition orders, we enumer-438

ate all possible orders and averaged the results.439

Therefore, the value at x = i corresponds to the ex-440

pected joint accuracy evaluated with any i samples.441

We observe that the results from LLMEval and442

PretextTrans are quite close when using a single443

sample for evaluation. However, as the number of444

test samples increases, the difference between the445

results from the two methods grows notably larger.446

This phenomenon indicates that current LLMs447

generally exhibit significant lower consistency448

when confronted with structurally diverse test449

samples generated by our method compared to450

samples directly generated by LLMs. Moreover, as451

the number of expressions increases, Llama3-70B452

exhibits a slower decline in performance compared453

to other LLMs, indicating a more consistent under-454

standing of diverse expression structures from the455

same knowledge points. Nevertheless, there is still 456

room for improvement in current LLMs’ mastery 457

of medical knowledge. 458

4.2.2 Effectiveness Analysis 459

Effect of framework components First, we con- 460

duct an ablation study to analyze the contribution 461

of each component to our proposed framework. Ta- 462

ble 4 presents the ablation results of two typical 463

LLMs, and the full results are listed in Appendix E. 464

Here, we focus on the logical implication (LogImp) 465

and the LLM rephrasing (LMReph) modules that 466

are designed to increase the diversity of test sam- 467

ples. We observe that removing these two modules 468

results in higher evaluation performance, especially 469

when the logical implication module was removed 470

(around 7%). These results indicate that the logi- 471

cal implication module contributes most to the 472

evaluation diversity in the proposed framework. 473

Effect of Implication Types We further conduct 474

a fine-grained analysis of the logical implication 475

types applied in our framework, with results pre- 476
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Datasets Method
Model

ClinicalCamel Llama3-70B

MedLAMA
PretextTrans 71.9 76.9
-LogImp 80.6↑8.8 83.0↑6.1
-LMReph 72.8↑1.0 80.4↑3.6

DiseK
PretextTrans 66.1 70.9
-LogImp 73.1↑7.1 77.8↑7.0
-LMReph 68.0↑1.9 74.0↑3.1

Table 4: Ablation results of two typical LLMs for key
components of the proposed PretextTrans framework.
LogImp: the logical implication module; LMReph: the
LLM rephrasing module for generating test samples.

Datasets ImpType
Model

ClinicalCamel Llama3-70B

MedLAMA

None 80.6 83.0
+DN 73.8↓6.9 80.6↓2.4
+DN+Inv 73.2↓7.4 78.6↓4.3
+All 71.9↓8.8 76.9↓6.1

DiseK

None 73.1 77.8
+DN 68.9↓4.2 72.3↓5.6
+DN+Inv 67.9↓5.2 72.3↓5.5
+All 66.1↓7.1 70.9↓7.0

Table 5: Ablation results of two typical LLMs for differ-
ent types of logical implication applied in PretextTrans.
DN: double negation; Inv: inversion; All: the combina-
tion of instantiation, inversion, and double negation.

sented in Table 5. Experimental results show that477

LLM performance continually declines as more478

logical implication types are added, indicating their479

effectiveness. Furthermore, the inclusion of double480

negation (+DN) leads to a more significant per-481

formance degradation (around 5%) than other im-482

plication types. This suggests that current LLMs483

exhibit relatively less proficiency in understand-484

ing negated expressions compared to instantiated485

and inverted statements of medical knowledge.486

4.2.3 Case Study487

We also conduct a case study to examine the effec-488

tiveness of the proposed PretextTrans framework.489

Figure 6 illustrates an example of LLM evalua-490

tion by PretextTrans compared with the LLMEval491

method. The case shows that Llama3-70B correctly492

answers LLMEval-generated samples that have the493

same knowledge expression structure. In contrast,494

the PretextTrans-generated samples possess dis-495

tinct expression structures, and some of them can-496

not be correctly answered by Llama3-70B. These497

findings indicate that the proposed PretextTrans498

Figure 6: A case of evaluating LLMs using the pro-
posed PretextTrans framework (left) compared with the
LLMEval method (right).

framework effectively increases the diversity of 499

knowledge expression structures in generated 500

samples, enabling a more comprehensive evalua- 501

tion of LLMs’ true mastery of medical knowledge. 502

5 Conclusion and Discussion 503

In this paper, we comprehensively investigate 504

LLMs’ mastery of medical factual knowledge by 505

designing a dynamical evaluation method named 506

PretextTrans. The proposed method leverages 507

predicate-text dual transformation to dynamically 508

generate multiple test samples for each knowledge 509

point in medical knowledge resources, ensuring 510

their reliability and structural diversity. The experi- 511

mental results indicate that current LLMs lack com- 512

prehensive mastery of medical factual knowledge; 513

thus, they are not yet competent for real-world med- 514

ical tasks. Furthermore, these LLMs exhibit in- 515

consistency in understanding diverse expressions 516

derived from the same medical knowledge point, 517

thus limiting their practical application in the med- 518

ical domain. These findings demonstrate that our 519

method can serve as an effective solution to com- 520

prehensively evaluate LLMs’ medical knowledge 521

mastery. Our study may also shed light on devel- 522

oping medical foundation models. For example, 523

incorporating content that presents the same medi- 524

cal knowledge in diverse ways into the training data 525

may improve LLMs’ consistency and comprehen- 526

siveness in understanding medical concepts. In the 527

future, we aim to integrate this method with other 528

evaluation forms (e.g., question answering) and 529

medical datasets to conduct a more comprehensive 530

evaluation of LLM medical knowledge mastery. 531
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Limitations532

One limitation of our study is that, despite eval-533

uating several well-known general and medical-534

domain-specific LLMs, we excluded some notable535

models like GPT-4 and MedPaLM. This was due536

to either their high costs (it would require $1200537

to evaluate GPT-4 on MedLAMA) or their unavail-538

ability for public access (e.g., MedPaLM). We plan539

to evaluate other LLMs in the future if feasible.540

Additionally, although our evaluation method has541

the potential to be applied in other domains, it was542

initially devised and validated for the medical do-543

main. Applying it to other domains may require544

further validation.545
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A Details of Datasets726

We validate the proposed framework on two727

datasets: a biomedical evaluation benchmark, Med-728

LAMA, and a disease-centric clinical knowledge729

base, DiseK. Given the large scale of these datasets,730

we sample a subset of knowledge points from each731

by selecting a single tail entity for each 1-to-N re-732

lation. Additionally, we sample negative triplets to733

increase the evaluation difficulty. Table 8 and 9 list734

the relation types involved in the sampled datasets.735

The sampled MedLAMA dataset includes 1,000736

positive triplets and 1,000 negative triplets for each737

relation, while the detailed statistics for DiseK are738

presented in Table 6.

Relation Type # Positive # Negative
#Symptoms 987 987
#Affected Sites 745 745
#Therapeutic Drugs 836 836
#Surgical Procedures 599 599

Table 6: Statistics of the sampled DiseK dataset. #
Positive: the number of positive triplets extracted from
DiseK. # Negative: the number of negative triplets sam-
pled from DiseK.

739

B Details of Method Setting740

Figure 7: An example of the logical implication proce-
dure implemented in this study.

Details of Logical Implication An example of741

the logical implication procedure applied in this742

study is illustrated in Figure 7. First, the inver-743

sion operation is applied to the original expression744

to create a new expression. Subsequently, these745

two expressions are instantiated into two additional746

Categories Keywords
True True, Entailed, Correct, Yes
False False, Contradicted, Wrong, No

Table 7: The keywords we utilize to extract answers
from LLMs’ responses.

Figure 8: An example of the five-shot in-context learn-
ing process applied in our evaluation.

expressions. Finally, double negation is used to 747

generate four more expressions. 748

Details of Prototypes-based Generation As in- 749

troduced before, we designed a prototype-based 750

sample generation strategy to ensure the reliability 751

of the generated samples and crafted a prototype 752

for each combination of relation type and logical 753

implication type by discussing with clinicians. We 754

list all the crafted prototypes in Table 10, 11, and 755

12 for reproducing our experiments. 756

For LLM rephrasing, we prompt the Llama3- 757

70B-Instruct model with the following instruc- 758

tion: “Please paraphrase the following statement 759

to present the same concept in a different way. 760

DO NOT change the basic sentence structure. Di- 761

rectly output the paraphrased statement without 762

other text. Statement: [prototype]". In our exper- 763

iments, we found that statements rephrased using 764

this method effectively preserve the original mean- 765

ing of the prototypes. 766

C Details of Evaluation Setting 767

In our implementation, we form test samples based 768

on the following format: “[Statement], is the state- 769

ment above true or false? Please answer True or 770

False." For the five-shot setting, we randomly select 771

five question-answer pairs for each combination 772

of relation and logical implication type to create 773

demonstrative examples, as depicted in 8. Complex 774

prompting strategies such as chain-of-thought are 775

not applied in our study, as the evaluation state- 776

ments are crafted to be straightforward and easily 777

understandable, allowing for verification without 778
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Relation Type Description

associated morphology of
A particular morphology (structural feature or form) is associated
with another concept, often a disease.

disease has abnormal cell A disease is characterized by the presence of abnormal cells.
disease has associated anatomic
site

A disease occurs or has an impact at an anatomic site.

disease has normal cell origin A disease originates from a type of normal cell.
disease has normal tissue origin A disease originates from a type of normal tissue.
disease mapped to gene A gene is associated with a specific disease.
disease may have associated dis-
ease

A disease may be associated with another disease.

disease may have finding A possible clinical finding or symptom is observed in a disease.
disease may have molecular ab-
normality

A potential molecular abnormalities may be present in a disease.

gene encodes gene product A particular gene encodes a specific gene product, such as protein.
gene product has associated
anatomy

A gene product is associated to an anatomical structure.

gene product has biochemical
function

A gene product is associated to a biochemical function.

gene product plays role in biolog-
ical process

A gene product plays a role in a biological process.

has physiologic effect A substance or process has a physiological effect on the body.
may prevent A substance may prevent a disease.
may treat A substance may treat a disease.
occurs after A event or condition occurs after another.

Table 8: Relation types in the MedLAMA dataset that involve in our study.

the need for complex logical reasoning. In the in-779

ference process, we use greedy search for most of780

LLMs. However, commercial LLMs like GPT-3.5-781

turbo do not support greedy search, and we use782

their default generation setting to make a relative783

fair comparison across LLMs. We extract the pre-784

diction from models’ response based on keywords785

since the words/phrases used to express True and786

False are limited. We listed all of the keywords787

applied to recognize answers in Table 7.788

D Details of Baselines789

We implement the LLMEval method by directly790

generating diverse statements using Llama3-70B-791

Instruct. Specifically, we prompt the LLM with the792

following instruction: “Based on the given knowl-793

edge triplet, generate 8 statement to express the un-794

derlying knowledge in different ways. Output one795

statement per line. Directly output the statements796

without other text. Knowledge triplet: [triplet]."797

To ensure the quality of generated samples, we use798

the greedy search for the decoding process. We799

find that Llama3-70B-Instruct can follow the in-800

struction, generating samples in separated lines. 801

802

E Complementary Experiments 803

E.1 Joint accuracy 804

We illustrate the joint accuracy of all LLMs evalu- 805

ated by PretextTrans and LLMEval in Figure 9 and 806

10, respectively. The experimental results support 807

our conclusions: the evaluated LLMs generally per- 808

form worse on datasets generated by PretextTrans. 809

Moreover, LLMs’ performance decline faster when 810

evaluated by PretextTrans compared with evaluated 811

by LLMEval, indicating that current LLMs lack 812

consistency in understanding medical knowledge 813

presented in various structures. 814

E.2 Ablation Study 815

We also presents the ablation results of all evalu- 816

ated LLMs regarding key components and logical 817

implication types in Table 13 and 14, respectively. 818

These results are consistent with our findings in 819

the paper, demonstrating the effectiveness of our 820

framework. 821
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Relation Type Description

Symptoms
Physical or mental feature that indicates the presence of the dis-
ease.

Affected sites
Specific parts of the body that are impacted or harmed by the
disease.

Therapeutic Drugs
Pharmaceutical substances prescribed to manage, alleviate, or cure
the symptoms and effects of the disease.

Surgical Procedures
Medical procedures that treat the disease, involving the cutting,
repairing, or removal of body parts.

Table 9: Relation types involved in the DiseK dataset.

Figure 9: Performance (joint accuracy) of all LLMs evaluated by the proposed PretextTrans framework.

Figure 10: Performance (joint accuracy) of all LLMs evaluated by the LLMEval method.
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Relation Type Logical Implication Type
None Inv Ins Inv+Ins

associated mor-
phology of

[X] is the asso-
ciated morphol-
ogy of [Y] .

[Y] is often accompa-
nied by the morphology
of [X].

If a patient exhibits a mor-
phological change of [X], then
he/she may suffer from [Y].

If a patient suffers from [Y],
then he/she is exhibiting a mor-
phological change of [X].

disease has ab-
normal cell

[X] has the ab-
normal cell [Y]
.

The abnormal cell type
[Y] is detected within
[X].

If a patient suffers from [X],
then he/she has the abnormal
cell [Y].

If a patient has the abnormal cell
[Y], then he/she may suffer from
[X].

disease has
associated
anatomic site

The disease [X]
can stem from
the associated
anatomic site
[Y] .

Anatomical site [Y] is
associated with the de-
velopment of disease
[X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease has nor-
mal cell origin

The disease [X]
stems from the
normal cell [Y]
.

Normal cell [Y] is asso-
ciaated with the devel-
opment of disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease has nor-
mal tissue ori-
gin

The disease [X]
stems from the
normal tissue
[Y] .

Normal tissue [Y] is as-
sociated with the devel-
opment of disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease mapped
to gene

The disease [X]
is mapped to
gene [Y] .

Gene [Y] is associated
with the disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease may
have associated
disease

The disease [X]
might have the
associated dis-
ease [Y] .

The disease [Y] might
have the associated dis-
ease [X] .

If a patient suffers from [X],
then the likelihood of he/she suf-
fering from [Y] is higher.

If a patient suffers from [Y],
then the likelihood of he/she suf-
fering from [X] is higher.

disease may
have finding

[X] may have
[Y] .

[Y] may be associate
with [X]

If a patient suffers from [X],
then he/she has [Y].

If a patient has [Y], then he/she
may suffer from [X].

disease may
have molecular
abnormality

The disease
[X] may have
molecular ab-
normality [Y] .

Molecular abnormality
[Y] may be associated
with the disease [X].

If a patient suffers from [X],
then he/she may has molecular
abnormality [Y].

If a patient has molecular abnor-
mality [Y], then he/she may suf-
fer from [X].

gene encodes
gene product

The gene [X]
encodes gene
product [Y] .

The gene product [Y]
is encoded by the gene
[X].

If the expression level of [X] de-
creases, it may lead to a reduc-
tion in the production or activity
of [Y].

If the production or activity of
[Y] decreases, it may caused by
the reduction in the expression
level of [X].

gene product
has associated
anatomy

The gene prod-
uct [X] has
the associated
anatomy [Y] .

The anatomy [Y] is as-
sociated with the gene
product [X].

The gene product [X] plays a
role in anatomy [Y].

Anatomy [Y] is where [X] func-
tions.

gene product
has biochemical
function

[X] has bio-
chemical
function [Y] .

[Y] is a biochemical
function of [X].

If the production of [X] de-
creases, the functionality of [Y]
may decrease.

If the functionality of [Y] de-
creases, it may caused by the
reduction in the production of
[X].

gene product
plays role in bi-
ological process

The gene prod-
uct [X] plays a
role in biologi-
cal process [Y]
.

Biological process [Y]
is associated with the
gene product [X]

If the production of [X] de-
creases, the process of [Y] may
be influenced.

If [Y] is affected, it may caused
by the reduction in the produc-
tion of [X].

has physiologic
effect

[X] has physio-
logic effect of
[Y] .

[Y] can be caused by
[X].

If a patient takes [X], he/she
may have physiologic effect of
[Y] .

If a patient has physiologic ef-
fect of [Y], he/she may have
taken [X].

may prevent [X] may be able
to prevent [Y] .

[Y] may be prevented
by [X]

If a patient takes [X], he/she can
prevent [Y].

If a patient wishes to prevent
[Y], he/she should take [X].

may treat [X] might treat
[Y] .

[Y] may be treated by
[X]

If a patient takes [X], he/she can
treat [Y].

If a patient suffers from [Y],
he/she should take [X].

occurs after [X] occurs after
[Y] .

[Y] may occur before
[X].

If a patient occurs [X], he/she
may occur [Y] before.

If a patient occurs [Y], he/she
may occur [X] afterwards.

Table 10: Prototypes crafted for the MedLAMA dataset (1/2). Inv: inversion; Ins: instantiation.
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Relation Type Logical Implication Type
DN Inv+DN Ins+DN Inv+DN

associated mor-
phology of

[X] is not the
associated mor-
phology of [Y].

[Y] is not accompanied
by the morphology of
[X].

A patient that exhibits a morpho-
logical change of [X] does not
suffer from [Y].

A patient that suffers from [Y]
does not exhibit a morphologi-
cal change of [X].

disease has ab-
normal cell

[X] does not
has the abnor-
mal cell [Y].

The abnormal cell type
[Y] is not detected
within [X].

A patient that suffers from [X]
does not have the abnormal cell
[Y].

A patient that has the abnormal
cell [Y] does not suffer from
[X].

disease has
associated
anatomic site

The disease [X]
is not stem from
the associated
anatomic site
[Y].

Anatomical site [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal cell origin

The disease [X]
does not stem
from the normal
cell [Y].

Normal cell [Y] is not
associaated with the de-
velopment of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal tissue ori-
gin

The disease [X]
is not stem from
the normal tis-
sue [Y].

Normal tissue [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease mapped
to gene

The disease [X]
is not mapped
to the gene [Y].

Gene [Y] is not asso-
ciated with the disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease may
have associated
disease

The disease [X]
is not associated
with disease [Y]
.

The disease [Y] is not
associated with disease
[X] .

If a patient suffers from [X],
then the likelihood of he/she suf-
fering from [Y] is not higher.

If a patient suffers from [Y],
then the likelihood of he/she suf-
fering from [X] is not higher.

disease may
have finding

[X] does not
have [Y] .

[Y] is not associated
with [X]

A patient that suffers from [X]
does not have [Y].

A patient that has [Y] does not
suffer from [X].

disease may
have molecular
abnormality

The disease
[X] does not
have molecular
abnormality [Y]
.

Molecular abnormality
[Y] is not associated
with the disease [X].

A patient that suffers from [X]
does not have molecular abnor-
mality [Y].

A patient that has molecular ab-
normality [Y] does not suffer
from [X].

gene encodes
gene product

The gene [X]
does not encode
gene product
[Y] .

The gene product [Y] is
not encoded by the gene
[X]

A decrease in the expression
level of [X] does not affect the
production and activity of [Y].

A decrease in the production or
activity of [Y] is not caused by
the reduction in the expression
level of [X].

gene product
has associated
anatomy

The gene prod-
uct [X] does not
have the asso-
ciated anatomy
[Y] .

The anatomy [Y] is not
associated with the gene
product [X].

The gene product [X] does not
play a role in anatomy [Y].

Anatomy [Y] is not where [X]
functions.

gene product
has biochemical
function

[X] does not
have biochemi-
cal function [Y]
.

[Y] is not a biochemical
function of [X].

A decrease in the production of
[X] does not affect the function-
ality of [Y].

A decrease in the functionality
of [Y] is not caused by the reduc-
tion in the production of [X].

gene product
plays role in bi-
ological process

The gene prod-
uct [X] does not
play a role in bi-
ological process
[Y] .

Biological process [Y]
is not associated with
the gene product [X]

A decrease in the production of
[X] does not affect the process
of [Y].

A change of [Y] is not caused by
the reduction in the production
of [X].

has physiologic
effect

[X] does not
have physio-
logic effect of
[Y] .

[Y] cannot be caused by
[X].

A patient that takes [X] does not
have physiologic effect of [Y] .

A patient that has physiologic
effect of [Y] has not taken [X].

may prevent [X] is not able
to prevent [Y] .

[Y] cannot be prevented
by [X]

Taking [X] have no effect on pre-
venting [Y].

A patient wishes to prevent [Y]
has no need to take [X].

may treat [X] is not able
to treat [Y] .

[Y] cannot be treated by
[X]

Taking [X] have no effect on
treating [Y].

A patient that suffers from [Y]
has no need to take [X].

occurs after [X] does not oc-
cur after [Y] .

[Y] cannot occur before
[X].

A patient occurs [X] will not oc-
cur [Y] before.

A patient occurs [X] will not oc-
cur [Y] afterwards.

Table 11: Prototypes crafted for the MedLAMA dataset (2/2). Inv: inversion; Ins: instantiation; DN: double
negation.

15



Implication Type
Relation Type

Symptoms Affected Sites Therapeutic Drugs Surgical Procedures

None
[Y] is a common
symptom of [X].

[Y] is the affected
site for [X].

[Y] is a common
medication for [X].

[Y] is a common
procedure for [X].

Inv
Common symp-
toms of [X] include
[Y].

Affected sites for
[X] include [Y].

Common medica-
tions for treating
[X] include [Y].

Common proce-
dures for treating
[X] include [Y].

Ins

If a patient has [X],
they are very likely
to have symptoms
of [Y].

If a patient has [X],
their [Y] site is very
likely to show le-
sions.

If a patient has [X],
[Y] can be used
to treat their condi-
tion.

If a patient has [X],
[Y] can be used
to treat their condi-
tion.

Inv+Ins

If a patient has
symptoms of [Y],
they are very likely
to have [X].

If a patient shows
lesions in their [Y]
site, they are very
likely to have [X].

If [Y] can be used
to treat a patient’s
condition, they may
have [X].

If [Y] can be used
to treat a patient’s
condition, they may
have [X].

DN
[Y] is not a com-
mon symptom of
[X].

[Y] is not the af-
fected site for [X].

[Y] is not a com-
mon medication for
[X].

[Y] is not a com-
mon procedure for
[X].

Inv+DN
Common symp-
toms of [X] do not
include [Y].

Affected sites for
[X] do not include
[Y].

Common medica-
tions for treating
[X] do not include
[Y].

Common proce-
dures for treating
[X] do not include
[Y].

Ins+DN
Patients with [X]
are unlikely to have
symptoms of [Y].

Patients with [X]
are unlikely to show
lesions in their [Y]
site.

Patients with [X] do
not commonly use
[Y] for treatment.

Patients with [X] do
not commonly use
[Y] for treatment.

Inv+DN
Patients with symp-
toms of [Y] are un-
likely to have [X].

Patients showing le-
sions in their [Y]
site are unlikely to
have [X].

Patients who can
be treated with [Y]
are unlikely to have
[X].

Patients who can
be treated with [Y]
are unlikely to have
[X].

Table 12: Prototypes crafted for the DiseK dataset. Inv: inversion; Ins: instantiation; DN: double negation.

Model
MedLAMA DiseK

PretextTrans -LogImp -LMReph PretextTrans -LogImp -LMReph
ChatGLM3-6B 55.0 67.4↑12.4 54.8↓0.2 56.1 71.8↑15.7 55.6↓0.5
Llama2-7B 53.1 57.4↑4.4 51.9↓1.1 52.8 57.5↑4.7 52.6↓0.2
Vicuna-7B 57.5 72.1↑14.5 55.7↓1.8 53.9 59.5↑5.6 52.5↓1.4
Vicuna-13B 60.7 70.3↑9.6 61.0↑0.4 55.7 59.2↑3.5 55.9↑0.2
Gemma-7B 59.4 66.2↑6.8 62.8↑3.4 55.0 57.2↑2.2 56.9↑2.0
Llama3-8B 66.6 74.1↑7.5 68.5↑2.0 59.3 68.9↑9.7 60.2↑0.9
Llama2-70B 63.8 78.2↑14.4 64.6↑0.8 59.0 68.4↑9.3 57.8↓1.3
ClinicalCamel-70B 71.9 80.6↑8.8 72.8↑1.0 66.1 73.1↑7.1 68.0↑1.9
Meditron-70B 64.7 75.7↑11.0 65.8↑1.1 60.2 68.1↑7.9 61.5↑1.3
Med42-70B 70.0 78.2↑8.1 70.4↑0.4 64.8 70.4↑5.7 67.9↑3.1
GPT-3.5-turbo 66.2 78.3↑12.1 67.9↑1.8 60.3 67.1↑6.8 61.8↑1.6
Llama3-70B 76.9 83.0↑6.1 80.4↑3.6 70.9 77.8↑7.0 74.0↑3.1

Table 13: Ablation results of all evaluated LLMs for key components of the proposed PretextTrans framework.
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Model
MedLAMA DiseK

None +DN +DN+Inv +All Origin +DN +DN+Inv +All
ChatGLM3-6B 67.4 55.7↓11.6 55.9↓11.5 55.0↓12.4 71.8 56.0↓15.8 57.1↓14.7 56.1↓15.7
Llama2-7B 57.4 53.6↓3.9 53.6↓3.9 53.1↓4.4 57.5 54.3↓3.2 53.9↓3.6 52.8↓4.7
Vicuna-7B 72.1 57.8↓14.3 58.2↓13.9 57.5↓14.5 59.5 54.0↓5.5 54.7↓4.8 53.9↓5.6
Vicuna-13B 70.3 62.0↓8.3 61.6↓8.7 60.7↓9.6 59.2 53.8↓5.4 55.8↓3.4 55.7↓3.5
Gemma-7B 66.2 61.5↓4.7 60.8↓5.4 59.4↓6.8 57.2 53.6↓3.6 55.2↓2.0 55.0↓2.2
Llama3-8B 74.1 69.0↓5.1 68.5↓5.6 66.6↓7.5 68.9 60.9↓8.0 60.1↓8.8 59.3↓9.7
Llama2-70B 78.2 66.6↓11.6 65.8↓12.4 63.8↓14.4 68.4 61.0↓7.4 59.7↓8.7 59.0↓9.3
ClinicalCamel-70B 80.6 73.8↓6.9 73.2↓7.4 71.9↓8.8 73.1 68.9↓4.2 67.9↓5.2 66.1↓7.1
Meditron-70B 75.7 66.8↓8.9 65.8↓9.9 64.7↓11.0 68.1 60.2↓7.9 61.1↓7.1 60.2↓7.9
Med42-70B 78.2 72.4↓5.8 71.9↓6.3 70.0↓8.1 70.4 64.1↓6.3 65.7↓4.7 64.8↓5.7
GPT-3.5-turbo 78.3 68.1↓10.2 67.6↓10.7 66.2↓12.1 67.1 59.0↓8.1 59.6↓7.5 60.3↓6.8
Llama3-70B 83.0 80.6↓2.4 78.6↓4.3 76.9↓6.1 77.8 72.3↓5.6 72.3↓5.5 70.9↓7.0

Table 14: Ablation results of all evaluated LLMs for types of logical implication in the proposed framework.
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