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Abstract

In the study, we aim to investigate current
LLMs’ mastery of medical factual knowledge
with a dynamic evaluation schema, which can
automatically generate multiple test samples
for each medical factual knowledge point. Test
samples produced directly by LLMs always in-
troduce factual errors and lack diversity in the
manner of knowledge expression. To overcome
the drawbacks, here we propose a novel evalua-
tion method, Predicate-text Dual Transforma-
tion (PretextTrans), by introducing predicate
transformations into the dynamic evaluation
schema. Specifically, each medical knowledge
point is firstly transformed into a predicate ex-
pression; then, the predicate expression derives
a series of variants through predicate transfor-
mations; lastly, the produced predicate variants
are transformed back into textual expressions,
resulting in a series of test samples with both
factual reliability and expression diversity. Us-
ing the proposed PretextTrans method, we sys-
tematically investigate 12 well-known LLMs’
mastery of medical factual knowledge based on
two medical datasets. The comparison results
show that current LLMs still have significant
deficiencies in fully mastering medical knowl-
edge, which may illustrate why current LLMs
still perform unsatisfactorily in real-world med-
ical scenarios despite having achieved consid-
erable performance on public benchmarks. Our
proposed method serves as an effective solution
for evaluation of LLMs in medical domain and
offers valuable insights for developing medical-
specific LLMs.

1 Introduction

Recent years have witnessed the rapid advancement
of large language models (LLMs), which have ex-
hibited potential across various domains (Brown
et al., 2020; Ouyang et al., 2022; Touvron et al.,
2023; OpenAl, 2023; Madani et al., 2023; Boiko
et al., 2023), including medicine. Solving medical
problems requires LLMs to master medical factual
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Figure 1: Drawbacks of test samples produced directly
by LLMs.

knowledge comprehensively and in-depth. Recent
studies (Singhal et al., 2023; Nori et al., 2023; Pal
and Sankarasubbu, 2024) showed that some LLMs
(e.g., GPT-4) encode substantial medical factual
knowledge, significantly outperforming previous
SOTAs across multiple medical benchmarks (e.g.,
MedQA (Jin et al., 2021)). However, these LLMs
are found to perform unsatisfactorily on real-world
medical tasks (Thirunavukarasu et al., 2023; Clus-
mann et al., 2023; Wornow et al., 2023), falling far
short of their benchmark performance. This indi-
cates that current benchmarks do not accurately and
comprehensively reflect LLMs’ mastery of medical
factual knowledge. Therefore, we aim to develop
a new evaluation method that more precisely and
comprehensively investigates LLMs’ mastery of
medical factual knowledge.

Current evaluations of LLMs’ medical knowl-
edge mastery primarily rely on medical bench-
marks (Jin et al., 2019, 2021; Pal et al., 2022; Sing-
hal et al., 2023; Sung et al., 2021; Meng et al.,
2022), which are reliable but not comprehensive
enough for LLM evaluation. Although some newer
benchmarks (He et al., 2023; Cai et al., 2024) ad-
dress this issue by collecting the latest data from
diverse sources, constructing these benchmarks can
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Figure 2: Schema of the proposed Predicate-text Dual
Transformation (PretextTrans) method (Top) compared
with directly generating test variants by LLMs (Bottom).

be costly, and they will face problems such as be-
coming outdated or leaked to LLMs over time. Re-
cently, several researchers have developed a series
of methods (Zhu et al., 2023; Li et al., 2024; Zhu
et al., 2024b) to dynamically generate test samples
for LLM evaluation, effectively avoiding issues of
outdated data and leakage. Therefore, dynamically
generating multiple test samples based on each
knowledge point in medical knowledge resources
is a promising way to comprehensively evaluate
LLMs’ medical knowledge mastery. A straightfor-
ward method is to directly generate test samples
using LLMs based on knowledge points. However,
this method has two drawbacks as illustrated in
Figure 1: (1) factual error introduction: factual
errors (e.g., incorrect relations) may be introduced
during sample generation, affecting the reliabil-
ity of evaluation; and (2) low diverse expression:
samples generated from the same knowledge point
primarily differ in wording (e.g., synonym replace-
ment) rather than in knowledge expression struc-
ture, compromising the diversity of evaluation.
The purpose of this study is to comprehensively
investigate LLMs’ mastery of medical factual
knowledge using a dynamical evaluation method.
Because medical factual knowledge primarily in-
volves relationships between medical entities, it
can be effectively expressed through predicates. In-
spired by this, we propose a Predicate-text Dual
Transformation method (PretextTrans) that dy-
namically generates multiple test samples based
on the medical knowledge points being evaluated.
Figure 2 presents the schema of our method. Specif-
ically, we first express each knowledge point using
a predicate expression. Then, we derive a series

of structurally diverse variants from this predicate
expression through logical implication. Finally,
an LLM is employed to transform these variants
back to the textual space for generating test sam-
ples. The logical implication process ensures the
structural diversity of generated test samples and
also effectively prevents the introduction of factual
errors. Additionally, the LLM-based predicate-to-
text transformation ensures that the generated sam-
ples are fluent and natural, while also enhancing
their syntactic and lexical diversity.

Using the proposed method, we conduct a sys-
tematic medical knowledge evaluation of current
LLMs based on two medical datasets. Experimen-
tal results show that the performance of current
LLMs on the multi-sample datasets generated by
our method, where each knowledge point is evalu-
ated by multiple samples, is much lower than those
on the original single-sample datasets. Further-
more, these LLMs exhibit inconsistency in han-
dling test samples derived from the same knowl-
edge point, failing to achieve the expected perfor-
mance. These findings indicate that current LLMs
have not comprehensively mastered medical fac-
tual knowledge, failing to perform satisfactorily in
real-world medical scenarios. Our contributions
are summarized as follows:

* We introduce a dynamic evaluation method
(PretextTrans) for comprehensively evaluat-
ing LLM medical factual knowledge mastery.
Our method generates a series of diverse and
reliable test samples for each knowledge point
using predicate-text dual transformation.

* Employing the proposed method, we system-
atically investigate the medical factual knowl-
edge mastery of 12 well-known LLMs.

* Furthermore, we compare LLMs’ perfor-
mance on samples derived from different
types of logical implications, shedding light
on developing medical foundation models.

2 Related Work

LLM Medical Evaluation Current medical eval-
uation benchmarks for LLLMs can be divided into
two categories: (1) QA datasets that evaluate
LLMs’ comprehensive medical capabilities with
questions collected from medical literature (Jin
et al., 2019), exams (Jin et al., 2021; Pal et al.,
2022), or online websites (Singhal et al., 2023); (2)



datasets for probing LLM medical knowledge mas-
tery (Sung et al., 2021; Meng et al., 2022). These
static benchmarks are meticulously created by med-
ical experts and possess high reliability. However,
they may face problems such as becoming outdated
or leaked to LLMs, affecting the comprehensive-
ness of evaluation. While constructing new bench-
marks can alleviate these problems, they will also
become obsolete over time.

Dynamic Evaluation Schema Several studies
have proposed dynamic evaluation methods that
automatically generate new test samples, effec-
tively avoiding data obsolescence and leakage is-
sues. Some works leverage algorithms to dynami-
cally generate test samples for specific tasks, such
as mathematics (Zhu et al., 2024a) and SQL exe-
cution (Lei et al., 2023). Others (Zhu et al., 2023,
2024b) generate test samples by paraphrasing ex-
isting benchmarks. However, there is currently no
related work utilizing dynamic evaluation methods
to evaluate LLMs’ factual knowledge mastery. To
our knowledge, our proposed method is the first to
apply the dynamic evaluation schema for evaluat-
ing LLMs’ mastery of medical factual knowledge.

3 Method

3.1 Evaluation Schema

In this section, we introduce the schema of our Pre-
textTrans method, which generates more diverse
and reliable test samples for LLM factual knowl-
edge evaluation. Given a knowledge point P, a
straightforward idea is to directly generate a test
sample using an LLM:

S =Grrm(P) (1)

Here, G115 denotes the LLM generation process,
and S refers to the generated test sample. As intro-
duced above, G may create samples that lack
diversity and reliability. In contrast, our method
first expresses the knowledge point using a predi-
cate expression and then derives a series of variants
via logical implication:

p= Ttethpre(P) (2)

[Q17QQ7"' 7qK] :Tlmp(p) (3)

Here, Tieqptopre denotes a mapping that projects
the original knowledge point P into the predicate

expression p. T'p,y,, refers to the logical implica-
tion, and {q; } /X, are the variants derived from the

Types Form

Origin R(A,B)
Inversion R1(B,A)
Instantiation P(A,z) = Q(x,B)
Double Negation -(=R(A,B))

Table 1: Three types of logical implication employed in
PretextTrans. Here, x is a specific entity (e.g., a patient),
and P, Q describe the relations between x and A, B
(e.g., has a disease, may be treated by a drug).

original expression p. The property of logical im-
plication ensures the reliability of these variants,
provided that the original expression p is true:
(p=T)=(u=T), 1<i<K (4
Finally, we convert each predicate variant back to
a textual test sample for evaluation:
Si = Tpre2tezt((li)a 1<:i<K )
Here, T c2tex+ maps each predicate variant g; into
a corresponding test sample (textual variant). Since
these samples are derived from predicate variants
with diverse structures, the predicate-text duality

ensures they exhibit substantial diversity while
maintaining reliability.

3.2 Evaluation Framework

Building on the proposed evaluation schema, we
develop a novel evaluation framework to evaluate
LLMs’ mastery of medical factual knowledge com-
prehensively. Figure 3 presents an overview of this
framework.

3.2.1 Predicate Variant Generation

A single knowledge point can be denoted as P =
(A,R,B), where A, R, and B refer to the head
entity, the relation, and the tail entity, respectively.
In predicate logic, such a relation can be effectively
presented by:

p=TR(A,B) (6)

Here, R(x,y) is a predicate derived from the rela-

tion R, representing the statement "z has the rela-
tion R with ¢". p represents its value at the point
(A, B). Next, the framework employs three types
of logical implications that are widely employed
in practical medical applications. Table 1 lists the
forms of these implications, including:
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Figure 3: An overview of the proposed framework using PretextTrans for LLM medical factual knowledge

evaluation.

* Inversion: The inverse expression presents the
original expression from another direction. For
example, if the statement “Drug A may treat dis-
ease B" holds, then “Disease B’s prescribed drug
includes drug A" also holds.

* Instantiation: This type of logical implication
applies a general knowledge point to a specific
case. For example, the statement “Drug A may
treat disease B" can be instantiated as “If a pa-
tient has disease B, drug A may cure them." Such
transformation is commonly used in disease di-
agnosis and treatment.

Double Negation: The double negation rule is
widely utilized to obtain logically equivalent ex-
pressions. In our framework, this rule is applied
to construct negative expressions. For exam-
ple, if “Drug A may treat disease B" holds, then
“Drug A cannot treat disease B" must be false.

It is noteworthy that these three types of logical
implication can be further combined to produce
additional expressions based on the transitive prop-
erty of logical implication. As a result, a total of K
variants are generated in this process:

@ =T7,,(R(A,B)), 1<i<K (7

where Ti[mp denotes the i logical implication.

3.2.2 Textual Sample Generation

A straightforward method to generate test samples
from predicate variants is by directly prompting
LLMs. However, this method may also introduce
factual errors, affecting the reliability of the gener-
ated samples. To address this issue, we designed a
prototype-based sample generation strategy, as de-
picted in Figure 4. Specifically, for each predicate
variant Tifmp(R(A, B)), we initially retrieve the
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Figure 4: Test sample construction process in the pro-
posed framework. Up: directly generating samples by
LLMs may affect the reliability; Down: the proposed
prototype-based sample construction strategy.

corresponding prototype from a pre-constructed
prototype pool based on the predicate Témp “R.
For predicate variants obtained through double
negation, we retrieve prototypes based on their
negated form (i.e., single negation form) to gen-
erate negated samples for LLM evaluation. Sub-
sequently, the prototype is instantiated by the argu-
ments (A, B). The instantiated prototype precisely
conveys the predicate variant in the textual space.
Finally, the prototype is further rephrased by an
LLM to obtain the final test sample S;. Since cur-
rent LLMs possess strong language capabilities and
rarely make mistakes in sentence rephrasing, the
proposed sample generation strategy can ensure the
reliability and diversity of the generated samples.

3.2.3 Evaluation Metrics

In our framework, we evaluate LLMs using state-
ment verification tasks, asking them to determine
whether a given statement is true or false:

Score(M, S;) = 1(M(S;) =1;),1 <i < K (8)



Here, M is the evaluated LLM, S; is the textual
variant (statement) generated by our framework,
and M(S;) € {T,F} denotes LLM’s prediction for
Si. l; € {T,F} is the label of S;, and the function
1(-) is a characteristic function that equals 1 when
the enclosed expression is true, and O otherwise.
For a dataset with N knowledge points {P; }j»vzl,
we initially use the metric average accuracy to
compute the accuracy across all test samples:

11&

K
_ J
Gavg = 37 77 Z Score(M, S/) 9)

j=1 i=1

Here, Sz denotes the i'" test sample derived from
the j*" knowledge point P;. While this metric is
widely applied in various benchmarks, it cannot
evaluate the consistency of LLMs in predicting
all test samples derived from the same knowledge
point, which is crucial for high-risk applications
in the medical domain. Therefore, we also utilize
another metric, joint accuracy, which considers
a knowledge point as mastered if all the related
samples are predicted correctly:

N K

Qjoint = % Z H Score(M, Si)

j=11i=1

(10)

By applying these metrics, we can achieve a com-
prehensive evaluation of LLMs’ mastery of medical
factual knowledge.

4 Experiments

4.1 Experiment Setup

Datasets Introduction To investigate the mas-
tery of medical factual knowledge in current LLMs,
we applied the proposed framework to two datasets:
a biomedical evaluation benchmark MedLAMA
(Meng et al., 2022) and a clinical knowledge base
DiseK (Zhou et al., 2024). MedLAMA is a large-
scale biomedical evaluation benchmark containing
39,053 knowledge triplets across 19 relations, all
manually selected from the UMLS Metathesaurus
(Bodenreider, 2004) to ensure high quality. DiseK
is a clinical knowledge base containing 24,413
triplets, covering 1,000 high-frequency diseases
across four crucial relations related to disease diag-
nosis and treatment. Mastering this disease-related
knowledge is essential for LLMs to be applicable
in real medical scenarios.

Considering computational costs and dataset
size, we select a subset from each dataset for eval-
uation. Specifically, we randomly select a single

Dataset MedLAMA DiseK

Type Biomedical Clinical
# Rel Types 17 4
# Triplets 34,000 6,348

Table 2: Statistics of the sampled datasets.

entity from the corresponding tail entities for each
pair of a head entity and a relation. This approach
aims to reduce the evaluation scale while maximiz-
ing the diversity of the evaluated knowledge. We
also excluded two relations in MedLAMA, which
are the inversion of the other two relations in Med-
LAMA. Furthermore, for each head-relation pair
(A,R), we randomly sample a negative entity C
that satisfies =“R(A, C) to create a negative triplet
(A, R, C). Test samples generated from this neg-
ative triplet possess a similar structure to those
generated from the positive triplet but with oppo-
site labels. By introducing negative triplets, we
can further evaluate the ability of LLLMs to discern
non-knowledge, which is also essential for practi-
cal application. Table 2 presents the basic statistics
of the sampled datasets. More detailed statistics
about these datasets and the relation types involved
are provided in Appendix A.

Method Setting To ensure the diversity of evalu-
ation, we combined the three types of logical impli-
cation and generated K = 8 expressions (variants)
for each knowledge point, including the original
expression. We crafted a prototype for each com-
bination of relation and logical implication type
to generate test samples. Moreover, we utilize
Llama3-70B-Instruct (Al@Meta, 2024) to rephrase
the instantiated prototypes since it exhibits strong
performance on LLM leaderboards. More details
of the logical implication process, prototypes, and
the prompt format are provided in Appendix B.
For LLM evaluation, we employ the popular
5-shot in-context learning setting (Brown et al.,
2020), where five examples are presented before
the test sample, guiding LLMs to produce answers
in consistent format with the provided examples.
We calculate the average and joint accuracies (in-
troduced in Sec 3.2.3) for each LLM. Appendix C
provides more details, including the prompt format.

Baselines We initially compare our method with
the original datasets. For original datasets, we lever-
age the templates provided in the benchmarks to
generate statements for evaluation. We also im-



Model MedLAMA DiseK
Origin LLMEval  PretextTrans | Origin LLMEval  PretextTrans

Random 50.0 50.0 50.0 50.0 50.0 50.0
ChatGLM3-6B 72.4 6415, 55.0,17.4 76.1 68.5,76 56.1120.0
Llama2-7B 56.4 583119 53.1)34 61.7 527,90 52.850
Vicuna-7B 76.4 68.01};,4 577‘5i13-9 59.9 60.9“,0 Mﬁ,o
Vicuna-13B 77.0 69.3“.7 Mu().s 62.5 57.4J’5.0 mwj
Gemma-7B 73.3 61.1@2_2 MLBB 59.0 %4,2 55'0l4-1
Llama3-8B 78.5 69.1J’9.4 @\LIIQ 67.9 65.3¢2.6 Mgﬁ
Llama2-70B 82.0 69.2@2.8 @US.Z 70.5 67.3J’3.2 MUI.S
ClinicalCamel-70B 84.8 73'7L11-1 MLI&O 74.5 70.6l3,g %3,4
Meditron-70B 79.4 70.0J’9.4 w\uz‘.ﬁ 71.1 62.8“;.3 MLIO.Q
Med42-70B 81.8 Muz_s 70'0i11-8 73.3 69'1J,4-2 ng
GPT-3.5-turbo 82.1 76'7l5.4 @\HQO 73.5 67.6J’6.0 m¢13.3
Llama3-70B 86.6 76'9i9.7 ng 79.7 78'2i1.5 M‘LS.S

Table 3: Performance (average accuracy) of LLMs on the original datasets (Origin), datasets directly generated by
LLM (LLMEval), and datasets generated by our framework (PretextTrans). Bold: Best performance under the same
evaluation method; Underline: LLM achieved the lowest performance in this evaluation method.

plemented a dynamic evaluation baseline (named
as LLMEval) that directly generates test sam-
ples from triplets using an LLM. Specifically, we
prompt Llama3-70B-Instruct' to generate K = 8
statements, presenting the given triplet in differ-
ent ways. We carefully crafted the prompt to en-
sure maximum diversity in generated samples. Ap-
pendix D details the prompt and other settings.

Evaluated LLMs In our study, we evaluate 12
well-known general and medical-specific LLMs:
(1) general LLMs: ChatGLM3-6B (Du et al.,
2022), Gemma-7B (Team et al., 2024), Llama2
(7B,70B) (Touvron et al., 2023), Llama3 (8B,70B)
(Al@Meta, 2024), Vicuna (7B,13B) (Zheng et al.,
2023), and GPT-3.5-turbo (Ouyang et al., 2022); (2)
medical-specific LLMs: ClinicalCamel-70B (Toma
et al., 2023), Meditron-70B (Chen et al., 2023) and
Med42-70B (Christophe et al., 2023). We have not
evaluate LLMs that are either too expensive (e.g.,
GPT-4 (OpenAl, 2023)) or not publicly available
(e.g., MedPalLM (Singhal et al., 2023)).

4.2 Results
4.2.1 Comparison Study

We first conduct a comparison study across dif-
ferent evaluation methods and LLMs. Table 3
lists LLMs’ performance (average accuracy) on the
MedLAMA and DiseK datasets evaluated by differ-
ent methods. The experimental results demonstrate

'We choose the same LLM utilized in our framework to
make a fair comparison.

that all evaluated LLMs achieve much lower perfor-
mance on datasets generated by PretextTrans com-
pared to the original datasets. This suggests that
dynamically generating multiple samples for
each knowledge point can significantly enhance
the comprehensiveness of evaluation. Moreover,
compared to datasets directly generated by an LLM
(LLMEval), almost all LL.Ms achieve lower perfor-
mance on datasets created by PretextTrans, with
some models (e.g., ChatGLM3-6B and GPT-3.5-
turbo) experiencing over 10% degradation. These
findings indicate that PretextTrans is capable of
generating test samples that are more compre-
hensive than those directly generated by LLMs.

Among all the evaluated LLMs, Llama3-70B
outperforms the others across all datasets and eval-
uation methods, achieving accuracies of 76.9 and
70.9 evaluated by PretextTrans. Llama3-8B also
performs best on PretextTrans-generated datasets
among LL.Ms with around 10B parameters, even
slightly surpassing the 10x larger Llama2-70B.
These results indicate that Llama3 model se-
ries encodes significantly more medical knowl-
edge than other evaluated LLMs. Additionally,
while some medical-specific LLMs (ClinicalCamel,
Med42) perform similarly to their backbone model
(Llama2-70B) on original datasets, they notably
outperform it by around 7% on PretextTrans-
generated datasets. This suggests that training on
medical corpora can notably improve the depth
of medical knowledge mastery.

We also study the joint accuracies of LLMs
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Figure 5: Performance (joint accuracy) of 7 LLMs evaluated by increasing the number of expressions per knowledge
point. Top: overall performance trend averaged across LLMs; bottom: detailed performance for each LLM.

evaluated by increasing numbers of expressions
per knowledge point. The results of seven typical
LLMs are illustrated in Figure 5, with the full re-
sults provided in Appendix E. To eliminate the
impact of sample addition orders, we enumer-
ate all possible orders and averaged the results.
Therefore, the value at x = ¢ corresponds to the ex-
pected joint accuracy evaluated with any ¢ samples.
We observe that the results from LLMEval and
PretextTrans are quite close when using a single
sample for evaluation. However, as the number of
test samples increases, the difference between the
results from the two methods grows notably larger.
This phenomenon indicates that current LLMs
generally exhibit significant lower consistency
when confronted with structurally diverse test
samples generated by our method compared to
samples directly generated by LLMs. Moreover, as
the number of expressions increases, Llama3-70B
exhibits a slower decline in performance compared
to other LLMs, indicating a more consistent under-
standing of diverse expression structures from the

same knowledge points. Nevertheless, there is still
room for improvement in current LLMs’ mastery
of medical knowledge.

4.2.2 Effectiveness Analysis

Effect of framework components First, we con-
duct an ablation study to analyze the contribution
of each component to our proposed framework. Ta-
ble 4 presents the ablation results of two typical
LLMs, and the full results are listed in Appendix E.
Here, we focus on the logical implication (Loglmp)
and the LLM rephrasing (LMReph) modules that
are designed to increase the diversity of test sam-
ples. We observe that removing these two modules
results in higher evaluation performance, especially
when the logical implication module was removed
(around 7%). These results indicate that the logi-
cal implication module contributes most to the
evaluation diversity in the proposed framework.

Effect of Implication Types We further conduct
a fine-grained analysis of the logical implication
types applied in our framework, with results pre-



Model

Knowledge Point: (riboflavin tetrabutyrate, may treat, riboflavin deficiency)

Datasets  Method — ImpEval LLMEval
ClinicalCamel Llama3-70B  rauestion (instantiate): ! fQuestiom: T
1“Administration of riboflavin tetrabutyrate! | “Riboflavin tetrabutyrate has been
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| deficiency”, true or false? I riboflavin deficiency”, true or false?
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DlseK LOgImp 73 1T7'1 778T70 :Label: False iLabeI: True
-LMReph 68.011.9 74.0431 (Uiama3-708 Answer: Tue X | |Llama3-708 Answer: True
- - I Question (Instantiate & Inverse): |Question:

Table 4: Ablation results of two typical LLMs for key
components of the proposed PretextTrans framework.
Loglmp: the logical implication module; LMReph: the
LLM rephrasing module for generating test samples.

Datasets  ImpType Model
PYPC ClinicalCamel Llama3-70B
None 80.6 83.0
+DN 73.8¢6.9 80.6&,4
MedLAMA +DN+Inv 73.2“.4 78.6143
+All 71-9i8.8 76.9¢6,1
None 73.1 77.8
. +DN 68.914.2 72.3156
DiseK +DN+Inv 67'9l5.2 72.3¢5,5
+All 66. 1l7-1 70.9¢7_0

Table 5: Ablation results of two typical LLMs for differ-
ent types of logical implication applied in PretextTrans.
DN: double negation; Inv: inversion; All: the combina-
tion of instantiation, inversion, and double negation.

sented in Table 5. Experimental results show that
LLM performance continually declines as more
logical implication types are added, indicating their
effectiveness. Furthermore, the inclusion of double
negation (+DN) leads to a more significant per-
formance degradation (around 5%) than other im-
plication types. This suggests that current LLMs
exhibit relatively less proficiency in understand-
ing negated expressions compared to instantiated
and inverted statements of medical knowledge.

4.2.3 Case Study

We also conduct a case study to examine the effec-
tiveness of the proposed PretextTrans framework.
Figure 6 illustrates an example of LLM evalua-
tion by PretextTrans compared with the LLMEval
method. The case shows that Llama3-70B correctly
answers LLMEval-generated samples that have the
same knowledge expression structure. In contrast,
the PretextTrans-generated samples possess dis-
tinct expression structures, and some of them can-
not be correctly answered by Llama3-70B. These
findings indicate that the proposed PretextTrans

1
1“In the event of a riboflavin deficiency |
| diagnosis, supplementation with |
{riboflavin tetrabutyrate is recommended
|for the patient”, true or false? |
|Label: True iLabel: True
|Llama3-70B Answer: False ILlama3-70B Answer: True

I“The administration of riboflavin
itetrabutyrate may help alleviate
}riboﬂavin deficiency”, true or false?

Figure 6: A case of evaluating LLMs using the pro-
posed PretextTrans framework (left) compared with the
LLMEval method (right).

framework effectively increases the diversity of
knowledge expression structures in generated
samples, enabling a more comprehensive evalua-
tion of LLMs’ true mastery of medical knowledge.

5 Conclusion and Discussion

In this paper, we comprehensively investigate
LLMs’ mastery of medical factual knowledge by
designing a dynamical evaluation method named
PretextTrans. The proposed method leverages
predicate-text dual transformation to dynamically
generate multiple test samples for each knowledge
point in medical knowledge resources, ensuring
their reliability and structural diversity. The experi-
mental results indicate that current LLMs lack com-
prehensive mastery of medical factual knowledge;
thus, they are not yet competent for real-world med-
ical tasks. Furthermore, these LLMs exhibit in-
consistency in understanding diverse expressions
derived from the same medical knowledge point,
thus limiting their practical application in the med-
ical domain. These findings demonstrate that our
method can serve as an effective solution to com-
prehensively evaluate LLMs’ medical knowledge
mastery. Our study may also shed light on devel-
oping medical foundation models. For example,
incorporating content that presents the same medi-
cal knowledge in diverse ways into the training data
may improve LLMSs’ consistency and comprehen-
siveness in understanding medical concepts. In the
future, we aim to integrate this method with other
evaluation forms (e.g., question answering) and
medical datasets to conduct a more comprehensive
evaluation of LLM medical knowledge mastery.




Limitations

One limitation of our study is that, despite eval-
uating several well-known general and medical-
domain-specific LLMs, we excluded some notable
models like GPT-4 and MedPalLM. This was due
to either their high costs (it would require $1200
to evaluate GPT-4 on MedLAMA) or their unavail-
ability for public access (e.g., MedPaLM). We plan
to evaluate other LLMs in the future if feasible.
Additionally, although our evaluation method has
the potential to be applied in other domains, it was
initially devised and validated for the medical do-
main. Applying it to other domains may require
further validation.
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A Details of Datasets

We validate the proposed framework on two
datasets: a biomedical evaluation benchmark, Med-
LAMA, and a disease-centric clinical knowledge
base, DiseK. Given the large scale of these datasets,
we sample a subset of knowledge points from each
by selecting a single tail entity for each 1-to-N re-
lation. Additionally, we sample negative triplets to
increase the evaluation difficulty. Table 8 and 9 list
the relation types involved in the sampled datasets.
The sampled MedLAMA dataset includes 1,000
positive triplets and 1,000 negative triplets for each
relation, while the detailed statistics for DiseK are
presented in Table 6.

Relation Type # Positive  # Negative
#Symptoms 987 987
#Affected Sites 745 745
#Therapeutic Drugs 836 836
#Surgical Procedures 599 599

Table 6: Statistics of the sampled DiseK dataset. #
Positive: the number of positive triplets extracted from
DiseK. # Negative: the number of negative triplets sam-
pled from DiseK.

B Details of Method Setting
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Figure 7: An example of the logical implication proce-
dure implemented in this study.

Details of Logical Implication An example of
the logical implication procedure applied in this
study is illustrated in Figure 7. First, the inver-
sion operation is applied to the original expression
to create a new expression. Subsequently, these
two expressions are instantiated into two additional
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Categories Keywords
True True, Entailed, Correct, Yes
False False, Contradicted, Wrong, No

Table 7: The keywords we utilize to extract answers
from LLMSs’ responses.

Statement: “ Josamycin propionate has the potential to inhibit the development
of bacterial infections.”, is the statement above true or false? Please answer
true/false.

Answer: True

Five
Demonstrative
Examples

Statement: “Ceftolozane sulfate has the potential to inhibit the development of
bacterial infections.”, is the statement above true or false? Please answer
true/false.

Answer: False

Statement: “Infection with hepatitis B virus may confer immunity against
Hepatitis B.”, is the statement above true or false? Please answer true/false.
Answer: True

Statement: “Benzphetamine may be used to manage weight loss in individuals
with Obesity.”, is the statement above true or false? Please answer true/false.
Answer: True

Test Question

Figure 8: An example of the five-shot in-context learn-
ing process applied in our evaluation.

expressions. Finally, double negation is used to
generate four more expressions.

Details of Prototypes-based Generation As in-
troduced before, we designed a prototype-based
sample generation strategy to ensure the reliability
of the generated samples and crafted a prototype
for each combination of relation type and logical
implication type by discussing with clinicians. We
list all the crafted prototypes in Table 10, 11, and
12 for reproducing our experiments.

For LLM rephrasing, we prompt the Llama3-
70B-Instruct model with the following instruc-
tion: “Please paraphrase the following statement
to present the same concept in a different way.
DO NOT change the basic sentence structure. Di-
rectly output the paraphrased statement without
other text. Statement: [prototype]". In our exper-
iments, we found that statements rephrased using
this method effectively preserve the original mean-
ing of the prototypes.

C Details of Evaluation Setting

In our implementation, we form test samples based
on the following format: “/Statement], is the state-
ment above true or false? Please answer True or
False." For the five-shot setting, we randomly select
five question-answer pairs for each combination
of relation and logical implication type to create
demonstrative examples, as depicted in 8. Complex
prompting strategies such as chain-of-thought are
not applied in our study, as the evaluation state-
ments are crafted to be straightforward and easily
understandable, allowing for verification without



Relation Type

Description

associated morphology of

disease has abnormal cell
disease has associated anatomic
site

disease has normal cell origin
disease has normal tissue origin
disease mapped to gene

disease may have associated dis-
ease

disease may have finding
disease may have molecular ab-
normality

gene encodes gene product

gene product has associated
anatomy

gene product has biochemical
function

gene product plays role in biolog-
ical process

has physiologic effect

may prevent

may treat

occurs after

A particular morphology (structural feature or form) is associated
with another concept, often a disease.
A disease is characterized by the presence of abnormal cells.

A disease occurs or has an impact at an anatomic site.

A disease originates from a type of normal cell.
A disease originates from a type of normal tissue.
A gene is associated with a specific disease.

A disease may be associated with another disease.

A possible clinical finding or symptom is observed in a disease.
A potential molecular abnormalities may be present in a disease.
A particular gene encodes a specific gene product, such as protein.

A gene product is associated to an anatomical structure.
A gene product is associated to a biochemical function.

A gene product plays a role in a biological process.

A substance or process has a physiological effect on the body.
A substance may prevent a disease.

A substance may treat a disease.

A event or condition occurs after another.

Table 8: Relation types in the MedLAMA dataset that involve in our study.

the need for complex logical reasoning. In the in-
ference process, we use greedy search for most of
LLMs. However, commercial LLMs like GPT-3.5-
turbo do not support greedy search, and we use
their default generation setting to make a relative
fair comparison across LLMs. We extract the pre-
diction from models’ response based on keywords
since the words/phrases used to express True and
False are limited. We listed all of the keywords
applied to recognize answers in Table 7.

D Details of Baselines

We implement the LLMEval method by directly
generating diverse statements using Llama3-70B-
Instruct. Specifically, we prompt the LLM with the
following instruction: “Based on the given knowl-
edge triplet, generate 8 statement to express the un-
derlying knowledge in different ways. Output one
statement per line. Directly output the statements
without other text. Knowledge triplet: [triplet]."
To ensure the quality of generated samples, we use
the greedy search for the decoding process. We
find that Llama3-70B-Instruct can follow the in-
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struction, generating samples in separated lines.

E Complementary Experiments

E.1 Joint accuracy

We illustrate the joint accuracy of all LLMs evalu-
ated by PretextTrans and LLMEval in Figure 9 and
10, respectively. The experimental results support
our conclusions: the evaluated LLMs generally per-
form worse on datasets generated by PretextTrans.
Moreover, LLMs’ performance decline faster when
evaluated by PretextTrans compared with evaluated
by LLMEval, indicating that current LLMs lack
consistency in understanding medical knowledge
presented in various structures.

E.2 Ablation Study

We also presents the ablation results of all evalu-
ated LLMs regarding key components and logical
implication types in Table 13 and 14, respectively.
These results are consistent with our findings in
the paper, demonstrating the effectiveness of our
framework.



Relation Type Description
Physical or mental feature that indicates the presence of the dis-

Symptoms case.
Affected sites Sipse:;lsﬁec parts of the body that are impacted or harmed by the

Pharmaceutical substances prescribed to manage, alleviate, or cure
the symptoms and effects of the disease.

Medical procedures that treat the disease, involving the cutting,
repairing, or removal of body parts.

Therapeutic Drugs

Surgical Procedures

Table 9: Relation types involved in the DiseK dataset.
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Relation Type

Logical Implication Type

None

Inv

Ins

Inv+Ins

associated mor-
phology of

[X] is the asso-
ciated morphol-
ogy of [Y].

[Y] is often accompa-
nied by the morphology
of [X].

If a patient exhibits a mor-
phological change of [X], then
he/she may suffer from [Y].

If a patient suffers from [Y],
then he/she is exhibiting a mor-
phological change of [X].

disease has ab-
normal cell

[X] has the ab-
normal cell [Y]

The abnormal cell type
[Y] is detected within
[X].

If a patient suffers from [X],
then he/she has the abnormal
cell [Y].

If a patient has the abnormal cell
[Y], then he/she may suffer from
[X].

disease has
associated

anatomic site

The disease [X]
can stem from
the associated
anatomic  site
[Y].

Anatomical site [Y] is
associated with the de-
velopment of disease
[X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease has nor-
mal cell origin

The disease [X]
stems from the
normal cell [Y]

Normal cell [Y] is asso-
ciaated with the devel-
opment of disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease has nor-
mal tissue ori-

gin

The disease [X]
stems from the
normal tissue
[Y].

Normal tissue [Y] is as-
sociated with the devel-
opment of disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease mapped
to gene

The disease [X]
is mapped to
gene [Y] .

Gene [Y] is associated
with the disease [X].

If a patient suffers from [X],
then he/she has lesions in [Y].

If a patient has lesions in [Y],
then he/she may suffer from [X].

disease = may
have associated
disease

The disease [X]
might have the
associated dis-

The disease [Y] might
have the associated dis-
ease [X] .

If a patient suffers from [X],
then the likelihood of he/she suf-
fering from [Y] is higher.

If a patient suffers from [Y],
then the likelihood of he/she suf-
fering from [X] is higher.

ease [Y].
disease may [X] may have [Y] may be associate If a patient suffers from [X], If a patient has [Y], then he/she
have finding [Y]. with [X] then he/she has [Y]. may suffer from [X].
disease = may The  discase Molecular abnormality If a patient suffers from [X], If a patient has molecular abnor-

[X] may have . ;
have molecular [Y] may be associated then he/she may has molecular  mality [Y], then he/she may suf-

. molecular ab- . . .

abnormality . with the disease [X]. abnormality [Y]. fer from [X].

normality [Y] .

If the expression level of [X] de- If the production or activity of

gene encodes The gene [X]  The gene product [Y] creases, it may lead to a reduc- [Y] decreases, it may caused by

gene product

encodes gene
product [Y] .

is encoded by the gene
[X].

tion in the production or activity
of [Y].

the reduction in the expression
level of [X].

The gene prod-

gene prqduct uct [X] has Th? anatorpy LY] is as- The gene product [X] plays a  Anatomy [Y] is where [X] func-
has associated . sociated with the gene . .
the associated role in anatomy [Y]. tions.
anatomy anatomy [Y] . product [X].
gene product [X] has bio- . . . If the production of [X] de- If the fupctlonahty of [Y] de-
. . . [Y] is a biochemical . . creases, it may caused by the
has biochemical chemical . creases, the functionality of [Y] Do .
. . function of [X]. reduction in the production of
function function [Y] . may decrease. (X]
The gene prod-
gene product uct [X] plays a Biological process [Y] If the production of [X] de- If[Y]is affected, it may caused

plays role in bi-
ological process

role in biologi-
cal process [Y]

is associated with the
gene product [X]

creases, the process of [Y] may
be influenced.

by the reduction in the produc-
tion of [X].

has physiologic
effect

[X] has physio-
logic effect of
[Y1].

[Y] can be caused by
[X].

If a patient takes [X], he/she
may have physiologic effect of
[Y].

If a patient has physiologic ef-
fect of [Y], he/she may have
taken [X].

may prevent

[X] may be able
to prevent [Y] .

[Y] may be prevented
by [X]

If a patient takes [X], he/she can
prevent [Y].

If a patient wishes to prevent
[Y], he/she should take [X].

may treat

[X] might treat
[Y].

[Y] may be treated by
[X]

If a patient takes [X], he/she can
treat [Y].

If a patient suffers from [Y],
he/she should take [X].

occurs after

[X] occurs after
[Y].

[Y] may occur before
[X].

If a patient occurs [X], he/she
may occur [Y] before.

If a patient occurs [Y], he/she
may occur [X] afterwards.

Table 10: Prototypes crafted for the MedLAMA dataset (1/2). Inv: inversion; Ins:
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Relation Type

Logical Implication Type

DN

Inv+DN

Ins+DN

Inv+DN

associated mor-
phology of

[X] is not the
associated mor-
phology of [Y].

[Y] is not accompanied
by the morphology of
[X].

A patient that exhibits a morpho-
logical change of [X] does not
suffer from [Y].

A patient that suffers from [Y]
does not exhibit a morphologi-
cal change of [X].

disease has ab-
normal cell

[X] does not
has the abnor-
mal cell [Y].

The abnormal cell type
[Y] is not detected
within [X].

A patient that suffers from [X]
does not have the abnormal cell
[Y].

A patient that has the abnormal
cell [Y] does not suffer from
[XI.

disease has
associated

anatomic site

The disease [X]
is not stem from
the associated
anatomic  site
[Y].

Anatomical site [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal cell origin

The disease [X]
does not stem
from the normal
cell [Y].

Normal cell [Y] is not
associaated with the de-
velopment of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease has nor-
mal tissue ori-

gin

The disease [X]
is not stem from
the normal tis-
sue [Y].

Normal tissue [Y] is
not associated with the
development of disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease mapped
to gene

The disease [X]
is not mapped
to the gene [Y].

Gene [Y] is not asso-
ciated with the disease
[X].

A patient that suffers from [X]
does not have lesions in [Y].

A patient that has lesions in [Y]
does not suffer from [X].

disease = may
have associated
disease

The disease [X]
is not associated
with disease [Y]

The disease [Y] is not
associated with disease
[X].

If a patient suffers from [X],
then the likelihood of he/she suf-
fering from [Y] is not higher.

If a patient suffers from [Y],
then the likelihood of he/she suf-
fering from [X] is not higher.

[X] does not

disease may [Y] is not associated A patient that suffers from [X] A patient that has [Y] does not
have finding have [Y] . with [X] does not have [Y]. suffer from [X].

The disease
disease  may [X] does not Molecular abnormality A patient that suffers from [X] A patient that has molecular ab-
have molecular have molecular [Y] is not associated does not have molecular abnor- normality [Y] does not suffer
abnormality abnormality [Y]  with the disease [X]. mality [Y]. from [X].

The gene [X] . . . A decrease in the production or
gene encodes does ngot encode The gene product [Y]is A decrease in the expression activity of [Y] is r?ot caused by

gene product

gene
[Y].

product

not encoded by the gene
[X]

level of [X] does not affect the
production and activity of [Y].

the reduction in the expression
level of [X].

The gene prod-

gene prqduct uct [X] does not  The a.natom}./ [Y] is not The gene product [X] does not ~ Anatomy [Y] is not where [X]
has associated have the asso- associated with the gene . .
. play a role in anatomy [Y]. functions.
anatomy ciated anatomy  product [X].
[Y].
gene  product [X] dpes not . . . A decrease in the production of A decrease in the functionality
. . have biochemi- [Y]is not a biochemical . .
has biochemical cal function [Y]  function of [X] [X] does not affect the function-  of [Y] is not caused by the reduc-
function ’ ality of [Y]. tion in the production of [X].
The gene prod-
gene product uct[X]doesnot Biological process [Y] A decrease in the production of A change of [Y] is not caused by

plays role in bi-
ological process

play a role in bi-
ological process
[Y].

is not associated with
the gene product [X]

[X] does not affect the process
of [Y].

the reduction in the production
of [X].

has physiologic
effect

[X] does not
have  physio-
logic effect of
[Y].

[Y] cannot be caused by
[X].

A patient that takes [X] does not
have physiologic effect of [Y] .

A patient that has physiologic
effect of [Y] has not taken [X].

may prevent

[X] is not able
to prevent [Y] .

[Y] cannot be prevented
by [X]

Taking [X] have no effect on pre-
venting [Y].

A patient wishes to prevent [Y]
has no need to take [X].

may treat

[X] is not able
to treat [Y] .

[Y] cannot be treated by
[X]

Taking [X] have no effect on
treating [Y].

A patient that suffers from [Y]
has no need to take [X].

occurs after

[X] does not oc-
cur after [Y] .

[Y] cannot occur before
[X].

A patient occurs [X] will not oc-
cur [Y] before.

A patient occurs [X] will not oc-
cur [Y] afterwards.

Table 11: Prototypes crafted for the MedLAMA dataset (2/2). Inv: inversion; Ins: instantiation; DN: double

negation.
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Relation Type

Implication Type Symptoms Affected Sites Therapeutic Drugs  Surgical Procedures

None [Y] is a common [Y] is the affected [Y] is a common [Y] is a common
symptom of [X]. site for [X]. medication for [X]. procedure for [X].

Common SYMP- ) e ted sites for Common medl.ca- Common proce-

Inv toms of [X] include tions for treating dures for treating

[Y].

[X] include [Y].

[X] include [Y].

[X] include [Y].

If a patient has [X],
they are very likely

If a patient has [X],
their [Y] site is very

If a patient has [X],
[Y] can be used

If a patient has [X],
[Y] can be used

I . . . i .
ns to have symptoms likely to show le- to treat their condi- to treat their condi-
of [Y]. sions. tion. tion.

If a patient has If a patient shows If [Y] can be used If [Y] can be used

symptoms of [Y], lesions in their [Y] to treat a patient’s to treat a patient’s
Inv+Ins . . .. ..

they are very likely site, they are very condition, they may condition, they may

to have [X]. likely to have [X].  have [X]. have [X].

[Y] is not a com- [Y] is not the af- [Y] is th 2} com- [Y] is not a com-
DN mon symptom of fected site for [X] mon medication for mon procedure for

[X]. X [X].

Common  symp- Affected sites for gg;zmglr '?rl::tliia- fijl?rr:sm(f)(r)lr trz‘?i;e_
Inv+DN toms of [X] do not [X] do not include . & . &

include [Y] Y] [X] do not include [X] do not include

' ' [Y]. [Y].
. . Patient ith [X . . . .
Patients with [X] atien .S with [X] Patients with [X] do  Patients with [X] do
. are unlikely to show
Ins+DN are unlikely to have . . . not commonly use not commonly use
lesions in their [Y]

symptoms of [Y]. site [Y] for treatment. [Y] for treatment.

Patients with symp- Patients showing le- Patients who can Patients who can
Inv4DN toms of [Y] are un- sions in their [Y] be treated with [Y] be treated with [Y]

likely to have [X].

site are unlikely to
have [X].

are unlikely to have
[X].

are unlikely to have
[X].

Table 12: Prototypes crafted for the DiseK dataset. Inv: inversion; Ins: instantiation; DN: double negation.

Model MedLAMA DiseK
PretextTrans -Loglmp -LMReph PretextTrans -Loglmp -LMReph
ChatGLM3-6B 55.0 67.41124  54.8)02 56.1 71.8+157  55.6)05
Llama2-7B 53.1 57'4T4-4 51.9J,1_1 52.8 57'5T4-7 52.6¢0.2
Vicuna-7B 57.5 72.1¢14.5 55'7l1.8 53.9 59'5T5-6 52'5U.4
Vicuna-13B 60.7 70.3196  61.0104 55.7 59.2135  55.9102
Gemma-7B 59.4 66.2%.8 62.8T3,4 55.0 57'2T2-2 56'9T2~0
Llama3-8B 66.6 741475 68.512.0 59.3 68.919.7 60.210.9
Llama2-70B 63.8 78.2“4,4 64-6T0.8 59.0 68.4T9,3 57.8“.3
ClinicalCamel-70B 71.9 80.618.8 72.8110 66.1 73.147.1 68.011.9
Meditron-70B 64.7 75‘7T1 1.0 65.8“'1 60.2 68.1T7,9 61'5T1~3
Med42-70B 70.0 782151 T0.4r04 64.8 704457  67.943,
GPT-3.5-turbo 66.2 78'3T12-1 67~9T1.8 60.3 67'1T6.8 61-8T1.6
Llama3-70B 76.9 83.0%.1 80-4T3.6 70.9 77'8T7~0 74'0T3~1

Table 13: Ablation results of all evaluated LLMs for key components of the proposed PretextTrans framework.
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Model MedLAMA DiseK
None +DN +DN+Inv +All Origin +DN +DN+Inv +All
ChatGLM3-6B 67.4 557116 95595115 955.05124 71.8 56.0158 57.1;147 56.1)157
Llama2-7B 574 53‘6~L3~9 53.6¢3‘9 53.1%‘4 57.5 54.3@‘2 53‘9¢3.6 52.8%.7
Vicuna-7B 72.1 57.8¢14'3 58'2U3-9 57.5¢14,5 59.5 54‘0i5¢5 54'7i4.8 53'9i5.6
Vicuna-13B 70.3 62-0i8.3 61.6¢3‘7 60-7\L9.6 59.2 53.85‘4 55.8@‘4 55.7@‘5
Gemma-7B 66.2 61.5¢4,7 60-8¢5,4 59-4L6.8 57.2 53.65.6 55'2i2-0 55.0&2
Llama3-8B 74.1 69-0i5.1 68.5\L5.6 66.6¢7.5 68.9 60-9\L8.0 60.1&;.8 59.3¢9.7
Llama2-70B 78.2 66.6i11_6 65.8‘L12_4 63.8‘L14_4 68.4 61'0J,7-4 59'7i8-7 59'0i9-3
ClinicalCamel-70B 80.6 73.8¢6.9 73.2”.4 71-9¢8.8 73.1 68.9\%2 67-9\L5.2 66. 1¢7.1
Meditron-70B 75.7 66.8“;.9 65.8J,9.9 64'7i1 1.0 68.1 60.2“.9 61. 1¢7.1 60.2¢7.9
Med42-70B 782 72453 719163 70.0y8 1 70.4 64.1 63 65.7 147 64.8)57
GPT-3.5-turbo 78.3 68.1¢10_2 67.6¢10_7 66.2¢12_1 67.1 59.0¢g.1 59.6¢7.5 60.3%.8
Llama3-70B 83.0 80.6@,4 78.6L4‘3 76.9¢6‘1 77.8 72-3L5.6 72.3¢5.5 70'9l7.0

Table 14: Ablation results of all evaluated LLMs for types of logical implication in the proposed framework.

17



	Introduction
	Related Work
	Method
	Evaluation Schema
	Evaluation Framework
	Predicate Variant Generation
	Textual Sample Generation
	Evaluation Metrics


	Experiments
	Experiment Setup
	Results
	Comparison Study
	Effectiveness Analysis
	Case Study


	Conclusion and Discussion
	Details of Datasets
	Details of Method Setting
	Details of Evaluation Setting
	Details of Baselines
	Complementary Experiments
	Joint accuracy
	Ablation Study


