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Summary
This paper investigates the impact of the loss function in value-based methods for rein-

forcement learning through an analysis of underlying prediction objectives. We theoretically
show that mean absolute error is a better prediction objective than the traditional mean squared
error for controlling the learned policy’s suboptimality gap. Furthermore, we present results
that different loss functions are better aligned with these different regression objectives: bi-
nary and categorical cross-entropy losses with the mean absolute error and squared loss with
the mean squared error. We then provide empirical evidence that algorithms minimizing these
cross-entropy losses can outperform those based on the squared loss in linear reinforcement
learning.

Contribution(s)
1. We demonstrate certain cross entropy losses can accelerate convergence under certain struc-

tural assumptions, supported by negative results for the purely mean-focused squared loss.
Context: We build upon a recent line of theoretical (Foster & Krishnamurthy, 2021; Ay-
oub et al., 2024; Wang et al., 2024) and empirical (Bellemare et al., 2017; Dabney et al.,
2018; Farebrother et al., 2024) research showing that value learning with certain loss func-
tions can yield faster convergence rates under specific structural assumptions, such as the
optimal policy achieving the maximum possible value or having low variance returns. We
complement these findings by providing lower bounds that link these convergence rates to
the chosen regression objective—in this case mean absolute error and mean squared error.

2. We provide empirical results showing that value-based methods using log-loss (and its repa-
rameterized multi-class variant) can outperform squared-loss methods in a linear batch re-
inforcement learning setting (inverted pendulum with Fourier features).
Context: The work of Lyle et al. (2019) suggest that, in linear reinforcement learning,
cross-entropy losses (e.g., binary or categorical) perform on par with squared loss and that
their advantages appear primarily in deep reinforcement learning settings. However, our
theoretical and empirical findings suggest a more subtle situation: in linear reinforcement
learning, cross-entropy losses can outperform the canonical squared loss. Our experiments
are limited to a single environment (inverted pendulum) with Fourier features.
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Abstract

This paper investigates the impact of the loss function in value-based methods for rein-1
forcement learning through an analysis of underlying prediction objectives. We theoret-2
ically show that mean absolute error is a better prediction objective than the traditional3
mean squared error for controlling the learned policy’s suboptimality gap. Furthermore,4
we present results that different loss functions are better aligned with these different re-5
gression objectives: binary and categorical cross-entropy losses with the mean absolute6
error and squared loss with the mean squared error. We then provide empirical evidence7
that algorithms minimizing these cross-entropy losses can outperform those based on8
the squared loss in linear reinforcement learning.9

1 Introduction10

Value-based methods are ubiquitous in reinforcement learning (RL) (Sutton & Barto, 2018) and11
contextual bandits (Lattimore & Szepesvári, 2020), where the goal is to predict rewards and then12
choose actions that maximize expected returns. The “natural objective function” (Chapter 9.2 of13
(Sutton & Barto, 2018)) in these settings is the mean squared error (MSE). Traditionally in RL,14
value-based algorithms that leverage function approximation aim to minimize the MSE between a15
learned value function and observed returns, as popularized by algorithms such asQ-learning and its16
extension to function approximation (Ernst et al., 2005; Riedmiller, 2005; Mnih et al., 2015). Despite17
its success in many practical scenarios, recent theoretical (Foster & Krishnamurthy, 2021; Ayoub18
et al., 2024) and empirical (Farebrother et al., 2024) findings highlight that minimizing MSE can19
yield worse decision-making performance (in terms of expected returns) than alternative empirical20
losses. In particular, minimizing alternative losses can achieve faster learning when the optimal21
value v⋆ is close to the maximum possible value.22

A promising alternative is the log-loss (cross-entropy loss), which we argue aligns more closely with23
the mean absolute error (MAE)—a tighter surrogate for decision quality in many applications. In-24
deed, it has been shown that, under certain problem structures, controlling the MAE can lead to faster25
convergence (Foster & Krishnamurthy, 2021) and a smaller suboptimality gap (Ayoub et al., 2024)26
than controlling MSE. Building on these insights, we analyze value-based methods that employ27
log-loss and demonstrate their advantages over those using squared loss. Our exposition initially28
restricts attention to the offline contextual bandit (or reward-sensitive classification (Elkan, 2001))29
setting, where one aims to learn a policy from a fixed dataset of context–reward pairs. However, the30
core ideas and proofs naturally extend to more general RL problems with function approximation31
(Antos et al., 2007; Chen & Jiang, 2019; Ayoub et al., 2024).32

We propose a reparameterized version of the categorical cross-entropy loss (ℓcat), which learns a33
multi-category distribution over possible outcomes while still accurately recovering the mean of a34
bounded random variable as was similarly done by Lyle et al. (2019). This addresses the irreducible35
bias found in purely bin-based approaches. Our analysis highlights that modeling distributional36
properties—not just the mean—can accelerate learning when the distribution has low variance or37
other favorable characteristics.38
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In summary, our work contributes new insights into why certain losses such as log-loss are better39
suited than squared loss in certain decision-making settings, highlights methods to reparameter-40
ize cross entropy losses that can be utilized simultaneously for classification and regression, and41
highlights broader implications for distributional RL. Although we focus on contextual bandits for42
clarity, the same techniques extend naturally to RL, offering an explanation as to why certain loss43
function can improve value-based algorithms.44

2 Definitions45

In this section, we formally define regression and classification problems. We then introduce a46
solution to the classification problem that leverages a regression oracle, highlighting the connection47
between these two paradigms. By distinguishing problems from their solutions, we establish a48
formal framework for understanding how an appropriately chosen regression objective can guide49
the development of more effective decision-making algorithms.50

2.1 Problem: Regression51

Consider a supervised learning problem where the set of contexts is denoted by X . The learner is52
provided with a dataset Dn = ((X1, Y1), . . . , (Xn, Yn)), consisting of n independently and identi-53
cally distributed (i.i.d.) context-label pairs, sampled from a distribution P⊗n. Each sample (Xi, Yi)54
satisfies Xi ∈ X and Yi ∈ [0, 1], where P is an element of M1(X × [0, 1]), the space of probability55
measures over X × [0, 1]. We assume M1(·) is defined over an appropriately equipped σ-algebra.56

Define the conditional expectation of the label given the context as57

f⋆(x) = E[Y1|X1 = x], ∀x ∈ X .

A score function f maps contexts to predicted labels in [0, 1], formally defined as f : X → [0, 1].58

Throughout this paper, we assume that we are given a realizable class (Assumption 2.1) of score59
functions F ⊆ [0, 1]X . Let PX ∈ M1(X ) denote the marginal distribution over contexts.60

Assumption 2.1 (Realizability). f⋆ ∈ F .61

For p ≥ 1, the prediction error of a function f ∈ F is defined as62

VEp(f) = E
∣∣f(X)− f⋆(X)

∣∣p =

∫
|f(x)− f⋆(x)|p PX(dx).

Thus, VEp(f) quantifies the deviation of f from the optimal predictor f⋆. The objective in regression63
is to learn a function f̂ that minimizes the prediction error VEp(f̂). Special cases of this error metric64
include the mean squared error when p = 265

VE2(f) = E[(f(X)− f⋆(X))2],

and the mean absolute error when p = 166

VE1(f) = E
∣∣f(X)− f⋆(X)

∣∣.
2.2 Problem: Classification67

Consider a (reward-sensitive) classification problem, where the set of contexts is denoted by S, and68
the set of actions is a finite set A with cardinality A = |A| < ∞. The learner is provided with a69
dataset Dn = ((S1, R1), . . . , (Sn, Rn)), consisting of n i.i.d. context-reward vector pairs, sampled70
from P⊗n. Each sample satisfies Si ∼ S and Ri ∈ [0, 1]A, where P ∈ M1(S × [0, 1]A) represents71
the joint distribution over contexts and reward vectors.72
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Define the expected reward function as73

r(s, a) = E[R1(a) | S1 = s], ∀s ∈ S, a ∈ A.

A policy (classifier) π maps contexts to probability distributions over actions, formally defined as74
π : S → M1(A). We use π(a | s) to denote the probability assigned by π to action a ∈ A when the75
context is s ∈ S. Let PS ∈ M1(S) denote the marginal distribution over contexts. The expected76
return of following policy π is77

vπ =

∫ ∑
a∈A

π(a | s) r(s, a)PS(ds).

An optimal policy π⋆ is one that maximizes the expected return across all policies:78

vπ
⋆

= v⋆ = max
π

vπ.

Define the suboptimality gap (regret) of using policy π instead of the optimal policy as79

Sub-opt(π) = v⋆ − vπ.

The objective in classification is to learn a policy π̂ that maximizes the expected return vπ̂ = v̂, or80
equivalently, minimizes the suboptimality gap Sub-opt(π̂).81

2.3 Solution: Value-Based Methods for Classification82

In statistical learning theory (Vapnik, 2013), the objective of classification is often to learn a policy83
π̂ that minimizes the suboptimality gap Sub-opt(π̂). Given a class of policies Π ⊂ M1(A)S , a84
natural approach is the principle of empirical risk minimization on the dataset Dn (Vapnik, 1991):85

π̂ = argmax
π∈Π

n∑
i=1

π(· | Si)
⊤Ri .

However, directly optimizing this empirical risk is generally computationally intractable (NP hard),86
even for relatively simple policy classes (Ben-David et al., 2003; Feldman et al., 2012). This mo-87
tivates the use of value-based methods for classification, which leverage a class of candidate value88
functions to reformulate the problem as a regression task—often solvable via gradient descent.89

Formally, given a dataset Dn = ((S1, R1), . . . , (Sn, Rn)), a realizable class (Assumption 2.1) of90
candidate value functions F ⊆ [0, 1]S×A, and a loss function ℓ, we solve the following regression91
problem:92

f̂ = argmin
f∈F

n∑
i=1

∑
a∈A

ℓ
(
f(Si, a), Ri(a)

)
.

The learned function f̂ is then used to define the greedy policy:93

π̂(s) = argmax
a∈A

f̂(s, a).

We refer to any method that minimizes a regression loss and then selects actions greedily with94
respect to the minimizer as a value-based method.95

2.4 The Choice of the Loss Function96

In the context of reinforcement learning, value-based methods commonly minimize the squared loss97
(Sutton & Barto, 2018; Szepesvári, 2022):98

ℓsq(x, y) = (x− y)2, where x, y ∈ [0, 1].
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This contrasts with traditional classification tasks, where the cross-entropy loss is mostly used. We99
remark that while “cross-entropy loss” is typically associated with the negative log-likelihood under100
Bernoulli or categorical models, the squared loss is the cross entropy loss that arises under a univari-101
ate Gaussian model. We introduce the terminology log-loss and cat-loss to denote the cross-entropy102
losses for Bernoulli and categorical distributions, respectively.103

To develop intuition, we first focus on the log-loss, as it represents the simplest special case of the104
more general cat-loss.105

We define the log-loss as106

ℓlog(x, y) = y log
1

x
+ (1− y) log

1

1− x
, where x, y ∈ [0, 1] ,

with the convention 0 log∞ = limu→0 u log
1
u = 0. The following proposition establishes that the107

minimizer of the log-loss is the population mean.108

Proposition 2.2. Let Y be a bounded random variable with Y ∈ [0, 1] and mean E[Y ] = µ. Then,109
for any x ∈ [0, 1], the expected log-loss satisfies:110

E[ℓlog(x, Y )] ≥ E[ℓlog(µ, Y )].

Proof. Recall the binary Kullback–Leibler (KL) divergence111

kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

Then, observe that112

E[ℓlog(x, Y )]− E[ℓlog(µ, Y )] = µ log
1

x
+ (1− µ) log

1

1− x
− µ log

1

µ
− (1− µ) log

1

1− µ

= kl(µ, x).

Since the KL divergence is always nonnegative, with equality if and only if x = µ, the result113
follows.114

This proposition implies that, given an infinite number of observations of a bounded random variable115
Y ∈ [0, 1], minimizing the log-loss recovers the mean of Y . In later sections, we will extend this116
insight to the cat-loss—the canonical loss for multi-class classification.117

3 Mean Absolute Error as a More Natural Objective for Decision Making118

We now present the central insight of this paper: the mean absolute error (MAE), rather than the119
mean squared error (MSE), is a more suitable regression objective for decision-making problems120
such as reinforcement learning and classification. Formally, let π̂ denote the greedy policy with121
respect to some learned function f̂ ∈ [0, 1]S×A. For a score function f ∈ [0, 1]S×A and a determin-122
istic policy π : S → A, define123

f(s, π) = f
(
s, π(s)

)
.

We now bound the suboptimality gap Sub-opt(π̂). Analyses of value-based methods for classifi-124
cation typically reduce a classification objective (i.e., Sub-opt(π̂)) to a regression objective (i.e.,125
VEp(f̂)); see, for instance, Antos et al. (2007); Chen & Jiang (2019); Ayoub et al. (2024) for batch126
RL and Ayoub et al. (2020); Jin et al. (2021; 2023) for online RL. In doing so, one obtains both a127

4



Rectifying Regression in Reinforcement Learning

mean absolute error (MAE) term and a root mean squared error (rMSE) term. Indeed, observe that128

Sub-opt(π̂) =

∫
r(s, π⋆)− r(s, π̂)PS(ds)

=

∫
r(s, π⋆)− f̂(s, π̂) + f̂(s, π̂)− r(s, π̂)PS(ds)

≤
∫
r(s, π⋆)− f̂(s, π⋆) + f̂(s, π̂)− r(s, π̂)PS(ds) (1)

≤
∫ ∣∣r(s, π⋆)− f̂(s, π⋆)

∣∣PS(ds) +

∫ ∣∣f̂(s, π̂)− r(s, π̂)
∣∣PS(ds) (MAE)

≤

√∫ (
r(s, π⋆)− f̂(s, π⋆)

)2
PS(ds) +

√∫ (
r(s, π̂)− f̂(s, π̂)

)2
PS(ds) . (rMSE)

The first inequality in (1) uses the fact that π̂ is greedy with respect to f̂ . The last inequality applies129
Jensen’s inequality. Notice that the key reduction from a policy-space comparison (π̂ vs. π⋆) to a130
function-space comparison (f̂ vs. r) occurs in (1).131

Motivation for MAE vs. rMSE. As shown, both MAE and rMSE naturally arise in bounding132
Sub-opt(π̂). However that MAE is a tighter approximation to Sub-opt(π̂) than rMSE, since133 ∫

|f − g| ≤

√∫
(f − g)2 .

In practical settings, there are cases where
∫
|r − f̂ | is significantly smaller than

√∫
(r − f̂)2,134

implying that algorithms designed to control rMSE (such as squared-loss minimization) can incur135
larger suboptimality than algorithms targeted toward controlling MAE (such as log-loss minimiza-136
tion). Since the ultimate goal in decision making is to select good actions, it is natural to adopt a137
regression metric (and loss) that is more closely aligned with suboptimality. We now present a set138
of results that confirm our intuition.139

3.1 Positive Results140

We highlight that minimizing the log-loss (i.e., ℓlog) yields bounds that scale with (1 − v⋆), which141
can be small in problems where the optimal policy achieves a reliable goal or accumulates near-142
maximal return. The following lemma adapts the result of Foster & Krishnamurthy (2021) to the143
rewards-based setting.144

Lemma 3.1. Assume r ∈ F and define145

f̂log ∈ argmin
f∈F

n∑
i=1

∑
a∈A

ℓlog
(
f(Si, a), Ri(a)

)
.

Let π̂log be the greedy policy w.r.t. f̂log. Then with probability 1− δ,146

Sub-opt(π̂log) ≤ 16

√
2 (1− v⋆)A log

(
|F|/δ

)
n

+
136A log

(
|F|/δ

)
n

,

and147 ∫ ∣∣r(s, π⋆
)
− f̂

(
s, π⋆

)∣∣PS(ds) +

∫ ∣∣f̂(s, π̂)− r
(
s, π̂

)∣∣PS(ds)

≤ 16

√
2 (1− v⋆)A log

(
|F|/δ

)
n

+
136A log

(
|F|/δ

)
n

.
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The proof of Lemma 3.1 can be found in Appendix B. This result first appeared for cost-sensitive148
classification (Foster & Krishnamurthy, 2021) and was extended to batch RL (with costs) in Ayoub149
et al. (2024). By adapting their proofs, one obtains the same bound for batch RL with rewards.150
Observe that their analysis also proceeds by reducing the classification (or RL) objective to bounding151
the MAE between f̂log and r. We now show that, under certain conditions (v⋆ ≈ 1), one can achieve152
small MAE while the rMSE remains large.153

3.2 Negative Results154

In this section, we argue that rMSE is not the most “natural objective function” (Chapter 9.2 of155
(Sutton & Barto, 2018)) for RL. We make two claims. The first claim (Proposition 3.2) is that there156
are problems where the rMSE of f̂log is at least 1√

n
, while its MAE is as small as 1

n . The second157
claim (Lemma 3.3) is that if one directly minimizes the squared loss ℓsq, then there exist problems158
for which the resulting estimator suffers a large (≳ 1/

√
n) MAE (and hence rMSE), even when159

v⋆ ≈ 1.160

Proposition 3.2. Let X = {x, x′}. For every n ≥ 1, there exists a realizable (Assumption 2.1)161
function class F : X → [0, 1] with |F| = 2 and a data distribution P such that 1 − v⋆ = 1 −162 ∫
f⋆ PX(dx) < 1

n . However, with probability at least 1/(2e)163 √∫ (
f⋆(x)− f̂log(x)

)2
PX(dx) =

1

2
√
n
.

In the construction of Proposition 3.2, Lemma 3.1 implies that164 ∫ ∣∣f⋆(x)− f̂log(x)
∣∣PX(dx) ≲

1

n
,

yet the rMSE remains at order 1√
n

. Intuitively, context x′ appears with low probability (1/n), so165

the log-loss estimator f̂log might be quite noisy on x′ but accurate on the high-probability context166
x. Since rMSE weights the rare event x′ more heavily than MAE does, it overestimates the error167
relevant for decision making (which focuses on mainline states). The formal details can be found in168
Appendix C.169

Finally, we show that this “over-weighting of rare events” carries over to minimizing the squared170
loss directly, as commonly done by value-based RL algorithms with function approximation (Sutton171
& Barto, 2018).172

Lemma 3.3. Let X = {x, x′}. For any n ≥ 1, there exists a realizable (Assumption 2.1) function173
class F : X → [0, 1] with |F| = 2 and a data distribution P such that 1−v⋆ = 1−

∫
f⋆ PX(dx) <174

1
n . However, with probability at least 1/(2e),175 ∫ ∣∣f̂sq(x)− f⋆(x)

∣∣PX(dx) ≥ 1

3
√
n
,

where176

f̂sq = argmin
f∈F

n∑
i=1

ℓsq
(
f(Xi), Yi

)
.

The proof of Lemma 3.3 can be found in Appendix C. In cost-sensitive classification, Foster &177
Krishnamurthy (2021) showed an analogous phenomenon: the greedy policy with respect to the178
squared-loss minimizer can incur 1√

n
-sized suboptimality even though v⋆ ≥ 1 − 1

n . Our lemma179
complements their result by demonstrating that the squared-loss minimizer itself fails to achieve a180
O(1/n) decay in its mean absolute error, whereas the log-loss minimizer can achieve O(1/n) decay181
in similar settings. Collectively, Lemma 3.1, Proposition 3.2, and Lemma 3.3 highlight that the MAE182
(and hence the log-loss objective) is more tightly coupled to Sub-opt(π̂) than rMSE is. Moreover,183
algorithms specifically designed to control the MAE—such as minimizing ℓlog when v⋆ ≈ 1—can184
adapt more effectively to problem structure than those designed around controlling rMSE (via ℓsq).185
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4 Reparameterizing the Categorical Cross Entropy Loss186

We have seen that the log-loss can outperform the squared loss in decision-making tasks, particularly187
when v⋆ is close to 1. A natural next step is to seek a multi-category version of log-loss that retains188
its ability to learn the mean with sufficient data. This can be accomplished by Reparameterizing the189
categorical cross-entropy loss so that it serves as both a “classification” and a “regression” loss.190

Recall that the canonical categorical cross-entropy (cat-loss) can be written as the negative log-191
likelihood of an exponential family (Brown, 1987). Let y ∈ [0, 1] be a scalar and θ ∈ RK . In its192
canonical form, the cat-loss can be (naively) used for value learning in reinforcement learning,193

ℓ(θ, y) = log
( K∑
i=1

exp(θi)
)
− T (y)⊤θ,

where T (y) “bins” y into one of K discrete categories. Concretely,194

T (y) =
[
I{ 0 ≤ y ≤ ν1}, I{ν1 < y ≤ ν2}, . . . , I{νK−1 < y ≤ 1}

]
,

where 0 < ν1 < ν2 < . . . < νK−1 < 1. Unfortunately, this form of the cat-loss introduces an195
irreducible projection bias for regression tasks since the exact location of y within the bin is lost.196
This bias prevents accurate value function estimation.197

Reparameterized Cat-Loss. To remove this bias while retaining the multi-category structure, we198
reparameterize the loss to incorporate y directly into the sufficient statistic. Define199

ℓcat(θ, y) = log
(
1 +

K−1∑
i=1

exp
(
νi θi

)
+ exp(θK)

)
︸ ︷︷ ︸

= A(θ)

−y T (y)⊤θ.

Here, A(θ) is the log-partition function, and the sufficient statistic is y T (y). Thus, ℓcat remains200
the negative log-likelihood of an exponential family, but one that does not lose all fine-grained201
information about y through binning. The following proposition shows that ℓcat preserves the mean202
of any bounded scalar random variable.203

Proposition 4.1. Let Y be a bounded random variable taking values in [0, 1] with mean µ = E[Y ],204
and let P be its distribution. Then205

θ⋆ ∈ argmin
θ∈RK

∫
ℓcat(θ, y)P (dy) ⇐⇒

(
∇A(θ⋆)

)⊤
1 = µ.

Proof. Since ℓcat is convex in θ, first-order optimality conditions imply206

θ⋆ ∈ argmin
θ∈RK

∫
ℓcat(θ, y)P (dy) ⇐⇒ ∇

(∫
ℓcat(θ⋆, y)P (dy)

)
= 0 .

Differentiating under the integral, we obtain207

∇A(θ⋆) =
∫
y T (y)P (dy).

Next, observe that T (y) is a one-hot bin indicator, so208 (∫
y T (y)P (dy)

)⊤
1 =

∫ (
y T (y)⊤1

)
P (dy) =

∫
y P (dy) = µ .

It follows that
(
∇A(θ⋆)

)⊤
1 = µ, establishing the claim.209
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Figure 1: Failure rates for inverted pendulum as a function of the size of the batch dataset. Results are
averaged over 45 independently collected datasets, and fitted Q-iteration was run for 50 iterations.
We report 90% confidence intervals via the shaded regions. The LEFT and MIDDLE figures use
Fourier features of order 2, the RIGHT figure uses Fourier features of order 3. The LEFT figure uses
5 uniformly spaced points as the support for the CAT, while the MIDDLE and RIGHT figures use 5
non-uniformly spaced points as the support.

Hence, minimizing ℓcat recovers the mean of any bounded scalar random variable Y while the210
structure of T (y) still allows multi-category classification. In essence, by choosing the sufficient211
statistic to be y T (y), we unify classification and regression without the loss of granularity inherent212
in a purely bin-based approach.213

Since the cat-loss is a generalization of the log-loss, a first-order bound, similar to that of Lemma 3.1,214
can be shown for the cat-loss. Thus the cat-loss also does well when the optimal return v⋆ ≈ 1,215
albeit with an additional factor of K scaling the bound due to concentration arguments (Zhang,216
2006; Grünwald & Mehta, 2020).217

Extensions. This mean-preserving strategy can be generalized to other distribution-based losses218
derived from exponential families. For instance, HL Gauss (Imani & White, 2018), which has219
been shown to have very low test MAE (Imani et al., 2024), can be reparameterized similarly to220
retain its distributional modeling benefits for classification, while accurately recovering the mean221
of continuous targets. In a broader sense, any exponential-family log-likelihood can be adapted222
for dual “classification”-regression usage by carefully selecting sufficient statistics that embed the223
raw target y, thus allowing us to harness the benefits of classification1 losses (i.e., categorical cross224
entropy) for reinforcement learning and continue regressing (Farebrother et al., 2024).225

5 Numerical Experiments226

We evaluate fitted Q-iteration (Ernst et al., 2005; Szepesvári, 2022) trained with squared loss227
(SQUARE), log-loss (LOG), and cat-loss (CAT) on the inverted pendulum environment (Lagoudakis228
& Parr, 2003; Riedmiller, 2005), where the goal is to keep an inverted pendulum balanced by apply-229
ing the correct forces. The state space is two-dimensional (angle and angular velocity), and there are230
three actions (left, right, do nothing). The environment dynamics follow Lagoudakis & Parr (2003),231
with two modifications: (i) when the pendulum falls below horizontal, the state terminates, and (ii)232
the angular momentum is clipped to [-5,5] to facilitate the use of Fourier features (Konidaris et al.,233
2011) of orders 2 and 3. The agent receives a reward of 0 for staying upright and -1 for falling, with234
a discount factor of γ = 0.99. All datasets are collected by a policy that selects actions uniformly235
at random until failure (which typically occurs after 6 steps). We then evaluate whether the learned236
policies keep the inverted pendulum above horizontal after 3000 steps and report the policy’s failure237
rate.238

1Cross-entropy losses
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For minimizing SQUARE, we use its closed-form solution; for minimizing LOG, we apply Newton’s239
method (Sun & Tran-Dinh, 2019); and for minimizing CAT, we use a limited-memory BFGS method240
(Schmidt et al., 2009). All three methods are guaranteed to converge to their respective optima241
superlinearly.242

In this environment, there is a policy that achieves the maximum possible return. As shown in Sec-243
tion 5, both LOG and CAT outperform SQUARE with order-2 Fourier features, while all three perform244
similarly with order-3 features, though LOG learns fastest. While LOG and SQUARE were relatively245
straightforward to implement, CAT proved more sensitive to both the choice of ℓ2 regularization and246
the spacing and number of bins.247

6 Conclusion248

In this paper, we examined how the choice of regression objective can influence the design of value-249
based methods in reinforcement learning. We showed that losses aligning with mean absolute error,250
such as log-loss and a reparameterized categorical loss, can yield stronger theoretical guarantees and251
better empirical outcomes than squared loss, especially when the optimal policy is near maximum252
return. We also presented negative examples illustrating that purely MSE-based approaches can253
learn slowly in such scenarios. Finally, our experiments in a linear batch reinforcement learning254
setting reinforce these conclusions.255
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331

A Additional Notation332

In this section, we introduce additional notation we will find useful in stating our theoretical results.
For a distribution P over the reals, let E(P ) denote the mean of P and Var(P ) denote the variance
of P (assuming they exist). Furthermore for p, q ∈ [0, 1] define the pointwise triangular deviation
between p, q as

∆(p, q) =
(p− q)2

p+ q

and the binary Hellinger distance of p and q as

h2(p, q) =
1

2
(
√
p−√

q)2 +
1

2
(
√
1− p−

√
1− q)2 .

Furthermore for any x ∈ [0, 1], define

L(x) = 1− x .

B Proof of Lemma 3.1333

We begin by bounding the suboptimality gap of the value-based method that minimizes the log-loss334
ℓlog.335

Proof of Lemma 3.1. By Lemma D.1, we have336

Sub-opt(π̂) = v⋆ − v̂ = L(v̂)− L(v⋆)

≤ 8

√
L(v⋆)E

[∑
a∈A

∆
(
L(f⋆(S, a)), L(f̂(S, a))

)]
+ 17E

[∑
a∈A

∆
(
L(f⋆(S, a)), L(f̂(S, a))

)]
.

Next, by Lemma D.2,337

∆
(
L(f⋆(S, a)), L(f̂(S, a))

)
≤ 4 h2

(
f⋆(S, a), f̂(S, a)

)
.

Applying Theorem D.3, we get338

E
[∑
a∈A

∆
(
L(f⋆(S, a)), L(f̂(S, a))

)]
≤

2A log
(
|F|/δ

)
n

.

The second part of the lemma follows from the argument in the proof of Lemma 1 in Foster &339
Krishnamurthy (2021), where bounding the mean absolute error appears as an intermediate step.340

C Proof of the Negative Results341

In this section, we show that minimizing the empirical squared loss does not always achieve a 1/n-342
rate for the mean absolute error (MAE) when

∫
f⋆(x)PX(dx) ≈ 1. By contrast, Lemma 3.1 implies343

that minimizing the empirical log-loss does achieve such a rate under the same conditions.344

Setup. Given a dataset {(Xi, Yi)}ni=1 ∼ P⊗n with Yi ∈ [0, 1] and Xi ∈ X , define the empirical345
squared loss of a function f : X → [0, 1] by346

L̂(f) =

n∑
i=1

(
f(Xi)− Yi

)2
.
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Let PX denote the distribution of the contexts. Given a fixed function class F ⊆ [0, 1]X , define the347
empirical risk minimizer (ERM) for squared loss as348

f̂sq = argmin
f∈F

L̂(f).

We now construct a problem instance where f̂sq does not achieve 1/n-rate convergence for MAE,349
even though f⋆ ≈ 1. Recall that by Lemma 3.1, the empirical log-loss minimizer can achieve a350
1/n-rate under similar conditions.351

Construction. Let X = {x, x′} and set PX(x) = 1− 1/n and PX(x′) = 1/n. The labels Y have352
the following conditional distributions:353

1. Y | x = 1− 1
2n almost surely, so E[Y | X = x] = f⋆(x) = 1− 1

2n .354

2. Y | x′ ∼ Bernoulli(1/2), so E[Y | X = x′] = f⋆(x′) = 1/2.355

We take the function class F = {f⋆, ψ}, where356

ψ(x) = 1− 1

2n
− 1

3
√
n
, and ψ(x′) = 0.

This class satisfies the realizability assumption (i.e., f⋆ ∈ F).357

Proof of Lemma 3.3. Suppose L̂(ψ) ≤ L̂(f⋆). Then f̂sq = ψ and thus358 ∫ ∣∣f̂sq(x)− f⋆(x)
∣∣PX(dx) ≥

∣∣∣ (1− 1

2n
− 1

3
√
n

)
−

(
1− 1

2n

)∣∣∣ = 1

3
√
n
.

It remains to show that L̂(ψ) ≤ L̂(f⋆) holds with constant probability. Let N2 be the number of359
times Xi = x′ in the dataset. Then360

P(N2 = 1) =

n∑
i=1

1

n

(
1− 1

n

)n−1

=
1

1− 1
n

(
1− 1

n

)n−1

≥ 1

e
,

for all n ≥ 1. Conditioning on the event N2 = 1, we have exactly one observation of x′. Since361
Y = 0 in that observation with probability 1/2, it follows that with probability at least 1/(2e) we362
observe a single (x′, 0) point in the dataset. On this event,363

L̂(f⋆)− L̂(ψ) =
1

4
− (n− 1)

( 1

3
√
n

)2

≥ 1

4
− 1

9
> 0.

Hence f̂sq = ψ with probability at least 1/(2e) for all n ≥ 1.364

Proof of Proposition 3.2. We use a similar construction to prove that the root mean squared error365
(rMSE) of f̂log can remain at Ω(1/

√
n) even when

∫
f⋆(x)PX(dx) ≈ 1. We slightly modify the366

function class to367
Flog = { f⋆, ϕ}, where ϕ(x) = f⋆(x), ϕ(x′) = 0.

Define368

L̂log(f) =

n∑
i=1

ℓlog
(
f(Xi), Yi

)
, f̂log = argmin

f∈Flog

L̂log(f).

If L̂log(ϕ) ≤ L̂log(f
⋆), then f̂log = ϕ, and369 √∫ (

f̂log(x)− f⋆(x)
)2
PX(dx) =

1

2
√
n
.
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Let N2 be the number of times Xi = x′. As in the proof of Lemma 3.3,370

P(N2 = 1) ≥ 1

e
.

Conditioning on N2 = 1, we have Y = 0 at x′ with probability 1/2, which occurs with probability371
1/(2e). On this event,372

L̂log(f
⋆)− L̂log(ϕ) = log

1

1− 0.5
− log

1

1
= log(2) > 0,

so f̂log = ϕ. Hence with probability at least 1/(2e), the rMSE between f̂log and f⋆ remains 1
2
√
n

.373

Thus, we have shown that there are problems where v⋆ ≈ 1 but the rMSE of f̂log decays no faster374
than 1/

√
n.375

D Technical Results376

Lemma D.1 (Lemma 1 of Foster & Krishnamurthy (2021)). For any function f : S × A → [0, 1]377
and policy π that is greedy with respect to f ,378

L(vπ)− L(v⋆)

≤ 8

√
L(v⋆)

∫ ∑
a∈A

∆
(
L⋆(s, a), L̂(s, a)

)
PS(ds) + 17

∫ ∑
a∈A

∆
(
L⋆(s, a), L̂(s, a)

)
PS(ds)

where L⋆(s, a) = L(f⋆(s, a)) and L̂(s, a) = L(f̂(s, a)).379

Lemma D.2 (Lemma A.1 of Ayoub et al. (2024)). For all p, q ∈ [0, 1], we have380

1

4
∆(p, q) ≤ 1

2
(
√
p−√

q)2 ≤ h2(p, q) .

D.1 Concentration for the Log-Loss Estimator381

Fix a context set X . Let {(Xi, Yi)}ni=1 be i.i.d. samples from a distribution ν ∈ M1(X × [0, 1]).382
Define the regression function383

f⋆(x) = E
[
Y1

∣∣X1 = x
]
.

Suppose we have a finite class of candidate functions F ⊆ [0, 1]X . Recall that the log-loss estimator384
is given by385

f̂log = argmin
f∈F

n∑
i=1

ℓlog
(
f(Xi), Yi

)
,

where for x, y ∈ [0, 1],386

ℓlog(x, y) = y log
1

x
+ (1− y) log

1

1− x
,

with the convention 0 log∞ = limu→0 u log
1
u = 0.387

Foster & Krishnamurthy (2021) establish the following concentration result for f̂log. We restate it388
here for completeness.389

Theorem D.3. Suppose f⋆ ∈ F . Let Dn = {(Xi, Yi)}ni=1 ∼ ν⊗n. Then for any δ ∈ (0, 1), with390
probability at least 1− δ,391 ∫

h2
(
f̂log(x), f

⋆(x)
)
νX(dx) ≤

2 log
(
|F|/δ

)
n

,

where νX is the marginal distribution of X1, . . . , Xn.392

Proof. The result follows directly from the last equation on page 24 of the arXiv version of Foster393
& Krishnamurthy (2021), taking A = 1.394
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