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ABSTRACT

Pretrained medical foundation models (FMs) have shown strong generalization
across diverse imaging tasks, such as disease classification in radiology and tu-
mor grading in histopathology. While recent advances in parameter-efficient fine-
tuning have enabled effective adaptation of FMs to downstream tasks, these ap-
proaches are typically designed for a single modality. In contrast, many clinical
workflows rely on joint diagnosis from heterogeneous domains, such as radiol-
ogy and pathology, where fully leveraging the representation capacity of multi-
ple FMs remains an open challenge. To address this gap, we propose Concept
Tuning and Fusing (CTF), a parameter-efficient framework that uses clinically
grounded concepts as a shared semantic interface to enable cross-modal co-
adaptation before fusion. By incorporating task-specific concepts that are relevant
across modalities, CTF aligns radiology and pathology representations, thereby
enhancing their complementarity and enabling interpretation. We further de-
sign a Global-Context—Shared Prompt (GCSP) mechanism, which employs a
small set of learnable tokens to capture domain-specific priors, shared patient-
level information, and cross-domain context. The resulting concept alignment
scores from each modality are then fused to produce a final prediction. Ex-
tensive experiments demonstrate that CTF outperforms strong unimodal, latent-
fusion, and adapter-based baselines (e.g., AUC 0.903 on TCGA-GBMLGG).
Notably, CTF achieves these gains without finetuning the full FMs, requiring
only 0.15% additional parameters, thus highlighting the effectiveness of concept-
based multimodal co-adaptation. Our code is anonymously available at: https:
//anonymous.4open.science/r/CTF-27C2.

1 INTRODUCTION

Foundation models (FMs) are increasingly demonstrating significant potential in transforming
healthcare by enabling the joint analysis of medical images and associated textual information (Cui
et al.,[2023}; Steyaert et al., 2023} |Qian et al., 2021} |Radford et al., 2021). In clinical practice, how-
ever, a patient’s condition is often assessed through multiple diagnostic domainsﬂ such as radiology
scans (e.g., CT, MRI) providing macroscopic structural information and pathology slides revealing
microscopic cellular details (Tomaszewski & Gillies| [2021};|Q1 et al.,|2024). Integrating information
from these diverse sources is crucial for a holistic understanding of disease processes and accu-
rate prediction of clinical outcomes like patient survival or tumor grade (Rahaman et al.l 2025
Wang et al.,|2024). Yet, many current vision-language FM applications in healthcare operate within
siloed domains—one for radiology, another for pathology—each with its own “visual language”
(Lu et al.| 2024} Zhang et al., 2023} Majzoub et al., |2025). The central challenge, therefore, is not
merely to combine their outputs but to bridge these distinct expert models in a way that creates deep,
synergistic understanding and maintains the clinical interpretability crucial for high-stakes medical
decisions.

Existing attempts at multi-domain integration in medicine face practical and methodological limits.
A common strategy uses pre-trained Vision Language Models (VLMs) as fixed feature extractors for

"We use the term “domain” to refer to pathology and radiology, and “modal” to refer to texts and images.
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Figure 1: Conceptual comparison of multimodal fusion paradigms. (a) Conventional pipeline: radi-
ology and pathology FMs are used as frozen feature extractors; fusion is performed on static latent
features. (b) CTF performs cross-domain co-adaptation of risk-stratified concept semantics before
fusion, enabling interpretable predictions.

each domain, followed by a simple fusion mechanism (e.g., concatenation) applied to these static
representations (Zhang et al [2024a; [Xu & Chen, 2023). This approach limits the model’s adapt-
ability to the specific information of the downstream task and the interplay between modalities.
Conversely, full fine-tuning of large VLMs is computationally expensive and often remains con-
fined to the model’s pretraining domain, weakening knowledge transfer across domains (Shi et al.,
2024). Furthermore, both approaches often result in “black-box” systems where the reasoning be-
hind predictions remains opaque, posing challenges for clinical trust and interpretability—a critical
requirement in high-stakes medical decision-making (Amann et al.; 20205 Rudin, 2019; Doshi-Velez
& Kim| 2017). This conventional paradigm, which relies on extracting static features from siloed
modalities before a simple, non-interpretable fusion step, is illustrated in Figure[Th.

To overcome these challenges, we argue that the key to unlocking synergy is to establish a shared,
interpretable vocabulary that can bridge the semantic gap between FMs from different domains.
Clinically-grounded concepts, such as “tumor necrosis” or “cellular atypia”, provide this natural
bridge. However, treating concepts as fixed definitions is brittle: the prognostic meaning of a concept
in one domain often depends on context from the other. For example, “irregular tumor margins”
in radiology is far more alarming when paired with histopathology evidence of “lymphovascular
invasion.” While recent works have begun aligning expert-derived concepts with images (Zhao et al.}
2024; Nguyen et al.,|2025)), they do not dynamically modulate these concepts based on cross-domain
information. Our core insight is that concepts should not be a static bottleneck, but a dynamic
medium for co-adaptation, where the semantic representation of a concept in one modality is actively
tuned by features from the other.

To this end, we introduce Concept Tuning and Fusing (CTF), a novel framework that bridges ra-
diology and pathology VLMs through medically-enriched concepts (Figure [Ip). Instead of fusing
static features, CTF forces each modality to “be aware” of the other during the feature extraction
process. The core of our framework is the Global-Context-Shared Prompt (GCSP) strategy, a prefix
tuning method that conditions the interpretation of concepts within one domain (e.g., radiology) on
the visual features from the complementary domain (e.g., pathology). This cross-domain condi-
tioning allows each VLM to produce richer, contextually-aware concept representations tailored to
the patient case before they are fused for a final prediction. We detail three stages: (i) MI + diver-
sity concept selection (Sec 3.1), (ii)) GCSP-based cross-domain concept tuning (Sec 3.2), and (iii)
concept-score fusion and prediction (Sec 3.3).

Our main contributions are:

e We propose CTF, a new framework that uses medically-relevant concepts as a dynamic and
interpretable bridge to fuse distinct medical VLMs, moving beyond conventional “black-box”
latent fusion.

* We introduce the Global-Context-Shared Prompt (GCSP) strategy, a novel cross-domain con-
ditioning mechanism that uses efficient prompt tuning (=~0.15% trainable parameters) to adapt
the semantic meaning of concepts based on complementary domains.
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* We conduct extensive experiments on four public and in-house datasets, demonstrating that CTF
significantly outperforms state-of-the-art unimodal and multimodal methods in both survival
analysis and cancer grading, achieving a C-index improvement of 3.5% and an AUC improve-
ment of 2.9% over the strongest baselines, respectively.

2 RELATED WORK

Multimodal Fusion for Clinical Prediction. The integration of diverse data, especially macro-
scopic radiology and microscopic pathology, is critical in oncology (Zhao et al.| [2022)), with multi-
modal models consistently outperforming unimodal approaches (Benani et al., 2025). A dominant
paradigm is latent-space fusion, where features are independently extracted and then combined using
methods like co-attention transformer (Xu & Chen, 2023} [Lu et al., 2019), or information-theoretic
disentanglement to separate shared and specific information (Zhang et al., 2024a). While power-
ful, these methods primarily fuse latent representations that are already fixed, treating the feature
extractors as black boxes and limiting the depth of synergy. Even when powerful pathology foun-
dation models are used as the pathology encoder (Chen et al., 2024; Ma et al., |2025; Xu et al.,
2024)), they are typically plugged in as static feature extractors within this latent-fusion pipeline.
Our work proposes a shift: instead of refining the fusion of static features, we enable a dynamic di-
alogue between domains. Unlike latent fusion that combines already-fixed features, and fine-tuning
that adapts backbones separately, CTF explicitly co-adapts concept semantics using cross-domain
prompts before any fusion.

Foundation Model Adaptation and Cross-Domain Guidance. The advent of foundation models
(FMs) offers new avenues for realizing this dialogue. While many works use FMs as off-the-shelf
feature extractors, Parameter-Efficient Fine-Tuning (PEFT) (Hu et al., 2022; |L1 & Liang| [2021])
methods have emerged to adapt them. Techniques include architectural adapters (Houlsby et al.,
2019) and recent medical adapters (Lee et al., 2025) or prompt-based tuning (Lester et al., [2021),
which have been used to adapt VLMs for specific domains or tasks (Zhou et al., [2022)), often in a
unimodal fashion (Peng et al., 2025). In computational pathology, knowledge-enhanced compres-
sion and prompt-like adaptation have been explored for few-shot WSI classification (Guo et al.}
2025), and parameter-efficient tuning has also been leveraged for medical report generation in fed-
erated settings (Che et al.| 2025)). CTF innovates by using prompts not just for task adaptation, but
as a cross-domain conditioning mechanism where one domain dynamically influences the semantic
interpretation within another, creating an integrated, context-aware system before fusion.

Concept-Based and Interpretable Multimodal Learning. A major barrier to the clinical adop-
tion of deep fusion models is their lack of interpretability (Amann et al. 2020). Concept Bottle-
neck Models (CBMs) (Koh et al.l [2020; |(Ghorbani et al., [2019) address this by forcing predictions
through a set of human-understandable concepts. While foundational, this rigid bottleneck can limit
performance. The field is evolving towards more flexible, interpretable frameworks, such as using
multimodal contrastive learning (Nauta et al., 2021) to find local, explainable correlations between
imaging and text or building large-scale, concept-centric FMs like ConceptCLIP (Nie et al., [2025)).
CTF is inspired by this philosophy but makes a crucial contribution to the multimodal context. We
treat concepts not as a static bottleneck, but as the very medium for the cross-domain guidance de-
scribed above. Our key innovation, the GCSP strategy, allows each VLM to adjust its understanding
of concepts like “tumor invasiveness” based on real-time information from the complementary do-
main. This unique synthesis provides the deep synergy of cross-domain guidance while leveraging
the transparency of concept-based reasoning, distinguishing our work from both black-box fusion
techniques and traditional CBMs.

3 METHODOLOGY

Our Concept Tuning and Fusing (CTF) framework enables synergistic integration of radiology and
pathology data by creating a shared semantic bridge built on medically relevant concepts. The
framework, depicted in Figure [2] proceeds in three main stages. First, in Prognostic Concept Se-
lection (Sec[3.1), we generate a comprehensive pool of medical concepts and then use a principled
optimization strategy to select a compact, diverse, and prognostically relevant subset for each do-
main. Second, in the core of our framework, Cross-Domain Concept Co-Adaptation (Sec[3.2), we
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Figure 2: Overview of the CTF framework.(I) Concept Generation & Selection identifies relevant
and diverse medical concepts. (II) Concept Tuning & Fusing freezes radiology/pathology vision
encoders. GCSP prepends three prompts to each concept’s text tokens—(a) global (task adaptation),
(b) shared (MLP over [ f., fr]), and (c) context (gated by the complementary modality)—before the
frozen text encoders, producing per-domain concept scores that are concatenated for prediction.

use our novel Global-Context-Shared Prompt (GCSP) mechanism to dynamically tune the textual
embedding of each concept, making it aware of both the downstream task and the cross-domain
context of the specific patient case. Finally, in Fusion and Interpretable Prediction (Sec [3.3),
these co-adapted concept scores are fused and fed to a prediction head, ensuring that the final output
is grounded in a transparent, concept-level rationale. The entire model, with only the lightweight
prompt modules being trainable, is optimized end-to-end.

3.1 FEATURE EXTRACTION AND PROGNOSTIC CONCEPT SELECTION

Vision Feature Extraction. Given a radiology image x, and a pathology whole-slide image
(WSI) xj, we first obtain global feature representations using the vision encoders (V,., V3) of
powerful, pre-trained medical VLMs. This yields feature vectors f, = V,.(x,) € RP» and
In = Wn(xp) € RPvr, where D,, and D,;, are the dimensions of the respective vision feature
spaces. These encoders remain frozen during training to preserve their rich, pre-trained knowledge.

Prognostic Concept Selection. A high-quality set of medical concepts forms the foundation of
our interpretable bridge. Given an initial large candidate pool S (generated via LLMs per domain.
Details in Appendix [C.I]), we aim to select a compact subset C of size k that is both prognostically
relevant and semantically diverse. This avoids selecting redundant concepts (e.g., “irregular mar-
gins” and “ill-defined borders™). We formalize this as maximizing a submodular objective function
(Harshaw et al.l[2019; |Lin & Bilmes| [2012), which balances relevance d(-) and diversity:

F(C) =S d)+ A in (1— ot t)). |
(€) Ze; (c) + cecc,ggl\r{lc}( o( ) (1)

As this is NP-hard, we approximate the solution with a two-stage greedy algorithm (shown in Fig. [2):

1. Relevance Ranking: We first score every candidate concept ¢ € S based on its prognostic
relevance. We define this relevance score d(c) using the Mutual Information (MI) between the con-
cept’s alignment scores and patient labels (Kraskov et al., [2004). For each image x;, an alignment
score a(x;,c) = (t] £:)/(|[tc]|2]|fill2) is computed, where t. = T(c) is the text embedding of
concept ¢ from the text encoder 7'(-). We estimate MI via sklearn’s kKNN-based mutual_info_classif
(Ross, 2014])), which discretizes the continuous alignment internally. We then compute its MI with

the lab§1 Y as d(c) =I(A;Y) = Zyey > aca, P(a,y)log p’(’é‘i‘;@). All concepts in S are then
sorted in descending order based on this score.

2. Diversity Maximization: We initialize our final concept set C with the top-ranked concept
from the first round. We then iteratively add concepts to C from the sorted list. At each step, we
select the next concept c* that maximizes semantic diversity with respect to the concepts already
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chosen, defined as ¢* = argmax, cg\¢ (mincec(l — o(te, tc))), where o (-, -) is the cosine simi-
larity between concept text embeddings from the VLM’s text encoder T'(+). This process continues
until |C| = k, yielding the final, high-quality concept sets Cyyq and Chg.

This selection is performed once with frozen encoders, and tuned prompts (Sec. [3.2) are used only
during model training/inference.

3.2 CROSS-DOMAIN CONCEPT CO-ADAPTATION

Static concept representations fail to capture how the meaning of a medical finding can shift based
on complementary information. To address this, we introduce the Global-Context-Shared Prompt
(GCSP) strategy, a parameter-efficient tuning method that generates a dynamic, case-specific prefix
Pred for each concept ¢ before it is processed by the frozen text encoder 7'(-). Unlike methods that
aim to modify static latent features, our approach actively conditions the semantic representation
of concepts within each domain, creating a synergistic dialogue before fusion. We apply GCSP
symmetrically: radiology concepts are conditioned on pathology features and vice versa (Fig. [2).
For a radiology (pathology by symmetry) concept, the prefix P"d ¢ RE*P+ is a concatenation of
three specialized components:

PUed — Coneat (Pa, Po(frn), Ps(fr, fr)) - 2)

Global Prompt (Pg). For each concept ¢, we learn a dedicated, domain-specific prompt vector
P (c). This prompt is shared across all patients within one domain and provides a general adapta-
tion of the concept’s pre-trained meaning to the specific nuances of the downstream task.

Context Prompt (P¢). This prompt is the key to our cross-domain guidance. It allows one modal-
ity to influence the interpretation of concepts in the other via a Mixture-of-Experts (MoE) style
layer (Shazeer et al.,[2017)). For a radiology concept c,, the context prompt is generated from the
pathology image feature f;,. We maintain a learnable pool of M basis prompt vectors { Pg5"}}2,

shared across all concepts in that domain. A lightweight gating network, g, : RP»» — RM | takes

the complementary feature f;, to produce mixture weights: Po(fn) = Z£1 a; - PSS, where

a = softmax(g,(f1)). This mechanism dynamically selects and weights conceptual attributes and
provides patient-specific, cross-domain conditioning of concept semantics (see Appendix [A.T] for
more details). The same mechanism is applied symmetrically for pathology concepts.

Shared Prompt (Ps). This prompt captures holistic, patient-specific synergy. First, a shared latent
vector is produced by a small MLP, ¢g, that takes the concatenated features from both modalities
as input: fs = ¢gs(Concat(f,, fn)). This shared feature is then projected by two separate linear
layers, to suit different VLMs’ context: Ps,(fs) = ¢gs,(fs) and Ps(fs) = wsn(fs). This
provides a unified adjustment signal to all concepts for a given patient, ensuring coherent refinement
across domains.

3.3 CONCEPT-BASED FUSION AND TASK-SPECIFIC PREDICTION

After generating the composite prompt Py,eq for each concept, we prepend Pyyeq to the tokenized
concept string. Then we obtain a set of tuned textual embeddings, {t. } and {¢., }, from the text en-
coder, where tNC = T(Tuned tokens for ¢). We then compute two concept score vectors, s, € RICradl
and s;, € RI%s, representing the alignment of each image with its corresponding tuned concepts,
where the j-th element of each vector is computed as: s,; = (f, ECSJ)) /(I f,.|\2||fc(rj) ll2) and

sh; = ( f,LTtNCg) )/ (] th2||t~c§Lj> l2). These score vectors provide an interpretable representation of

the patient’s condition. The final patient representation z is formed by concatenating the scores from
both domains: z = Concat(s,, sy,). This interpretable vector is then passed through a final predic-
tion head, a multi-layer perceptron (MLPpq), to produce the task-specific output o = MLPpred(z).
All FM encoders remain frozen and only the prompt modules and prediction head are trainable,
totaling 0.5M (0.15% of 307M across both FMs).

Optimization. The entire framework is trained end-to-end using a loss function appropriate for the
downstream task. For survival analysis, we use the Cox Proportional Hazards model (Cox| [1972)
where o is a vector of risk scores. The model is optimized by minimizing the negative log partial
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likelihood Loox = — Zi:&;:l (ri — log ZjeRi exp(rj)>, where §; = 1 if the event (e.g., death)

was observed and 6, = 0 if the data is right-censored, r; is the predicted risk for patient s and R; =
{ j|tj > t;} is the set of patients still at risk at time ¢; (Katzman et all,2018). For a classification
task like cancer grading, the prediction head MLPy,q outputs class logits, and the model is optimized
using a standard cross-entropy loss. Note that MI ranking is used only offline for concept selection.
At inference, we compute cosine-normalized concept scores with tuned embeddings and no labels
or MI are used.

4 EXPERIMENTS

We designed a comprehensive set of experiments to validate the core hypotheses of our work. Our
evaluation is structured to demonstrate that (1) our concept-based fusion paradigm, CTF, surpasses
state-of-the-art methods that rely on static or independently adapted latent features; (2) the perfor-
mance gains are primarily driven by our novel GCSP strategy, which enables a dynamic, cross-
domain dialogue; and (3) CTF yields predictions that are not only accurate but also interpretable,
robust across diverse clinical tasks, and grounded in clinically plausible reasoning.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate CTF on two distinct and clinically vital predictive tasks: survival analysis and
cancer grading. We curated four datasets spanning different cancer types and imaging modalities.
For survival analysis, we use three cohorts with paired imaging and clinical data: TCGA-LG
TCGA-GBM, and private Centerl-GC (Gastric Cancer). For cancer grading, we evaluate perfor-
mance on three cohorts, including private Center2-CHS (Chondrosarcoma). The specific classifica-
tions include 3-way WHO grades for the brain tumor cohorts (LGG and GBM merged) and 5-way
TNM T-stage for the gastric cancer cohort, a particularly challenging benchmark task. We report
mean=sd over 10 stratified train/val/test splits. Besides, we perform paired t-tests between CTF and
the strongest baseline per task in Appendix [D.4]

Implementation Details. To instantiate our Table 1: Survival prediction performance (C-
framework, we selected domain-expert foun- index 1) on three datasets. Best performance is
dation models to maximize clinical relevance: in bold, second-best is underlined.

BiomedCLIP (Zhang et al.l |2023) for radiol-

ogy and CONCH (Lu et al., [2024) for pathol- Medel TCGA-LGG TCGA-GBM _ Center1-GC
. . ot Unimodal Baselines

ogy. By keeping their vision encoders frozen, Radiology-Only 0598 +0.128  0.477 +0.055 0.614 £ 0.052

we leverage their specialized knowledge bases ~ABMIL {lisc et al50T) 0.669 =0.101 0.480+0.093 0.590 + 0.030

CLAM (Lu et al.|[2021] 0689+ 0.108 0.497 + 0.068 0.631 £ 0.060

and focus our method on creating a synergistic  TransMIL (Shao etal 2021}  0.682 +0.121 0.503 £ 0.055 0613  0.066
dialogue between them FOr each domain we ACMIL (Zhang et al.{2024b)  0.678 +0.142  0.519 +0.057 0.628 + 0.083
. ,

Multimodal Latent Fusion Baselines

selected k = 256 concepts using the designed  conca-Fusion 0.674+0.112  0.5154+0.070 0.626 + 0.048
: — _  Cross-Attention 0.685 £ 0.108  0.527 £0.068 0.631 % 0.060
strategy (Sec. [3.1) and inserted L = 12 tun MOTCAT (Xu & Chenl[2023] 0.571 £ 0.080 0.563 £ 0.108  0.622 + 0.040

able tokens (Sec.[3:2). The whole framework, —PIBD Zhangetal[202%a] 0.687 +£0.123 0531+ 0061 0638 +0.058
including all prompt generators, is trained end- ~ Multimodal Adapiive Fusion Baseline

d F 11 . 1 t t h t M4Survive (Lee et al.|[2025} 0.709 £ 0.112  0.545 £0.072  0.642 4 0.065
to-end. Full implementation, hyperparameter crr oy 0.713£0.103 0.579=0.063 0.665 + 0.061
details, and hardware/GPU usage are in Ap-

pendix [A.2]and Appendix [A.3]

4.2 BASELINES

We compared CTF against a comprehensive set of models. Unimodal baselines include several
high-performing single-modality methods (ABMIL (llse et al.l [2018), CLAM (Lu et al.| 2021},
etc.). Fusion baselines include: (1) Simple Fusion methods (Concat-Fusion, Cross-Attention); (2)
State-of-the-Art (SOTA) Latent Fusion methods that fuse static features (MOTCAT (Xu & Chen,
2023)), PIBD (Zhang et al,[2024a))); and (3) a SOTA Adaptive Fusion method that fine-tunes model
weights (M4Survive (Lee et al., 2025)). Detailed descriptions of each baseline are in Appendix [A.3]
For fairness, all baselines share the same frozen vision encoders and survival/classification heads,
and only fusion modules differ. Adaptation specifics for MOTCAT/PIBD are in Appendix [A.4]

2https ://www.cancer.gov/tcga/
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Table 2: Cancer Grading Performance (AUCYT and ACC?). Best performance is in bold, second-best
is underlined.

Model TCGA-GBMLGG (3-way) Center2-CHS (5-way) Center1-GC (5-way)
oce AUCT ACCT AUCT ACCT AUCT ACCT
Unimodal Baselines
Radiology-Only 0.776 £0.059  0.624 £0.064 0.679 £0.069 0.429 +£0.091 0.595 4+ 0.087 0.341 + 0.080
ABMIL (IIse et al./|2018) 0.855 £ 0.050 0.667 £0.076 0.770 £0.092 0.493 +£0.138 0.609 4+ 0.063 0.384 + 0.053
CLAM (Lu et al.[[2021) 0.860 £ 0.048 0.681 £0.070 0.775+£0.089 0.5124+0.130 0.628 +0.055 0.390 = 0.051

TransMIL (Shao et al.|[2021)  0.864 £0.050 0.684 £0.068 0.781 £0.085 0.518 £0.128 0.625 4 0.058 0.388 4= 0.049
ACMIL (Zhang et al.;[2024b)  0.853 £0.046  0.680 +0.069 0.7794+0.046 0.515+0.129 0.619 £0.062 0.389 £ 0.054

Multimodal Latent Fusion Baselines
Concat-Fusion 0.858 £0.038 0.687 £0.062 0.805+0.075 0.535+0.115 0.629 +0.051 0.391 4+ 0.048
Cross-Attention 0.868 £0.030 0.695 £0.059 0.817£0.071 0.581 £ 0.110 0.635 4+ 0.048 0.394 &+ 0.049
MOTCAT (Xu & Chen![2023) 0.865 4+ 0.025 0.657 +0.053 0.826 +0.078 0.612+0.120 0.641 £ 0.050 0.390 £ 0.052

Multimodal Adaptive Fusion Baseline
M4Survive (Lee et al.|2025)  0.861 £0.031 0.691 £ 0.061 0.830+0.075 0.626 +0.115 0.649 £ 0.052 0.390 + 0.051

CTF (Ours) 0.903 +0.028 0.718 £ 0.063  0.854 & 0.081 0.698 + 0.164  0.660 = 0.049  0.401 + 0.057

4.3 QUANTITATIVE RESULTS

Superior Survival Prediction. As presented in Table [I] CTF consistently achieves state-of-the-art
performance, outperforming all baselines in our study on the three survival prediction cohorts. No-
tably, it achieves a C-index (Harrell et al.| [1982) of 0.713 on TCGA-LGG, surpassing the strongest
adaptive baseline, M4Survive, and the strongest latent fusion baseline, PIBD, by 3.8%. The results
reveal a clear hierarchy of fusion strategies. While all multimodal methods generally outperform
unimodal approaches, affirming the value of data integration, the key distinction lies in how fusion
is performed. Advanced latent fusion models like PIBD show respectable gains over simple con-
catenation but are ultimately limited by their reliance on static, pre-extracted features. Adaptive
methods like M4Survive improve upon this by fine-tuning architectural components.

However, CTF’s superior performance suggests a fundamental advantage. Instead of simply fusing
latent vectors or adapting architectural blocks, CTF performs semantic co-adaptation. By dynami-
cally tuning the meaning of clinical concepts in one domain based on context from the other before
fusion, it achieves a deeper, more synergistic integration. This consistent performance gain across
diverse cancer types aligns with our hypothesis: dynamic, concept-based co-adaptation is a more
effective paradigm for multimodal fusion than static latent fusion or independent architectural adap-
tation.

Generalization to Cancer Grading. As shown in Table [2| CTF again achieves state-of-the-art
performance, outperforming all baselines across the three datasets. On average, CTF obtains an AUC
improvement of 3.6% over the strongest fusion baseline (MOTCAT). This is a significant result, as
cancer grading relies on identifying distinct morphological and cellular patterns. CTF’s success
suggests its ability to learn a rich, concept-based dialogue between radiology’s macro-structural
views and pathology’s micro-cellular details is highly effective for this classification task. This
robust performance validates the broader utility of our concept-tuning and fusion paradigm.

4.4  ANALYSIS AND ABLATION STUDIES

The Critical Role of Cross-Domain Dialogue. As shown in Table 3] the most impactful ablation
was the removal of the Context Prompt (P¢), which embodies our cross-domain guidance mech-
anism. This single change caused the most significant performance degradation, with the C-index
plummeting by 0.036. This result provides direct empirical evidence that forcing each modality to
be “aware” of the other during concept interpretation is the primary driver of CTF’s success. The re-
moval of the Global (task-specific) and Shared (synergistic) prompts also led to performance drops,
confirming that all components of the GCSP strategy contribute meaningfully to the performance.

Dynamic Tuning vs. Static Concepts. We then tested a model using “Static Concepts” without
any prompt tuning, which is analogous to a standard Concept Bottleneck Model (CBM) (Koh et al.,
2020). Specifically, the “static concepts (CBM)” variant uses fixed, pre-trained concepts and feeds
their scores directly to an MLP head for downstream predictions. As in Table[3] we found the model
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Table 3: Ablation on the Center]1-GC dataset for survival prediction and tumor grading. Metrics
are reported as mean with standard deviation in parentheses. Best numbers are in bold. A denotes
absolute change vs. the full CTF model.

Survival Prediction Tumor Grading
Category Variant -

C-index (1) A AUC (1) A

Reference CTF (Full Model) 0.665 (0.061) (-) 0.660 (0.049) -)
Prompt w/o Context Prompt (Pc) 0.629 (0.058)  (-0.036)  0.635(0.047) (-0.025)
Com ponents w/o Shared Prompt (Ps) 0.653 (0.063)  (-0.012)  0.651 (0.056)  (-0.009)
P w/o Global Prompt (Pg) 0.642 (0.051)  (-0.023)  0.640 (0.048)  (-0.020)
Tuning Static Concepts (CBM) 0.586 (0.049)  (-0.079)  0.622 (0.055) (-0.038)
Strategy Static Concepts + Prompt Tuning 0.638 (0.059)  (-0.027)  0.635(0.052) (-0.025)
Concept Random Selection 0.622 (0.053)  (-0.043)  0.654 (0.053) (-0.006)
Selection Top-MI Selection (relevance-only) 0.646 (0.060)  (-0.019)  0.642(0.049) (-0.018)
CTF (General, CLIP + CLIP) 0.621 (0.055)  (-0.044)  0.615(0.054) (-0.045)
Backbone CTF (Hybrid, CLIP + CONCH) 0.639 (0.059)  (-0.026)  0.643 (0.050) (-0.017)

Sensitivity ~ CTF (Expert, BiomedCLIP + MUSK) ~ 0.680 (0.064)  (+0.015)  0.658 (0.053)  (-0.002)
CTF (Expert, BiomedCLIP + PLIP)  0.627 (0.063)  (-0.038)  0.636(0.052)  (-0.029)

performed poorly (C-index 0.586), demonstrating that simply using concepts as an intermediate
layer is insufficient. The dynamic adaptation enabled by GCSP is paramount. Interestingly, this
aligns with recent findings that show modern, flexible prototype-based methods are moving beyond
the rigid CBM structure (Chen et al.| 2025). Our work contributes a novel cross-modal tuning
mechanism to this emerging paradigm.

Concept Selection and Backbone Choice. The inputs to our framework are also critical. We
compared our prognostic and diversity-aware concept selection against two alternatives: Random
Selection and Top-MI Selection (relevance-only). As shown in Table [3] our principled strategy
significantly outperforms both, validating the need to select concepts that are both prognostically
relevant and semantically diverse. Furthermore, to confirm the value of domain-specific foundation
models, we replaced the expert BiomedCLIP and CONCH encoders with general-purpose CLIP
models. This “Generalist” setup led to a substantial performance drop (C-index from 0.665 to
0.621), confirming that CTF’s ability to bridge modalities is maximized when it operates on the
rich representations of expert models. When fixing radiology to CLIP and varying pathology VLMs
(‘Hybrid’ rows in Table [3), we observe that pathology-specific VLMs (CONCH, MUSK (Xiang
et al., [2025), PLIP (Huang et al., [2023))) outperform generic CLIP, with MUSK slightly ahead of
CONCH on the survival task of Center1-GC.

Parameter Sensitivity. We analyzed CTF’s sensitivity to two key hyperparameters in our GCSP
strategy: the prompt length L and the number of concepts k. As shown in Figure |3} we evaluated
performance across all three survival cohorts. In Figure [3h, we varied the length of the tunable
prompt from 4 to 20. Performance is generally stable, with a slight peak at L = 12. Shorter prompts
may lack expressive power, while longer ones increase parameter counts without a clear benefit,
validating our choice of L = 12 as an efficient and effective setting. In Figure [3p, we varied the
number of selected concepts per modality from 32 to 512. Performance peaks at £ = 256. Too few
concepts (e.g., k = 64) fail to capture sufficient prognostic information, while too many (k¥ = 512)

—@— Centerl-GC TCGA-LGG -@- TCGA-GBM
3 0.75 -
o
£
< 0.70 7 0.665
[
e 0.65 - 7___./¢—.
E ./
S 0.60 - 0.579
8 > O P T, <
0.55 --oo-mmmesa sttt
1 1 1 1 1 ?’ S ) 1 1 1
4 8 12 16 20 32 64 128 256 512
(a) Number of Learnable Tokens (b) Number of Concepts

Figure 3: Hyperparameter sensitivity analysis on all three datasets for survival prediction. (a) Perfor-
mance (C-index) versus the number of learnable tokens (L) per prompt component. (b) Performance
versus the number of selected concepts (k) per domain.
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Figure 4: Concept-based Interpretation of CTF Predictions. Visualization of top 5 pathology and
radiology concept scores for (top) a low-risk patient censored at a late time point and (bottom) a
high-risk patient with an early event from the Center1-GC dataset.

may introduce noise and a larger computation cost without improving, and in some cases slightly
degrading, performance. This confirms £ = 256 might be an optimal choice.

4.5 QUALITATIVE ANALYSIS AND INTERPRETABILITY

Beyond quantitative benchmarks, a critical goal of CTF is to provide transparent and trustworthy
predictions. We conducted a series of qualitative analyses to demonstrate that our model’s reasoning

is grounded in clinically relevant patterns.
Center1-GC TCGA-LGG TCGA-GBM

(Tog-rank p = 0.004) (Togrankp = 0.231)

Prognostic Stratification. As shown in Fig.
we stratify patients into low-risk and high-
risk groups based on the median predicted risk
scores from CTF. The Kaplan-Meier curves 5, I T B
(Kaplan & Meierl [1958)) for three datasets show oy i = o | o
a clear and statistically significant separation
(p < 0.05, log-rank test (Mantel et al [1966)) ;"
between the groups, verifying our model’s 3:
strong prognostic power. i

[Log-rank p = 0512)

PIBD

Survival Probability

[Togrankp = 0.01) (Togrankp = 0.001) [Togrankp = 6:607)

N
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Patient-Level Rationale. Because z is a vec-
tor of concept scores, we can inspect which ra-
dlology and patho]ogy concepts dominate the Figure 5: Kaplan—Meier survival curves for risk
prediction for a given patient. Figure [] visu- groups predicted by CTF (bottom row) and the
alizes final concept scores for two Center]-GC SOTA latent fusion baseline, PIBD (top row),
patients: one low-risk censored late, and one on the (a) Centerl-GC, (b) TCGA-LGG, and (c)
high-risk with an early event. The low-risk pa- TCGA-GBM datasets.

tient (Figure [4] top) suggests a less aggressive

phenotype, such as “Well-differentiated tumor”. In contrast, the high-risk patient (Figure ] bottom)
shows high scores for aggressive concepts like “Disseminated tumor cells” and “Bad blood vessel
morphology”, providing a clear and alarming prognostic signal. This demonstrates CTF provides
accurate predictions with a transparent, clinically relevant rationale based on meaningful concepts.

Time (month) Time (month) Time (month)

Semantic Drift. We compared the concept embedding before and after tuning. To quantify
how GCSP modifies concept semantics, we compute, for each concept c, the cosine similarity
S = cos(t, t.) between the tuned embedding t. and its original text embedding t.. from the frozen
encoder. For Center1-GC'’s radiology concepts, the distribution of s. concentrates well above 0.5
with a median of 0.633 (Fig. [6p), indicating moderate, task-sharpened shifts rather than wholesale
redefinition. The t-SNE visualization (Fig.[6p) corroborates this pattern, showing coherent displace-
ment without mode collapse. Practically, this bounded drift preserves the interpretability of the
original human-readable concepts while enabling measurable gains in downstream prediction.

Visualizing Cross-Modal Influence. We assess whether GCSP captures clinically meaningful de-
pendencies by grouping selected concepts into high-level radiology and pathology categories and
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Figure 6: Semantic drift of concept embeddings. (a) Histogram of cosine similarity between tuned
and original concept embeddings (median 0.633) indicates task-sharpened but semantically consis-
tent shifts. (b) t-SNE shows systematic displacement without mode collapse.

quantifying how the radiology-to-pathology context prompt P alters pathology concept scores (vs.
a zeroed Pp).

The Fig. [7] heatmap shows clinically plausible relationships learned by the model. For instance,
radiology concepts related to “Tumor Morphology” and “Invasion & Metastasis” strongly amplify
pathology concepts of “Cellular Atypia” and “Vascular Invasion,” mimicking a pathologist’s reason-
ing process where macroscopic signs of aggression prompt a closer search for microscopic evidence
(Tomaszewski & Gillies| [2021). Besides, radiology’s “Necrosis & Cell Death” has minimal influ-
ence on pathology’s “Mitotic Activity”. This is clinically sound: while large-scale necrosis is visible
on a CT scan, it is a poor predictor of the specific rate of cell division (mitotic count), which is only

assessable under a microscope (Bosman et all,[2010).

5 CONCLUSION AND LIMITATIONS
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We presented CTF, a parameter-efficient,
concept-based multimodal co-adaptation frame-
work that bridges radiology and pathology FMs.
Via the Global-Context—Shared Prompt (GCSP),
CTF dynamically tunes clinically grounded
concepts with task, cross-domain, and shared
patient context, aligning representations before
fusion and yielding transparent, concept-level

o
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-0  predictions. Ablations confirm the primacy of
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Limitations include reliance on a predefined con-

Figure 7: Cross-modal influence analysis on the
Center1-GC dataset. The heatmap shows the
changes in normalized influence score, repre-
senting how much the presence of a radiology
concept category (columns) affects the scores
of pathology concept categories (rows) via the
Context Prompt (P¢).

cept pool and paired data. Furthermore, the mod-
est absolute performance on the difficult 5-way
gastric cancer grading task underscores that it is
not ready for clinical deployment in this specific
scenario, serving as a benchmark for method-
ological comparison. Our current concept pool
is generated once by an LLM and then fixed

throughout training. While GCSP dynamically tunes concept semantics, it does not introduce new
labels or expand the concept vocabulary. Beyond tuning semantics, future work will (i) periodi-
cally refresh/expand the concept pool using model-derived importance and LLM-decoding of tuned
embeddings, and (ii) handle missing modalities via partial-paired training and concept imputation.
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This research utilized both public and private medical datasets. All data from The Cancer Genome
Atlas (TCGA) are publicly available and de-identified. The in-house datasets (Centerl-GC and
Center2-CHS) were collected under protocols approved by the local Institutional Review Board
(IRB), with all patient data fully anonymized before use in this study. Informed consent was obtained
from all participants. Our study strictly adheres to data privacy and protection regulations, as detailed

in Appendix
REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made our code anonymously available at:
https://anonymous.4open.science/r/CTF-27C2. The main paper provides a detailed
description of our methodology in Section [3} The appendix further provides pseudocode for our
core algorithms, comprehensive architectural and training details, including hyperparameters, and
specifics on baseline implementations (Appendix [A).
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Appendix

A  FRAMEWORK AND IMPLEMENTATION DETAILS

This section provides a detailed breakdown of our framework’s implementation, including pseu-
docode for core algorithms, expanded architectural descriptions, and specifics on baseline imple-
mentations to ensure full reproducibility.

A.1 ALGORITHM PSEUDOCODE

To further clarify the mechanics of our proposed method, we provide pseudocode for the two main
stages of the CTF framework: the greedy concept selection process (Algorithm [I)), the end-to-end
forward pass for a single patient (Algorithm[2)), and the MoE layer to generate context prompts.

Algorithm 1 Greedy Algorithm for Prognostic and Diverse Concept Selection

1: Imput: Initial concept pool S, target concept set size k, training data images {x;}, survival
outcomes {y;, d; }.

2: Input: Frozen vision encoder V' (-) and text encoder 7'(-).

3: Initialize: Final concept set C < 0.

4: Initialize: Relevance scores D <« {}.

5: Pre-compute image features f; = V' (x;) and concept embeddings t. = T'(c) for all 7, c.
6: {— Stage 1: Relevance Ranking —}

7: for each concept c € S do

8:  Compute alignment scores A, = {a(z;,c) =t] fi} N ;.

9:  Discretize scores A, to get flc. Binarize survival outcomes to get Y.
10:  Compute mutual information d(c) = I(A.; Yoin).

11:  Add (¢,d(c)) to D.
12: end for
13: Sort concepts in S descending by their relevance score d(c). Let the sorted list be Sgorted-
14: {— Stage 2: Diversity Maximization —}

15: Add the top-ranked concept from Syypeq to C.

16: while |C| < k do

17:  Initialize: “max_diversity” <— —1, “next_concept” <— null.

18:  for each concept ¢’ € Sorea \ C do

19: Compute max similarity to current set: max _sim = max.cc o (t, te).
20: Diversity score = 1 — max _sim.

21: if Diversity score > “max_diversity” then

22: “max_diversity” < Diversity score.

23: “next_concept” < c’.

24: end if

25:  end for

26:  Add “next_concept” to C and remove it from Sgoreq.
27: end while
28: Output: Final selected concept set C.

A.2 ARCHITECTURAL AND TRAINING DETAILS

To ensure full reproducibility, we provide an expanded set of implementation details. All experi-
ments were conducted on an HPC server equipped with NVIDIA L40s GPUs (48GB VRAM). See
Table [5|for detailed hyperparameters.

Image Preprocessing.
 Pathology (WSIs): Whole-slide images were processed at 20x magnification. We segmented the

tissue foreground via Otsu’s thresholding. The WSI was then tiled into non-overlapping 256 X256
patches. Following the CLAM methodology (Lu et al.,2021)), we used contour filtering to remove
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Algorithm 2 CTF Forward Pass for a Single Patient

1: Input: Radiology image x,, pathology image xj,.
2: Input: Selected radiology concepts C.,4, pathology concepts Chis.
3: Models: Frozen encoders Ve, Vi, Ty, Ths, Learnable modules:
PG7 Pgasma 9rs Ghs ¢S7 PS,ry PS,hs MLPpTCd'
4: {— 1. Feature Extraction —}
5 Fr < Vi(xr), fr < Vi(n).
6: {— 2. GCSP and Concept Tuning (Example for Radiology) —}
7: for each concept ¢, € C,q do
8 Global Prompt: P; < Look up learnable prompt for c,.
9:  Shared Prompt: fs < ¢g(Concat(f,, fr)), Ps, < ©s.,(fs).
10:  Context Prompt: o « softmax(g.(fn)), Po, + >, o - PESS,.
11:  Combine: P + Concat(Pg,, Pc,, Ps,).
12:  Tune: Get original tokens for c,.. Prepend P,
13:  t., < T(Tuned concept tokens for c,.).
14: end for ~
15: Repeat symmetrically for each concept cy, € Cpis to get te, .
16: {— 3. Concept Scoring and Fusion —}
17: Compute radiology scores: s, ; = cosine_sim(f;, fcrj ). Let 8y = [Sp1, s Sr k|-
18: Compute pathology scores: s, j = cosine,sim(fh,fchj). Let sp, = [Sh,15 s Shok)-
19: z < Concat(s,, sp).
20: {— 4. Prediction —}

21: 0 <~ MLPpq(2).
22: Output: Task-specific output o (e.g., risk score for survival analysis).

background/whitespace patches before feature extraction with the CONCH vision encoder. A
small attention pooling head is learned for feature aggregation.

* Radiology (CT/MRI): For the in-house Center1-GC and Center2-CHS datasets, tumor regions
on CT/MRI scans were manually segmented by an expert radiologist. For the public TCGA
datasets, we used the entire axial slice containing the largest tumor cross-section, as brain tumors
typically occupy a large and central portion of the image. All radiology images were resized to
224 %224, normalized to [0, 1], and then normalized using ImageNet statistics before being fed
to the BiomedCLIP vision encoder.

Compute and memory footprint. We report peak GPU memory and full training time (batch size
1). Lgeq denotes the sequence length (all tokens) and k;aq, kpath the number of concepts per domain.

Table 4: GPU memory usage and wall-clock time per epoch for CTF under different configurations.
All results are measured with batch size 1. Lgq denotes the sequence length (tokens) and Kiaq, Fpan
denote the number of concepts for radiology and pathology, respectively.

Configuration GPU (Lseq, Frad, kpan)  Peak memory (GB)  Time (hour) C-index

Default (recommended) NVIDIA L40s 48GB (128,256, 256) 28.7 18.9 0.665 + 0.061
3090-friendly (A) RTX 3090 24GB (64,256, 256) 19.2 11.6 0.642 + 0.053
3090-friendly (B) RTX 3090 24GB (128,128, 256) 22.0 15.5 0.656 + 0.066

A.3 BASELINE IMPLEMENTATION DETAILS

For a fair comparison, all baselines were implemented using the same frozen vision encoders
(BiomedCLIP, CONCH) as our CTF model to extract initial features.

¢ Unimodal Models: For pathology-based unimodal models (ABMIL, CLAM, TransMIL,
ACMIL), we used the official publicly available codebases and adapted them to the survival
prediction task using a Cox loss final layer. For the Radiology-Only baseline, the single feature
vector was passed through an MLP identical to our prediction head.
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Algorithm 3 Noisy Top-k MoE for Context Prompt Generation

1: Input: Complementary-modality feature for a mini-batch X € RZ*P; basis prompts { P, }}£,
P; € REXDt; gating parameters Waate, Whoise € RPXM: top-k value k (k < M); noise € > 0;
training flag train; loss coefficient \.

2: Compute clean logits: Clean <— X Wy {shape (B x M)}
3: if train and noisy gating enabled then

4:  Std « softplus(X Wiise) + € {(B x M)}

5. Sample noise: A ~ N (0, Std?)

6:  Logits «+ Clean + A

7: else

8:  Logits + Clean

9: end if

10: Convert to probabilities: P < softmax(Logits,dim = 1) {(B x M)}

11: Initialize G < Ogx s

12: for b =1to B do

13:  Select top-k indices and values from P[b,:]: (S, vp) < TopK(PIb,:], k)

14:  Normalize within top-k: ay, < v/ (> vy + 1076) {ay, € R}

15:  Set sparse gates: G[b, Sp] < ap

16:  Compute context prompt: Pg’) «— >

17: end for

18: Importance per expert: Imp <+ 25:1 G[b,:] {(M)}

19: if train and noisy gating enabled and £ < M then

20:  Compute soft load (expected assignment count) via NoisyTopK (see Alg. H): Load +
Zle ProbInTopK(Clean[b, :], Logits[b, :], Std[b, :], P[b, Sp]) {(M)}

21: else

22:  Hard load: Load + Y1 I[G[b,:] > 0] {(M)}

23: end if

24: Coefficient of variation squared: CV?(2) < Var(z)/(Mean(z)? + 10~10)

25: Auxiliary 10ss: Lmee < A(CV?(Imp) + CV?(Load))

26: Output: Sparse gates G € RE*M  per-sample context prompts {Péb)}szl, auxiliary load-
balancing loss Le-

ies, v Pi {PC) € RPXPry

Algorithm 4 ProbInTopK for Noisy Gating (expected soft load)

1: Input: Clean logits ¢ € R, noisy logits n € R™, noise std 0 € RM (all for one sample),
top-k values topv € R¥*! from n (descending).

2: Let 73, < topvl[k] and 7oy < topv[k — 1] {thresholds for in/out}
3: for j = 1to M do

4:  ifn[j] > 7, then

50 problj] < ®((c[j] — i)/ [j])

6: else

7: prob|j] « &((c[j] — 7ou) /o j])

8: endif

9: end for

0:

—

Output: Vector prob € RM with prob[j] = P(j € Top-k).

¢ Simple Latent Fusion: Concat-Fusion involved concatenating f, and fj and feeding them to
the prediction head. Cross-Attention used a standard transformer encoder layer where features
from one modality formed the query and features from the other formed the key/value, followed
by concatenation of the attended features.

* SOTA Latent Fusion: For MOTCAT and PIBD, we re-implemented the core fusion mechanisms
described in their respective papers, placing them between our frozen feature extractors and the
final prediction head. We performed a hyperparameter search for key parameters, such as the
number of attention heads for MOTCAT and the 3 coefficient for PIBD’s bottleneck.
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Table 5: Hyperparameters for the CTF model components.

Parameter Value Description

Optimizer AdamW -

Learning Rate le-3 Initial learning rate.

Weight Decay le-6 -

Batch Size 1 -

Epochs 100 With early stopping (patience=6 on val-loss).
Tunable Prompt Length (L) 12 For all prompt types (Global, Context, Shared).
Context Prompt Pool Size (M) 16 Number of basis prompt vectors.

Gating Network (g,, gn) 2-layer MLP (512 — 128 — 16) With ReL.U activation.

Shared Prompt Generator (¢g)  2-layer MLP (1024 — 256 — 128) With ReLLU activation.

Prediction Head (MLPpeq) 2-layer MLP (512 — 128 — #classes)  With ReLU and Dropout (p=0.1).
Submodular A 1 Balancing factors for concept selection.

SOTA Adaptive Fusion: For a fair comparison with M4Survive, which uses Mamba-based
adapters, we implemented a similar adapter-based strategy. We inserted lightweight Mamba
blocks to process the features f, and f, before a fusion block, and fine-tuned only the adapter
weights, keeping the vision backbones frozen.

A.4 ADAPTATION OF MOTCAT/PIBD TO RADIOLOGY-PATHOLOGY

Since MOTCAT and PIBD were originally proposed for genomics-pathology. We describe our
adaptation details to radiology-pathology.

MOTCAT. The MOTCAT architecture features a unidirectional co-attention mechanism, where one
modality serves as a “guidance” stream to refine the representation of the other. Since MOTCAT was
originally designed for genomics guiding pathology, adapting it to our radiology-pathology setting
required selecting a guidance direction. We evaluated both possible configurations: (1) Pathology-
guides-Radiology, and (2) Radiology-guides-Pathology.

To determine the optimal configuration for our baseline, we conducted an empirical comparison on
both the TCGA-GBMLGG and Center1-GC datasets for the cancer grading task. The results are
summarized in Table[6] Our evaluation shows that using radiology as guidance yields slightly better
performance while being more computationally efficient. Hence, we selected the Radiology-guides-
Pathology configuration as the MOTCAT baseline for all experiments reported in the paper.

PIBD. We replace the (histology, genomics) pair with (pathology, radiology), project each to PIBD’s
shared width D, and pass the two embeddings to the original bottleneck/disentangling fusion. Ob-
jectives and downstream heads are unchanged.

Table 6: Comparison of MOTCAT performance with different guidance directions on the cancer
grading task. We report mean =+ standard deviation for AUC over 10 stratified splits.

TCGA-GBMLGG Center1-GC
Guidance Direction AUC (1) Time (h) AUC (1) Time (h)

Pathology-guides-Radiology  0.858 £ 0.042 4.32 0.638 £ 0.046 11.25
Radiology-guides-Pathology  0.865 £ 0.025 3.81 0.641 £ 0.050 9.13

B DATASET DETAILS

We evaluate our framework on four datasets containing paired radiology and pathology images:

* TCGA-LGG: A cohort of 173 patients with Lower-Grade Glioma curated from The Can-
cer Genome Atlas (TCGAﬂ For each patient, we obtained diagnostic whole-slide images
(WSIs) and paired pre-operative, multi-parametric MRI scans (post-contrast T1-weighted and
T2-FLAIR).

Shttps://www.cancer.gov/tcga/
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Table 7: Summary of patient cohorts used for experiments.

Dataset Cancer Type N Survival Task Grading Task
Censorship (%) Task Description # Classes

TCGA-LGG  Lower-Grade Glioma 173 83.8%

TCGA-GBM  Glioblastoma 186 18.3% WHO Tumor Grade 3

Center]-GC ~ Gastric Cancer 683 57.2% TNM Stage (T-Stage) 5

Center2-CHS  Chondrosarcoma 76 — WHO Tumor Grade 5

* TCGA-GBM: Similarly, we curated a cohort of 186 patients with Glioblastoma Multiforme
(GBM), the most aggressive primary brain tumor. The dataset consists of the same paired pre-
operative MRI and WSI data types, matched with clinical survival outcomes from TCGA.

* Center1l-GC: An in-house dataset of 683 gastric cancer patients. For each patient, we have a pre-
operative CT scan and a post-resection WSI, acquired within one month of each other to ensure
temporal consistency.

* Center2-Chondrosarcoma: An in-house dataset of 76 Chondrosarcoma patients with paired
pre-operative MRI and WSI. Cohort characteristics are detailed in Table

B.1 ETHICAL CONSIDERATIONS AND DATA USAGE

All data from TCGA are publicly available and de-identified. The in-house datasets (Centerl-GC,
Center2-CHS) were collected under protocols approved by the local Institutional Review Board
(IRB), with all patient data fully anonymized and de-identified prior to its use in this research.
Informed consent was obtained from all participants included in the in-house studies. Our study
strictly adheres to data privacy and protection regulations.

B.2 PAIRING WINDOW AND EXCLUSION CRITERIA

We require fully paired radiology—pathology examples for all experiments; pairing is performed at
the patient level (no spatial registration), and only cases satisfying the following rules are retained.

In-house cohorts (Center1-GC, Center2—CHS). We pair the pre—operative CT/MRI study with
the diagnostic resection WSI from the same surgical episode. When multiple candidates exist, we
select the imaging study and slide whose acquisition dates yield the minimum absolute time gap,
and we require a pairing window of |At| < 30 days. If multiple WSIs are available, we use the slide
annotated as “diagnostic” (primary tumor block).

TCGA cohorts (LGG/GBM). We pair MRIs and WSIs by TCGA case ID. When multiple
scans/slides are available, we choose the pre—operative MRI closest in time to the diagnostic his-
tology slide for that case. Pairs with missing or ambiguous identifiers/metadata are excluded.

C CONCEPT SELECTION AND DETAILED CONCEPT LISTS

Our framework’s interpretability is founded on a set of high-quality medical concepts. As described
in the main paper (Section [3.1)), we use a submodular optimization approach to select a set of con-
cepts that are both prognostically relevant (high mutual information with survival outcome) and
semantically diverse (low cosine similarity between embeddings). This approach aligns with recent
trends in building more transparent models by grounding them in human-understandable concepts
(Yamaguchi et al., |2025).

While Concept Bottleneck Models (CBMs) (Koh et al., 2020) pioneered this direction, they can
suffer from performance degradation and instability, limiting their use in high-stakes medical ap-
plications (Hu et al.l [2025). Our CTF framework avoids these pitfalls not by forcing information
through a rigid bottleneck, but by using concepts as a dynamic, tunable semantic bridge, as demon-
strated in our ablation studies.
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C.1 LLM PROMPT TEMPLATES AND GENERATION PIPELINE

We use Gemini-2.5-pro to generate concept pools. This appendix documents the exact prompts,
generation settings, and post-processing used to build the candidate concept pools in Sec. [3.1] from
large language models (LLMs).

Overview. For each disease and modality, we query the LLM once per progression stage in
S = early, intermediate, advanced, metastatic. Each query asks for N = 250 short, atomic fea-
tures as a numbered list in the format “1.; 2.; 3.; ...”. We then parse the enumeration, clean
tokens, and save a JSON file keyed by stage: "early": [...], "intermediate":
[...], "advanced": [...], "metastatic": [...]1 . Files are saved as

cancer_{modal}. json with modal in {rad, path}.

Prompt templates (exact text). We use the following two templates, differing only by modality.
Bracketed fields are filled programmatically.

Template R (Radiology, MRI)

What are the radiological features in Magnetic Resonance images of [CANCER] at
the [STAGE] stage of progression (differentiate early, intermediate, advanced, metastatic
stages), please describe using keywords or short sentences. Give [N] features and answer
the question with the following format: 1.;2.; 3.; ... .

Template H (Histopathology, WSIs)

What are the morphological features in Whole Slide Images (WSIs) of [CANCER] at
the [STAGE] stage of progression (differentiate early, intermediate, advanced, metastatic
stages), please describe using keywords or short sentences. Give [N] features and answer
the question with the following format: 1.;2.;3.; ... .

Generation settings. Unless noted otherwise, we use default sampling parameters of the LLM-
Backend (no explicit temperature or top-p overrides). We issue one request per stage and modality-
disease pair, with N=250. Radiology requests specify MRI/CT. Pathology requests specify H&E
WSIs.

Parsing and cleaning. The LLM returns a numbered list. We extract items using an enumeration-
aware regex:

“\s*\d+\.\s* (.*?) (?=\n\s*x\d+\.|\2)
applied with multiline and dotall flags. We then:

* trim whitespace and punctuation; remove leading bullets/asterisks; drop empty entries;
e cap at N concepts per stage; preserve the original order;
* save to cancer_{modal}. json as a dictionary keyed by stage.

We subsequently merge the four stage lists, deduplicate (exact and fuzzy string match), and pass the
merged pool to the MI + submodular selector (Sec. [3.1)).

Reproducibility and anonymity. API keys are never embedded in the PDF or repository. We use
environment variables (e.g., GEMINI_API KEY, OPENAI_API_KEY).

Post-processing. We merge the four stage lists per (disease, modality), deduplicate by (i) ex-
act match after lowercasing and punctuation stripping and (ii) fuzzy string match, then supply the
cleaned pool to the mutual-information ranking and submodular diversity selection described in

Sec.[31]
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C.2 GASTRIC CANCER (CENTER1-GC) CONCEPTS

Tables 8]and [9]list the top 30 (out of 256) selected concepts for the Center1-GC dataset for radiology
and pathology, respectively.

Table 8: 30 selected Radiology concepts for the Center1-GC (Gastric Cancer) dataset.

1. Poorly defined/irregular tumor margins 11. Gastric outlet obstruction 21. Venous encasement/invasion

2. Marked heterogeneous enhancement 12. Linitis plastica appearance 22. Infiltration of adjacent organs

3. Asymmetric or eccentric wall thickening  13. Effacement of perigastric fat planes 23. Peritoneal carcinomatosis

4. Presence of tumor ulceration 14. Definite serosal involvement 24. Omental caking

5. Tumor necrosis or necrotic core 15. Tumor spiculation 25. Distant metastasis to ovaries

6. Large, matted regional lymph nodes 16. Air within the tumor 26. Enlarged Virchow’s node

7. Lymphatic spread to regional nodes 17. Solid tumor component 27. Visible feeding vessels (neovascularity)

8. Presence of ascites 18. Distortion of mucosal folds 28. Arterial encasement

9. Liver metastases with rim enhancement 19. Moderate arterial phase enhancement 29. Adrenal metastases

10. Invasion into the muscularis propria 20. Mass effect on adjacent structures 30. Presence of tumor calcifications
Table 9: 30 selected Pathology concepts for the Center1-GC (Gastric Cancer) dataset.

1. Loss of glandular architecture 11. High mitotic activity 21. Tumor-infiltrating lymphocytes present

2. Solid growth pattern 12. Areas of tumor necrosis 22. Tumor-associated macrophages present

3. Presence of signet ring cells 13. Increased nuclear-cytoplasmic ratio 23. Epithelial-mesenchymal transition

4. High-grade cellular atypia 14. Prominent or irregular nucleoli 24. High level of Microsatellite Instability

5. Lymphovascular invasion (LVI) 15. Discohesive cells presence 25. Increased HER2 expression

6. Perineural invasion 16. Spindle cell morphology 26. Loss of E-cadherin expression

7. High tumor budding 17. Desmoplastic reaction 27. Increased Ki-67 proliferation index

8. High tumor-stroma ratio 18. Extracellular mucin pools 28. Abnormal vessel morphology

9. Poorly differentiated features 19. Tumor cell apoptosis 29. Increased Cyclin D1 expression

10. Disruption of basement membrane 20. Cribriform growth pattern 30. Multinucleation / giant cells present

C.3 BRAIN TUMOR (TCGA-LGG/GBM) CONCEPTS

To demonstrate the adaptability of our concept selection strategy, Tables [I0] and [IT] list the top 30
selected concepts for the TCGA glioma cohorts. These concepts are distinct from those for gastric
cancer and reflect the specific pathology of brain tumors.

Table 10: 30 selected Radiology concepts for the TCGA-LGG/GBM datasets, curated from the
provided list.

1. Central necrosis 11. Subependymal spread 21. Obstructive hydrocephalus
2. Cystic components within the tumor 12. New satellite lesions 22. Uncal herniation
3. Patchy enhancement 13. Multifocal disease 23. Compression of the brainstem
4. Tll-defined or infiltrative margins 14. Dissemination through CSF 24. Superficial cortical involvement
5. Increased tumor heterogeneity 15. Breakdown of the blood-brain barrier 25. Perfusion abnormalities
6. Mass effect on adjacent structures 16. New areas of restricted diffusion (DWI)  26. Positive amino acid PET
7. Compression of ventricles 17. Lobulated appearance 27. Small area of new enhancement
8. Midline shift 18. Elevated choline/creatine ratio (MRS) 28. Increased perilesional edema
9. Internal septations within cystic areas 19. Decreased NAA (N-acetyl aspartate) 29. Subtle new vascularity
10. Deep gray matter structures 20. Loss of gray-white matter differentia-  30. Infiltration of tentorium
tion

Table 11: Top 30 selected Pathology concepts for the TCGA-LGG/GBM datasets. These concepts
were selected from a larger pool to represent the core histopathological, molecular, and microenvi-
ronmental features of high-grade gliomas like Glioblastoma.

1. Pseudopalisading necrosis 11. Perineuronal satellitosis 21. ATRX loss

2. Microvascular proliferation 12. EGFR amplification 22. Lack of 1p/19q co-deletion

3. High-grade cellular atypia 13. TERT promoter mutation 23. Hypoxia

4. High mitotic activity 14. MGMT promoter methylation status 24. Tumor-associated macrophages

5. Increased cellularity 15. IDH1 mutation status 25. M2-polarized macrophages

6. Nuclear pleomorphism 16. p53 mutations 26. T-cell exhaustion

7. Presence of multinucleated giant cells 17. PTEN loss 27. PD-L1 expression

8. Glomeruloid bodies 18. Chromosomal gains 28. Aberrant GFAP expression

9. Prominent nucleoli 19. Chromosomal losses 29. More expression of stem cell markers
10. Diffuse infiltration of brain parenchyma  20. Nuclear hyperchromasia 30. Genomic instability
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D ADDITIONAL QUALITATIVE AND INTERPRETABILITY ANALYSIS

D.1 PATHOLOGY ATTENTION HEATMAPS

Figure |8| presents a compelling comparison of attention maps from our model’s pathology stream
for representative patients from the Center1-GC cohort. The heatmaps visualize attention weights
from the feature aggregation module, where red indicates regions receiving the highest attention. In
the high-risk patient (b), the model correctly localizes its attention on dense, disorganized clusters
of tumor cells characteristic of poorly differentiated carcinoma. Conversely, in the low-risk patient
(a), the attention is sparse, indicating the absence of these aggressive features.

(a) Low Risk (b) High Risk

r0.8

F0.6

F0.4

Figure 8: Pathology Attention Heatmaps for High- and Low-Risk Patients. The figure contrasts the
model’s spatial attention for (a) low-risk patients and (b) high-risk patients from the Center1-GC
cohort.

D.2 TIME-DEPENDENT AUC ANALYSIS

The Concordance Index (C-index) provides a single, global measure of a model’s rank-based dis-
criminatory ability. However, in survival analysis, a model’s predictive accuracy can vary over time.
The time-dependent Area Under the Curve (td-AUC) offers a more granular evaluation by assessing
the model’s ability to distinguish patients who will experience an event before a specific time point
t from those who will not (Schmuid et al., 2015)).

As shown in Figure 0] CTF demonstrates not just a superior but a strikingly dominant performance
over the PIBD baseline on the Center1-GC dataset. CTF maintains a high td-AUC (consistently
> 0.75) across the entire follow-up period, achieving an excellent mean AUC of 0.808. In stark
contrast, the PIBD baseline performs at a level comparable to random chance, with a mean AUC
of 0.483. This significant and persistent performance gap, highlighted by the shaded green area,
indicates that while the latent-space fusion model fails to maintain discriminative power over time,
CTF’s dynamic, concept-based fusion provides robust and reliable prognostic predictions for both
near-term and longer-term outcomes.
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Figure 9: Time-dependent AUC curves on the Centerl-GC dataset comparing CTF to the PIBD
baseline. CTF (blue) consistently and significantly outperforms the baseline across all time horizons,
maintaining robust prognostic accuracy. The shaded green area highlights the large performance
gain.

Table 12: Concept intervention analysis on predicted risk scores. For two representative patients
from the Center1-GC dataset, we intervene on the highest-scoring concepts by clamping their score
to 0.0 and observing the change in the final predicted risk. The percentage change (A Risk) high-
lights the causal influence of each concept. C' and R,, represent original concept scores and new risk
scores.

Intervened Concept Modality C R, ARisk (%)

Patient A: High-Risk (Actual Outcome: Event at 25 months)
Initial Predicted Risk: 3.91

Bad blood vessel morphology  Radiology 3.35  2.98 -23.8%
Lymphovascular invasion Pathology 2.80 3.02 -22.7%
Disseminated tumor cells Pathology 2.00 3.22 -17.6 %

Patient B: Low-Risk (Actual Outcome: Censored at 54 months)
Initial Predicted Risk: -2.57

Well-differentiated Pathology 1.65 -1.94 +24.5%
Circumscribed tumor margins Radiology 1.20 -2.18 +15.2%
Low tumor-stroma ratio Pathology 0.85 -2.37 +7.9%

D.3 CONCEPT INTERVENTION

Concept Intervention. To test if the learned concepts have a causal impact on predictions, we per-
formed concept intervention experiments by neutralizing high-impact concept scores for represen-
tative patients. As shown in Table[I2] intervening on concepts like “Bad blood vessel morphology”
for a high-risk patient or “Well-differentiated” for a low-risk patient resulted in significant and clin-
ically plausible shifts in the final risk score (a 23.8% decrease and 24.5% increase, respectively).
This provides strong evidence that CTF’s predictions are causally linked to interpretable concepts.

D.4 STATISTICAL SIGNIFICANCE TESTS

For each dataset and metric, we compare CTF against the strongest competing baseline using a
paired t-tests across the 10 stratified splits. We report raw p-values in Table [I3]below.
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Table 13: Paired one-sided ¢-test (over 10 stratified splits) comparing CTF with the strongest com-
peting multimodal baseline on each dataset and task. Reported are p-values for the null hypothesis
that there is no difference in mean performance between CTF and the baseline.

Task Dataset Metric CTF Best baseline p-value
TCGA-LGG C-index 0.713 £0.103 M4Survive (0.709 + 0.112) 0.13
Survival TCGA-GBM C-index 0.579 £ 0.063 MOTCAT (0.563 + 0.108) 0.09
Center1-GC C-index 0.665 4 0.061 M4Survive (0.642 4 0.065) 0.05
TCGA-GBMLGG AUC 0.903 £+ 0.028  Cross-Attention (0.868 4 0.030)  0.02
Grading (AUC)  Center2-CHS AUC 0.854 + 0.081 M4Survive (0.830 4 0.075) 0.06
Centerl-GC AUC 0.660 £ 0.049 M4Survive (0.649 + 0.052) 0.05
TCGA-GBMLGG ACC 0.718 4+ 0.063 M4Survive (0.691 + 0.061) 0.05
Grading (ACC) Center2-CHS ACC ).698 4+ 0.164 M4Survive (0.626 4 0.115) 0.02
).

(
Center1-GC ACC 0.401 £ 0.057  Cross-Attention (0.394 £+ 0.049)  0.06

E BROADER IMPACT AND LIMITATIONS

E.1 POTENTIAL FOR POSITIVE IMPACT

The successful development and deployment of the CTF framework could have a significant positive
impact on clinical oncology and computational medicine.

1. Improved Prognostic Accuracy: By creating a deeper synergy between radiology and
pathology, CTF can provide more accurate and reliable predictions of patient outcomes.
This could help clinicians better stratify patients for treatment, identifying high-risk indi-
viduals who may benefit from more aggressive therapies and low-risk individuals for whom
de-escalation could be considered.

2. Enhanced Clinical Decision Support: The interpretable nature of CTF is a key advantage.
By presenting predictions alongside the contributing medical concepts (e.g., “High score
for ‘Lymphovascular invasion”’), the model can serve as a “second-read” tool that not only
provides a risk score but also highlights the key evidence, facilitating a more informed
dialogue between the Al and the clinician.

3. Accelerated Scientific Discovery: The cross-modal influence analysis (Figure[/) can un-
cover novel or subtle correlations between macroscopic imaging features and microscopic
cellular patterns. This could generate new hypotheses for translational research into the
biological drivers of cancer aggression.

E.2 LIMITATIONS AND FUTURE WORK

Despite its promising results, our work has several limitations that open avenues for future research.
A primary limitation is the framework’s dependence on the quality and comprehensiveness of the
initial concept vocabulary. The performance of CTF is fundamentally tied to the concepts provided,
and while we used LLMs to generate a broad list, this process may miss crucial niche concepts
or introduce biases. Future work should therefore explore more robust, data-driven methods for
concept discovery or involve domain experts in a formal human-in-the-loop process to refine and
validate the concept library.

Furthermore, our framework leverages powerful, pre-trained Vision-Language Models, inheriting
both their extensive knowledge and their potential biases. The model’s performance is ultimately
capped by the quality of these foundational backbones. While our ablation study confirmed that
expert models perform best, a valuable future direction would be to investigate methods for jointly
fine-tuning the prompt modules and a small fraction of the backbone model’s weights to achieve
even better task-specific adaptation. This must be balanced against computational costs, as the
forward pass for CTF, though parameter-efficient in its training, remains resource-intensive due to
the multiple large models and the WSI feature extraction bottleneck. Further optimization would be
required for real-time clinical deployment.

Perhaps the most significant barrier to immediate clinical translation is the model’s requirement
for fully-paired data—one radiology and one pathology image per patient—during training. This
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is a considerable constraint, as real-world clinical datasets are often incomplete. Extending CTF
to gracefully handle missing modalities is therefore a critical next step. Future iterations could
investigate learning to impute concept scores from the available modality or using dynamic attention
mechanisms to operate effectively even with an incomplete data stream.

F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose the use of Large Language Models (LLMs) in this work. LLMs played a role in the
following ways:

1. Concept Generation: As detailed in Section |3| and Appendix we utilized an LLM
to generate an initial broad pool of candidate radiological and pathological concepts. This
served as a starting point for our prognostic and diversity-based concept selection algo-
rithm.

2. Language Polishing: LLMs were used as a general-purpose writing assistant to improve
the clarity, grammar, and style of the manuscript.
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