

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BRIDGING RADIOLOGY AND PATHOLOGY FOUNDATION MODELS VIA CONCEPT-BASED MULTIMODAL CO-ADAPTATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Pretrained medical foundation models (FMs) have shown strong generalization across diverse imaging tasks, such as disease classification in radiology and tumor grading in histopathology. While recent advances in parameter-efficient fine-tuning have enabled effective adaptation of FMs to downstream tasks, these approaches are typically designed for a single modality. In contrast, many clinical workflows rely on joint diagnosis from heterogeneous domains, such as radiology and pathology, where fully leveraging the representation capacity of multiple FMs remains an open challenge. To address this gap, we propose **Concept Tuning and Fusing (CTF)**, a parameter-efficient framework that uses clinically grounded concepts as a shared semantic interface to enable cross-modal co-adaptation *before* fusion. By incorporating task-specific concepts that are relevant across modalities, CTF aligns radiology and pathology representations, thereby enhancing their complementarity and enabling interpretation. We further design a **Global-Context-Shared Prompt (GCSP)** mechanism, which employs a small set of learnable tokens to capture domain-specific priors, shared patient-level information, and cross-domain context. The resulting concept alignment scores from each modality are then fused to produce a final prediction. Extensive experiments demonstrate that CTF outperforms strong unimodal, latent-fusion, and adapter-based baselines (e.g., AUC 0.903 on TCGA-GBMLGG). Notably, CTF achieves these gains without finetuning the full FMs, requiring only 0.15% additional parameters, thus highlighting the effectiveness of concept-based multimodal co-adaptation. Our code is anonymously available at: <https://anonymous.4open.science/r/CTF-27C2>.

## 1 INTRODUCTION

Foundation models (FMs) are increasingly demonstrating significant potential in transforming healthcare by enabling the joint analysis of medical images and associated textual information (Cui et al., 2023; Steyaert et al., 2023; Qian et al., 2021; Radford et al., 2021). In clinical practice, however, a patient’s condition is often assessed through multiple diagnostic domains<sup>1</sup>, such as radiology scans (e.g., CT, MRI) providing macroscopic structural information and pathology slides revealing microscopic cellular details (Tomaszewski & Gillies, 2021; Qi et al., 2024). Integrating information from these diverse sources is crucial for a holistic understanding of disease processes and accurate prediction of clinical outcomes like patient survival or tumor grade (Rahaman et al., 2025; Wang et al., 2024). Yet, many current vision-language FM applications in healthcare operate within siloed domains—one for radiology, another for pathology—each with its own “visual language” (Lu et al., 2024; Zhang et al., 2023; Majzoub et al., 2025). The central challenge, therefore, is not merely to combine their outputs but to bridge these distinct expert models in a way that creates deep, synergistic understanding and maintains the clinical interpretability crucial for high-stakes medical decisions.

Existing attempts at multi-domain integration in medicine face practical and methodological limits. A common strategy uses pre-trained Vision Language Models (VLMs) as fixed feature extractors for

<sup>1</sup>We use the term “domain” to refer to pathology and radiology, and “modal” to refer to texts and images.

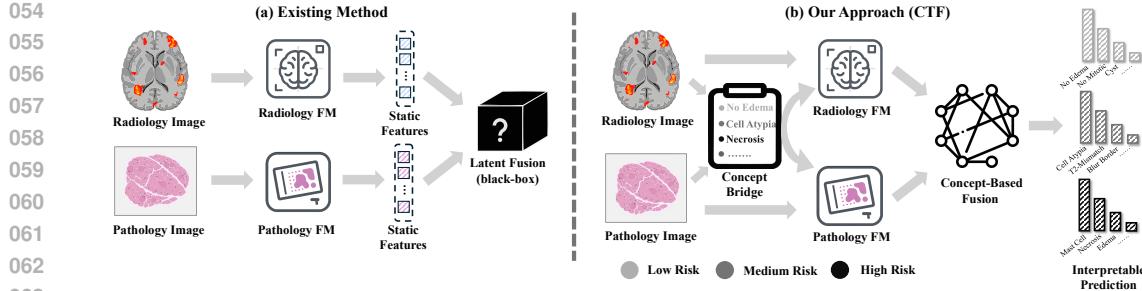


Figure 1: Conceptual comparison of multimodal fusion paradigms. (a) Conventional pipeline: radiology and pathology FMs are used as frozen feature extractors; fusion is performed on static latent features. (b) CTF performs cross-domain co-adaptation of risk-stratified concept semantics before fusion, enabling interpretable predictions.

each domain, followed by a simple fusion mechanism (e.g., concatenation) applied to these static representations (Zhang et al., 2024a; Xu & Chen, 2023). This approach limits the model’s adaptability to the specific information of the downstream task and the interplay between modalities. **Conversely, full fine-tuning of large VLMs is computationally expensive and often remains confined to the model’s pretraining domain, weakening knowledge transfer across domains (Shi et al., 2024).** Furthermore, both approaches often result in “black-box” systems where the reasoning behind predictions remains opaque, posing challenges for clinical trust and interpretability—a critical requirement in high-stakes medical decision-making (Amann et al., 2020; Rudin, 2019; Doshi-Velez & Kim, 2017). This conventional paradigm, which relies on extracting static features from siloed modalities before a simple, non-interpretable fusion step, is illustrated in Figure 1a.

To overcome these challenges, we argue that the key to unlocking synergy is to establish a shared, interpretable vocabulary that can bridge the semantic gap between FMs from different domains. Clinically-grounded concepts, such as “tumor necrosis” or “cellular atypia”, provide this natural bridge. However, treating concepts as fixed definitions is brittle: the prognostic meaning of a concept in one domain often depends on context from the other. For example, “irregular tumor margins” in radiology is far more alarming when paired with histopathology evidence of “lymphovascular invasion.” While recent works have begun aligning expert-derived concepts with images (Zhao et al., 2024; Nguyen et al., 2025), they do not dynamically modulate these concepts based on cross-domain information. Our core insight is that concepts should not be a static bottleneck, but a dynamic medium for co-adaptation, where the semantic representation of a concept in one modality is actively tuned by features from the other.

To this end, we introduce **Concept Tuning and Fusing (CTF)**, a novel framework that bridges radiology and pathology VLMs through medically-enriched concepts (Figure 1b). Instead of fusing static features, CTF forces each modality to “be aware” of the other during the feature extraction process. The core of our framework is the Global-Context-Shared Prompt (GCSP) strategy, a prefix tuning method that conditions the interpretation of concepts within one domain (e.g., radiology) on the visual features from the complementary domain (e.g., pathology). This cross-domain conditioning allows each VLM to produce richer, contextually-aware concept representations tailored to the patient case before they are fused for a final prediction. **We detail three stages: (i) MI + diversity concept selection (Sec 3.1), (ii) GCSP-based cross-domain concept tuning (Sec 3.2), and (iii) concept-score fusion and prediction (Sec 3.3).**

Our main contributions are:

- We propose **CTF**, a new framework that uses medically-relevant concepts as a dynamic and interpretable bridge to fuse distinct medical VLMs, moving beyond conventional “black-box” latent fusion.
- We introduce the **Global-Context-Shared Prompt (GCSP)** strategy, a novel cross-domain conditioning mechanism that uses efficient prompt tuning ( $\approx 0.15\%$  trainable parameters) to adapt the semantic meaning of concepts based on complementary domains.

108 • We conduct extensive experiments on four public and in-house datasets, demonstrating that CTF  
 109 significantly outperforms state-of-the-art unimodal and multimodal methods in both survival  
 110 analysis and cancer grading, achieving a C-index improvement of 3.5% and an AUC improve-  
 111 ment of 2.9% over the strongest baselines, respectively.

112  
 113 **2 RELATED WORK**  
 114

115 **Multimodal Fusion for Clinical Prediction.** The integration of diverse data, especially macro-  
 116 scopic radiology and microscopic pathology, is critical in oncology (Zhao et al., 2022), with multi-  
 117 modal models consistently outperforming unimodal approaches (Benani et al., 2025). A dominant  
 118 paradigm is latent-space fusion, where features are independently extracted and then combined using  
 119 methods like co-attention transformer (Xu & Chen, 2023; Lu et al., 2019), or information-theoretic  
 120 disentanglement to separate shared and specific information (Zhang et al., 2024a). While power-  
 121 ful, these methods primarily fuse latent representations that are already fixed, treating the feature  
 122 extractors as black boxes and limiting the depth of synergy. **Even when powerful pathology foun-**  
 123 **dation models are used as the pathology encoder (Chen et al., 2024; Ma et al., 2025; Xu et al.,**  
 124 **2024), they are typically plugged in as static feature extractors within this latent-fusion pipeline.**  
 125 Our work proposes a shift: instead of refining the fusion of static features, we enable a dynamic di-  
 126 alogue between domains. Unlike latent fusion that combines already-fixed features, and fine-tuning  
 127 that adapts backbones separately, CTF explicitly co-adapts concept semantics using cross-domain  
 128 prompts *before* any fusion.

129 **Foundation Model Adaptation and Cross-Domain Guidance.** The advent of foundation models  
 130 (FMs) offers new avenues for realizing this dialogue. While many works use FMs as off-the-shelf  
 131 feature extractors, Parameter-Efficient Fine-Tuning (PEFT) (Hu et al., 2022; Li & Liang, 2021)  
 132 methods have emerged to adapt them. Techniques include architectural adapters (Houlsby et al.,  
 133 2019) and recent medical adapters (Lee et al., 2025) or prompt-based tuning (Lester et al., 2021),  
 134 which have been used to adapt VLMs for specific domains or tasks (Zhou et al., 2022), often in a  
 135 unimodal fashion (Peng et al., 2025). **In computational pathology, knowledge-enhanced compres-**  
 136 **sion and prompt-like adaptation have been explored for few-shot WSI classification (Guo et al.,**  
 137 **2025), and parameter-efficient tuning has also been leveraged for medical report generation in fed-**  
 138 **erated settings (Che et al., 2025).** CTF innovates by using prompts not just for task adaptation, but  
 139 as a cross-domain conditioning mechanism where one domain dynamically influences the semantic  
 140 interpretation within another, creating an integrated, context-aware system *before* fusion.

141 **Concept-Based and Interpretable Multimodal Learning.** A major barrier to the clinical adop-  
 142 tion of deep fusion models is their lack of interpretability (Amann et al., 2020). Concept Bottleneck  
 143 Models (CBMs) (Koh et al., 2020; Ghorbani et al., 2019) address this by forcing predictions  
 144 through a set of human-understandable concepts. While foundational, this rigid bottleneck can limit  
 145 performance. The field is evolving towards more flexible, interpretable frameworks, such as using  
 146 multimodal contrastive learning (Nauta et al., 2021) to find local, explainable correlations between  
 147 imaging and text or building large-scale, concept-centric FMs like ConceptCLIP (Nie et al., 2025).  
 148 CTF is inspired by this philosophy but makes a crucial contribution to the multimodal context. We  
 149 treat concepts not as a static bottleneck, but as the very medium for the cross-domain guidance de-  
 150 scribed above. Our key innovation, the GCSP strategy, allows each VLM to adjust its understanding  
 151 of concepts like “tumor invasiveness” based on real-time information from the complementary do-  
 152 main. This unique synthesis provides the deep synergy of cross-domain guidance while leveraging  
 153 the transparency of concept-based reasoning, distinguishing our work from both black-box fusion  
 154 techniques and traditional CBMs.

155 **3 METHODOLOGY**  
 156

157 Our Concept Tuning and Fusing (CTF) framework enables synergistic integration of radiology and  
 158 pathology data by creating a shared semantic bridge built on medically relevant concepts. The  
 159 framework, depicted in Figure 2, proceeds in three main stages. First, in **Prognostic Concept Se-**  
 160 **lection (Sec 3.1)**, we generate a comprehensive pool of medical concepts and then use a principled  
 161 optimization strategy to select a compact, diverse, and prognostically relevant subset for each do-  
 162 main. Second, in the core of our framework, **Cross-Domain Concept Co-Adaptation (Sec 3.2)**, we

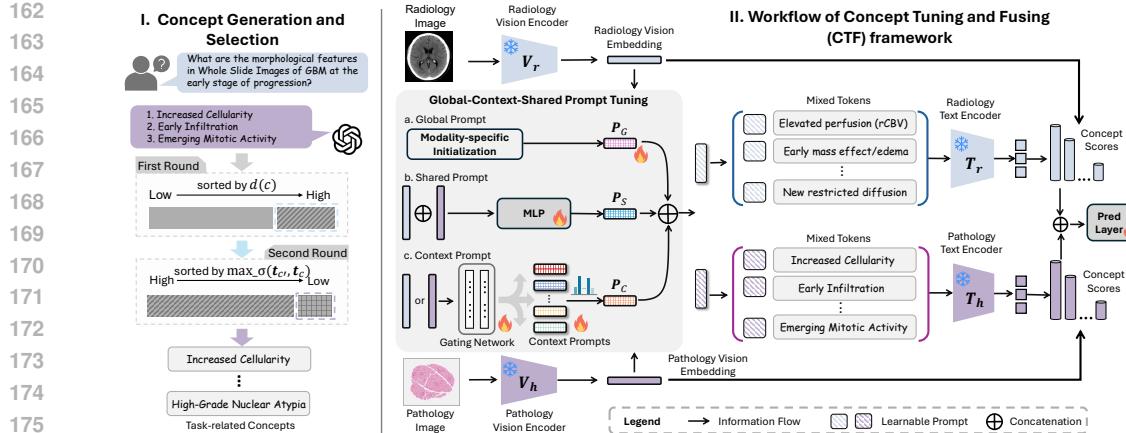


Figure 2: Overview of the CTF framework.(I) Concept Generation & Selection identifies relevant and diverse medical concepts. (II) Concept Tuning & Fusing freezes radiology/pathology vision encoders. GCSP prepends three prompts to each concept’s text tokens—(a) global (task adaptation), (b) shared (MLP over  $[f_r, f_h]$ ), and (c) context (gated by the complementary modality)—before the frozen text encoders, producing per-domain concept scores that are concatenated for prediction.

use our novel Global-Context-Shared Prompt (GCSP) mechanism to dynamically tune the textual embedding of each concept, making it aware of both the downstream task and the cross-domain context of the specific patient case. Finally, in **Fusion and Interpretable Prediction (Sec 3.3)**, these co-adapted concept scores are fused and fed to a prediction head, ensuring that the final output is grounded in a transparent, concept-level rationale. The entire model, with only the lightweight prompt modules being trainable, is optimized end-to-end.

### 3.1 FEATURE EXTRACTION AND PROGNOSTIC CONCEPT SELECTION

**Vision Feature Extraction.** Given a radiology image  $x_r$  and a pathology whole-slide image (WSI)  $x_h$ , we first obtain global feature representations using the vision encoders ( $V_r, V_h$ ) of powerful, pre-trained medical VLMs. This yields feature vectors  $f_r = V_r(x_r) \in \mathbb{R}^{D_{vr}}$  and  $f_h = V_h(x_h) \in \mathbb{R}^{D_{vh}}$ , where  $D_{vr}$  and  $D_{vh}$  are the dimensions of the respective vision feature spaces. These encoders remain frozen during training to preserve their rich, pre-trained knowledge.

**Prognostic Concept Selection.** A high-quality set of medical concepts forms the foundation of our interpretable bridge. Given an initial large candidate pool  $\mathcal{S}$  (generated via LLMs *per domain*. Details in Appendix C.1), we aim to select a compact subset  $\mathcal{C}$  of size  $k$  that is both prognostically relevant and semantically diverse. This avoids selecting redundant concepts (e.g., “irregular margins” and “ill-defined borders”). We formalize this as maximizing a submodular objective function (Harshaw et al., 2019; Lin & Bilmes, 2012), which balances relevance  $d(\cdot)$  and diversity:

$$F(\mathcal{C}) = \sum_{c \in \mathcal{C}} d(c) + \lambda \sum_{c \in \mathcal{C}} \min_{c' \in \mathcal{C} \setminus \{c\}} (1 - \sigma(\mathbf{t}_c, \mathbf{t}_{c'})). \quad (1)$$

As this is NP-hard, we approximate the solution with a two-stage greedy algorithm (shown in Fig. 2):

**1. Relevance Ranking:** We first score every candidate concept  $c \in \mathcal{S}$  based on its prognostic relevance. We define this relevance score  $d(c)$  using the Mutual Information (MI) between the concept’s alignment scores and patient labels (Kraskov et al., 2004). For each image  $x_i$ , an alignment score  $a(\mathbf{x}_i, c) = (\mathbf{t}_c^\top \mathbf{f}_i) / (\|\mathbf{t}_c\|_2 \|\mathbf{f}_i\|_2)$  is computed, where  $\mathbf{t}_c = T(c)$  is the text embedding of concept  $c$  from the text encoder  $T(\cdot)$ . We estimate MI via sklearn’s `kNN-based mutual_info_classif` (Ross, 2014), which discretizes the continuous alignment internally. We then compute its MI with the label  $Y$  as  $d(c) = I(\hat{A}_c; Y) = \sum_{y \in Y} \sum_{\hat{a} \in \hat{A}_c} p(\hat{a}, y) \log \frac{p(\hat{a}, y)}{p(\hat{a})p(y)}$ . All concepts in  $\mathcal{S}$  are then sorted in descending order based on this score.

**2. Diversity Maximization:** We initialize our final concept set  $\mathcal{C}$  with the top-ranked concept from the first round. We then iteratively add concepts to  $\mathcal{C}$  from the sorted list. At each step, we select the next concept  $c^*$  that maximizes semantic diversity with respect to the concepts already

216 chosen, defined as  $c^* = \arg \max_{c' \in \mathcal{S} \setminus \mathcal{C}} (\min_{c \in \mathcal{C}} (1 - \sigma(\mathbf{t}_{c'}, \mathbf{t}_c)))$ , where  $\sigma(\cdot, \cdot)$  is the cosine similarity  
 217 between concept text embeddings from the VLM’s text encoder  $T(\cdot)$ . This process continues  
 218 until  $|\mathcal{C}| = k$ , yielding the final, high-quality concept sets  $\mathcal{C}_{\text{rad}}$  and  $\mathcal{C}_{\text{hist}}$ .  
 219

220 This selection is performed once with frozen encoders, and tuned prompts (Sec. 3.2) are used only  
 221 during model training/inference.

### 222 3.2 CROSS-DOMAIN CONCEPT CO-ADAPTATION

224 Static concept representations fail to capture how the meaning of a medical finding can shift based  
 225 on complementary information. To address this, we introduce the **Global-Context-Shared Prompt**  
 226 (**GCSP**) strategy, a parameter-efficient tuning method that generates a dynamic, case-specific prefix  
 227  $\mathbf{P}^{\text{tuned}}$  for each concept  $c$  before it is processed by the frozen text encoder  $T(\cdot)$ . Unlike methods that  
 228 aim to modify static latent features, our approach actively conditions the semantic representation  
 229 of concepts within each domain, creating a synergistic dialogue *before* fusion. We apply GCSP  
 230 symmetrically: radiology concepts are conditioned on pathology features and vice versa (Fig. 2).  
 231 For a radiology (pathology by symmetry) concept, the prefix  $\mathbf{P}^{\text{tuned}} \in \mathbb{R}^{L \times D_t}$  is a concatenation of  
 232 three specialized components:

$$233 \mathbf{P}^{\text{tuned}} = \text{Concat}(\mathbf{P}_G, \mathbf{P}_C(\mathbf{f}_h), \mathbf{P}_S(\mathbf{f}_r, \mathbf{f}_h)). \quad (2)$$

235 **Global Prompt ( $\mathbf{P}_G$ ).** For each concept  $c$ , we learn a dedicated, domain-specific prompt vector  
 236  $\mathbf{P}_G(c)$ . This prompt is shared across all patients within one domain and provides a general adapta-  
 237 tion of the concept’s pre-trained meaning to the specific nuances of the downstream task.  
 238

239 **Context Prompt ( $\mathbf{P}_C$ ).** This prompt is the key to our cross-domain guidance. It allows one modal-  
 240 ity to influence the interpretation of concepts in the other via a Mixture-of-Experts (MoE) style  
 241 layer (Shazeer et al., 2017). For a radiology concept  $c_r$ , the context prompt is generated from the  
 242 pathology image feature  $\mathbf{f}_h$ . We maintain a learnable pool of  $M$  basis prompt vectors  $\{\mathbf{P}_{C,i}^{\text{basis}}\}_{i=1}^M$   
 243 shared across all concepts in that domain. A lightweight gating network,  $g_r : \mathbb{R}^{D_{vh}} \rightarrow \mathbb{R}^M$ , takes  
 244 the complementary feature  $\mathbf{f}_h$  to produce mixture weights:  $\mathbf{P}_C(\mathbf{f}_h) = \sum_{i=1}^M \alpha_i \cdot \mathbf{P}_{C,i}^{\text{basis}}$ , where  
 245  $\alpha = \text{softmax}(g_r(\mathbf{f}_h))$ . This mechanism dynamically selects and weights conceptual attributes and  
 246 provides patient-specific, cross-domain conditioning of concept semantics (see Appendix A.1 for  
 247 more details). The same mechanism is applied symmetrically for pathology concepts.

248 **Shared Prompt ( $\mathbf{P}_S$ ).** This prompt captures holistic, patient-specific synergy. First, a shared latent  
 249 vector is produced by a small MLP,  $\phi_S$ , that takes the concatenated features from both modalities  
 250 as input:  $\mathbf{f}_S = \phi_S(\text{Concat}(\mathbf{f}_r, \mathbf{f}_h))$ . This shared feature is then projected by two separate linear  
 251 layers, to suit different VLMs’ context:  $\mathbf{P}_{S,r}(\mathbf{f}_S) = \varphi_{S,r}(\mathbf{f}_S)$  and  $\mathbf{P}_{S,h}(\mathbf{f}_S) = \varphi_{S,h}(\mathbf{f}_S)$ . This  
 252 provides a unified adjustment signal to all concepts for a given patient, ensuring coherent refinement  
 253 across domains.

### 254 3.3 CONCEPT-BASED FUSION AND TASK-SPECIFIC PREDICTION

256 After generating the composite prompt  $\mathbf{P}^{\text{tuned}}$  for each concept, we prepend  $\mathbf{P}^{\text{tuned}}$  to the tokenized  
 257 **concept string**. Then we obtain a set of tuned textual embeddings,  $\{\tilde{\mathbf{t}}_{c_r}\}$  and  $\{\tilde{\mathbf{t}}_{c_h}\}$ , from the text en-  
 258 coder, where  $\mathbf{t}_c = T(\text{Tuned tokens for } c)$ . We then compute two concept score vectors,  $\mathbf{s}_r \in \mathbb{R}^{|\mathcal{C}_{\text{rad}}|}$   
 259 and  $\mathbf{s}_h \in \mathbb{R}^{|\mathcal{C}_{\text{hist}}|}$ , representing the alignment of each image with its corresponding tuned concepts,  
 260 where the  $j$ -th element of each vector is computed as:  $s_{r,j} = (\mathbf{f}_r^\top \tilde{\mathbf{t}}_{c_r^{(j)}}) / (\|\mathbf{f}_r\|_2 \|\tilde{\mathbf{t}}_{c_r^{(j)}}\|_2)$  and  
 261  $s_{h,j} = (\mathbf{f}_h^\top \tilde{\mathbf{t}}_{c_h^{(j)}}) / (\|\mathbf{f}_h\|_2 \|\tilde{\mathbf{t}}_{c_h^{(j)}}\|_2)$ . These score vectors provide an interpretable representation of  
 262 the patient’s condition. The final patient representation  $\mathbf{z}$  is formed by concatenating the scores from  
 263 both domains:  $\mathbf{z} = \text{Concat}(\mathbf{s}_r, \mathbf{s}_h)$ . This interpretable vector is then passed through a final predic-  
 264 tion head, a multi-layer perceptron ( $\text{MLP}_{\text{pred}}$ ), to produce the task-specific output  $\mathbf{o} = \text{MLP}_{\text{pred}}(\mathbf{z})$ .  
 265 All FM encoders remain frozen and only the prompt modules and prediction head are trainable,  
 266 totaling 0.5M (0.15% of 307M across both FMs).  
 267

268 **Optimization.** The entire framework is trained end-to-end using a loss function appropriate for the  
 269 downstream task. For survival analysis, we use the Cox Proportional Hazards model (Cox, 1972)  
 where  $\mathbf{o}$  is a vector of risk scores. The model is optimized by minimizing the negative log partial

270 likelihood  $\mathcal{L}_{\text{cox}} = -\sum_{i:\delta_i=1} (r_i - \log \sum_{j \in \mathcal{R}_i} \exp(r_j))$ , where  $\delta_i = 1$  if the event (e.g., death)  
 271 was observed and  $\delta_i = 0$  if the data is right-censored,  $r_i$  is the predicted risk for patient  $i$  and  $\mathcal{R}_i =$   
 272  $\{j | t_j \geq t_i\}$  is the set of patients still at risk at time  $t_i$  (Katzman et al., 2018). For a classification  
 273 task like cancer grading, the prediction head  $\text{MLP}_{\text{pred}}$  outputs class logits, and the model is optimized  
 274 using a standard cross-entropy loss. Note that MI ranking is used only offline for concept selection.  
 275 At inference, we compute cosine-normalized concept scores with tuned embeddings and no labels  
 276 or MI are used.  
 277

## 278 4 EXPERIMENTS

281 We designed a comprehensive set of experiments to validate the core hypotheses of our work. Our  
 282 evaluation is structured to demonstrate that (1) our concept-based fusion paradigm, CTF, surpasses  
 283 state-of-the-art methods that rely on static or independently adapted latent features; (2) the per-  
 284 formance gains are primarily driven by our novel GCSP strategy, which enables a dynamic, cross-  
 285 domain dialogue; and (3) CTF yields predictions that are not only accurate but also interpretable,  
 286 robust across diverse clinical tasks, and grounded in clinically plausible reasoning.  
 287

### 288 4.1 EXPERIMENTAL SETUP

289 **Datasets.** We evaluate CTF on two distinct and clinically vital predictive tasks: survival analysis and  
 290 cancer grading. We curated four datasets spanning different cancer types and imaging modalities.  
 291 For survival analysis, we use three cohorts with paired imaging and clinical data: TCGA-LGG<sup>2</sup>,  
 292 TCGA-GBM, and private Center1-GC (Gastric Cancer). For cancer grading, we evaluate perfor-  
 293 mance on three cohorts, including private Center2-CHS (Chondrosarcoma). The specific classifica-  
 294 tions include 3-way WHO grades for the brain tumor cohorts (LGG and GBM merged) and 5-way  
 295 TNM T-stage for the gastric cancer cohort, a particularly challenging benchmark task. We report  
 296 mean $\pm$ sd over 10 stratified train/val/test splits. Besides, we perform paired t-tests between CTF and  
 297 the strongest baseline per task in Appendix D.4.

298 **Implementation Details.** To instantiate our  
 299 framework, we selected *domain-expert foundation models* to maximize clinical relevance:  
 300 BiomedCLIP (Zhang et al., 2023) for radiol-  
 301 ogy and CONCH (Lu et al., 2024) for pathol-  
 302 ogy. By keeping their vision encoders frozen,  
 303 we leverage their specialized knowledge bases  
 304 and focus our method on creating a synergistic  
 305 dialogue between them. For each domain, we  
 306 selected  $k = 256$  concepts using the designed  
 307 strategy (Sec. 3.1) and inserted  $L = 12$  tun-  
 308 able tokens (Sec. 3.2). The whole framework,  
 309 including all prompt generators, is trained end-  
 310 to-end. Full implementation, hyperparameter  
 311 details, and hardware/GPU usage are in Ap-  
 312 pendix A.2 and Appendix A.3.

### 313 4.2 BASELINES

315 We compared CTF against a comprehensive set of models. Unimodal baselines include several  
 316 high-performing single-modality methods (ABMIL (Ilse et al., 2018), CLAM (Lu et al., 2021),  
 317 etc.). Fusion baselines include: (1) Simple Fusion methods (Concat-Fusion, Cross-Attention); (2)  
 318 State-of-the-Art (SOTA) Latent Fusion methods that fuse static features (MOTCAT (Xu & Chen,  
 319 2023), PIBD (Zhang et al., 2024a)); and (3) a SOTA Adaptive Fusion method that fine-tunes model  
 320 weights (M4Survive (Lee et al., 2025)). Detailed descriptions of each baseline are in Appendix A.3.  
 321 For fairness, all baselines share the same frozen vision encoders and survival/classification heads,  
 322 and only fusion modules differ. Adaptation specifics for MOTCAT/PIBD are in Appendix A.4.  
 323

<sup>2</sup><https://www.cancer.gov/tcga/>

Table 1: Survival prediction performance (C-index  $\uparrow$ ) on three datasets. Best performance is in **bold**, second-best is underlined.

| Model                                      | TCGA-LGG                            | TCGA-GBM                            | Center1-GC                          |
|--------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| <i>Unimodal Baselines</i>                  |                                     |                                     |                                     |
| Radiology-Only                             | $0.598 \pm 0.128$                   | $0.477 \pm 0.055$                   | $0.614 \pm 0.052$                   |
| ABMIL (Ilse et al., 2018)                  | $0.669 \pm 0.101$                   | $0.480 \pm 0.093$                   | $0.590 \pm 0.030$                   |
| CLAM (Lu et al., 2021)                     | $0.689 \pm 0.108$                   | $0.497 \pm 0.068$                   | $0.631 \pm 0.060$                   |
| TransMIL (Shao et al., 2021)               | $0.682 \pm 0.121$                   | $0.503 \pm 0.055$                   | $0.613 \pm 0.066$                   |
| ACMIL (Zhang et al., 2024b)                | $0.678 \pm 0.142$                   | $0.519 \pm 0.057$                   | $0.628 \pm 0.083$                   |
| <i>Multimodal Latent Fusion Baselines</i>  |                                     |                                     |                                     |
| Concat-Fusion                              | $0.674 \pm 0.112$                   | $0.515 \pm 0.070$                   | $0.626 \pm 0.048$                   |
| Cross-Attention                            | $0.685 \pm 0.108$                   | $0.527 \pm 0.068$                   | $0.631 \pm 0.060$                   |
| MOTCAT (Xu & Chen, 2023)                   | $0.571 \pm 0.080$                   | $0.563 \pm 0.108$                   | $0.622 \pm 0.040$                   |
| PIBD (Zhang et al., 2024a)                 | $0.687 \pm 0.123$                   | $0.531 \pm 0.061$                   | $0.638 \pm 0.058$                   |
| <i>Multimodal Adaptive Fusion Baseline</i> |                                     |                                     |                                     |
| M4Survive (Lee et al., 2025)               | $0.709 \pm 0.112$                   | $0.545 \pm 0.072$                   | $0.642 \pm 0.065$                   |
| <b>CTF (Ours)</b>                          | <b><math>0.713 \pm 0.103</math></b> | <b><math>0.579 \pm 0.063</math></b> | <b><math>0.665 \pm 0.061</math></b> |

324 Table 2: Cancer Grading Performance (AUC↑ and ACC↑). Best performance is in **bold**, second-best  
 325 is underlined.

| 327<br>328<br>Model                            | 329<br>TCGA-GBMLGG (3-way) |                      | 330<br>Center2-CHS (5-way) |                      | 331<br>Center1-GC (5-way) |                      |
|------------------------------------------------|----------------------------|----------------------|----------------------------|----------------------|---------------------------|----------------------|
|                                                | AUC↑                       | 332<br>ACC↑          | AUC↑                       | 333<br>ACC↑          | AUC↑                      | 334<br>ACC↑          |
| <i>335 Unimodal Baselines</i>                  |                            |                      |                            |                      |                           |                      |
| 336 Radiology-Only                             | 0.776 ± 0.059              | 0.624 ± 0.064        | 0.679 ± 0.069              | 0.429 ± 0.091        | 0.595 ± 0.087             | 0.341 ± 0.080        |
| 337 ABMIL (Ilse et al., 2018)                  | 0.855 ± 0.050              | 0.667 ± 0.076        | 0.770 ± 0.092              | 0.493 ± 0.138        | 0.609 ± 0.063             | 0.384 ± 0.053        |
| 338 CLAM (Lu et al., 2021)                     | 0.860 ± 0.048              | 0.681 ± 0.070        | 0.775 ± 0.089              | 0.512 ± 0.130        | 0.628 ± 0.055             | 0.390 ± 0.051        |
| 339 TransMIL (Shao et al., 2021)               | 0.864 ± 0.050              | 0.684 ± 0.068        | 0.781 ± 0.085              | 0.518 ± 0.128        | 0.625 ± 0.058             | 0.388 ± 0.049        |
| 340 ACMIL (Zhang et al., 2024b)                | 0.853 ± 0.046              | 0.680 ± 0.069        | 0.779 ± 0.046              | 0.515 ± 0.129        | 0.619 ± 0.062             | 0.389 ± 0.054        |
| <i>343 Multimodal Latent Fusion Baselines</i>  |                            |                      |                            |                      |                           |                      |
| 344 Concat-Fusion                              | 0.858 ± 0.038              | 0.687 ± 0.062        | 0.805 ± 0.075              | 0.535 ± 0.115        | 0.629 ± 0.051             | 0.391 ± 0.048        |
| 345 Cross-Attention                            | 0.868 ± 0.030              | 0.695 ± 0.059        | 0.817 ± 0.071              | 0.581 ± 0.110        | 0.635 ± 0.048             | 0.394 ± 0.049        |
| 346 MOTCAT (Xu & Chen, 2023)                   | 0.865 ± 0.025              | 0.657 ± 0.053        | 0.826 ± 0.078              | 0.612 ± 0.120        | 0.641 ± 0.050             | 0.390 ± 0.052        |
| <i>349 Multimodal Adaptive Fusion Baseline</i> |                            |                      |                            |                      |                           |                      |
| 350 M4Survive (Lee et al., 2025)               | 0.861 ± 0.031              | 0.691 ± 0.061        | 0.830 ± 0.075              | 0.626 ± 0.115        | 0.649 ± 0.052             | 0.390 ± 0.051        |
| 351 CTF (Ours)                                 | <b>0.903 ± 0.028</b>       | <b>0.718 ± 0.063</b> | <b>0.854 ± 0.081</b>       | <b>0.698 ± 0.164</b> | <b>0.660 ± 0.049</b>      | <b>0.401 ± 0.057</b> |

### 341 4.3 QUANTITATIVE RESULTS

342 **343 Superior Survival Prediction.** As presented in Table 1, CTF consistently achieves state-of-the-art  
 344 performance, outperforming all baselines in our study on the three survival prediction cohorts. Notably,  
 345 it achieves a C-index (Harrell et al., 1982) of 0.713 on TCGA-LGG, surpassing the strongest  
 346 adaptive baseline, M4Survive, and the strongest latent fusion baseline, PIBD, by 3.8%. The results  
 347 reveal a clear hierarchy of fusion strategies. While all multimodal methods generally outperform  
 348 unimodal approaches, affirming the value of data integration, the key distinction lies in how fusion  
 349 is performed. Advanced latent fusion models like PIBD show respectable gains over simple con-  
 350 catenation but are ultimately limited by their reliance on static, pre-extracted features. Adaptive  
 351 methods like M4Survive improve upon this by fine-tuning architectural components.

352 However, CTF’s superior performance suggests a fundamental advantage. Instead of simply fusing  
 353 latent vectors or adapting architectural blocks, CTF performs *semantic co-adaptation*. By dynami-  
 354 cally tuning the meaning of clinical concepts in one domain based on context from the other before  
 355 fusion, it achieves a deeper, more synergistic integration. This consistent performance gain across  
 356 diverse cancer types aligns with our hypothesis: dynamic, concept-based co-adaptation is a more  
 357 effective paradigm for multimodal fusion than static latent fusion or independent architectural adap-  
 358 tation.

359 **360 Generalization to Cancer Grading.** As shown in Table 2, CTF again achieves state-of-the-art  
 361 performance, outperforming all baselines across the three datasets. On average, CTF obtains an AUC  
 362 improvement of 3.6% over the strongest fusion baseline (MOTCAT). This is a significant result, as  
 363 cancer grading relies on identifying distinct morphological and cellular patterns. CTF’s success  
 364 suggests its ability to learn a rich, concept-based dialogue between radiology’s macro-structural  
 365 views and pathology’s micro-cellular details is highly effective for this classification task. This  
 366 robust performance validates the broader utility of our concept-tuning and fusion paradigm.

### 367 4.4 ANALYSIS AND ABLATION STUDIES

368 **369 The Critical Role of Cross-Domain Dialogue.** As shown in Table 3, the most impactful ablation  
 370 was the removal of the Context Prompt ( $P_C$ ), which embodies our cross-domain guidance mech-  
 371 anism. This single change caused the most significant performance degradation, with the C-index  
 372 plummeting by 0.036. This result provides direct empirical evidence that forcing each modality to  
 373 be “aware” of the other during concept interpretation is the primary driver of CTF’s success. The re-  
 374 moval of the Global (task-specific) and Shared (synergistic) prompts also led to performance drops,  
 375 confirming that all components of the GCSP strategy contribute meaningfully to the performance.

376 **377 Dynamic Tuning vs. Static Concepts.** We then tested a model using “Static Concepts” without  
 378 any prompt tuning, which is analogous to a standard Concept Bottleneck Model (CBM) (Koh et al.,  
 379 2020). Specifically, the “static concepts (CBM)” variant uses fixed, pre-trained concepts and feeds  
 380 their scores directly to an MLP head for downstream predictions. As in Table 3, we found the model

Table 3: Ablation on the Center1-GC dataset for survival prediction and tumor grading. Metrics are reported as mean with standard deviation in parentheses. Best numbers are in bold.  $\Delta$  denotes absolute change vs. the full CTF model.

| Category             | Variant                           | Survival Prediction    |          | Tumor Grading        |          |
|----------------------|-----------------------------------|------------------------|----------|----------------------|----------|
|                      |                                   | C-index ( $\uparrow$ ) | $\Delta$ | AUC ( $\uparrow$ )   | $\Delta$ |
| Reference            | CTF (Full Model)                  | <b>0.665 (0.061)</b>   | (-)      | <b>0.660 (0.049)</b> | (-)      |
| Prompt Components    | w/o Context Prompt ( $P_C$ )      | 0.629 (0.058)          | (-0.036) | 0.635 (0.047)        | (-0.025) |
|                      | w/o Shared Prompt ( $P_S$ )       | 0.653 (0.063)          | (-0.012) | 0.651 (0.056)        | (-0.009) |
|                      | w/o Global Prompt ( $P_G$ )       | 0.642 (0.051)          | (-0.023) | 0.640 (0.048)        | (-0.020) |
| Tuning Strategy      | Static Concepts (CBM)             | 0.586 (0.049)          | (-0.079) | 0.622 (0.055)        | (-0.038) |
|                      | Static Concepts + Prompt Tuning   | 0.638 (0.059)          | (-0.027) | 0.635 (0.052)        | (-0.025) |
| Concept Selection    | Random Selection                  | 0.622 (0.053)          | (-0.043) | 0.654 (0.053)        | (-0.006) |
|                      | Top-MI Selection (relevance-only) | 0.646 (0.060)          | (-0.019) | 0.642 (0.049)        | (-0.018) |
| Backbone Sensitivity | CTF (General, CLIP + CLIP)        | 0.621 (0.055)          | (-0.044) | 0.615 (0.054)        | (-0.045) |
|                      | CTF (Hybrid, CLIP + CONCH)        | 0.639 (0.059)          | (-0.026) | 0.643 (0.050)        | (-0.017) |
|                      | CTF (Expert, BiomedCLIP + MUSK)   | <b>0.680 (0.064)</b>   | (+0.015) | <b>0.658 (0.053)</b> | (-0.002) |
|                      | CTF (Expert, BiomedCLIP + PLIP)   | 0.627 (0.063)          | (-0.038) | 0.636 (0.052)        | (-0.029) |

performed poorly (C-index 0.586), demonstrating that simply using concepts as an intermediate layer is insufficient. The dynamic adaptation enabled by GCSP is paramount. Interestingly, this aligns with recent findings that show modern, flexible prototype-based methods are moving beyond the rigid CBM structure (Chen et al., 2025). Our work contributes a novel cross-modal tuning mechanism to this emerging paradigm.

**Concept Selection and Backbone Choice.** The inputs to our framework are also critical. We compared our prognostic and diversity-aware concept selection against two alternatives: Random Selection and Top-MI Selection (relevance-only). As shown in Table 3, our principled strategy significantly outperforms both, validating the need to select concepts that are both prognostically relevant and semantically diverse. Furthermore, to confirm the value of domain-specific foundation models, we replaced the expert BiomedCLIP and CONCH encoders with general-purpose CLIP models. This ‘Generalist’ setup led to a substantial performance drop (C-index from 0.665 to 0.621), confirming that CTF’s ability to bridge modalities is maximized when it operates on the rich representations of expert models. When fixing radiology to CLIP and varying pathology VLMs (‘Hybrid’ rows in Table 3), we observe that pathology-specific VLMs (CONCH, MUSK (Xiang et al., 2025), PLIP (Huang et al., 2023)) outperform generic CLIP, with MUSK slightly ahead of CONCH on the survival task of Center1-GC.

**Parameter Sensitivity.** We analyzed CTF’s sensitivity to two key hyperparameters in our GCSP strategy: the prompt length  $L$  and the number of concepts  $k$ . As shown in Figure 3, we evaluated performance across all three survival cohorts. In Figure 3a, we varied the length of the tunable prompt from 4 to 20. Performance is generally stable, with a slight peak at  $L = 12$ . Shorter prompts may lack expressive power, while longer ones increase parameter counts without a clear benefit, validating our choice of  $L = 12$  as an efficient and effective setting. In Figure 3b, we varied the number of selected concepts per modality from 32 to 512. Performance peaks at  $k = 256$ . Too few concepts (e.g.,  $k = 64$ ) fail to capture sufficient prognostic information, while too many ( $k = 512$ )

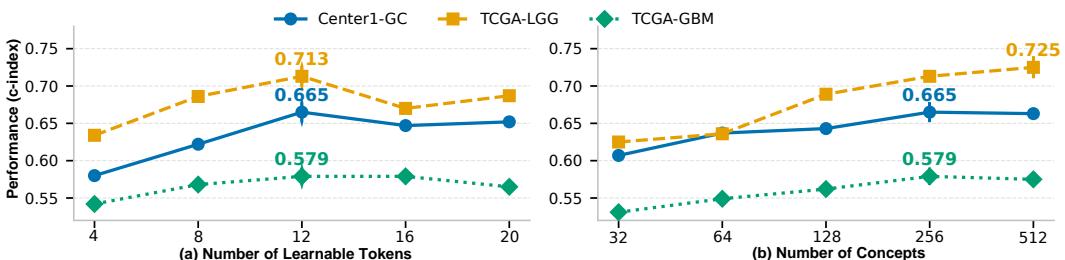


Figure 3: Hyperparameter sensitivity analysis on all three datasets for survival prediction. (a) Performance (C-index) versus the number of learnable tokens ( $L$ ) per prompt component. (b) Performance versus the number of selected concepts ( $k$ ) per domain.

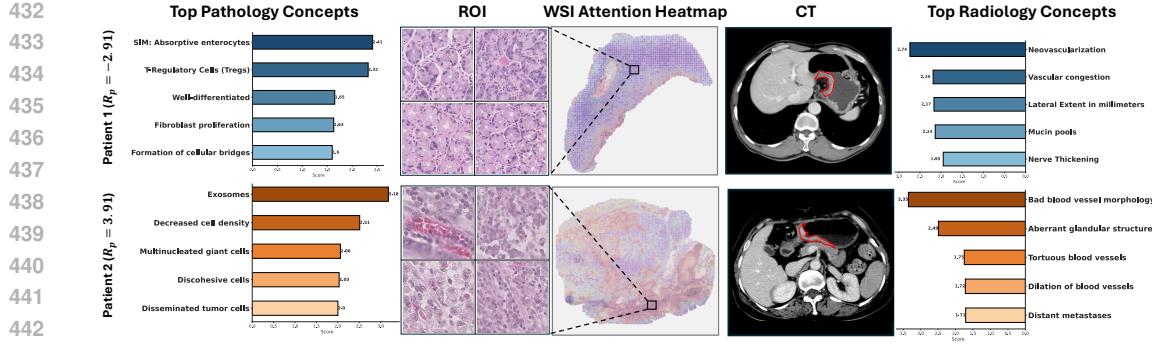


Figure 4: Concept-based Interpretation of CTF Predictions. Visualization of top 5 pathology and radiology concept scores for (top) a low-risk patient censored at a late time point and (bottom) a high-risk patient with an early event from the Center1-GC dataset.

may introduce noise and a larger computation cost without improving, and in some cases slightly degrading, performance. This confirms  $k = 256$  might be an optimal choice.

#### 4.5 QUALITATIVE ANALYSIS AND INTERPRETABILITY

Beyond quantitative benchmarks, a critical goal of CTF is to provide transparent and trustworthy predictions. We conducted a series of qualitative analyses to demonstrate that our model’s reasoning is grounded in clinically relevant patterns.

**Prognostic Stratification.** As shown in Fig. 5, we stratify patients into low-risk and high-risk groups based on the median predicted risk scores from CTF. The Kaplan-Meier curves (Kaplan & Meier, 1958) for three datasets show a clear and statistically significant separation ( $p < 0.05$ , log-rank test (Mantel et al., 1966)) between the groups, verifying our model’s strong prognostic power.

**Patient-Level Rationale.** Because  $z$  is a vector of concept scores, we can inspect which radiology and pathology concepts dominate the prediction for a given patient. Figure 4 visualizes final concept scores for two Center1-GC patients: one low-risk censored late, and one high-risk with an early event. The low-risk patient (Figure 4 top) suggests a less aggressive phenotype, such as “Well-differentiated tumor”. In contrast, the high-risk patient (Figure 4 bottom) shows high scores for aggressive concepts like “Disseminated tumor cells” and “Bad blood vessel morphology”, providing a clear and alarming prognostic signal. This demonstrates CTF provides accurate predictions with a transparent, clinically relevant rationale based on meaningful concepts.

**Semantic Drift.** We compared the concept embedding before and after tuning. To quantify how GCSP modifies concept semantics, we compute, for each concept  $c$ , the cosine similarity  $s_c = \cos(\hat{\mathbf{t}}_c, \mathbf{t}_c)$  between the tuned embedding  $\hat{\mathbf{t}}_c$  and its original text embedding  $\mathbf{t}_c$  from the frozen encoder. For Center1-GC’s radiology concepts, the distribution of  $s_c$  concentrates well above 0.5 with a median of 0.633 (Fig. 6a), indicating moderate, task-sharpened shifts rather than wholesale redefinition. The t-SNE visualization (Fig. 6b) corroborates this pattern, showing coherent displacement without mode collapse. Practically, this bounded drift preserves the interpretability of the original human-readable concepts while enabling measurable gains in downstream prediction.

**Visualizing Cross-Modal Influence.** We assess whether GCSP captures clinically meaningful dependencies by grouping selected concepts into high-level radiology and pathology categories and

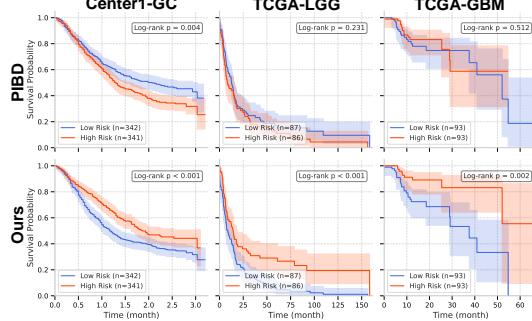


Figure 5: Kaplan-Meier survival curves for risk groups predicted by CTF (bottom row) and the SOTA latent fusion baseline, PIBD (top row), on the (a) Center1-GC, (b) TCGA-LGG, and (c) TCGA-GBM datasets.

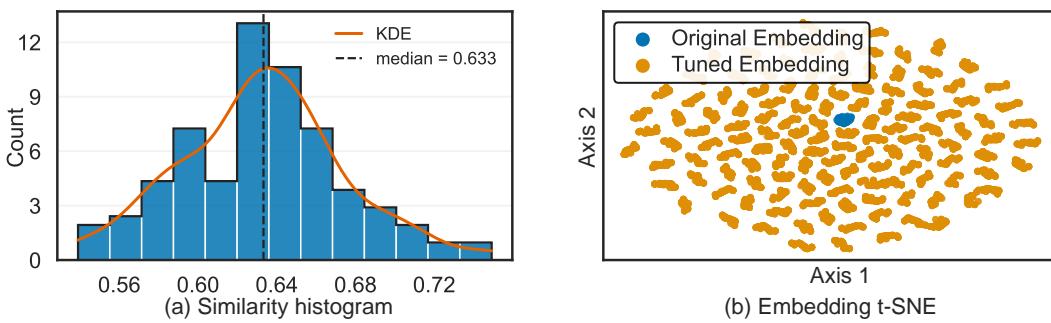


Figure 6: Semantic drift of concept embeddings. (a) Histogram of cosine similarity between tuned and original concept embeddings (median 0.633) indicates task-sharpened but semantically consistent shifts. (b) t-SNE shows systematic displacement without mode collapse.

quantifying how the radiology-to-pathology context prompt  $P_C$  alters pathology concept scores (vs. a zeroed  $P_C$ ).

The Fig. 7 heatmap shows clinically plausible relationships learned by the model. For instance, radiology concepts related to “Tumor Morphology” and “Invasion & Metastasis” strongly amplify pathology concepts of “Cellular Atypia” and “Vascular Invasion,” mimicking a pathologist’s reasoning process where macroscopic signs of aggression prompt a closer search for microscopic evidence (Tomaszewski & Gillies, 2021). Besides, radiology’s “Necrosis & Cell Death” has minimal influence on pathology’s “Mitotic Activity”. This is clinically sound: while large-scale necrosis is visible on a CT scan, it is a poor predictor of the specific rate of cell division (mitotic count), which is only assessable under a microscope (Bosman et al., 2010).

## 5 CONCLUSION AND LIMITATIONS

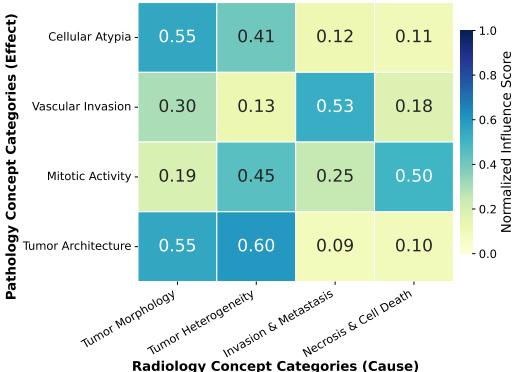


Figure 7: Cross-modal influence analysis on the Center1-GC dataset. The heatmap shows the changes in normalized influence score, representing how much the presence of a radiology concept category (columns) affects the scores of pathology concept categories (rows) via the Context Prompt ( $P_C$ ). throughout training. While GCSP dynamically tunes concept semantics, it does not introduce new labels or expand the concept vocabulary. Beyond tuning semantics, future work will (i) periodically refresh/expand the concept pool using model-derived importance and LLM-decoding of tuned embeddings, and (ii) handle missing modalities via partial-paired training and concept imputation.

We presented CTF, a parameter-efficient, concept-based multimodal co-adaptation framework that bridges radiology and pathology FMs. Via the Global–Context–Shared Prompt (GCSP), CTF dynamically tunes clinically grounded concepts with task, cross-domain, and shared patient context, aligning representations before fusion and yielding transparent, concept-level predictions. Ablations confirm the primacy of cross-domain context and principled concept selection, and qualitative analyses reveal clinically plausible rationales and influence patterns.

Limitations include reliance on a predefined concept pool and paired data. Furthermore, the modest absolute performance on the difficult 5-way gastric cancer grading task underscores that it is not ready for clinical deployment in this specific scenario, serving as a benchmark for methodological comparison. Our current concept pool is generated once by an LLM and then fixed

540  
541  
**ETHICS STATEMENT**542  
543  
544  
545  
546  
547  
This research utilized both public and private medical datasets. All data from The Cancer Genome  
Atlas (TCGA) are publicly available and de-identified. The in-house datasets (Center1-GC and  
Center2-CHS) were collected under protocols approved by the local Institutional Review Board  
(IRB), with all patient data fully anonymized before use in this study. Informed consent was obtained  
from all participants. Our study strictly adheres to data privacy and protection regulations, as detailed  
in Appendix B.548  
549  
**REPRODUCIBILITY STATEMENT**  
550551  
552  
553  
554  
555  
To ensure the reproducibility of our results, we have made our code anonymously available at:  
<https://anonymous.4open.science/r/CTF-27C2>. The main paper provides a detailed  
description of our methodology in Section 3. The appendix further provides pseudocode for our  
core algorithms, comprehensive architectural and training details, including hyperparameters, and  
specifics on baseline implementations (Appendix A).556  
557  
**REFERENCES**  
558559  
560  
561  
Julia Amann, Alessandro Blasimme, Effy Vayena, Dietmar Frey, Vince I Madai, and Precise4Q  
Consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspec-  
tive. *BMC medical informatics and decision making*, 20:1–9, 2020.562  
563  
564  
Alaedine Benani, Stéphane Ohayon, Fewa Laleye, Pierre Bauvin, Emmanuel Messas, Sylvain Bo-  
nard, and Xavier Tannier. Is multimodal better? a systematic review of multimodal versus uni-  
modal machine learning in clinical decision-making. *medRxiv*, pp. 2025–03, 2025.565  
566  
Fred T Bosman, Fatima Carneiro, Ralph H Hruban, and Neil D Theise. *WHO classification of  
567 tumours of the digestive system*. Number Ed. 4. 2010.568  
569  
570  
Haoxuan Che, Haibo Jin, Zhengrui Gu, Yi Lin, Cheng Jin, and Hao Chen. Llm-driven medical report  
571  
generation via communication-efficient heterogeneous federated learning. *IEEE Transactions on  
Medical Imaging*, 2025.572  
573  
Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume, Andrew H Song,  
574  
Bowen Chen, Andrew Zhang, Daniel Shao, Muhammad Shaban, et al. Towards a general-purpose  
foundation model for computational pathology. *Nature medicine*, 30(3):850–862, 2024.575  
Yuxuan Chen, Jiawen Li, Jiali Hu, Xitong Ling, Tian Guan, Anjia Han, and Yonghong He. Cross-  
576  
577  
578  
modal prototype allocation: Unsupervised slide representation learning via patch-text contrast in  
computational pathology. *arXiv preprint arXiv:2503.20190*, 2025.579  
580  
David R Cox. Regression models and life-tables. *Journal of the Royal Statistical Society: Series B  
(Methodological)*, 34(2):187–202, 1972.581  
582  
Can Cui, Haichun Yang, Yaohong Wang, Shilin Zhao, Zuhayr Asad, Lori A Coburn, Keith T Wilson,  
583  
Bennett A Landman, and Yuankai Huo. Deep multimodal fusion of image and non-image data  
584  
in disease diagnosis and prognosis: a review. *Progress in Biomedical Engineering*, 5(2):022001,  
2023.585  
586  
Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.  
587  
*arXiv preprint arXiv:1702.08608*, 2017.588  
589  
Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic concept-based  
590  
explanations. *Advances in neural information processing systems*, 32, 2019.591  
592  
Zhengrui Guo, Conghao Xiong, Jiabo Ma, Qichen Sun, Lishuang Feng, Jinzhuo Wang, and Hao  
593  
Chen. Focus: Knowledge-enhanced adaptive visual compression for few-shot whole slide image  
classification. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.  
15590–15600, 2025.

594 Frank E. Harrell, Robert M. Califf, David B. Pryor, K L Lee, and Robert A. Rosati. Evaluating the yield of medical tests. *JAMA*, 247(18):2543–6, 1982. URL <https://api.semanticscholar.org/CorpusID:23344910>.

595

596

597 Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximization beyond non-negativity: Guarantees, fast algorithms, and applications. In *International Conference on Machine Learning*, pp. 2634–2643. PMLR, 2019.

598

599

600

601 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

602

603

604 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

605

606

607 Lijie Hu, Songning Lai, Yuan Hua, Shu Yang, Jingfeng Zhang, and Di Wang. Stable vision concept transformers for medical diagnosis. *arXiv preprint arXiv:2506.05286*, 2025.

608

609 Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J Montine, and James Zou. A visual-language foundation model for pathology image analysis using medical twitter. *Nature medicine*, 29(9):2307–2316, 2023.

610

611

612

613 Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple instance learning. In *International conference on machine learning*, pp. 2127–2136. PMLR, 2018.

614

615 Edward L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observations. *Journal of the American Statistical Association*, 53:457–481, 1958. URL <https://api.semanticscholar.org/CorpusID:18549513>.

616

617

618

619 Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yuval Kluger. Deepsurv: personalized treatment recommender system using a cox proportional hazards deep neural network. *BMC medical research methodology*, 18(1):24, 2018.

620

621

622 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang. Concept bottleneck models. In *International conference on machine learning*, pp. 5338–5348. PMLR, 2020.

623

624

625

626 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information. *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 69(6):066138, 2004.

627

628 Ho Hin Lee, Alberto Santamaria-Pang, Jameson Merkov, Matthew Lungren, and Ivan Tarapov. Multi-modal mamba modeling for survival prediction (m4survive): Adapting joint foundation model representations. *arXiv preprint arXiv:2503.10057*, 2025.

629

630

631

632 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. *arXiv preprint arXiv:2104.08691*, 2021.

633

634

635 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv preprint arXiv:2101.00190*, 2021.

636

637

638 Hui Lin and Jeff A Bilmes. Learning mixtures of submodular shells with application to document summarization. *arXiv preprint arXiv:1210.4871*, 2012.

639

640

641 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. *Advances in neural information processing systems*, 32, 2019.

642

643

644

645 Ming Y Lu, Drew FK Williamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri, and Faisal Mahmood. Data-efficient and weakly supervised computational pathology on whole-slide images. *Nature biomedical engineering*, 5(6):555–570, 2021.

646

647

648 Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Ivy Liang, Tong Ding, Guillaume Jaume, Igor Odintsov, Long Phi Le, Georg Gerber, et al. A visual-language foundation model for computational pathology. *Nature Medicine*, 30:863–874, 2024.

648 Jiabo Ma, Zhengrui Guo, Fengtao Zhou, Yihui Wang, Yingxue Xu, Jinbang Li, Fang Yan, Yu Cai,  
 649 Zhengjie Zhu, Cheng Jin, et al. A generalizable pathology foundation model using a unified  
 650 knowledge distillation pretraining framework. *Nature Biomedical Engineering*, pp. 1–20, 2025.

651 Roba Al Majzoub, Hashmat Malik, Muzammal Naseer, Zaigham Zaheer, Tariq Mahmood, Salman  
 652 Khan, and Fahad Khan. How good is my histopathology vision-language foundation model? a  
 653 holistic benchmark. *arXiv preprint arXiv:2503.12990*, 2025.

654 Nathan Mantel et al. Evaluation of survival data and two new rank order statistics arising in its  
 655 consideration. *Cancer Chemother Rep*, 50(3):163–170, 1966.

656 Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-  
 657 grained image recognition. In *Proceedings of the IEEE/CVF conference on computer vision and*  
 658 *pattern recognition*, pp. 14933–14943, 2021.

659 Anh Tien Nguyen, Keunho Byeon, Kyungeun Kim, and Jin Tae Kwak. Vleer: Vision and language  
 660 embeddings for explainable whole slide image representation. *arXiv preprint arXiv:2502.20850*,  
 661 2025.

662 Yuxiang Nie, Sunan He, Yequan Bie, Yihui Wang, Zhixuan Chen, Shu Yang, and Hao Chen. Con-  
 663 ceptclip: Towards trustworthy medical ai via concept-enhanced contrastive langauge-image pre-  
 664 training. *arXiv preprint arXiv:2501.15579*, 2025.

665 Wei Peng, Kang Liu, Jianchen Hu, and Meng Zhang. Biomed-dpt: Dual modality prompt tuning for  
 666 biomedical vision-language models. *arXiv preprint arXiv:2505.05189*, 2025.

667 Ying-Jia Qi, Guan-Hua Su, Chao You, Xu Zhang, Yi Xiao, Yi-Zhou Jiang, and Zhi-Ming Shao.  
 668 Radiomics in breast cancer: Current advances and future directions. *Cell Reports Medicine*, 5(9),  
 669 2024.

670 Xuejun Qian, Jing Pei, Hui Zheng, Xinxin Xie, Lin Yan, Hao Zhang, Chenguang Han, Xiang Gao,  
 671 Hanqi Zhang, Weiwei Zheng, et al. Prospective assessment of breast cancer risk from multi-  
 672 modal multiview ultrasound images via clinically applicable deep learning. *Nature biomedical  
 673 engineering*, 5(6):522–532, 2021.

674 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 675 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 676 models from natural language supervision. In *International conference on machine learning*, pp.  
 677 8748–8763. PMLR, 2021.

678 Md Mamunur Rahaman, Ewan KA Millar, and Erik Meijering. Leveraging vision-language embed-  
 679 dings for zero-shot learning in histopathology images. *IEEE Journal of Biomedical and Health  
 680 Informatics*, 2025.

681 Brian C Ross. Mutual information between discrete and continuous data sets. *PloS one*, 9(2):  
 682 e87357, 2014.

683 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and  
 684 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

685 Matthias Schmid, Hans A Kestler, and Sergej Potapov. On the validity of time-dependent auc esti-  
 686 mators. *Briefings in Bioinformatics*, 16(1):153–168, 2015.

687 Zhuchen Shao, Hao Bian, Yang Chen, Yifeng Wang, Jian Zhang, Xiangyang Ji, et al. Transmil:  
 688 Transformer based correlated multiple instance learning for whole slide image classification. *Ad-  
 689 vances in neural information processing systems*, 34:2136–2147, 2021.

690 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,  
 691 and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.  
 692 *arXiv preprint arXiv:1701.06538*, 2017.

693 Jiangbo Shi, Chen Li, Tieliang Gong, Yefeng Zheng, and Huazhu Fu. Vila-mil: Dual-scale vision-  
 694 language multiple instance learning for whole slide image classification. In *Proceedings of the  
 695 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11248–11258, 2024.

702 Sandra Steyaert, Marija Pizurica, Divya Nagaraj, Priya Khandelwal, Tina Hernandez-Boussard, An-  
 703 drew J Gentles, and Olivier Gevaert. Multimodal data fusion for cancer biomarker discovery with  
 704 deep learning. *Nature machine intelligence*, 5(4):351–362, 2023.

705

706 Michal R Tomaszewski and Robert J Gillies. The biological meaning of radiomic features. *Radiol-  
 707 ogy*, 298(3):505–516, 2021.

708

709 Pengyu Wang, Huaqi Zhang, Meilu Zhu, Xi Jiang, Jing Qin, and Yixuan Yuan. Mgiml: Cancer grad-  
 710 ing with incomplete radiology-pathology data via memory learning and gradient homogenization.  
*IEEE Transactions on Medical Imaging*, 43(6):2113–2124, 2024.

711

712 Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang Chen, Yuchen  
 713 Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, et al. A vision–language foundation model  
 714 for precision oncology. *Nature*, 638(8051):769–778, 2025.

715

716 Hanwen Xu, Naoto Usuyama, Jaspreet Bagga, Sheng Zhang, Rajesh Rao, Tristan Naumann, Cliff  
 717 Wong, Zelalem Gero, Javier González, Yu Gu, et al. A whole-slide foundation model for digital  
 718 pathology from real-world data. *Nature*, 630(8015):181–188, 2024.

719

720 Yingxue Xu and Hao Chen. Multimodal optimal transport-based co-attention transformer with  
 721 global structure consistency for survival prediction. In *Proceedings of the IEEE/CVF interna-  
 722 tional conference on computer vision*, pp. 21241–21251, 2023.

723

724 Shin’ya Yamaguchi, Kosuke Nishida, Daiki Chijiwa, and Yasutoshi Ida. Zero-shot concept bottle-  
 725 neck models. *arXiv preprint arXiv:2502.09018*, 2025.

726

727 Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Pre-  
 728 ston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: a multimodal biomedical  
 729 foundation model pretrained from fifteen million scientific image-text pairs. *arXiv preprint  
 730 arXiv:2303.00915*, 2023.

731

732 Yilan Zhang, Yingxue Xu, Jianqi Chen, Fengying Xie, and Hao Chen. Prototypical informa-  
 733 tion bottlenecking and disentangling for multimodal cancer survival prediction. *arXiv preprint  
 734 arXiv:2401.01646*, 2024a.

735

736 Yunlong Zhang, Honglin Li, Yunxuan Sun, Sunyi Zheng, Chenglu Zhu, and Lin Yang. Attention-  
 737 challenging multiple instance learning for whole slide image classification. In *European confer-  
 738 ence on computer vision*, pp. 125–143. Springer, 2024b.

739

740 Weiqin Zhao, Ziyu Guo, Yinshuang Fan, Yuming Jiang, Maximus CF Yeung, and Lequan Yu. Align-  
 741 ing knowledge concepts to whole slide images for precise histopathology image analysis. *npj  
 742 Digital Medicine*, 7(1):383, 2024.

743

744 Yuanshen Zhao, Jingxian Duan, Zhi-Cheng Li, Ningli Chai, and Longsong Li. A radiopathomics  
 745 model for prognosis prediction in patients with gastric cancer. In *2022 14th Biomedical Engi-  
 746 neering International Conference (BMEiCON)*, pp. 1–4. IEEE, 2022.

747

748 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for  
 749 vision–language models. In *Proceedings of the IEEE/CVF conference on computer vision and  
 750 pattern recognition*, pp. 16816–16825, 2022.

751

752

753

754

755

## Appendix

## A FRAMEWORK AND IMPLEMENTATION DETAILS

This section provides a detailed breakdown of our framework's implementation, including pseudocode for core algorithms, expanded architectural descriptions, and specifics on baseline implementations to ensure full reproducibility.

## A.1 ALGORITHM PSEUDOCODE

To further clarify the mechanics of our proposed method, we provide pseudocode for the two main stages of the CTF framework: the greedy concept selection process (Algorithm 1), the end-to-end forward pass for a single patient (Algorithm 2), and the MoE layer to generate context prompts.

**Algorithm 1** Greedy Algorithm for Prognostic and Diverse Concept Selection

```

1: Input: Initial concept pool  $\mathcal{S}$ , target concept set size  $k$ , training data images  $\{\mathbf{x}_i\}$ , survival
   outcomes  $\{y_i, \delta_i\}$ .
2: Input: Frozen vision encoder  $V(\cdot)$  and text encoder  $T(\cdot)$ .
3: Initialize: Final concept set  $\mathcal{C} \leftarrow \emptyset$ .
4: Initialize: Relevance scores  $D \leftarrow \{\}$ .
5: Pre-compute image features  $\mathbf{f}_i = V(\mathbf{x}_i)$  and concept embeddings  $\mathbf{t}_c = T(c)$  for all  $i, c$ .
6:  $\{\text{--- Stage 1: Relevance Ranking ---}\}$ 
7: for each concept  $c \in \mathcal{S}$  do
8:   Compute alignment scores  $A_c = \{a(\mathbf{x}_i, c) = \mathbf{t}_c^\top \mathbf{f}_i\}_{i=1}^N$ .
9:   Discretize scores  $A_c$  to get  $\hat{A}_c$ . Binarize survival outcomes to get  $Y_{\text{bin}}$ .
10:  Compute mutual information  $d(c) = I(\hat{A}_c; Y_{\text{bin}})$ .
11:  Add  $(c, d(c))$  to  $D$ .
12: end for
13: Sort concepts in  $\mathcal{S}$  descending by their relevance score  $d(c)$ . Let the sorted list be  $\mathcal{S}_{\text{sorted}}$ .
14:  $\{\text{--- Stage 2: Diversity Maximization ---}\}$ 
15: Add the top-ranked concept from  $\mathcal{S}_{\text{sorted}}$  to  $\mathcal{C}$ .
16: while  $|\mathcal{C}| < k$  do
17:   Initialize: “max_diversity”  $\leftarrow -1$ , “next_concept”  $\leftarrow \text{null}$ .
18:   for each concept  $c' \in \mathcal{S}_{\text{sorted}} \setminus \mathcal{C}$  do
19:     Compute max similarity to current set:  $\text{max\_sim} = \max_{c \in \mathcal{C}} \sigma(\mathbf{t}_{c'}, \mathbf{t}_c)$ .
20:     Diversity score  $= 1 - \text{max\_sim}$ .
21:     if Diversity score  $>$  “max_diversity” then
22:       “max_diversity”  $\leftarrow$  Diversity score.
23:       “next_concept”  $\leftarrow c'$ .
24:     end if
25:   end for
26:   Add “next_concept” to  $\mathcal{C}$  and remove it from  $\mathcal{S}_{\text{sorted}}$ .
27: end while
28: Output: Final selected concept set  $\mathcal{C}$ .

```

## A.2 ARCHITECTURAL AND TRAINING DETAILS

To ensure full reproducibility, we provide an expanded set of implementation details. All experiments were conducted on an HPC server equipped with NVIDIA L40s GPUs (48GB VRAM). See Table 5 for detailed hyperparameters.

## Image Preprocessing.

- **Pathology (WSIs):** Whole-slide images were processed at 20x magnification. We segmented the tissue foreground via Otsu's thresholding. The WSI was then tiled into non-overlapping  $256 \times 256$  patches. Following the CLAM methodology (Lu et al., 2021), we used contour filtering to remove

810  
811 **Algorithm 2** CTF Forward Pass for a Single Patient

---

```

812 1: Input: Radiology image  $x_r$ , pathology image  $x_h$ .
813 2: Input: Selected radiology concepts  $\mathcal{C}_{\text{rad}}$ , pathology concepts  $\mathcal{C}_{\text{hist}}$ .
814 3: Models: Frozen encoders  $V_r, V_h, T_r, T_h$ ; Learnable modules:
815  $\mathbf{P}_G, \mathbf{P}_C^{\text{basis}}, g_r, g_h, \phi_S, \varphi_{S,r}, \varphi_{S,h}, \text{MLP}_{\text{pred}}$ .
816 4: {— 1. Feature Extraction —}
817 5:  $\mathbf{f}_r \leftarrow V_r(\mathbf{x}_r)$ ,  $\mathbf{f}_h \leftarrow V_h(\mathbf{x}_h)$ .
818 6: {— 2. GCSP and Concept Tuning (Example for Radiology) —}
819 7: for each concept  $c_r \in \mathcal{C}_{\text{rad}}$  do
820 8:   Global Prompt:  $\mathbf{P}_{G_r} \leftarrow$  Look up learnable prompt for  $c_r$ .
821 9:   Shared Prompt:  $\mathbf{f}_S \leftarrow \phi_S(\text{Concat}(\mathbf{f}_r, \mathbf{f}_h))$ ,  $\mathbf{P}_{S,r} \leftarrow \varphi_{S,r}(\mathbf{f}_S)$ .
822 10:  Context Prompt:  $\alpha \leftarrow \text{softmax}(g_r(\mathbf{f}_h))$ ,  $\mathbf{P}_{C_r} \leftarrow \sum_i \alpha_i \cdot \mathbf{P}_{C,r,i}^{\text{basis}}$ .
823 11:  Combine:  $\mathbf{P}_r^{\text{tuned}} \leftarrow \text{Concat}(\mathbf{P}_{G_r}, \mathbf{P}_{C_r}, \mathbf{P}_{S,r})$ .
824 12:  Tune: Get original tokens for  $c_r$ . Prepend  $\mathbf{P}_r^{\text{tuned}}$ .
825 13:   $\tilde{\mathbf{t}}_{c_r} \leftarrow T_r(\text{Tuned concept tokens for } c_r)$ .
826 14: end for
827 15: Repeat symmetrically for each concept  $c_h \in \mathcal{C}_{\text{hist}}$  to get  $\tilde{\mathbf{t}}_{c_h}$ .
828 16: {— 3. Concept Scoring and Fusion —}
829 17: Compute radiology scores:  $s_{r,j} = \text{cosine\_sim}(\mathbf{f}_r, \tilde{\mathbf{t}}_{c_{r,j}})$ . Let  $\mathbf{s}_r = [s_{r,1}, \dots, s_{r,k}]$ .
830 18: Compute pathology scores:  $s_{h,j} = \text{cosine\_sim}(\mathbf{f}_h, \tilde{\mathbf{t}}_{c_{h,j}})$ . Let  $\mathbf{s}_h = [s_{h,1}, \dots, s_{h,k}]$ .
831 19:  $\mathbf{z} \leftarrow \text{Concat}(\mathbf{s}_r, \mathbf{s}_h)$ .
832 20: {— 4. Prediction —}
833 21:  $\mathbf{o} \leftarrow \text{MLP}_{\text{pred}}(\mathbf{z})$ .
834 22: Output: Task-specific output  $\mathbf{o}$  (e.g., risk score for survival analysis).
835

```

---

836 background/whitespace patches before feature extraction with the CONCH vision encoder. A  
837 small attention pooling head is learned for feature aggregation.

838 • **Radiology (CT/MRI):** For the in-house Center1-GC and Center2-CHS datasets, tumor regions  
839 on CT/MRI scans were manually segmented by an expert radiologist. For the public TCGA  
840 datasets, we used the entire axial slice containing the largest tumor cross-section, as brain tumors  
841 typically occupy a large and central portion of the image. All radiology images were resized to  
842  $224 \times 224$ , normalized to  $[0, 1]$ , and then normalized using ImageNet statistics before being fed  
843 to the BiomedCLIP vision encoder.

844  
845 **Compute and memory footprint.** We report peak GPU memory and full training time (batch size  
846 1).  $L_{\text{seq}}$  denotes the sequence length (all tokens) and  $k_{\text{rad}}, k_{\text{path}}$  the number of concepts per domain.

847  
848 Table 4: GPU memory usage and wall-clock time per epoch for CTF under different configurations.  
849 All results are measured with batch size 1.  $L_{\text{seq}}$  denotes the sequence length (tokens) and  $k_{\text{rad}}, k_{\text{path}}$   
850 denote the number of concepts for radiology and pathology, respectively.

---

| Configuration         | GPU              | $(L_{\text{seq}}, k_{\text{rad}}, k_{\text{path}})$ | Peak memory (GB) | Time (hour) | C-index           |
|-----------------------|------------------|-----------------------------------------------------|------------------|-------------|-------------------|
| Default (recommended) | NVIDIA L40s 48GB | (128, 256, 256)                                     | 28.7             | 18.9        | $0.665 \pm 0.061$ |
| 3090-friendly (A)     | RTX 3090 24GB    | (64, 256, 256)                                      | 19.2             | 11.6        | $0.642 \pm 0.053$ |
| 3090-friendly (B)     | RTX 3090 24GB    | (128, 128, 256)                                     | 22.0             | 15.5        | $0.656 \pm 0.066$ |

---

855  
856 A.3 BASELINE IMPLEMENTATION DETAILS

857  
858 For a fair comparison, all baselines were implemented using the same frozen vision encoders  
859 (BiomedCLIP, CONCH) as our CTF model to extract initial features.

860  
861 • **Unimodal Models:** For pathology-based unimodal models (ABMIL, CLAM, TransMIL,  
862 ACMIL), we used the official publicly available codebases and adapted them to the survival  
863 prediction task using a Cox loss final layer. For the *Radiology-Only* baseline, the single feature  
vector was passed through an MLP identical to our prediction head.

---

864   **Algorithm 3** Noisy Top- $k$  MoE for Context Prompt Generation

---

865  
866   1: **Input:** Complementary-modality feature for a mini-batch  $X \in \mathbb{R}^{B \times D}$ ; basis prompts  $\{P_i\}_{i=1}^M$ ,  
867    $P_i \in \mathbb{R}^{L \times D_t}$ ; gating parameters  $W_{\text{gate}}, W_{\text{noise}} \in \mathbb{R}^{D \times M}$ ; top- $k$  value  $k$  ( $k \leq M$ ); noise  $\epsilon > 0$ ;  
868   training flag  $\text{train}$ ; loss coefficient  $\lambda$ .  
869   2: Compute clean logits:  $\text{Clean} \leftarrow XW_{\text{gate}}$  {shape  $(B \times M)$ }  
870   3: **if**  $\text{train}$  and noisy gating enabled **then**  
871    4:  $\text{Std} \leftarrow \text{softplus}(XW_{\text{noise}}) + \epsilon \{(B \times M)\}$   
872    5: Sample noise:  $\Delta \sim \mathcal{N}(0, \text{Std}^2)$   
873    6: Logits  $\leftarrow \text{Clean} + \Delta$   
874   **else**  
875    8: Logits  $\leftarrow \text{Clean}$   
876   **end if**  
877   10: Convert to probabilities:  $P \leftarrow \text{softmax}(\text{Logits}, \text{dim} = 1) \{(B \times M)\}$   
878   11: Initialize  $G \leftarrow \mathbf{0}_{B \times M}$   
879   12: **for**  $b = 1$  to  $B$  **do**  
880    13: Select top- $k$  indices and values from  $P[b, :]$ :  $(\mathcal{S}_b, v_b) \leftarrow \text{TopK}(P[b, :], k)$   
881    14: Normalize within top- $k$ :  $\alpha_b \leftarrow v_b / (\sum v_b + 10^{-6}) \{\alpha_b \in \mathbb{R}^k\}$   
882    15: Set sparse gates:  $G[b, \mathcal{S}_b] \leftarrow \alpha_b$   
883    16: Compute context prompt:  $P_C^{(b)} \leftarrow \sum_{i \in \mathcal{S}_b} \alpha_{b,i} P_i \{P_C^{(b)} \in \mathbb{R}^{L \times D_t}\}$   
884   **end for**  
885   18: Importance per expert:  $\text{Imp} \leftarrow \sum_{b=1}^B G[b, :] \{(M)\}$   
886   19: **if**  $\text{train}$  and noisy gating enabled and  $k < M$  **then**  
887    20: Compute soft load (expected assignment count) via NoisyTopK (see Alg. 4):  $\text{Load} \leftarrow \sum_{b=1}^B \text{ProbInTopK}(\text{Clean}[b, :], \text{Logits}[b, :], \text{Std}[b, :], P[b, \mathcal{S}_b]) \{(M)\}$   
888   **else**  
889    22: Hard load:  $\text{Load} \leftarrow \sum_{b=1}^B \mathbb{I}[G[b, :] > 0] \{(M)\}$   
890   **end if**  
891   24: Coefficient of variation squared:  $\text{CV}^2(z) \leftarrow \text{Var}(z) / (\text{Mean}(z)^2 + 10^{-10})$   
892   25: Auxiliary loss:  $\mathcal{L}_{\text{moe}} \leftarrow \lambda(\text{CV}^2(\text{Imp}) + \text{CV}^2(\text{Load}))$   
893   26: **Output:** Sparse gates  $G \in \mathbb{R}^{B \times M}$ , per-sample context prompts  $\{P_C^{(b)}\}_{b=1}^B$ , auxiliary load-  
894   balancing loss  $\mathcal{L}_{\text{moe}}$ .

---

895   **Algorithm 4** ProbInTopK for Noisy Gating (expected soft load)

---

896  
897   1: **Input:** Clean logits  $c \in \mathbb{R}^M$ , noisy logits  $n \in \mathbb{R}^M$ , noise std  $\sigma \in \mathbb{R}^M$  (all for one sample),  
898   top- $k$  values  $\text{topv} \in \mathbb{R}^{k+1}$  from  $n$  (descending).  
899   2: Let  $\tau_{\text{in}} \leftarrow \text{topv}[k]$  and  $\tau_{\text{out}} \leftarrow \text{topv}[k-1]$  {thresholds for in/out}  
900   3: **for**  $j = 1$  to  $M$  **do**  
901    4: **if**  $n[j] > \tau_{\text{in}}$  **then**  
902    5:    $\text{prob}[j] \leftarrow \Phi((c[j] - \tau_{\text{in}}) / \sigma[j])$   
903    6: **else**  
904    7:    $\text{prob}[j] \leftarrow \Phi((c[j] - \tau_{\text{out}}) / \sigma[j])$   
905    8: **end if**  
906    9: **end for**  
907   10: **Output:** Vector  $\text{prob} \in \mathbb{R}^M$  with  $\text{prob}[j] = \mathbb{P}(j \in \text{Top-}k)$ .

---

908  
909  
910   • **Simple Latent Fusion:** *Concat-Fusion* involved concatenating  $f_r$  and  $f_h$  and feeding them to  
911   the prediction head. *Cross-Attention* used a standard transformer encoder layer where features  
912   from one modality formed the query and features from the other formed the key/value, followed  
913   by concatenation of the attended features.  
914  
915   • **SOTA Latent Fusion:** For *MOTCAT* and *PIBD*, we re-implemented the core fusion mechanisms  
916   described in their respective papers, placing them between our frozen feature extractors and the  
917   final prediction head. We performed a hyperparameter search for key parameters, such as the  
918   number of attention heads for *MOTCAT* and the  $\beta$  coefficient for *PIBD*'s bottleneck.

918 Table 5: Hyperparameters for the CTF model components.  
919

| 920 Parameter                            | 921 Value                                                      | 922 Description                                     |
|------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 923 Optimizer                            | 924 AdamW                                                      | -                                                   |
| 925 Learning Rate                        | 926 1e-3                                                       | 927 Initial learning rate.                          |
| 928 Weight Decay                         | 929 1e-6                                                       | -                                                   |
| 930 Batch Size                           | 931 1                                                          | -                                                   |
| 932 Epochs                               | 933 100                                                        | 934 With early stopping (patience=6 on val-loss).   |
| 935 Tunable Prompt Length ( $L$ )        | 936 12                                                         | 937 For all prompt types (Global, Context, Shared). |
| 938 Context Prompt Pool Size ( $M$ )     | 939 16                                                         | 940 Number of basis prompt vectors.                 |
| 941 Gating Network ( $g_r, g_h$ )        | 942 2-layer MLP (512 $\rightarrow$ 128 $\rightarrow$ 16)       | 943 With ReLU activation.                           |
| 944 Shared Prompt Generator ( $\phi_S$ ) | 945 2-layer MLP (1024 $\rightarrow$ 256 $\rightarrow$ 128)     | 946 With ReLU activation.                           |
| 947 Prediction Head ( $MLP_{pred}$ )     | 948 2-layer MLP (512 $\rightarrow$ 128 $\rightarrow$ #classes) | 949 With ReLU and Dropout (p=0.1).                  |
| 950 Submodular $\lambda$                 | 951 1                                                          | 952 Balancing factors for concept selection.        |

- 931 • **SOTA Adaptive Fusion:** For a fair comparison with *M4Survive*, which uses Mamba-based  
932 adapters, we implemented a similar adapter-based strategy. We inserted lightweight Mamba  
933 blocks to process the features  $f_r$  and  $f_h$  before a fusion block, and fine-tuned only the adapter  
934 weights, keeping the vision backbones frozen.

#### 936 A.4 ADAPTATION OF MOTCAT/PIBD TO RADIOLOGY–PATHOLOGY

938 Since MOTCAT and PIBD were originally proposed for genomics-pathology. We describe our  
939 adaptation details to radiology-pathology.

940 **MOTCAT.** The MOTCAT architecture features a unidirectional co-attention mechanism, where one  
941 modality serves as a “guidance” stream to refine the representation of the other. Since MOTCAT was  
942 originally designed for genomics guiding pathology, adapting it to our radiology-pathology setting  
943 required selecting a guidance direction. We evaluated both possible configurations: (1) Pathology-  
944 guides-Radiology, and (2) Radiology-guides-Pathology.

945 To determine the optimal configuration for our baseline, we conducted an empirical comparison on  
946 both the TCGA-GBMLGG and Center1-GC datasets for the cancer grading task. The results are  
947 summarized in Table 6. Our evaluation shows that using radiology as guidance yields slightly better  
948 performance while being more computationally efficient. Hence, we selected the Radiology-guides-  
949 Pathology configuration as the MOTCAT baseline for all experiments reported in the paper.

950 **PIBD.** We replace the (histology, genomics) pair with (pathology, radiology), project each to PIBD’s  
951 shared width  $D$ , and pass the two embeddings to the original bottleneck/disentangling fusion. Ob-  
952 jectives and downstream heads are unchanged.

954 Table 6: Comparison of MOTCAT performance with different guidance directions on the cancer  
955 grading task. We report mean  $\pm$  standard deviation for AUC over 10 stratified splits.

| 956 Guidance Direction         | 957 TCGA-GBMLGG        |              | 958 Center1-GC         |              |
|--------------------------------|------------------------|--------------|------------------------|--------------|
|                                | 959 AUC ( $\uparrow$ ) | 960 Time (h) | 961 AUC ( $\uparrow$ ) | 962 Time (h) |
| 963 Pathology-guides-Radiology | 964 $0.858 \pm 0.042$  | 965 4.32     | 966 $0.638 \pm 0.046$  | 967 11.25    |
| 968 Radiology-guides-Pathology | 969 $0.865 \pm 0.025$  | 970 3.81     | 971 $0.641 \pm 0.050$  | 972 9.13     |

## 963 B DATASET DETAILS

965 We evaluate our framework on four datasets containing paired radiology and pathology images:

- 966 • **TCGA-LGG:** A cohort of 173 patients with Lower-Grade Glioma curated from The Cancer  
967 Genome Atlas (TCGA)<sup>3</sup>. For each patient, we obtained diagnostic whole-slide images  
968 (WSIs) and paired pre-operative, multi-parametric MRI scans (post-contrast T1-weighted and  
969 T2-FLAIR).

971 <sup>3</sup><https://www.cancer.gov/tcga/>

972  
973  
974 Table 7: Summary of patient cohorts used for experiments.  
975  
976  
977  
978  
979

| Dataset     | Cancer Type        | N   | Survival Task  | Grading Task        |           |
|-------------|--------------------|-----|----------------|---------------------|-----------|
|             |                    |     | Censorship (%) | Task Description    | # Classes |
| TCGA-LGG    | Lower-Grade Glioma | 173 | 83.8%          | WHO Tumor Grade     | 3         |
| TCGA-GBM    | Glioblastoma       | 186 | 18.3%          |                     |           |
| Center1-GC  | Gastric Cancer     | 683 | 57.2%          | TNM Stage (T-Stage) | 5         |
| Center2-CHS | Chondrosarcoma     | 76  | —              | WHO Tumor Grade     | 5         |

980  
981 • **TCGA-GBM:** Similarly, we curated a cohort of 186 patients with Glioblastoma Multiforme  
982 (GBM), the most aggressive primary brain tumor. The dataset consists of the same paired pre-  
983 operative MRI and WSI data types, matched with clinical survival outcomes from TCGA.  
984  
985 • **Center1-GC:** An in-house dataset of 683 gastric cancer patients. For each patient, we have a pre-  
986 operative CT scan and a post-resection WSI, acquired within one month of each other to ensure  
987 temporal consistency.  
988  
989 • **Center2-Chondrosarcoma:** An in-house dataset of 76 Chondrosarcoma patients with paired  
990 pre-operative MRI and WSI. Cohort characteristics are detailed in Table 7.  
991  
992

## B.1 ETHICAL CONSIDERATIONS AND DATA USAGE

993 All data from TCGA are publicly available and de-identified. The in-house datasets (Center1-GC,  
994 Center2-CHS) were collected under protocols approved by the local Institutional Review Board  
995 (IRB), with all patient data fully anonymized and de-identified prior to its use in this research.  
996 Informed consent was obtained from all participants included in the in-house studies. Our study  
997 strictly adheres to data privacy and protection regulations.  
998

## B.2 PAIRING WINDOW AND EXCLUSION CRITERIA

1000 We require fully paired radiology–pathology examples for all experiments; pairing is performed at  
1001 the patient level (no spatial registration), and only cases satisfying the following rules are retained.  
1002

1003 **In-house cohorts (Center1-GC, Center2-CHS).** We pair the pre-operative CT/MRI study with  
1004 the diagnostic resection WSI from the same surgical episode. When multiple candidates exist, we  
1005 select the imaging study and slide whose acquisition dates yield the minimum absolute time gap,  
1006 and we require a pairing window of  $|\Delta t| \leq 30$  days. If multiple WSIs are available, we use the slide  
1007 annotated as “diagnostic” (primary tumor block).  
1008

1009 **TCGA cohorts (LGG/GBM).** We pair MRIs and WSIs by TCGA case ID. When multiple  
1010 scans/slides are available, we choose the pre-operative MRI closest in time to the diagnostic his-  
1011 tology slide for that case. Pairs with missing or ambiguous identifiers/metadata are excluded.  
1012

## C CONCEPT SELECTION AND DETAILED CONCEPT LISTS

1013 Our framework’s interpretability is founded on a set of high-quality medical concepts. As described  
1014 in the main paper (Section 3.1), we use a submodular optimization approach to select a set of con-  
1015 cepts that are both prognostically relevant (high mutual information with survival outcome) and  
1016 semantically diverse (low cosine similarity between embeddings). This approach aligns with recent  
1017 trends in building more transparent models by grounding them in human-understandable concepts  
1018 (Yamaguchi et al., 2025).  
1019

1020 While Concept Bottleneck Models (CBMs) (Koh et al., 2020) pioneered this direction, they can  
1021 suffer from performance degradation and instability, limiting their use in high-stakes medical ap-  
1022 plications (Hu et al., 2025). Our CTF framework avoids these pitfalls not by forcing information  
1023 through a rigid bottleneck, but by using concepts as a dynamic, tunable semantic bridge, as demon-  
1024 strated in our ablation studies.  
1025

1026  
1027

## C.1 LLM PROMPT TEMPLATES AND GENERATION PIPELINE

1028  
1029  
1030

We use Gemini-2.5-pro to generate concept pools. This appendix documents the exact prompts, generation settings, and post-processing used to build the candidate concept pools in Sec. 3.1 from large language models (LLMs).

1031  
1032  
1033  
1034  
1035  
1036  
1037

**Overview.** For each disease and modality, we query the LLM once per progression stage in  $S = \text{early, intermediate, advanced, metastatic}$ . Each query asks for  $N = 250$  short, atomic features as a numbered list in the format “1.; 2.; 3.; ...”. We then parse the enumeration, clean tokens, and save a JSON file keyed by stage: “early”: [...], “intermediate”: [...], “advanced”: [...], “metastatic”: [...]. Files are saved as `cancer_{modal}.json` with `modal` in {rad, path}.

1038  
1039  
1040

**Prompt templates (exact text).** We use the following two templates, differing only by modality. Bracketed fields are filled programmatically.

1041  
1042

## Template R (Radiology, MRI)

1043  
1044  
1045  
1046  
1047

What are the radiological features in Magnetic Resonance images of [CANCER] at the [STAGE] stage of progression (differentiate early, intermediate, advanced, metastatic stages), please describe using keywords or short sentences. Give [N] features and answer the question with the following format: 1.; 2.; 3.; ... .

1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

## Template H (Histopathology, WSIs)

What are the morphological features in Whole Slide Images (WSIs) of [CANCER] at the [STAGE] stage of progression (differentiate early, intermediate, advanced, metastatic stages), please describe using keywords or short sentences. Give [N] features and answer the question with the following format: 1.; 2.; 3.; ... .

**Generation settings.** Unless noted otherwise, we use default sampling parameters of the LLM-Backend (no explicit temperature or top- $p$  overrides). We issue one request per stage and modality-disease pair, with  $N=250$ . Radiology requests specify MRI/CT. Pathology requests specify H&E WSIs.

**Parsing and cleaning.** The LLM returns a numbered list. We extract items using an enumeration-aware regex:

```
^\s*\d+\.\s*(.*?)(?=\n\s*\d+\.|$)
```

applied with multiline and dotall flags. We then:

- trim whitespace and punctuation; remove leading bullets/asterisks; drop empty entries;
- cap at  $N$  concepts per stage; preserve the original order;
- save to `cancer_{modal}.json` as a dictionary keyed by stage.

We subsequently merge the four stage lists, deduplicate (exact and fuzzy string match), and pass the merged pool to the MI + submodular selector (Sec. 3.1).

**Reproducibility and anonymity.** API keys are never embedded in the PDF or repository. We use environment variables (e.g., `GEMINI_API_KEY`, `OPENAI_API_KEY`).

**Post-processing.** We merge the four stage lists per (disease, modality), deduplicate by (i) exact match after lowercasing and punctuation stripping and (ii) fuzzy string match, then supply the cleaned pool to the mutual-information ranking and submodular diversity selection described in Sec. 3.1.

1080 C.2 GASTRIC CANCER (CENTER1-GC) CONCEPTS  
10811082 Tables 8 and 9 list the top 30 (out of 256) selected concepts for the Center1-GC dataset for radiology  
1083 and pathology, respectively.  
10841085 Table 8: 30 selected Radiology concepts for the Center1-GC (Gastric Cancer) dataset.  
1086

|                                            |                                          |                                              |
|--------------------------------------------|------------------------------------------|----------------------------------------------|
| 1. Poorly defined/irregular tumor margins  | 11. Gastric outlet obstruction           | 21. Venous encasement/invasion               |
| 2. Marked heterogeneous enhancement        | 12. Linitis plastica appearance          | 22. Infiltration of adjacent organs          |
| 3. Asymmetric or eccentric wall thickening | 13. Effacement of perigastric fat planes | 23. Peritoneal carcinomatosis                |
| 4. Presence of tumor ulceration            | 14. Definite serosal involvement         | 24. Omental caking                           |
| 5. Tumor necrosis or necrotic core         | 15. Tumor spiculation                    | 25. Distant metastasis to ovaries            |
| 6. Large, matted regional lymph nodes      | 16. Air within the tumor                 | 26. Enlarged Virchow's node                  |
| 7. Lymphatic spread to regional nodes      | 17. Solid tumor component                | 27. Visible feeding vessels (neovascularity) |
| 8. Presence of ascites                     | 18. Distortion of mucosal folds          | 28. Arterial encasement                      |
| 9. Liver metastases with rim enhancement   | 19. Moderate arterial phase enhancement  | 29. Adrenal metastases                       |
| 10. Invasion into the muscularis propria   | 20. Mass effect on adjacent structures   | 30. Presence of tumor calcifications         |

1094 Table 9: 30 selected Pathology concepts for the Center1-GC (Gastric Cancer) dataset.  
1095

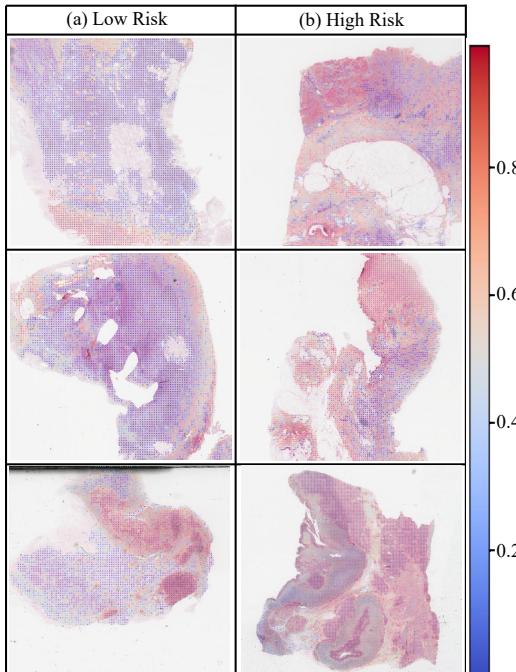
|                                     |                                         |                                              |
|-------------------------------------|-----------------------------------------|----------------------------------------------|
| 1. Loss of glandular architecture   | 11. High mitotic activity               | 21. Tumor-infiltrating lymphocytes present   |
| 2. Solid growth pattern             | 12. Areas of tumor necrosis             | 22. Tumor-associated macrophages present     |
| 3. Presence of signet ring cells    | 13. Increased nuclear-cytoplasmic ratio | 23. Epithelial-mesenchymal transition        |
| 4. High-grade cellular atypia       | 14. Prominent or irregular nucleoli     | 24. High level of Microsatellite Instability |
| 5. Lymphovascular invasion (LVI)    | 15. Discohesive cells presence          | 25. Increased HER2 expression                |
| 6. Perineural invasion              | 16. Spindle cell morphology             | 26. Loss of E-cadherin expression            |
| 7. High tumor budding               | 17. Desmoplastic reaction               | 27. Increased Ki-67 proliferation index      |
| 8. High tumor-stroma ratio          | 18. Extracellular mucin pools           | 28. Abnormal vessel morphology               |
| 9. Poorly differentiated features   | 19. Tumor cell apoptosis                | 29. Increased Cyclin D1 expression           |
| 10. Disruption of basement membrane | 20. Cribriform growth pattern           | 30. Multinucleation / giant cells present    |

1104 C.3 BRAIN TUMOR (TCGA-LGG/GBM) CONCEPTS  
11051106 To demonstrate the adaptability of our concept selection strategy, Tables 10 and 11 list the top 30  
1107 selected concepts for the TCGA glioma cohorts. These concepts are distinct from those for gastric  
1108 cancer and reflect the specific pathology of brain tumors.  
11091110 Table 10: 30 selected Radiology concepts for the TCGA-LGG/GBM datasets, curated from the  
1111 provided list.  
1112

|                                            |                                               |                                      |
|--------------------------------------------|-----------------------------------------------|--------------------------------------|
| 1. Central necrosis                        | 11. Subependymal spread                       | 21. Obstructive hydrocephalus        |
| 2. Cystic components within the tumor      | 12. New satellite lesions                     | 22. Uncal herniation                 |
| 3. Patchy enhancement                      | 13. Multifocal disease                        | 23. Compression of the brainstem     |
| 4. Ill-defined or infiltrative margins     | 14. Dissemination through CSF                 | 24. Superficial cortical involvement |
| 5. Increased tumor heterogeneity           | 15. Breakdown of the blood-brain barrier      | 25. Perfusion abnormalities          |
| 6. Mass effect on adjacent structures      | 16. New areas of restricted diffusion (DWI)   | 26. Positive amino acid PET          |
| 7. Compression of ventricles               | 17. Lobulated appearance                      | 27. Small area of new enhancement    |
| 8. Midline shift                           | 18. Elevated choline/creatinine ratio (MRS)   | 28. Increased perilesional edema     |
| 9. Internal septations within cystic areas | 19. Decreased NAA (N-acetyl aspartate)        | 29. Subtle new vascularity           |
| 10. Deep gray matter structures            | 20. Loss of gray-white matter differentiation | 30. Infiltration of tentorium        |

1122 Table 11: Top 30 selected Pathology concepts for the TCGA-LGG/GBM datasets. These concepts  
1123 were selected from a larger pool to represent the core histopathological, molecular, and microenvi-  
1124 ronmental features of high-grade gliomas like Glioblastoma.  
1125

|                                              |                                      |                                          |
|----------------------------------------------|--------------------------------------|------------------------------------------|
| 1. Pseudopalisading necrosis                 | 11. Perineuronal satellitosis        | 21. ATRX loss                            |
| 2. Microvascular proliferation               | 12. EGFR amplification               | 22. Lack of 1p/19q co-deletion           |
| 3. High-grade cellular atypia                | 13. TERT promoter mutation           | 23. Hypoxia                              |
| 4. High mitotic activity                     | 14. MGMT promoter methylation status | 24. Tumor-associated macrophages         |
| 5. Increased cellularity                     | 15. IDH1 mutation status             | 25. M2-polarized macrophages             |
| 6. Nuclear pleomorphism                      | 16. p53 mutations                    | 26. T-cell exhaustion                    |
| 7. Presence of multinucleated giant cells    | 17. PTEN loss                        | 27. PD-L1 expression                     |
| 8. Glomeruloid bodies                        | 18. Chromosomal gains                | 28. Aberrant GFAP expression             |
| 9. Prominent nucleoli                        | 19. Chromosomal losses               | 29. More expression of stem cell markers |
| 10. Diffuse infiltration of brain parenchyma | 20. Nuclear hyperchromasia           | 30. Genomic instability                  |

1134 **D ADDITIONAL QUALITATIVE AND INTERPRETABILITY ANALYSIS**  
11351136 **D.1 PATHOLOGY ATTENTION HEATMAPS**  
11371138  
1139 Figure 8 presents a compelling comparison of attention maps from our model’s pathology stream  
1140 for representative patients from the Center1-GC cohort. The heatmaps visualize attention weights  
1141 from the feature aggregation module, where red indicates regions receiving the highest attention. In  
1142 the high-risk patient (b), the model correctly localizes its attention on dense, disorganized clusters  
1143 of tumor cells characteristic of poorly differentiated carcinoma. Conversely, in the low-risk patient  
1144 (a), the attention is sparse, indicating the absence of these aggressive features.  
11451168 Figure 8: Pathology Attention Heatmaps for High- and Low-Risk Patients. The figure contrasts the  
1169 model’s spatial attention for (a) low-risk patients and (b) high-risk patients from the Center1-GC  
1170 cohort.  
1171  
1172  
11731174 **D.2 TIME-DEPENDENT AUC ANALYSIS**  
11751176 The Concordance Index (C-index) provides a single, global measure of a model’s rank-based dis-  
1177 criminatory ability. However, in survival analysis, a model’s predictive accuracy can vary over time.  
1178 The time-dependent Area Under the Curve (td-AUC) offers a more granular evaluation by assessing  
1179 the model’s ability to distinguish patients who will experience an event before a specific time point  
1180  $t$  from those who will not (Schmid et al., 2015).1181 As shown in Figure 9, CTF demonstrates not just a superior but a strikingly dominant performance  
1182 over the PIBD baseline on the Center1-GC dataset. CTF maintains a high td-AUC (consistently  
1183  $> 0.75$ ) across the entire follow-up period, achieving an excellent mean AUC of 0.808. In stark  
1184 contrast, the PIBD baseline performs at a level comparable to random chance, with a mean AUC  
1185 of 0.483. This significant and persistent performance gap, highlighted by the shaded green area,  
1186 indicates that while the latent-space fusion model fails to maintain discriminative power over time,  
1187 CTF’s dynamic, concept-based fusion provides robust and reliable prognostic predictions for both  
1188 near-term and longer-term outcomes.

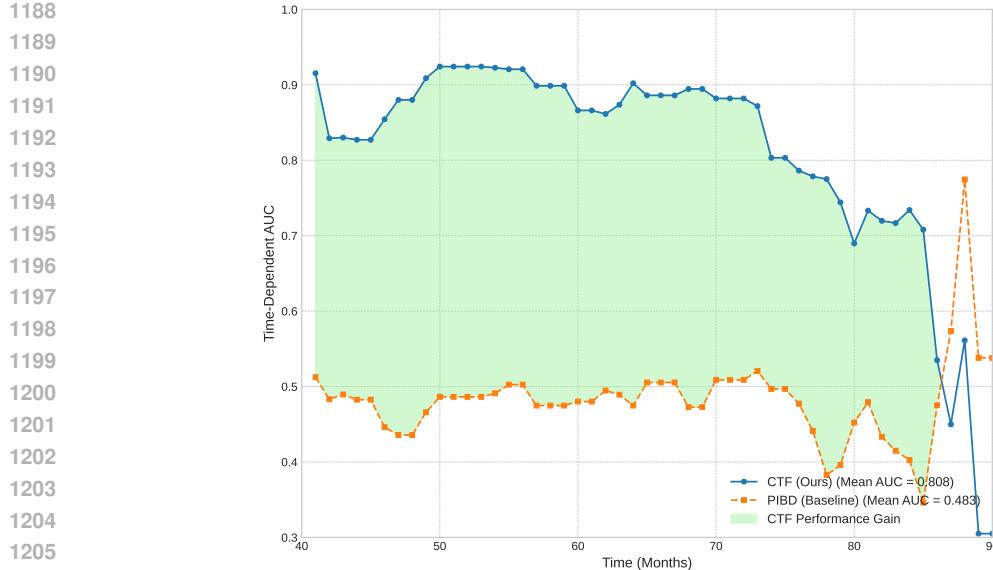


Figure 9: Time-dependent AUC curves on the Center1-GC dataset comparing CTF to the PIBD baseline. CTF (blue) consistently and significantly outperforms the baseline across all time horizons, maintaining robust prognostic accuracy. The shaded green area highlights the large performance gain.

Table 12: Concept intervention analysis on predicted risk scores. For two representative patients from the Center1-GC dataset, we intervene on the highest-scoring concepts by clamping their score to 0.0 and observing the change in the final predicted risk. The percentage change ( $\Delta$  Risk) highlights the causal influence of each concept.  $C$  and  $R_n$  represent original concept scores and new risk scores.

| Intervened Concept                                                 | Modality  | $C$  | $R_n$ | $\Delta$ Risk (%) |
|--------------------------------------------------------------------|-----------|------|-------|-------------------|
| <b>Patient A: High-Risk (Actual Outcome: Event at 25 months)</b>   |           |      |       |                   |
| <b>Initial Predicted Risk: 3.91</b>                                |           |      |       |                   |
| Bad blood vessel morphology                                        | Radiology | 3.35 | 2.98  | -23.8%            |
| Lymphovascular invasion                                            | Pathology | 2.80 | 3.02  | -22.7%            |
| Disseminated tumor cells                                           | Pathology | 2.00 | 3.22  | -17.6%            |
| <b>Patient B: Low-Risk (Actual Outcome: Censored at 54 months)</b> |           |      |       |                   |
| <b>Initial Predicted Risk: -2.57</b>                               |           |      |       |                   |
| Well-differentiated                                                | Pathology | 1.65 | -1.94 | +24.5%            |
| Circumscribed tumor margins                                        | Radiology | 1.20 | -2.18 | +15.2%            |
| Low tumor-stroma ratio                                             | Pathology | 0.85 | -2.37 | +7.9%             |

### D.3 CONCEPT INTERVENTION

**Concept Intervention.** To test if the learned concepts have a causal impact on predictions, we performed concept intervention experiments by neutralizing high-impact concept scores for representative patients. As shown in Table 12, intervening on concepts like “Bad blood vessel morphology” for a high-risk patient or “Well-differentiated” for a low-risk patient resulted in significant and clinically plausible shifts in the final risk score (a 23.8% decrease and 24.5% increase, respectively). This provides strong evidence that CTF’s predictions are causally linked to interpretable concepts.

### D.4 STATISTICAL SIGNIFICANCE TESTS

For each dataset and metric, we compare CTF against the strongest competing baseline using a paired t-tests across the 10 stratified splits. We report raw p-values in Table 13 below.

1242 Table 13: Paired one-sided  $t$ -test (over 10 stratified splits) comparing CTF with the strongest com-  
 1243 peting multimodal baseline on each dataset and task. Reported are  $p$ -values for the null hypothesis  
 1244 that there is no difference in mean performance between CTF and the baseline.

| 1246 | Task          | Dataset     | Metric  | CTF               | Best baseline                         | $p$ -value |
|------|---------------|-------------|---------|-------------------|---------------------------------------|------------|
| 1247 | Survival      | TCGA-LGG    | C-index | $0.713 \pm 0.103$ | M4Survive ( $0.709 \pm 0.112$ )       | 0.13       |
| 1248 |               | TCGA-GBM    | C-index | $0.579 \pm 0.063$ | MOTCAT ( $0.563 \pm 0.108$ )          | 0.09       |
| 1249 |               | CenterI-GC  | C-index | $0.665 \pm 0.061$ | M4Survive ( $0.642 \pm 0.065$ )       | 0.05       |
| 1250 | Grading (AUC) | TCGA-GBMLGG | AUC     | $0.903 \pm 0.028$ | Cross-Attention ( $0.868 \pm 0.030$ ) | 0.02       |
| 1251 |               | Center2-CHS | AUC     | $0.854 \pm 0.081$ | M4Survive ( $0.830 \pm 0.075$ )       | 0.06       |
| 1252 |               | CenterI-GC  | AUC     | $0.660 \pm 0.049$ | M4Survive ( $0.649 \pm 0.052$ )       | 0.05       |
| 1253 | Grading (ACC) | TCGA-GBMLGG | ACC     | $0.718 \pm 0.063$ | M4Survive ( $0.691 \pm 0.061$ )       | 0.05       |
| 1254 |               | Center2-CHS | ACC     | $0.698 \pm 0.164$ | M4Survive ( $0.626 \pm 0.115$ )       | 0.02       |
| 1255 |               | CenterI-GC  | ACC     | $0.401 \pm 0.057$ | Cross-Attention ( $0.394 \pm 0.049$ ) | 0.06       |

## 1256 E BROADER IMPACT AND LIMITATIONS

### 1257 E.1 POTENTIAL FOR POSITIVE IMPACT

1258 The successful development and deployment of the CTF framework could have a significant positive  
 1259 impact on clinical oncology and computational medicine.

- 1260 1. **Improved Prognostic Accuracy:** By creating a deeper synergy between radiology and  
 1261 pathology, CTF can provide more accurate and reliable predictions of patient outcomes.  
 1262 This could help clinicians better stratify patients for treatment, identifying high-risk indi-  
 1263 viduals who may benefit from more aggressive therapies and low-risk individuals for whom  
 1264 de-escalation could be considered.
- 1265 2. **Enhanced Clinical Decision Support:** The interpretable nature of CTF is a key advantage.  
 1266 By presenting predictions alongside the contributing medical concepts (e.g., “High score  
 1267 for ‘Lymphovascular invasion’”), the model can serve as a “second-read” tool that not only  
 1268 provides a risk score but also highlights the key evidence, facilitating a more informed  
 1269 dialogue between the AI and the clinician.
- 1270 3. **Accelerated Scientific Discovery:** The cross-modal influence analysis (Figure 7) can un-  
 1271 cover novel or subtle correlations between macroscopic imaging features and microscopic  
 1272 cellular patterns. This could generate new hypotheses for translational research into the  
 1273 biological drivers of cancer aggression.

### 1274 E.2 LIMITATIONS AND FUTURE WORK

1275 Despite its promising results, our work has several limitations that open avenues for future research.  
 1276 A primary limitation is the framework’s dependence on the quality and comprehensiveness of the  
 1277 initial concept vocabulary. The performance of CTF is fundamentally tied to the concepts provided,  
 1278 and while we used LLMs to generate a broad list, this process may miss crucial niche concepts  
 1279 or introduce biases. Future work should therefore explore more robust, data-driven methods for  
 1280 concept discovery or involve domain experts in a formal human-in-the-loop process to refine and  
 1281 validate the concept library.

1282 Furthermore, our framework leverages powerful, pre-trained Vision-Language Models, inheriting  
 1283 both their extensive knowledge and their potential biases. The model’s performance is ultimately  
 1284 capped by the quality of these foundational backbones. While our ablation study confirmed that  
 1285 expert models perform best, a valuable future direction would be to investigate methods for jointly  
 1286 fine-tuning the prompt modules and a small fraction of the backbone model’s weights to achieve  
 1287 even better task-specific adaptation. This must be balanced against computational costs, as the  
 1288 forward pass for CTF, though parameter-efficient in its training, remains resource-intensive due to  
 1289 the multiple large models and the WSI feature extraction bottleneck. Further optimization would be  
 1290 required for real-time clinical deployment.

1291 Perhaps the most significant barrier to immediate clinical translation is the model’s requirement  
 1292 for fully-paired data—one radiology and one pathology image per patient—during training. This

1296 is a considerable constraint, as real-world clinical datasets are often incomplete. Extending CTF  
1297 to gracefully handle missing modalities is therefore a critical next step. Future iterations could  
1298 investigate learning to impute concept scores from the available modality or using dynamic attention  
1299 mechanisms to operate effectively even with an incomplete data stream.  
1300

## 1301 F STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs) 1302

1303 We disclose the use of Large Language Models (LLMs) in this work. LLMs played a role in the  
1304 following ways:  
1305

- 1306 1. **Concept Generation:** As detailed in Section 3 and Appendix C.1, we utilized an LLM  
1307 to generate an initial broad pool of candidate radiological and pathological concepts. This  
1308 served as a starting point for our prognostic and diversity-based concept selection algo-  
1309 rithm.
- 1310 2. **Language Polishing:** LLMs were used as a general-purpose writing assistant to improve  
1311 the clarity, grammar, and style of the manuscript.  
1312

1313  
1314  
1315  
1316  
1317  
1318  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349