
Deep Discriminative to Kernel Generative Networks
for Calibrated Inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

The fight between discriminative versus generative goes deep, in both the study of1

artificial and natural intelligence. In our view, both camps have complementary2

values. So, we sought to synergistically combine them. Here, we propose a3

methodology to convert deep discriminative networks to kernel generative networks.4

We leveraged the fact that deep models, including both random forests and deep5

networks, learn internal representations which are unions of polytopes with affine6

activation functions to conceptualize them both as generalized partitioning rules.7

We replace the affine function in each polytope populated by the training data with8

Gaussian kernel that results in a generative model. Theoretically, we derive the9

conditions under which our generative models are a consistent estimator of the10

corresponding class conditional density. Moreover, our proposed models obtain11

well calibrated posteriors for in-distribution, and extrapolate beyond the training12

data to handle out-of-distribution inputs reasonably. We believe this approach13

may be an important step in unifying the thinking and the approaches across the14

discriminative and the generative divide.15

1 Introduction16

Machine learning methods, specially deep neural networks and random forests have shown excellent17

performance in many real-world tasks, including drug discovery, autonomous driving and clinical18

surgery. However, calibrating confidence over the whole feature space for these models remains a key19

challenge in the field. Although these learning algorithms can achieve near optimal performance at20

inferring on the samples lying in the high density regions of the training data [1–3], they yield highly21

confident predictions for the samples lying far away from the training data [4]. Calibrated confidence22

within the training or in-distribution (ID) region as well as in the out-of-distribution (OOD) region is23

crucial for safety critical applications like autonomous driving and computer-assisted surgery, where24

any aberrant reading should be detected and taken care of immediately [4, 5]. A well-calibrated model25

capable of quantifying the uncertainty associated with inference for any points from the training26

distribution as well as detecting OOD data can be a life-saver in these cases.27

The approaches to calibrate OOD confidence for learning algorithms described in the literature can28

be roughly divided into two groups: discriminative and generative. Discriminative approaches try to29

scale the posteriors based on OOD detection or modify the learning loss function. Intuitively, the30

easiest solution for OOD confidence calibration is to learn a function that gives higher scores for31

in-distribution samples and lower scores for OOD samples, and thereby re-scale the posterior or32

confidence score from the original model accordingly [6]. There are a number of approaches in the33

literature which try to either modify the loss function [7–9] or adversarially train the network to be34

less confident on OOD samples [10, 4]. However, one can adversarially manipulate an OOD sample35

where the model is less confident to find another OOD sample where the model is overconfident36

[11, 4, 12]. Recently, as shown by Hein et al. [4], the ReLU networks produce arbitrarily high37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

confidence as the inference point moves far away from the training data. Therefore, calibrating38

ReLU networks for the whole OOD region is not possible without fundamentally changing the39

network architecture. As a result, all of the aforementioned algorithms are unable to provide any40

guarantee about the performance of the network through out the whole feature space. On the other end41

of the spectrum, the generative group tries to learn generative models for both the in-distribution as42

well as the out-of-distribution samples. The general idea for the generative group is to get likelihoods43

for a particular sample out of the generative models for both ID and OOD to do likelihood ratio test44

[13] or control the likelihood for training distribution far away from the training data to detect OOD45

samples by thresholding. However, it is not obvious how to control likelihoods far away from the46

training data for powerful generative models like variational autoencoders (VAEs) [14] and generative47

adversarial networks (GAN) [15]. Moreover, Nalisnick et al. [16] and Hendrycks et al. [10] showed48

VAEs and GANs can also yield overconfident likelihoods far away from the training data.49

The algorithms described so far are concerned with OOD confidence calibration for deep-nets only.50

However, in this paper, we show that other approaches which partition the feature space, for example51

random forest, can also suffer from poor confidence calibration both in the ID and the OOD regions.52

Moreover, the algorithms described above are concerned about the confidence of the algorithms in the53

OOD region only and they do not address the confidence calibration within the training distribution54

at all. This issue is addressed separately in a different group of literature [17–19]. In this paper, we55

consider both calibration problem jointly and propose an approach that achieves good calibration56

throughout the whole feature space.57

In this paper, we conceptualize both random forest and ReLU networks as generalized partitioning58

rules with an affine activation over each polytope. We consider replacing the affine functions learned59

over the polytopes with Gaussian kernels. We propose two novel kernel density estimation techniques60

named Kernel Generative Forest (KGF) and Kernel Generative Network (KGN). We theoretically show61

that they asymptotically converge to the true training distribution under certain conditions. At the62

same time, the estimated likelihood from the kernel generative models decreases for samples far away63

from the training samples. By adding a suitable bias to the kernel density estimate, we can achieve64

calibrated posterior over the classes in the OOD region. It completely excludes the need for providing65

OOD training examples to the model. We conduct several simulation and real data studies that show66

both KGF and KGN are robust against OOD samples while they maintain good performance in the67

in-distribution region.68

2 Related Works and Our Contributions69

There are a number of approaches in the literature which attempt to learn a generative model and70

control the likelihoods far away from the training data. For example, Ren et al. [13] employed71

likelihood ratio test for detecting OOD samples. Wan et al. [8] modify the training loss so that the72

downstream projected features follow a Gaussian distribution. However, there is no guarantee of73

performance for OOD detection for the above methods. To the best of our knowledge, only Meinke74

et al. [5] has proposed an approach to guarantee asymptotic performance for OOD detection. They75

model the training and the OOD distribution using Gaussian mixture models which enable them76

to control the class conditional posteriors far away. Compared to the aforementioned methods, our77

approach differs in several ways:78

• We address the confidence calibration problems for both ReLU-nets and random forests from79

a common ground.80

• We address in-distribution (ID) and out-of-distribution (OOD) calibration problem as a81

continuum rather than two separate problems.82

• We provide guarantees for asymptotic convergence of our proposed approach under certain83

conditions for both ID and OOD regions.84

• We propose an unsupervised OOD calibration approach, i.e., we do not need to train85

exhaustively on different OOD samples.86

2

3 Methods87

3.1 Setting88

Consider a supervised learning problem with independent and identically distributed training samples89

{(xi, yi)}ni=1 such that (X,Y) ⇠ PX,Y , where X ⇠ PX is a X ✓ Rd valued input and Y ⇠ PY is90

a Y = {1, · · · ,K} valued class label. We define in-distribution region as the high density region91

of PX,Y and denote it by S. Here the goal is to learn a confidence score, g : Rd ! [0, 1]K ,92

g(x) = [g1(x), g2(x), . . . , gK(x)] such that,93

gy(x) =

⇢
PY |X(y|x), if x 2 S
PY (y), if x /2 S , 8y 2 Y (1)

where PY |X(y|x) is the posterior probability for class y given by the Bayes formula:94

PY |X(y|x) =
PX|Y (x|y)PY (y)

P
K

k=1 PX|Y (x|k)PY (k)
, 8y 2 Y. (2)

Here PX|Y (x|y) is the class conditional density for the training data which we will refer as fy(x)95

hereafter for brevity.96

3.2 Background and Main Idea97

Deep discriminative networks partition the feature space Rd into a union of p affine polytopes Qr98

such that
S

p

r=1 Qr = Rd, and learn an affine function over each polytope [4, 20]. Mathematically, the99

class-conditional density for the label y estimated by these deep discriminative models at a particular100

point x can be expressed as:101

f̂y(x) =
pX

r=1

(a>
r
x+ br) (x 2 Qr). (3)

For example, in the case of a decision tree, ar = 0, i.e., decision tree assumes uniform distribution102

for the class-conditional densities over the leaf nodes. Among these polytopes, the ones that lie on103

the boundary of the training data extend to the whole feature space and hence encompass all the OOD104

samples. Since the posterior probability for a class is determined by the affine activation over each of105

these polytopes, the algorithms tend to be overconfident when making predictions on the OOD inputs.106

Moreover, there exist some polytopes that are not populated with training data. These unpopulated107

polytopes serve to interpolate between the training sample points. If we replace the affine activation108

function of the populated polytopes with Gaussian kernel G learned using maximum likelihood109

approach on the training points within the corresponding polytope and prune the unpopulated ones,110

the tail of the kernel will help interpolate between the training sample points while assigning lower111

likelihood to the low density or unpopulated polytope regions of the feature space. This may result in112

better confidence calibration for the proposed modified approach.113

3.3 Proposed Model114

Consider the collection of polytope indices P which contains the indices of total p̃ polytopes populated115

by the training data. We consider replacing the affine function over the populated polytopes with a116

Gaussian kernel G(·; µ̂r, ⌃̂r). For a particular inference point x, we consider the Gaussian kernel117

with the minimum distance from the center of the kernel to the corresponding point:118

r
⇤
x = argmin

r

kµr � xk, (4)

where k · k denotes a suitable distance measure. We use Euclidean distance metric while conducting119

the simulation and the benchmark datasets experiments in this paper for simplicity. In short, we120

modify Equation 3 from the parent ReLU-net or random forest to estimate the class-conditional density121

as:122

f̃y(x) =
1

ny

X

r2P
nryG(x;µr,⌃r) (r = r

⇤
x), (5)

3

where ny is the total number of samples with label y and nry is the number of samples from class y123

that end up in polytope Qr. We add a bias to the class conditional density f̃y:124

f̂y(x) = f̃y(x) +
b

log(n)
. (6)

Note that in Equation 6, b

log(n) ! 0 as the total training points, n ! 1. The class posterior125

probability (confidence) ĝy(x) of class y for a test point x is estimated using the Bayes rule as126

follows:127

ĝy(x) =
f̂y(x)P̂Y (y)P
K

k=1 f̂k(x)P̂Y (k)
, (7)

where P̂Y (y) is the empirical prior probability of class y estimated from the training data. We128

estimate the class for a particular inference point x as:129

ŷ = argmax
y2Y

ĝy(x). (8)

3.4 Desiderata130

We desire our proposed model to estimate confidence score ĝy to satisfy the following two desiderata:131

1. Asymptotic Performance: We want point-wise convergence for our estimated confidence
as n ! 1, i.e.,

max
y2Y

sup
x2Rd

|gy(x)� ĝy(x)| ! 0.

2. Finite Sample Performance: We want better posterior calibration for ĝy(x) both in ID and132

OOD region compared to that of its parent model.133

We theoretically derive the conditions under which we achieve Desiderata 1 in Section 4. However, we134

run extensive experiments on various simulation and benchmark datasets in Section 6 to empirically135

verify that our proposed approach achieves Desiderata 2.136

4 Theoretical Results137

Theorem 1 (Asymptotic Convergence to the True Distribution). Consider a partition rule that138

partitions Rd into hypercubes of the same size hn > 0. Formally, let Pn = {Q1, Q2, · · · } be a139

partition of Rd, that is, it partitions Rd into sets of the type ⇧d

i=1[ihn, (i + 1)hn), where i’s are140

integers. Let n be the total number of samples and nr be the number of data points within polytope141

Qr. Consider the probability density f estimated for the samples populating the polytopes using142

Equation 5, denoted as f̂ . The conditions for choosing the Gaussian kernel parameters are:143

1. The center of the kernel can be any point zr within the polytope Qr as n ! 1,144

2. The kernel bandwidth along any dimension �r is any positive number always bounded by145

the polytope bandwidth hn as n ! 1, i.e., �r = Crhn, where 0 < Cr 1.146

Consider the following assumptions as well:147

1. The polytope bandwidth hn ! 0 as n ! 1.148

2. n grows faster than the shrinkage of hn, i.e., nhn ! 1 as hn ! 0 in probability.149

Given these assumptions, we have that as n ! 1:150

sup
x2Rd

|f(x)� f̂(x)| ! 0,

where | · | denotes absolute value of the scalar it operates on.151

Proof. Please see Appendix A for the proof.152

4

Theorem 2 (Asymptotic OOD Convergence). Given n independent and identically distributed153

training samples {(xi, yi)}ni=1, we define the distance of an inference point x from the training points154

as:155

dx = min
i=1,··· ,n

kx� xik. (9)

Here k · k denotes a suitable distance measure as mentioned in Equation 4. Given non-zero and156

bounded bandwidth of the Gaussians, then we have almost sure convergence for ĝy as: ĝy(x)
as!157

P̂Y (y) as dx ! 1.158

Proof. Please see Appendix A for the proof.159

Corollary 2.1. Given the conditions in Theorem 1 and 2, we have:160

max
y2Y

sup
x2Rd

|gy(x)� ĝy(x)| ! 0.

Proof. Using the law of large numbers, we have P̂Y (y) =
ny

n

as! PY (y) as ny ! 1. The rest of the161

proof follows from Theorem 1 and 2.162

5 Model Parameter Estimation163

5.1 Gaussian Kernel Parameter Estimation164

Theorem 1 implies that the Gaussian kernel parameters need to maintain two key properties. We165

use the training data within the polytopes to estimate the Gaussian parameters in a way that we166

asymptotically satisfy the above two conditions for consistency. To satisfy the first condition, we set167

the kernel center as:168

µ̂r =
1

nr

nX

i=1

xi (xi 2 Qr). (10)

Note that µ̂r in Equation 10 resides always within the corresponding polytope Qr. For improving the169

estimates for the kernel bandwidth, we incorporate the samples from other polytopes Qs based on the170

similarity wrs between Qr and Qs. Moreover, We constrain our estimated Gaussian kernels to have171

diagonal covariance matrix. We use weighted likelihood estimation to estimate the variance ⌃r for a172

particular polytope Qr. For simplicity, we will describe the estimation procedure for wrs later. The173

weighted likelihood estimation for ⌃r can be written as:174

⌃̂r = argmin
⌃

�
nX

i=1

X

s2P
wrs (xi 2 Qs) log G(xi; µ̂r,⌃) + �k⌃�1k2

F
, (11)

where we regularize the Frobenius norm of precision matrix ⌃�1 so that ⌃ does not become singular175

and � is the regularization parameter. By solving Equation 11, we find:176

⌃̂r =

P
s2P

P
n

i=1 wrs (xi 2 Qs)(xi � µ̂r)(xi � µ̂r)> + �IdP
s2P

P
n

i=1 wrs (xi 2 Qs)
, (12)

where, Id is a d dimensional identity matrix. However, we want ⌃r to be estimated based on the177

samples within Qr so that the second condition for the Gaussian parameters is satisfied. Therefore,178

as n ! 1 and hn ! 0, the estimated weights wrs should satisfy the condition:179

wrs !
⇢
0, if Qr 6= Qs

1, if Qr = Qs.
(13)

We need Condition 13 as we will be only using the data within the polytope Qr as n ! 1 to estimate180

the Gaussian bandwidth and the estimated Gaussian bandwidth will be bounded by the polytope181

bandwidth. Additionally, we use weighted samples to replace the ratio nry

ny
in Equation 5 as:182

w̃ry

w̃y

=
w̃ryP

r2P w̃ry

=

P
s2P

P
n

i=1 wrs (xi 2 Qs) (yi = y)
P

r2P
P

s2P
P

n

i=1 wrs (xi 2 Qs) (yi = y)
. (14)

5

Note that if we satisfy Condition 13, then we have w̃ry

w̃y
! nry

ny
as n ! 1. Therefore, we modify183

Equation 5 as:184

f̃y(x) =
1

w̃y

X

r2P
w̃ryG(x; µ̂r, ⌃̂r) (r = r̂

⇤
x), (15)

where r̂
⇤
x = argminr kµ̂r � xk. Below, we describe how we estimate wrs for KGF and KGN .185

5.2 Kernel Generative Forest186

Consider T number of decision trees in a random forest trained on n i.i.d training samples187

{(xi, yi)}ni=1. Each tree t partitions the feature space into pt polytopes resulting in a set of polytopes:188

{{Qt,r}pt
r=1}Tt=1. The intersection of these polytopes gives a new set of polytopes {Qr}pr=1 for the189

forest. For any point xr 2 Qr, we push every other sample point xs 2 Qs down the trees. Now, we190

define the weight w0
rs

as:191

w
0
rs

=
trs

T
, (16)

where trs is the total number trees xr and xs end up in the same leaf node. Note that 0 w
0
rs

 1.192

If the two samples end up in the same leaves in all the trees, they belong to the same polytope, i.e.193

Qr = Qs.194

In short, w0
rs

is the fraction of total trees where the two samples follow the same path from the root to195

a leaf node. We exponentiate w0
rs

with a suitable function of n which grows with n so that Condition196

13 is satisfied:197

wrs = (w0
rs
)O(n)

. (17)

5.3 Kernel Generative Network198

Consider a fully connected ReLU-net trained on n i.i.d training samples {(xi, yi)}ni=1. We have the199

set of all nodes denoted by Nl at a particular layer l. We can randomly pick a node nl 2 Nl from Al200

at each layer l, and construct a sequence of nodes starting at the input layer and ending at the output201

layer which we call an activation path: m = {nl 2 Nl}Ll=1. Note that there are N = ⇧L

i=1|Nl|202

possible activation paths for a sample in the ReLU-net, where | · | denotes the cardinality or the number203

of elements in the set. We index each path by a unique identifier number z 2 N and construct a204

sequence of activation paths as: M = {mz}z=1,··· ,N . Therefore, M contains all possible activation205

pathways from the input to the output of the network.206

While pushing a training sample xi through the network, we define the activation from a ReLU unit at207

any node as ‘1’ when it has non-negative input and ‘0’ otherwise. Therefore, the activation indicates208

on which side of the affine function at each node the sample falls. The activation for all nodes in an209

activation path mz for a particular sample creates an activation mode az 2 {0, 1}L. If we evaluate210

the activation mode for all activation paths in M while pushing a sample through the network, we211

get a sequence of activation modes: Ar = {ar
z
}N
z=1. Here r is the index of the polytope where the212

sample falls in.213

If the two sequences of activation modes for two different training samples are identical, they belong214

to the same polytope. In other words, if Ar = As, then Qr = Qs. This statement holds because the215

above samples will lie on the same side of the affine function at each node in different layers of the216

network. Now, we define the weight w0
rs

as:217

w
0
rs

=

P
N

z=1 (ar
z
= a

s
z
)

N
. (18)

Note that 0 w
0
rs

 1. In short, w0
rs

is the fraction of total activation paths which are identically218

activated for two samples in two different polytopes r and s. We exponentiate the weights using219

Equation 17.220

Pseudocodes outlining the two algorithms are provided in Appendix C.221

6

Figure 1: Visualization of true and estimated posteriors for class 0 from five binary class
simulation experiments. Row 1: 10,000 training points with 5,000 samples per class sampled from
5 different simulation setups for binary class classification. The class labels are indicated by yellow
and blue colors. Row 2: True class conditional posteriors. Row 3: Estimated posteriors from random
forest. Row 4: Estimated posteriors from KGF. Row 5: Estimated posteriors from Deep-net. Row 6:
Estimated posteriors from KGN. The posteriors estimated from KGN and KGF are better calibrated for
both in- and out-of-distribution regions compared to those of their parent algorithms.

6 Experimental Results222

We conduct several experiments on two dimensional simulated datasets and OpenML-CC18 data223

suite [21] 1 to gain insights on the finite sample performance of KGF and KGN. The details of the224

simulation datasets and hyperparameters used for all the experiments are provided in Appendix B.225

For the simulation setups, we use classification error, hellinger distance [22, 23] from the true class226

conditional posteriors and mean max confidence or posterior [4] as performance statistics. While227

measuring in-distribution calibration for the datasets in OpenML-CC18 data suite, as we do not know228

the true distribution, we used adaptive calibration error as defined by Nixon et al. [24] with a fixed229

bin number of R = 15 across all the datasets. Given n OOD samples, we define OOD calibration230

error to measure OOD performance for the benchmark datasets as:231

�����
1

n

nX

i=1

max
y2Y

(P̂Y |X(y|xi))�max
y2Y

(P̂Y (y))

����� .

6.1 Simulation Study232

Figure 1 top row shows 10000 training samples with 5000 samples per class sampled within the233

region [�1, 1] ⇥ [�1, 1] from the five simulation setups described in Appendix B. Therefore, the234

empty annular region between [�1, 1] ⇥ [�1, 1] and [�2, 2] ⇥ [�2, 2] is the low density or OOD235

1https://www.openml.org/s/99

7

https://www.openml.org/s/99

Figure 2: Classification error, Hellinger distance from true posteriors, mean max confidence
or posterior for the simulation experiments. The median performance is shown as a dark curve
with shaded region as error bars showing the 25-th and the 75-th percentile. KGF (Left block) and
KGN (Right block) improve both in- and out-of-distribution calibration of their respective parent
algorithms while maintaining nearly similar classification accuracy on the simulation datasets.

region in Figure 1. The corresponding true posteriors P[Y = 0|X = x] are shown in the second236

row of Figure 1. As shown in Row 3 and 5, RF and DN are really good at estimating the high density237

regions of training distribution. However, they overestimate the posteriors in the low density regions238

of training distribution. Row 4 and 6 of Figure 1 show KGF and KGN improves the posterior estimation239

specially in the low density of the training distribution or OOD regions of the feature space. Because240

of axis aligned split in random forest RF and thereby, KGF are less efficient in learning non-linear241

decision boundaries like spiral, circle and sinewave simulations than ReLU-net and KGN. Figure 2242

quantifies the performance of the algorithms which are visually represented in Figure 1. KGF and KGN243

maintain similar classification accuracy to those of their parent algorithms. We measure hellinger244

distance from the true distribution for increasing training sample size within [�1, 1]⇥ [�1, 1] region245

as an index for in-distribution calibration. Column 2 of left and right block in Figure 2 show KGF246

and KGN are better at estimating the high density region of training distribution compared to their247

parent methods. For measuring OOD performance, we normalize the training data by the maximum248

of their l2 norm so that the training data is confined within a unit circle. For inference, we sample249

1000 inference points uniformly from a circle where the circles have increasing radius and plot250

mean max posterior for increasing distance from the origin. Therefore, for distance up to 1 we have251

in-distribution samples and distances farther than 1 can be considered as OOD region. As shown in252

Column 3 of Figure 2, mean max posteriors or confidence for KGF and KGN converge to the maximum253

of the class priors, i.e., 0.5 as we go farther away from the training data origin.254

6.2 Benchmark Data Study255

We used OpenML-CC18 data suite for benchmark dataset study. We exclude any dataset which256

contain categorical features or NaN values and conduct our experiments on 46 datasets with varying257

dimensions and sample sizes. For the OOD experiments, we follow a similar setup as that of the258

simulation data. We normalize the training data by their maximum l2 norm and sample 1000 testing259

samples uniformly from each hypersphere where the hyperspheres have increasing radius starting260

from 1 to 5. Figure 3 shows the summary of performance of the algorithms. The extended results for261

8

Figure 3: Performance summary of KGF and KGN on OpenML-CC18 data suite. The dark red
curve in the middle shows the median of performance on 46 datasets. The shaded region shows the
error bar consisting of the 25-th and the 75-th percentile of the performance statistics. Left: KGF
and KGN maintains performance close to their parent algorithms for classification. Middle: KGF
significantly improves the in-distribution calibration for random forest and KGN improves ReLU-net’s
in-distribution calibration for high training sample sizes. Right: Both of the proposed approaches
yield highly calibrated confidence in the OOD region.

each dataset is shown separately in appendix Figure 4, 5, 6, 7, 8 and 9. Figure 3 left column shows on262

average KGF and KGN has nearly similar classification accuracy to their respective parent algorithm.263

However, according to Figure 3 middle column, KGF improves the in-distribution calibration for264

random forest by a huge margin. On the contrary, KGN maintains similar in-distribution calibration265

performance to that of its parent ReLU-net. Most interestingly, Figure 3 right column KGN and KGF266

improves OOD calibration of their respective parent algorithms by a huge margin.267

7 Discussion268

In this paper, we convert deep discriminative models to deep generative models by replacing the affine269

function over the polytopes in the discriminative models with a Gaussian kernel. This replacement of270

affine function results in better in- and out-of-distribution calibration for our proposed approaches271

while maintaining classification accuracy close to the parent algorithm. Theoretically, we show under272

certain conditions our approaches asymptotically converge to the true training distribution and this273

establishes confidence calibration for learning algorithms in in- and out-of-distribution regions as a274

continuum rather than two different problems.275

For a feature space densely partitioned with small polytopes, we can use Euclidean distance metric in276

Equation 4. This is because the Euclidean manifold approximation holds locally for the corresponding277

polytope with index r
⇤
x. On the contrary, for a feature space partitioned with large polytopes,278

Euclidean distance measure may be a wrong notion of distance, specially when the underlying279

manifold is non-Euclidean. Note that the indicator function in Equation 5 and pruning of the280

unpopulated polytopes result in an enlargement of the polytopes in our proposed method compared281

to that of the parent model in Equation 3. Therefore, our proposed approach while using Euclidean282

metric in Equation 4 may have less classification accuracy compared to that of its parent algorithm.283

A correct measure of distance in all the cases including the aforementioned non-Euclidean one would284

be the geodesic distance as explored by Madhyastha et al. [25]. We will explore convolutional285

neural nets (CNN) trained on image and language benchmark datasets using geodesic distance in286

Equation 4 in our future work. Additionally, the proposed approach needs benchmarking against287

other calibration approaches in the literature which are mainly based on image datasets and we will288

pursue the benchmarking task in our future work.289

9

References290

[1] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural291

networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International292

Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,293

pages 1321–1330. PMLR, 06–11 Aug 2017.294

[2] Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes295

overconfidence in ReLU networks. In Hal Daumé III and Aarti Singh, editors, Proceedings296

of the 37th International Conference on Machine Learning, volume 119 of Proceedings of297

Machine Learning Research, pages 5436–5446. PMLR, 13–18 Jul 2020.298

[3] Haoyin Xu, Kaleab A. Kinfu, Will LeVine, Sambit Panda, Jayanta Dey, Michael Ainsworth,299

Yu-Chung Peng, Madi Kusmanov, Florian Engert, Christopher M. White, Joshua T. Vogelstein,300

and Carey E. Priebe. When are Deep Networks really better than Decision Forests at small301

sample sizes, and how? arXiv preprint arXiv:2108.13637, 2021.302

[4] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. Why relu networks yield303

high-confidence predictions far away from the training data and how to mitigate the problem. In304

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages305

41–50, 2019.306

[5] Alexander Meinke, Julian Bitterwolf, and Matthias Hein. Provably robust detection of out-of-307

distribution data (almost) for free. arXiv preprint arXiv:2106.04260, 2021.308

[6] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-309

distribution image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.310

[7] Jay Nandy, Wynne Hsu, and Mong Li Lee. Towards maximizing the representation gap between311

in-domain & out-of-distribution examples. Advances in Neural Information Processing Systems,312

33:9239–9250, 2020.313

[8] Weitao Wan, Yuanyi Zhong, Tianpeng Li, and Jiansheng Chen. Rethinking feature distribution314

for loss functions in image classification. In Proceedings of the IEEE conference on computer315

vision and pattern recognition, pages 9117–9126, 2018.316

[9] Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection317

in neural networks. arXiv preprint arXiv:1802.04865, 2018.318

[10] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier319

exposure. arXiv preprint arXiv:1812.04606, 2018.320

[11] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High321

confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on322

computer vision and pattern recognition, pages 427–436, 2015.323

[12] Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung324

Chiang, and Prateek Mittal. Better the devil you know: An analysis of evasion attacks using325

out-of-distribution adversarial examples. arXiv preprint arXiv:1905.01726, 2019.326

[13] Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon,327

and Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in328

neural information processing systems, 32, 2019.329

[14] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Founda-330

tions and Trends® in Machine Learning, 12(4):307–392, 2019.331

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil332

Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications333

of the ACM, 63(11):139–144, 2020.334

[16] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.335

Do deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136,336

2018.337

10

[17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural338

networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.339

[18] Richard Guo, Ronak Mehta, Jesus Arroyo, Hayden Helm, Cencheng Shen, and Joshua T340

Vogelstein. Estimating information-theoretic quantities with uncertainty forests. arXiv, pages341

arXiv–1907, 2019.342

[19] Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter343

Flach. Beyond temperature scaling: Obtaining well-calibrated multi-class probabilities with344

dirichlet calibration. Advances in neural information processing systems, 32, 2019.345

[20] Haoyin Xu, Kaleab A Kinfu, Will LeVine, Sambit Panda, Jayanta Dey, Michael Ainsworth,346

Yu-Chung Peng, Madi Kusmanov, Florian Engert, Christopher M White, et al. When are deep347

networks really better than decision forests at small sample sizes, and how? arXiv preprint348

arXiv:2108.13637, 2021.349

[21] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel350

Lang, Rafael G Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking351

suites. arXiv preprint arXiv:1708.03731, 2017.352

[22] Thomas Kailath. The divergence and bhattacharyya distance measures in signal selection. IEEE353

transactions on communication technology, 15(1):52–60, 1967.354

[23] C Radhakrishna Rao. A review of canonical coordinates and an alternative to correspondence355

analysis using hellinger distance. Qüestiió: quaderns d’estadística i investigació operativa,356

1995.357

[24] Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.358

Measuring calibration in deep learning. In CVPR workshops, volume 2, 2019.359

[25] Meghana Madhyastha, Gongkai Li, Veronika Strnadová-Neeley, James Browne, Joshua T360

Vogelstein, Randal Burns, and Carey E Priebe. Geodesic forests. In Proceedings of the 26th361

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages362

513–523, 2020.363

11

	Introduction
	Related Works and Our Contributions
	Methods
	Setting
	Background and Main Idea
	Proposed Model
	Desiderata

	Theoretical Results
	Model Parameter Estimation
	Gaussian Kernel Parameter Estimation
	Kernel Generative Forest
	Kernel Generative Network

	Experimental Results
	Simulation Study
	Benchmark Data Study

	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Simulations
	Pseudocodes
	Hardware and Software Configurations

