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ABSTRACT

Lifting is an efficient technique to scale up graphical models generalized to re-
lational domains by exploiting the underlying symmetries. Concurrently, neural
models are continuously expanding from grid-like tensor data into structured repre-
sentations, such as various attributed graphs and relational databases. To address
the irregular structure of the data, the models typically extrapolate on the idea
of convolution, effectively introducing parameter sharing in their, dynamically
unfolded, computation graphs. The computation graphs themselves then reflect the
symmetries of the underlying data, similarly to the lifted graphical models. Inspired
by lifting, we introduce a simple and efficient technique to detect the symmetries
and compress the neural models without loss of any information. We demonstrate
through experiments that such compression can lead to significant speedups of
structured convolutional models, such as various Graph Neural Networks, across
various tasks, such as molecule classification and knowledge-base completion.

1 INTRODUCTION

Lifted, often referred to as templated, models use highly expressive representation languages, typically
based in weighted predicate logic, to capture symmetries in relational learning problems (Koller et al.,
2007). This includes learning from data such as chemical, biological, social, or traffic networks, and
various knowledge graphs, relational databases and ontologies. The idea has been studied extensively
in probabilistic settings under the notion of lifted graphical models (Kimmig et al., 2015), with
instances such as Markov Logic Networks (MLNs) (Richardson & Domingos, 2006) or Bayesian
Logic Programs (BLPs) (Kersting & De Raedt, 2001).

In a wider view, convolutions can be seen as instances of the templating idea in neural models, where
the same parameterized pattern is being carried around to exploit the underlying symmetries, i.e.
some forms of shared correlations in the data. In this analogy, the popular Convolutional Neural
Networks (CNN) (Krizhevsky et al., 2012) themselves can be seen as a simple form of a templated
model, where the template corresponds to the convolutional filters, unfolded over regular spatial grids
of pixels. But the symmetries are further even more noticeable in structured, relational domains with
discrete element types. With convolutional templates for regular trees, the analogy covers Recursive
Neural Networks (Socher et al., 2013), popular in natural language processing. Extending to arbitrary
graphs, the same notion covers works such as Graph Convolutional Networks (Kipf & Welling, 2016)
and their variants (Wu et al., 2019), as well as various Knowledge-Base Embedding methods (Wang
et al., 2017). Extending even further to relational structures, there are works integrating parameterized
relational logic templates with neural networks (Sourek et al., 2018; Rocktäschel & Riedel, 2017;
Marra & Kuželka, 2019; Manhaeve et al., 2018).

The common underlying principle of templated models is a joint parameterization of the symmetries,
allowing for better generalization. However, standard lifted models, such as MLNs, provide another
key advantage that, under certain conditions, the model computations can be efficiently carried out
without complete template unfolding, often leading to even exponential speedups (Kimmig et al.,
2015). This is known as “lifted inference” (Kersting, 2012) and is utilized heavily in lifted graphical
models as well as database query engines (Suciu et al., 2011). However, to our best knowledge, this
idea has been so far unexploited in the neural (convolutional) models. The main contribution of
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this paper is thus a “lifting” technique to compress symmetries in convolutional models applied to
structured data, which we refer to generically as “structured convolutional models”.

1.1 RELATED WORK

The idea for the compression is inspired by lifted inference (Kersting, 2012) used in templated
graphical models. The core principle is that all equivalent sub-computations can be effectively
carried out in a single instance and broadcasted into successive operations together with their
respective multiplicities, potentially leading to significant speedups. While the corresponding “liftable”
template formulae (or database queries) generating the isomorphisms are typically assumed to be
given (Kimmig et al., 2015), we explore the symmetries from the unfolded ground structures,
similarly to the approximate methods based on graph bisimulation (Sen et al., 2012). All the lifting
techniques are then based in some form of first-order variable elimination (summation), and are
inherently designed to explore structural symmetries in graphical models. In contrast, we aim to
additionally explore functional symmetries, motivated by the fact that even structurally different
neural computation graphs may effectively perform identical function.

The learning in neural networks is also principally different from the model counting-based computa-
tions in lifted graphical models in that it requires many consecutive evaluations of the models as part
of the encompassing iterative training routine. Consequently, even though we assume to unfold a com-
plete computation graph before it is compressed with the proposed technique, the resulting speedup
due to the subsequent training is still substantial. From the deep learning perspective, there have been
various model compression techniques proposed to speedup the training, such as pruning, decreasing
precision, and low-rank factorization (Cheng et al., 2017). However, to our best knowledge, the
existing techniques are lossy in nature, with a recent exception of compressing ReLU networks based
on identifying neurons with linear behavior (Serra et al., 2020). None of these works exploit the
model computation symmetries. The most relevant line of work here are Lifted Relational Neural
Networks (LRNNs) (Sourek et al., 2018) which however, despite the name, provide only templating
capabilities without lifted inference, i.e. with complete, uncompressed ground computation graphs.

2 BACKGROUND

The compression technique described in this paper is applicable to a number of structured con-
volutional models, ranging from simple recursive (Socher et al., 2013) to fully relational neural
models (Sourek et al., 2018). The common characteristic of the targeted learners is the utilization
of convolution (templating), where the same parameterized pattern is carried over different sub-
parts of the data (representation) with the same local structure, effectively introducing repetitive
sub-computations in the resulting computation graphs, which we exploit in this work.

2.1 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) are currently the most prominent representatives of structured
convolutional models, which is why we choose them for brevity of demonstration of the proposed
compression technique. GNNs can be seen as an extension of the common CNN principles to
completely irregular graph structures. Given a particularly structured input sample graph Sj , they
dynamically unfold a multi-layered computation graph Gj , where the structure of each layer i follows
the structure of the whole input graph Sj . For computation of the next layer i+1 values, each node v
from the input graph Sj calculates its own value h(v) by aggregating A (“pooling”) the values of
the adjacent nodes u : edge(u, v), transformed by some parametric function CW1

(“convolution”),
which is being reused with the same parameterization W1 within each layer i as:

h̃(v)(i) = A(i)({C(i)

W i
1
(h(u)(i−1))|u : edge(u, v)}) (1)

The h̃(i)(v) can be further combined through another CW2
with the central node’s representation

from the previous layer to obtain the final updated value h(i)(v) for layer i as:

h(v)(i) = C
(i)

W i
2
(h(v)(i−1), h̃(v)(i)) (2)
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Figure 1: Depiction of the computation graph (left) compression (right) from Example 1.

This general principle covers a wide variety of GNN models, such the popular GCNs (Kipf & Welling,
2016), graph-SAGE (Hamilton et al., 2017), GIN (Xu et al., 2018a), and others (Xu et al., 2018b;
Gilmer et al., 2017), which then reduces to the respective choices of particular aggregations A and
transformations CW . An example computation graph of a generic GNN unfolded over an example
molecule of methane is shown in Fig. 2.

2.2 COMPUTATION GRAPHS

For the sake of this paper, let us now define the common notion of a computation graph more formally.
A computation graph is a tuple G = (N , E ,F), where N = (1, 2, . . . , n) is a list of nodes and
E ⊆ N 2 × N is a list of directed labeled edges. Each labeled edge is a triple of integers (n1, n2, l)
where n1 and n2 are nodes of the computation graph and l is the label. The labels are used to assign
weights to the edges in the computation graph. Note this allows to define the weight sharing scheme
as part of the graph (cf Example 1 below). Finally, F = {f1, f2, . . . , fn} is the list of activation
functions, one for each node from N . As usual, the graph is assumed to be acyclic. Children of a
node N are naturally defined as all those nodes M such that (M,N,L) ∈ E , and analogically for
parents. Note that since E is a list, edges contained in it are ordered, and the same edge may appear
multiple times (which will be useful later). Children of each node are also ordered – given two
children C and C ′ of a node N , C precedes C ′ iff (C,N,L) precedes (C ′, N, L′) in the list of edges
E . We denote the lists of children and parents of a given node N by Children(N) and Parents(N),
respectively. Computation graphs are then evaluated bottom up from the leaves of the graph (nodes
with no children) to the roots of the graph (nodes with no parents). Given a list of weightsW , we can
now define the value of a node N ∈ N recursively as:

value(N ;W) = fN

(
WL1

· value(M1;W), . . . ,WLm
· value(Mm;W)

)
,

where (M1, . . . ,Mm) ≡ Children(N) is the (ordered) list of children of the nodeN , and L1, . . . , Lm

are the labels of the respective edges (M1, N, L1), . . . , (Mm, N, Lm) ∈ E , andWLi
is the Li-th

component of the list W . Note that with the structured convolutional models, such as GNNs,
we assume dynamic computation graphs where each learning sample Sj generates a separate Gj .
Consequently, we can associate the leaf nodes in each Gj with constant functions1, outputting the
corresponding node (feature) values from the corresponding structured input sample Sj .

3 PROBLEM DEFINITION

The problem of detecting the symmetries in computation graphs can then be formalized as follows.
Definition 1 (Problem Definition). Let G = (N , E ,F) be a computation graph. We say that two
nodes N1, N2 are equivalent if, for any W , it holds that value(N1;W) = value(N2;W). The
problem of detecting symmetries in computation graphs asks to partition the nodes of the computation
graph into equivalence classes of mutually equivalent nodes.

Example 1. Consider the computation graph G = (N , E ,F), depicted in Fig. 1, where

N = {0, 1, 2, 3, 4}, E = ((0, 2, 1), (1, 3, 1), (2, 4, 2), (3, 4, 2)),

F = {f0 = f1 = 1, f2(x) = f3(x) = x, f4(x, y) = x · cos(y)}.
1in contrast to static computation graphs where these functions are identities requiring the features at input.
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LetW = (w1, w2) be the weight list. The computation graph then computes the function (w1w2) ·
cos(w1w2). It is not difficult to verify that the nodes {0, 1}, and {2, 3} are functionally equivalent.
This also means, as we discuss in more detail in the next section, that we can “merge” them without
changing the function that the graph computes. The resulting reduced graph then has the form

N = {1, 3, 4}, E = {(1, 3, 1), (3, 4, 2), (3, 4, 2)},
F = {f1 = 1, f3(x) = x, f4(x, y) = x · cos(y)}.

In the example above, the nodes {0, 1} and {2, 3} are in fact also isomorphic in the sense that there
exists an automorphism (preserving weights and activation functions) of the computation graph that
swaps the nodes. Note that our definition is less strict: all we want the nodes to satisfy is functional
equivalence, meaning that they should evaluate to the same values for any initialization ofW .

We will also use the notion of structural-equivalence of nodes in computational graphs. Two nodes
are structurally equivalent if they have the same outputs for any assignment of weightsW and for
any replacement of any of the activation functions in the graph.2 That is if two nodes are structurally
equivalent then they are also functionally equivalent but not vice versa. Importantly, the two nodes
do not need to be automorphic3 in the graph-theoretical sense while being structurally equivalent,
which also makes detecting structural equivalence easier from the computational point of view. In
particular, we describe a simple polynomial-time algorithm in Section 4.2.

4 TWO ALGORITHMS FOR COMPRESSING COMPUTATION GRAPHS

In this section we describe two algorithms for compression of computation graphs: a non-exact
algorithm for compression based on functional equivalency (cf. Definition 1) and an exact algorithm
for compression based on detection of structurally-equivalent nodes in the computation graph. While
the exact algorithm will guarantee that the original and the compressed computation graphs represent
the same function, that will not be the case for the non-exact algorithm. Below we first describe the
non-exact algorithm and then use it as a basis for the exact algorithm.

4.1 A NON-EXACT COMPRESSION ALGORITHM

The main idea behind the non-exact algorithm is almost embarrassingly simple. The algorithm first
evaluates the computation graph with n randomly sampled parameter listsW1, . . . ,Wn, i.e. with
n random initializations of the (shared) weights, and records the values of all the nodes of the
computation graph (i.e. n values per node). It then traverses the computation graph from the output
nodes in a breadth-first manner, and whenever it processes a node N , for which there exists a node N ′
that has not been processed yet and all n of its recorded values are the same as those of the currently
processed node N , the algorithm replaces N by N ′ in the computation graph. In principle, using
larger n will decrease the probability of merging nodes that are not functionally equivalent as long as
there is a non-zero chance that any two non-equivalent nodes will have different values (this is the
same as the “amplification trick” normally used in the design of randomized algorithms).

It is easy to see that any functionally equivalent nodes will be mapped by the above described
algorithm to the same node in the compressed computation graph. However, it can happen that the
algorithm will also merge nodes that are not functionally equivalent but just happened (by chance)
to output the same values on all the random parameter initializations that the algorithm used. We
acknowledge that this can happen in practice, nevertheless it was not commonly encountered in our
experiments (Sec. 5), unless explicitly emulated. To do that, we decreased the number of significant
digits used in each equivalence check between value(N ;Wi) and value(N ′;Wi). This allows to
compress the graphs even further, at the cost of sacrificing fidelity w.r.t. the original model.

There are also cases when we can give (probabilistic) guarantees on the correctness of this algorithm.
One such case is when the activation functions in the computation graph are all polynomial. In this
case, we can use DeMillo-Lipton-Schwartz-Zippel Lemma (DeMillo & Lipton, 1977) to bound the

2Here, we add that in this definition, obviously, when we replace a function f by function f ′, we have to
replace all occurrences of f in the graph also by f ′.

3Here, when we say “automorphic nodes”, we mean that there exists an automorphism of the graph swapping
the two nodes.
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Figure 2: A multi-layer GNN model with a global readout unfolded over an exam-
ple molecule of methane. Colors are used to distinguish the weight sharing, as well as different node
types categorized w.r.t. the associated activation functions, denoted as input (I), convolution (C), and
aggregation (A) nodes, respectively.
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Figure 3: A compressed version of the GNN from Fig. 2, with the compressed parts dotted.

probability of merging two nodes that are not functionally equivalent. However, since the activation
functions in the computation graphs that we are interested in are usually not polynomial, we omit the
details here. In particular, obtaining similar probabilistic guarantees with activation functions such as
ReLU does not seem doable.4

4.2 AN EXACT COMPRESSION ALGORITHM

The exact algorithm for compressing computation graphs reuses the evaluation with random parameter
initializations while recording the respective values for all the nodes. However, the next steps are
different. First, instead of traversing the computation graph from the output nodes towards the
leaves, it traverses the graph bottom-up, starting from the leaves. Second, rather than merging the
nodes with the same recorded value lists right away, the exact algorithm merely considers these
as candidates for merging. For that it keeps a data structure (based on a hash table) that indexes
the nodes of the computation graph by the lists of the respective values recorded for the random
parameter initializations. When, while traversing the graph, it processes a node N , it checks if there
is any node N ′ that had the same values over all the random parameter initializations and has already
been processed. If so it checks if N and N ′ are structurally equivalent (which we explain in turn)
and if they are it replaces N by N ′. To test the structural equivalence of two nodes, the algorithm
checks the following conditions:

1. The activation functions of N and N ′ are the same.
2. The lists of children of both N and N ′ are the same (not just structurally equivalent but

identical, i.e. Children(N) = Children(N ′)), and if C is the i-th child of N and C ′ is the
i-th child of N ′, with (C,N,L1) and (C ′, N, L2) being the respective edges connecting
them to N , then the labels L1 and L2 must be equal, too.

4In particular, the proof of DeMillo-Lipton-Schwartz-Zippel Lemma relies on the fact that any single variable
polynomial is zero for only a finite number of points, which is not the case for computation graphs with ReLUs.

5



Published as a conference paper at ICLR 2021

One can show why the above procedure works by induction. We sketch the main idea here. The base
case is trivial. To show the inductive step we can reason as follows. When we are processing the node
N , by the assumption, the node N ′ has already been processed. Thus, we know that the children of
both N and N ′ must have already been processed as well. By the induction hypothesis, if any of
the children were structurally equivalent, they must have been merged by the algorithm, and so it is
enough to check identity of the child nodes. This reasoning then allows one to easily finish a proof of
correctness of this algorithm.

There is one additional optimization that we can do for symmetric activation functions. Here by
“symmetric” we mean symmetric with respect to permutation of the arguments. An example of such
a symmetric activation function is any function of the form f(x1, . . . , xk) = h

(∑k
i=1 xk

)
; such

functions are often used in neural networks. In this case we replace the condition 2 above by:

2’. There is a permutation π such that π(Children(N)) = Children(N ′)), and if C is the i-th
child of N and C ′ is the π(i)-th child of N ′, with (C,N,L1) and (C ′, N, L2) being the
respective edges connecting them to N , then the labels L1 and L2 must be equal.

It is not difficult to implement the above check efficiently (we omit the details for brevity). Note
also that the overall asymptotic complexity of compressing a graph G with either of the algorithms is
simply linear in the size of the graph. Specifically, it is the same as the n evaluations of G.

Finally, to illustrate the effect of the lossless compression, we show the GNN model (Sec. 2.1),
unfolded over a sample molecule of methane from Fig.2, compressed in Fig. 3.

5 EXPERIMENTS

To test the proposed compression in practice, we selected some common structured convolutional mod-
els, and evaluated them on a number of real datasets from the domains of (i) molecule classification
and (ii) knowledge-base completion. The questions to be answered by the experiments are:

1. How numerically efficient is the non-exact algorithm in achieving lossless compression?

2. What improvements does the compression provide in terms of graph size and speedup?

3. Is learning accuracy truly unaffected by the, presumably lossless, compression in practice?

Models We chose mostly GNN-based models as their dynamic computation graphs encompass
all the elements of structured convolutional models (convolution, pooling, and recursive layer
stacking). Particularly, we choose well-known instances of GCNs and graph-SAGE (Sec. 2.1),
each with 2 layers. Additionally, we include Graph Isomorphism Networks (GIN) (Xu et al.,
2018a), which follow the same computation scheme with 5 layers, but their particular operations
(CW1 = identity, A = sum, CW2 = MLP ) are theoretically substantiated in the expressiveness
of the Weisfeiler-Lehman test (Weisfeiler, 2006). This is interesting in that it should effectively
distinguish non-isomorphic substructures in the data by generating consistently distinct computations,
and should thus be somewhat more resistant to our proposed compression. Finally, we include a
relational template (“graphlets”) introduced in (Sourek et al., 2018), which generalizes GNNs to
aggregate small 3-graphlets instead of just neighbors.

Datasets For structure property prediction, we used 78 organic molecule classification datasets
reported in previous works (Ralaivola et al., 2005; Helma et al., 2001; Lodhi & Muggleton, 2005).
Nevertheless, we show only the (alphabetically) first 3 for clarity, as the target metrics were extremely
similar over the whole set. We note we also extended GCNs with edge embeddings to account for
the various bond types, further decreasing the symmetries. For knowledge base completion (KBC),
we selected commonly known datasets of Kinships, Nations, and UMLS (Kok & Domingos, 2007)
composed of different object-predicate-subject triplets. We utilized GCNs to learn embeddings of all
the items and relations, similarly to R-GCNs (Schlichtkrull et al., 2018), and for prediction of each
triplet, we fed the three embeddings into an MLP, such as in (Dong et al., 2014), denoted as “KBE”.

The size of the individual input graphs is generally smallest in the molecular data with app. 25 atoms
and 50 bonds per a single molecule, where there are app. 3000 molecules in each of the datasets
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Figure 4: Compression of a scalar-parameterized graphlets model on a molecular dataset. We
display progression of the selected metrics w.r.t. increasing number of significant digits (inits=1) used
in the value comparisons (left), and number of non-equivalent subgraph value clashes detected by the
exact algorithm w.r.t. the digits, weight re-initializations, and increased weight dimension (right).

Table 1: Training times per epocha across different models and frameworks over 3000 molecules.
Additionally, the startup graphs creation time of LRNNs (including the compression) is reported.

Model Lifting (s) LRNNs (s) PyG (s) DGL (s) LRNN startup (s)
GCN 0.25 ± 0.01 0.75± 0.01 3.24 ± 0.02 23.25 ± 1.94 35.2 ± 1.3

g-SAGE 0.34 ± 0.01 0.89± 0.01 3.83 ± 0.04 24.23 ± 3.80 35.4 ± 1.8
GIN 1.41 ± 0.10 2.84± 0.09 11.19 ± 0.06 52.04 ± 0.41 75.3 ± 3.2

on average. The input graphs are then naturally largest for the knowledge bases with app. 20,000
triples over hundreds of objects and relations. The sizes of the corresponding computation graphs
themselves are then in the orders of 102–105 nodes, respectively.

Experimental Protocol We approached all the learning scenarios under simple unified setting with
standard hyperparameters, none of which was set to help the compression (sometimes on the contrary).
We used the (re-implemented) LRNN framework to encode all the models, and also compared with
popular GNN frameworks of PyTorch Geometric (PyG) (Fey & Lenssen, 2019) and Deep Graph
Library (DGL) (Wang et al., 2019). If not dictated by the particular model, we set the activation
functions simply as CW = 1

1+e−W ·x and A = avg. We then trained against MSE using 1000 steps
of ADAM, and evaluated with a 5-fold crossvalidation.

5.1 RESULTS

Firstly, we tested numerical efficiency of the non-exact algorithm itself (Sec. 4), for which we
used scalar weight representation in the models to detect symmetries on the level of individual
“neurons” (rather than “layers”). We used the (most expressive) graphlets model, where we checked
the functional symmetries to overlap with the structural symmetries. The results in Fig. 4 then show
that the non-exact algorithm is already able to perfectly distinguish all structural symmetries with
but a single weight initialization within less than 12 significant digits. While more initializations
indeed improved the efficiency rapidly, in the end they proved unnecessary (but could be used in
cases where the available precision would be insufficient). Moreover this test was performed with the
actual low-range logistic activations. The displayed (10x) training time improvement (Fig.4 - left) in
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(right) with their compressed versions over molecule classification (left, middle) and KBC (right).

the scalar models was then directly reflecting the network size reduction, and could be pushed further
by decreasing the numeric precision at the expected cost of degrading the learning performance.

Secondly, we performed similar experiments with standard tensor parameterization, where the
equivalences were effectively detected on the level of whole neural “layers”, since the vector output
values (of dim=3) were compared for equality instead. This further improved the precision of the
non-exact algorithm (Fig. 4 - right), where merely the first 4 digits were sufficient to achieve lossless
compression in all the models and datasets (Figure 5). However, the training (inference) time was no
longer directly reflecting the network size reduction, which we account to optimizations used in the
vectorized computations. Nevertheless the speedup (app. 3x) was still substantial.

We further compared with established GNN frameworks of PyG (Fey & Lenssen, 2019) and
DGL (Wang et al., 2019). We made sure to align the exact computations of GCN, graph-SAGE, and
GIN, while all the frameworks performed equally w.r.t. the accuracies. For a more fair comparison,
we further increased all (tensor) dimensions to a more common dim=10. The compression effects,
as well as performance edge of the implemented LRNN framework itself, are displayed in Tab. 1
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for a sample molecular dataset (MDA). Note that the compression was truly least effective for the
aforementioned GIN model, nevertheless still provided app. 2x speedup.

Finally, the results in Fig. 6 confirm that the proposed lossless compression via lifting, with either
the exact algorithm or the non-exact algorithm with a high-enough numeric precision used, indeed
does not degrade the learning performance in terms of training and testing accuracy (both were close
within margin of variance over the crossvalidation folds).

Note that the used templated models are quite simple and do not generate any symmetries on
their own (which they would, e.g., with recursion), but rather merely reflect the symmetries in
the data themselves. Consequently, the speedup was overall lowest for the knowledge graph of
Nations, represented via 2 distinct relation types, and higher for the Kinships dataset, representing a
more densely interconnected social network. The improvement was then generally biggest for the
highly symmetric molecular graphs where, interestingly, the compression often reduced the neural
computation graphs to a size even smaller than that of the actual input molecules. Note we only
compressed symmetries within individual computation graphs (samples), and the results thus cannot
be biased by the potential existence of isomorphic samples (Ivanov et al., 2019), however, potentially
much higher compression rates could be also achieved with (dynamic) batching.

6 CONCLUSION

We introduced a simple, efficient, lossless compression technique for structured convolutional models
inspired by lifted inference. The technique is very light-weight and can be easily adopted by any
neural learner, but is most effective for structured convolutional models utilizing weight sharing
schemes to target relational data, such as in various graph neural networks. We have demonstrated
with existing models and datasets that a significant inference and training time reduction can be
achieved without affecting the learning results, and possibly extended beyond for additional speedup.
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