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Abstract

Model ensembling is a technique to combine001
the predicted distributions of two or more mod-002
els, often leading to improved robustness and003
performance. For ensembling in text genera-004
tion, the next token’s probability distribution005
is derived from a weighted sum of the dis-006
tributions of each individual model. This re-007
quires the underlying models to share the same008
subword vocabulary, limiting the applicability009
of ensembling, as many open-sourced models010
have distinct vocabularies. This paper proposes011
an inference-time-only algorithm for ensem-012
bling models with different vocabularies with-013
out the need to learn additional parameters or014
alter the underlying models. Instead, the al-015
gorithm ensures that tokens generated by the016
ensembled models agree in their surface form.017
We apply this technique to combinations of tra-018
ditional encoder-decoder models and decoder-019
only LLMs and evaluate on machine transla-020
tion. In addition to expanding to model pairs021
previously incapable of token-level ensembling,022
our algorithm frequently improves translation023
performance over either model individually.024

1 Introduction025

Text generation takes place as a sequence of token026

predictions. At each time step, the model, condi-027

tioned on some input, produces a probability distri-028

bution over the vocabulary. From this distribution,029

the next token is selected to extend the hypothesis—030

the text generated thus far. Individual models may031

be sensitive to noise or lack coverage in certain032

domains. Model ensembling is a method for com-033

bining outputs from multiple models, which often034

produces more robust outputs and increases perfor-035

mance. The traditional model ensembling approach036

assumes a shared vocabulary and computes a new037

distribution as a weighted sum of its component038

vocabularies:039

p(xt) =
∑
i

λipmi(xt | x1..t−1) (1)040
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Figure 1: Agreement-Based Ensembling (ABE) enables
ensembling among models with different vocabularies.
Token generation for each beam item is constrained to
tokens with agreeing detokenized forms.

where all interpolation weights, λi, sum to 1. The 041

new ensembled distribution functions the same as 042

if it originated from a single model, and the next 043

token prediction proceeds as usual. 044

In practice, most models do not share vocab- 045

ularies. When the vocabularies differ, the result- 046

ing probability distributions are no longer com- 047

parable. Then, it is no longer straightforward to 048

ensemble these outputs. To address this, we in- 049

troduce Agreement-Based Ensembling (ABE), an 050

inference-time ensembling algorithm that requires 051

no new parameters or model adaptation, but in- 052

stead works by coordinating token selection across 053

models under the notion of agreement (§ 3.1). At 054

each decoding timestep, each model produces its 055

distribution over the next token; our method effi- 056

ciently searches over their cross-product for tokens 057

that are contextually compatible with the currently 058

generated surface string (§ 3.2). When the tokens 059

are different (but agreeing), the longer token con- 060
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strains future search (§ 3.3). This is caricatured061

in Figure 1). Our approach easily extends to other062

inference algorithms such as beam search (§ 3.4).063

Our contributions are as follows:064

• introduce an inference-time algorithm for en-065

sembling models with different vocabularies1,066

• demonstrate the ability to ensemble across067

varying architectures (encoder-decoder,068

LLMs, or both), and069

• show improved results in machine translation070

(MT) across a range of models.071

Our code is implemented in Python using the Hug-072

gingface transformers library (Wolf et al., 2019)073

and is open-source.2074

2 Related Work075

Ensembling is a generally reliable technique for076

increasing the quality of model outputs that goes077

back at least as far as Hansen and Salamon (1990).078

Although it is more expensive and, therefore, often079

prohibitive in production inference settings, it is080

useful in competitions or for production training081

scenarios, such as distillation. In such settings, the082

user typically has control over model training; en-083

sembled models can be taken from different check-084

points (Sennrich et al., 2016) or from completely085

different training runs initialized from different ran-086

dom checkpoints, and therefore all have the same087

vocabularies. Hoang et al. (2024) move a step be-088

yond this by ensembling models with divergent ar-089

chitectures (an MT system and an LLM) and across090

contexts longer than are supported by all models,091

but the models still share the same vocabulary.092

The situation becomes more difficult when the093

vocabularies are not shared. One way to address094

this is to work at the sequence level instead of the095

token level. One such approach is that of Jiang096

et al. (2023), who propose LLM-Blender. It com-097

prises a ranking function that computes pairwise098

comparisons of complete model outputs and then099

selects from among them; this approach completely100

avoids the need for token-level ensembling. Far-101

inhas et al. (2023) generate multiple translation102

hypotheses and then explore selecting from among103

1Our sole requirement is that models are open-vocabulary
so that they can generate any string the other model can.

2Outputs and code available anonymously at https://
anonymous.4open.science/r/anon-abe-073B.
It will be released as Apache 2.0.

them using voting, minimum Bayes risk, and LLM- 104

based selection. Sequence-level ensembling has 105

limitations, and the reality of disjoint vocabularies 106

has motivated prior work in token-level ensembling 107

even across different vocabularies. Xu et al. (2024) 108

learned mappings across vocabularies through ex- 109

tra model training that map token representations 110

into a joint space, and employs various filtering 111

methods for efficiency. Shen et al. (2024) presents 112

a “collaborative decoding” framework between a 113

lead and assistant model where a classifier dynami- 114

cally selects which will produce the next token at 115

each generation step; their approach also appears 116

to require a shared vocabulary. 117

Union-based ensembling methods combine mod- 118

els with different vocabulary by constructing a 119

shared token space. GAC by Yu et al. (2024) cre- 120

ates a complete union of vocabularies of individual 121

models and averages token probabilities. Still, it 122

assumes high overlap between tokenizers, leading 123

to misalignment issues when semantically similar 124

tokens (e.g., ’James’ vs. ’Jam’ + ’es’) are split 125

differently. Top-k UNITE (Yao et al., 2024) builds 126

on this by forming a union over each model’s top- 127

k tokens and augmenting the list to include full 128

or partial tokens as needed, mitigating tokenizer 129

mismatch. However, it requires a designated pri- 130

mary model and retains dependence on top-k filter- 131

ing. DeepEn (Huang et al., 2024) takes a different 132

approach by mapping each model’s output distri- 133

bution into a shared relative representation space, 134

constructed using common tokens across models, 135

and inverse mapping, via gradient descent, back to 136

the primary model’s token space to select the next 137

token. Our work is distinct from prior methods as 138

it does not require further training or parameters, 139

does not rely on vocabulary overlap or a primary 140

model, and is evaluated on an open-ended gener- 141

ation (MT) task rather than classification bench- 142

marks. We achieve this by managing token-level 143

ensembling across different vocabularies by en- 144

suring that all models in the ensemble agree on 145

the string being generated, and interleaving model 146

steps for models that fall behind. 147

3 Agreement-Based Ensembling 148

Autoregressive models produce distributions over 149

their vocabularies at each decoding time step. 150

This process generally continues until the end- 151

of-sequence token is produced or some maxi- 152

mum length is reached. Greedy decoding, beam 153
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Figure 2: A global state maintains the shared detokenized string, which is determined by the local hypotheses. A
flag denotes whether a model is stalled (×) or can generate (✓). In stalled steps (§ 3.3), only the trailing model(s)
generate(s) a token, catching up with the shared string, and the stalled model is prevented from generating content.

search, and sampling are all search algorithms that154

change how the next token is selected. The tradi-155

tional model ensembling approach (also called here156

interpolation-based ensembling) fits nicely within157

any of these frameworks, but requires the models158

to share the same vocabulary. This approach alters159

the probability distribution to be a weighted sum of160

the distributions from each model. Any search al-161

gorithm proceeds as before, selecting a token from162

this new distribution.163

When vocabularies differ, the distributions do164

not match, and we cannot factor in the probabil-165

ity computation from the algorithm as nicely. In166

Agreement-Based Ensembling, each model pro-167

duces its distribution over its target vocabulary as168

usual, but algorithmic changes are required to co-169

ordinate the selection of the next token to ensure170

they agree on the detokenized surface string.171

In this section, we will describe these changes.172

At a high level, this requires maintaining a shared173

global agreement state (§ 3.1), efficiently search-174

ing the cross-product of the models’ vocabularies175

(§ 3.2), and handling the varying token lengths of176

the models’ differing vocabularies (§ 3.3). For ease177

of presentation, we will describe the algorithm us-178

ing two models in a greedy decoding setting; this179

allows us to focus on these new ideas, without the180

complexity of beam search. However, the algo-181

rithm works with any number of models as long182

as they all have open vocabularies, and the exten-183

sions to beam search (which we used for all our184

experiments) are straightforward.185

3.1 Agreement186

The fundamental difficulty when ensembling mod-187

els with different vocabularies is ensuring that they188

reach consensus on the shared output string, de-189

spite the string being generated via different tok-190

enizations. In Agreement-Based Ensembling, we191

maintain a shared string—the global hypothesis—192

which is updated at each time step by the predicted193

tokens. It is vital to store and compare against 194

this string in detokenized form3 for precise com- 195

parison. Each model separately maintains its own 196

local hypothesis under its own tokenization, which 197

is a substring of this global hypothesis. This is 198

visualized in Figure 2. 199

We define the notion of agreement. Consider 200

a set of strings S. The global hypothesis, g, of 201

this set is defined by (1) the shortest terminated 202

string (ends with end-of-sequence token) or (2) 203

the longest unterminated sequence—whichever is 204

satisfied first. A set of strings S is in agreement ⇔ 205

all si ∈ S are substrings of g. Note that agreement 206

does not mean the models have produced the same 207

string, only that their strings do not disagree. The 208

algorithm provides a core inductive guarantee that 209

the detokenized string for every model will always 210

agree with the shared global hypothesis. 211

3.2 Efficient Search 212

At each decoding timestep, each model takes its 213

forward step from its current state and produces a 214

distribution over its vocabulary. We need to effi- 215

ciently search the intersection of their vocabularies 216

for extensions to the current shared hypothesis that 217

agree. This space has dimensions V1 × V2 and is 218

too large to search completely. We therefore apply 219

a variant of cube pruning (Chiang, 2007; Huang 220

and Chiang, 2007) with an “agreement filter” to 221

search this space efficiently. The distributions from 222

each model are sorted, per usual, and arranged into 223

a two-dimensional grid (Refer to Figure 3). 224

Each box in the grid denotes the selection of a 225

token from each vocabulary, each associated with a 226

score, computed as the weighted sum of the length- 227

normalized model scores for each local hypothe- 228

sis.4 Normalization is essential as model hypothe- 229

ses are not guaranteed to be the same length. 230

3We store byte-strings so byte fall-back tokenization and
non-Latin scripts to work.

4In all experiments, models are equally weighted.
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Figure 3: The first 12 candidates in the ABE search
space for unstalled m1, m2. Each model’s vocabulary
is sorted by score. The top left corner is pushed onto a
heap with a weighted score of 0.58. We present proba-
bilities here for simplicity. In practice, each token score
is the cumulative log prob of the local hypothesis with
this token as the extension. The loop then pops from the
heap, checks for agreement, and adds unvisited neigh-
bors onto the heap. Numbers denote visitation order.

To enumerate these items, we maintain a heap,231

which stores tuple items (i, j, s), where i and j232

index the candidate vocabulary items, and s records233

their weighted score. The heap is seeded with the234

tuple (1, 1, s), which denotes the top left corner of235

this grid and represents the most probable token236

extension from each model. We now iterate as237

follows:238

1: while True do239

2: Pop item from heap240

3: Compute strings s1 and s2241

4: if agrees(s1, s2) then242

5: return item243

6: end if244

7: Add neighbors of item to heap245

8: end while246

Although we need only one valid item for our247

greedy search example, Figure 3 depicts the first248

twelve loop iterations for illustrative purposes. The249

current item is popped from the heap at each step250

and checked for agreement. This item is checked251

to determine whether the set of proposed local hy-252

potheses is in agreement. Arrows denote “neigh-253

bor” items (the next vocabulary extension in each254

dimension), which are used to create updated tu-255

ples that are then added to the heap. The algorithm256

can be extended to an arbitrary number of ensem-257

bled models using an n-dimensional hypercube,5 258

and extending the tuples to include n vocabulary 259

position indices. 260

3.3 Stalled steps 261

Models with larger vocabularies are likely to gener- 262

ate longer subwords at each timestep. This means 263

that one model may be ahead of the rest and needs 264

to be stalled. We define stalling. Consider a set of 265

models, M . The set of local hypotheses generated 266

by M is S, where si was generated by mi. Recall 267

that the global hypothesis is represented by g. A 268

model, mi, is stalled when si = g and at least one 269

other model is not stalled: ∃(mj , sj) ϶ sj ̸= g. An 270

example of when a model becomes stalled is illus- 271

trated in time steps t = 5 and t = 6 in Figure 2. 272

 

Figure 4: Search space when m1 is stalled. m1 has gen-
erated tokenization while m2 has only generated _token
iz. Similar to Figure 3, we present probabilities instead
of the cumulative log-prob of the local hypothesis with
this token as the extension for simplicity.

Stalled steps aim to restore this imbalance by al- 273

lowing the unstalled models to generate without the 274

stalled models in order to catch up. Conceptually, 275

stalling a model is simple. We prevent the model 276

from being able to generate a token by replacing V 277

(its vocabulary) with {ϵ}—an empty transition. We 278

illustrate the reduction in search space in Figure 4. 279

Note that for each stalled model, the dimensionality 280

of the search space is effectively reduced by one. 281

3.4 Beam Search 282

Greedy decoding is a special case of beam search 283

where the beam size is 1. Extending ABE to handle 284

larger beams is simple. The main conceptual differ- 285

ence is that the search space includes an additional 286

dimension, the beam index. For a beam size of k, 287

the search space is k × V1 × V2. Similar to the 288

extension beyond two models (end of Section 3.2), 289

we add an index to denote which beam item each 290

5For simplicity, we use the term hypercube, though not all
dimensions are equal.

4



vocabulary pair comes from. Then, instead of ter-291

minating after the first valid item, we iterate until292

we have encountered k of them. For instance, three293

models with a beam would have a 4-dimensional294

search space of {k × V1 × V2 × V3}. The k items295

become the beam at the next time step. Note that296

neighbors of a given candidate must come from297

the same beam item; beam number 2 cannot have298

neighbors in beam number 3. Beam lengths may299

be ragged due to stalling, but this is handled with300

padding, normalization, and selecting hidden states301

based on hypothesis length.302

4 Experiments303

Agreement-Based Ensembling constrains the out-304

put of each model by the output of all models. We305

therefore choose to evaluate against machine trans-306

lation (MT) due to its constrained nature. We pri-307

marily evaluate on the WMT24 test set (Kocmi308

et al., 2024) en-de but extend to several other309

out-of-English directions (cs, es, uk) from the310

same test set. For evaluation, we consider both311

COMET (Rei et al., 2022) and BLEU (Papineni312

et al., 2002). We computed COMET scores with313

with pymarian6 (Gowda et al., 2024), and BLEU314

scores with sacrebleu7 (Post, 2018).315

We examine ensembling within and between dif-316

ferent classes of models: 1) Custom MT– Our own317

Encoder-decoder models trained on the same pool318

of data with different vocabulary sizes, 2) Public319

MT– Large-scale, multilingual, publicly-available320

MT models, and 3) LLMs– Decoder-only LLMs321

with demonstrated capabilities in MT.322

4.1 Models323

For preliminary experiments, we ensemble our own324

trained MT models. This allows us to control325

the vocabulary while also guaranteeing that the326

models are reasonably similar and will frequently327

agree during generation. We then extend to off-the-328

shelf models, covering both encoder-decoder and329

decoder-only architectures.330

Custom MT We train transformer base mod-331

els using Marian (Junczys-Dowmunt et al., 2018)332

on approximately 600m lines of filtered English–333

German (en-de) data downloaded using mtdata334

(Gowda et al., 2021) (details in Appendix A). We335

perform standard data filtering to include dedu-336

plication, language identification, length ratios,337

6Version v1.12.31, wmt22-comet-da model
7Version 2.5.1, standard params.

and margin-scoring. We train four unigram-based 338

sentencepiece tokenization models (Kudo, 339

2018; Kudo and Richardson, 2018) with sizes of 8k, 340

16k, 32k, and 64k. Using these four tokenizers, we 341

train four associated machine translation models. 342

Each model is a standard transformer base model 343

(Vaswani et al., 2023) with 6/6 layers, embedding 344

size 1024, and hidden sizes of 8192. The entire con- 345

figuration can be found in Table 5 in the Appendix. 346

The data is randomly shuffled for infinite streaming 347

via sotastream (Post et al., 2023), so we use 348

logical epochs (1b tokens) rather than exact passes 349

over the training set. We train for 25 logical epochs 350

on one 24GB Titan RTX. In our experiments, we 351

use various checkpoints of these models.8 352

Public MT In addition to custom models that 353

only support English and German, we also consider 354

two widely used multilingual MT models, M2M 355

(Fan et al., 2020) and NLLB (Team et al., 2022) 356

in multiple sizes and distillation variants. The for- 357

mer covers 100 languages with a 128k multilingual 358

vocabulary, while the latter covers 202 languages 359

with a 256k multilingual vocabulary. The Hugging- 360

face repository IDs for all off-the-shelf models are 361

in the Appendix in Table 6. 362

LLMs We consider TOWER (Alves et al., 2024) 363

and LLaMa 3.x (Grattafiori et al., 2024). TOWER is 364

an LLM specifically fine-tuned for the translation 365

task, whereas LLaMa is general-purpose. LLaMa 366

models use a vocab of 128k while TOWER uses 367

32k. TOWER was fine-tuned with the following 368

prompt: 369

Translate the following text from English into Ger-
man. \n English: {source sentence} \n German:

For LLaMa models, we use both 0-shot prompts 370

and 3-shot prompts derived from the WMT24 base- 371

line evaluation scripts.9 The exact verbiage of 372

prompts is in the Appendix in Table 7. LLMs dif- 373

fer in architecture from the previous settings as 374

they lack an encoder, demonstrating that ABE is 375

architecture-agnostic. Ensembling two large LLMs 376

with 3-shot prompts requires an additional memory 377

footprint. These experiments were run on a single 378

80GB A100, though they can be managed with 379

approximately 48 GB. 380

8Namely epochs {1, 5, 10, 15, 20, 25}
9https://github.com/wmt-conference/

wmt-collect-translations
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(a) Same Vocabulary (Small) (b) Same Vocabulary (Large) (c) Different Vocabularies

Figure 5: ∆COMET results on our custom MT models using ABE. ∆COMET is the improvement of ensembling
two models via ABE over the best individual model. Individual COMET scores are displayed on axes. Labeling
indicates the vocab size, followed by the epoch checkpoint. All results on en-de WMT24.

4.2 Baselines381

We have two baseline generation algorithms to com-382

pare the results of our ensembling. The first is383

vanilla translation: using the model as intended.384

The MT models only pass the source input (with385

some language id tags for the multilingual mod-386

els) to the huggingface generate function. For387

TOWER and LLaMa, we use the huggingface388

pipeline function with the prompts above (ex-389

plicitly listed in Table 7).390

We additionally consider linear interpolation as391

an ensembling baseline. In this traditional setting,392

the two models’ output distributions can only be393

interpolated when they are over the same event394

space (i.e., have the same vocabulary). We only395

run this baseline over our custom MT models, using396

different checkpoints along the training trajectories397

of the different models. We use a beam size of 5398

for both baselines and ABE for all models. We399

generate with a maximum length of 256 tokens.10400

5 Results401

We demonstrate the effectiveness of our ensem-402

bling algorithm by comparing the sequences gen-403

erated by ABE with the performance of the best404

individual model. Given two models mi, mj , the405

translations produced by either model alone are406

Ti and Tj , respectively. The translations produced407

by ensembling these two models with ABE are408

denoted as ABEi,j . We define the delta as:409

∆S = S(ABEi,j)− max(S(Ti),S(Tj)) (2)410

where S may refer to BLEU or COMET scores.411

10If a model is stalled at this length, there is no agreed-upon
hypothesis, and we return an empty string.

5.1 Custom MT Models 412

In Figure 5, we display the ∆COMET scores across 413

various combinations of custom MT models (Refer 414

to Figure A in Appendix for the ∆BLEU scores). 415

We see consistent positive improvements across 416

many checkpoints. In Figure 5(a) and Figure 5(b), 417

we ensemble the smallest and largest custom MT 418

models with vocabulary sizes of 8k and 64k, re- 419

spectively, across various checkpoints. Further, we 420

successfully do token-level ensembling of models 421

with differing vocabularies (Figure 5(c))—a previ- 422

ously impossible task. 423

A persistent trend we find is that under-fitted 424

models (e.g., Ep. 1) do not ensemble well. This is 425

evidenced by negative ∆COMET scores across the 426

first row. In all other combinations, we see improve- 427

ment, thus demonstrating the power of ensembling 428

via ABE over using individual models. 429

BLEU ∆Interpolation ∆ABE

27.7 0.16 1.07

Table 1: We report the average ∆ BLEU for all model
pairs using interpolation or ABE over the average maxi-
mum individual score.

We also seek to demonstrate that these en- 430

sembling results are at least as good as a naive 431

interpolation-based ensembling baseline. To do 432

this, we compare the relative improvement using 433

interpolation-based ensembling to the improvement 434

gained from ABE. Note that this restricts the en- 435

semble setting as the vocabularies must match. In 436

Table 1, we display the relative ∆BLEU improve- 437

ments and see that ABE is often a bigger improve- 438

ment in these models. 439
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5.2 Public MT Models440

Our custom models are well-suited for ABE, since441

they were trained on the same data and potentially442

have related vocabulary distributions even when443

their vocabularies differ. We next consider mod-444

els over which we have less control. As large445

multilingual models, M2M and NLLB are pretty446

different from our custom ones. Figure 6 shows447

∆BLEU from ABE, with improvements in many448

cases, though not universal, as seen in Custom MT.449

Figure 6: ∆BLEU of ensembling different MT model
pairs using ABE. This includes our largest custom
model (bilingual) and publicly available multilingual
models. Individual BLEU scores displayed on axes.

450

We see an improvement when ensembling our451

largest custom model (64k) with larger multilin-452

gual MT models. We suspect the smaller multilin-453

gual model (M2M 418M) performs less well than a454

bilingual model or a larger multilingual model, and455

these negative trends may be further examples of456

underfit models. The ∆COMET scores (displayed457

in the Figure 10) with ABE are more negative than458

their BLEU equivalents. This may indicate that459

ABE does better at surfacing particular n-grams460

but may affect other aspects, such as fluency, that461

COMET or other neural metrics may penalize.462

5.3 Off-the-Shelf LLMs463

We demonstrate the algorithm’s flexibility by464

extending our ensembling results to distinct465

architectures—encoder-decoder with decoder-only466

LLMs. In Figure 7, we display ∆BLEU improve-467

ments. In this section, we only display 3-shot exper-468

iments with LLaMa, but a more comprehensive re-469

sults table is available in Figure 9 in the Appendix.470

We still see consistent positive gains from en-471

sembling models—particularly when ensembling472

Figure 7: ∆BLEU of ensembling various encoder-
decoder models with LLMs using ABE. Individual
BLEU scores displayed on axes.

the bilingual models with the larger multilingual 473

models. One crucial trend we notice is that poorer 474

performing models, such as the smaller instances 475

of M2M or LLaMa get consistent negative re- 476

sults. This indicates that poorer-performing models 477

will only deteriorate the performance of the better 478

model, which is also typical of other ensembling 479

approaches. However, we see improvements when 480

ensembling across architectures: +2.7 BLEU when 481

ensembling a small bilingual model with Tower or 482

LLaMa. We further see improvements when ensem- 483

bling two LLMs (+1.4 with Tower and LLaMa8b). 484

As before, we observe more negative results when 485

using COMET (Figure 10 in the Appendix). 486

5.4 Additional languages 487

To further demonstrate the generalizability of our 488

results beyond en-de translation, we evaluate ABE 489

on additional target languages (cs, es, uk). We 490

ensemble NLLB, Tower, and LLaMa, with results 491

presented in Appendix B. 492

6 Analysis 493

We investigate why our ensembling succeeds in 494

some cases but not others through quantitative and 495

qualitative analysis. 496

6.1 Model Preferences 497

One effect we wish to disentangle is whether 498

ABE improves the search space or the modeling. 499

Interpolation-based ensembling only affects the in- 500

termediate token probabilities (a modeling change) 501

and does not change the search procedure. ABE 502

does both by severely altering the search and mildly 503

altering the modeling (scoring by the weighted sum 504

7



of two models instead of one).505

To investigate, we quantify each model’s prefer-506

ence for the generated translations. Given m1, m2,507

we get the associated individual translations (T1,508

T2) and the ensembled ABE translation (ABEm1 ,509

ABEm2), respectively. We rank these three trans-510

lations by likelihood under m1 and m2. Table 2511

shows models that ensemble well (custom MT mod-512

els) consistently prefer the ABE output, agreeing513

86% of the time. In contrast, mixed preferences514

appear with M2M and NLLB (∆BLEU = -0.2),515

suggesting that ABE cannot overcome underlying516

modeling disagreements, and is more effective in517

exploring the search space when models agree.518

T1 T2 ABE Same %

8k+64k m1 102 106 2207 86.0
m2 198 223 2028

M2M+NLLB m1 1002 1012 1092 54.5
m2 840 809 1096

Table 2: Preference. Top: m1 and m2 are our bilingual
8k and 64k models (+∆ under ABE). Bottom: m1 and
m2 are M2M1.2B and NLLB3.3B (-∆ with ABE). Ti

shows counts when outputs of mi were ranked highest
(or tied). ABE shows counts when the outputs of the
ensemble were ranked highest. “Same %” designates
when models had the same ranking.

6.2 Constraining Hallucinations519

Standard (same-vocabulary) ensembling can nor-520

malize models, helping increase their robustness521

to noise. Upon examining outputs, we found a522

recurring trend that ABE also helps prevent mod-523

els that have begun to hallucinate. An example is524

shown in Table 3. Here, noisy inputs included by525

design in the WMT24 test sets occasionally trip526

up individual models, including Llama-3.2 (3B-527

Instruct-3-SHOT). Using ABE on all pairs of these528

models yields the correct output.529

7 Conclusion530

We have presented an algorithm enabling token-531

level ensembling models with distinct vocabularies.532

In contrast to prior work, our approach requires533

no learned mappings of token representations (Xu534

et al., 2024), high-vocabulary overlap (Yu et al.,535

2024), a base model (Yao et al., 2024), or other536

model fine-tuning. Instead, we run models in paral-537

lel, using a classical approach from parsing and sta-538

tistical machine translation to select tokens whose539

surface representation all models agree on. We540

source lfg $sqqq

16k lfg $sqqq {m} {m} {m} {m} {m} . . .
64k lfg $qqqq$qqqqqqqqqqqqqqqqqqq. . .

Llama Es scheint, dass das ursprüngliche
Textstück fehlt oder nicht verfügbar
ist. Die gegebene Zeichenkombina-
tion "lfg $sqqq" ist nicht...

ABE lfg $sqqq

Table 3: (Truncated) examples of individual models
hallucinating or becoming overly verbose on noisy input,
but in different ways. Any ABE pairing of these models
produces the correct output.

believe the algorithm itself is an interesting contri- 541

bution to the literature, since it enables (and makes 542

easy) a previously impossible task. Traditional 543

ensembling is a technique that introduces improve- 544

ments in some, but not all, settings. It is there- 545

fore interesting that our approach also (a) produces 546

gains in various MT settings and (b) also often 547

improves over standard ensembling. 548

Prior ensembling methods have primarily tar- 549

geted tasks with multiple-choice or span evaluation 550

of the answer. In contrast, our work focuses on 551

open-ended generation, specifically MT – a setting 552

with far greater flexibility in output space. MT also 553

serves as a compelling testbed for our method. For 554

one, ensembling is often used to produce higher- 555

quality distilled results. Second, the translation 556

task helps constrain the generative output to a sub- 557

set of tokens, meaningfully capturing the source 558

semantics. That being said, our agreement-based 559

approach might falter in less constrained tasks. The 560

implementation is conceptually simple and fac- 561

tored, and allows for easy experimentation with 562

different methods for agreement-based search. We 563

therefore view this as a fruitful topic for future 564

research. 565

Limitations and Ethics 566

We note a few limitations with our work. The first 567

is our focus on one task of machine translation, 568

which is heavily conditioned on the input, and the 569

accepted translation set is relatively small com- 570

pared to other tasks. Though this approach works 571

on Large Language Models, it may not easily ex- 572

tend to other more diverse tasks such as summa- 573

rization. 574

We also acknowledge that machine translation 575

is still a generation task, and is prone to the typ- 576
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ical generation pitfalls of hallucinations, or erro-577

neous translations—particularly when using LLMs.578

Overly relying on error-prone automated transla-579

tion without a human review can have unintended580

consequences when used as a means of distributing581

information.582

The authors also acknowledge the assistance of583

LLMs in the work in this paper—in particular using584

AI agents like CoPilot and ChatGPT to write code585

and edit plots.586
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A Appendix882

Below we describe each step of our filtering883

pipeline:884

1. Remove items when equal to source and target885

pair in our validation set.886

2. Remove lines without both source and target.887

3. Remove lines where langid (Lui and Baldwin,888

2012) on source is < 0.5 for English and on889

target is < 0.5 for German.890

4. Remove lines when more than half of the line891

is punctuation.892

5. Remove lines that have too many characters893

with frequencies outside of the expected lan-894

guage set (Fan et al., 2020).11895

6. LASER based Margin-scoring (Artetxe and896

Schwenk, 2019) (done in 2.5M line chunks897

for computation).898

7. Deduplicate all training data.899

11https://github.com/facebookresearch/
fairseq/blob/main/examples/m2m_100/
README.md
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Data Name Filtered Size Paper (if applicable)
ELRC 6.5M
ELRA 66k
EU (dcep, eac, ecdc) 1.8M
Wikimatrix 5.6M Schwenk et al. (2021a)
WikiTitles 2.9M
TedTalks 166k
Bible 35k
OPUS Books 43k Tiedemann (2012)
CC-Aligned 12M El-Kishky et al. (2020)
CC-Matrix 244M Schwenk et al. (2021b)
DGT 4M
European Central Book (ECB) 83k
ELITR 232k
EMEA 233k
EU Bookshop 5.1M
EU Const. 4k
Europarl (v3,7,8,10) 6.3M Koehn (2005)
EuroPat (v1-3) 47M Heafield et al. (2022)
Global Voices 174k Nguyen and Daumé III (2019)
JRC 457k Steinberger et al. (2006)
KDE/GNome 110k Hätty et al. (2017)
MultiUN 118k Chen and Eisele (2012)
MultiCCAligned 60M
MultiParaCrawl 70M
News Commentary (v9,14,16) 937k
OPUS Train 580k Tiedemann (2012)
ParaCrawl (v9) 242M Esplà et al. (2019)
PHP 7k
QED 400k
Tanzil 476k
Tatoeba 1.8M Tiedemann (2020)
TED (2013) 403k Cettolo et al. (2013)
XLEnt 1.4M El-Kishky et al. (2021)
Tilde 4.8M Rozis and Skadin, š (2017)
StatMT 13 (CommonCrawl) 1.8M
Deduplicated 618M

Table 4: We aggregate most English–German bitext listed on mtdata (available at https://github.com/
thammegowda/mtdata). The above is the filtered text sizes.
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Algorithm 1 Agreement-Based Decoding Using Beam Search (One Time-Step)
1 """
2 scores is a BEAM_SIZE x MODEL_NUMBER x VOCABULARY_SIZE list.
3 Section 3.2: scores are sorted so we can enumerate as shown in Figure 2
4 Section 3.3: if models are stalled, we only consider epsilon transitions
5 """
6 scores = [[model.step(j) for model in models] for j in range(beam_size)]
7 scores = [torch.sort(beam_score) for beam_score in scores]
8 scores = mask_stalled_beams(scores)
9

10 class State:
11 def __init__(self, beam_index, grid_indices, token_id, score):
12 # set values ...
13 def find_neighbors(self):
14 # enumerate neighbors ...
15 def score(self):
16 # score is the weighted sum of model's beam scores
17

18 # now we search the cross-product of vocabulary items
19 next_beam = []
20 heap = heap()
21 for j in range(beam_size):
22 """
23 We seed (0 index for all model) our heap to search our grid (Figure 2).
24 For stalled models, this is the epsilon transition
25 The token_ids is the list of tokens belonging to each model's vocabulary
26 The token_scores is the associated score of these tokens
27 """
28 token_ids = [scores[j][i].idx[0] for i in range(len(models))]
29 token_scores = [scores[j][i].value[0] for i in range(len(models))]
30 state = State(
31 beam_index = j,
32 grid_indices = [0 for _ in models],
33 token_ids = token_ids,
34 token_scores = token_scores)
35 heap.push(state)
36

37 # now we expand the search space until we find beam_size agreeing extensions
38 while len(next_beam) < beam_size:
39 item = heap.pop()
40

41 # Each model has a local hypothesis (specific to internal state)
42 local_hypotheses = [model.extend_beam(item) for model in models]
43

44 # global hypothesis will define agreement
45 global_hypothesis = determine_global(local_hypothesis)
46

47 if agreement(local_hypotheses, global_hypothesis):
48 next_beam.append(item)
49

50 for neighbor in find_neighbors(item):
51 heap.push(neighbor)
52

53 return next_beam
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(a) Same Vocabulary (Small) (b) Same Vocabulary (Large) (c) Different Vocabularies

Figure 8: BLEU results on our custom English–German models using Agreement-Based Ensembling. These charts
show the ∆ BLEU improvement of ensembling two models via ABE over the best individual model. Labeling
indicates vocab size followed by epoch checkpoint.
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Figure 9: The ∆ BLEU scores for all model pairs.
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Figure 10: The ∆ COMET scores for all model pairs.
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Hyper-Parameter Value
label smoothing 0.1
learning rate 0.0005
lr warmup 4000
lr decay inv sqrt 4000
mini batch warmup 4000
mini batch 1000
mini batch words 500000
max length 256
mini batch fit true
early stopping 40
logical epoch 1Gt
shuffle batches
fp16 false
tied embeddings true
tied embeddings all true
dim emb 1024
enc depth 6
dec depth 6
transformer dim ffn 8192
transformer decoder dim ffn 8192
transformer depth scaling true
lemma dim emb 0
transformer ffn activation relu
transformer-heads 8
transformer dropout 0.1
transformer dropout attention 0
transformer dropout ffn 0.1

Table 5: The above enumerate the Marian hyperparameters used for all of our custom models.

18



Model Type Repo ID/URL m Size V Size Languages License

LLM

meta-llama/
Llama-3.1-8B-
Instruct

8B 128k de,es LLaMa3

meta-llama/
Llama-3.2-1B-
Instruct

1B 128k de, es LLaMa3

meta-llama/
Llama-3.2-3B-
Instruct

3B 128k de, es LLaMa3

Unbabel/
TowerInstruct-7B-v0.2

7B 32k de, es CC-BY-NC-4.0,
LLaMa2

Unbabel/
TowerInstruct-
Mistral-7B-v0.2

7B 32k de, es CC-BY-NC-4.0,
LLaMa2

Public MT

facebook/m2m100_1.2B 1.2B 128k de, es, cs, uk MIT
facebook/m2m100_418M 418M 128k de, es, cs, uk MIT
facebook/
nllb-200-1.3B

1.3B 256k de, es, cs, uk CC-BY-NC

facebook/
nllb-200-3.3B

3.3B 256k de, es, cs, uk CC-BY-NC

facebook/nllb-200-
distilled-1.3B

1.3B 256k de, es, cs, uk CC-BY-NC

Facebook/nllb-200-
distilled-600M

600M 256k de, es, cs, uk CC-BY-NC

Custom MT†

rewicks/
baseline_en-de_8k_ep*

286M 8k de Apache 2.0

rewicks/
baseline_en-de_16k_ep*

294M 16k de Apache 2.0

rewicks/
baseline_en-de_32k_ep*

310M 32k de Apache 2.0

rewicks/
baseline_en-de_64k_ep*

343M 64k de Apache 2.0

Table 6: Huggingface Repo Ids for our publicly available models. LLaMa3 license refers to https://
www.llama.com/llama3/license/. LLaMa2 refers to https://ai.meta.com/llama/license/.
Tower also states the LLaMa license as it uses the LLaMa 2 pretraining weights. Language set only covers those
addressed in this paper.
† Each en-de custom MT model has 40 (epoch 1 to epoch 40) checkpoints, all of which are available in the
above-mentioned URL-s.
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Shot Prompt
0 [

{"role": "system", "content": "Cutting Knowledge Date:
December 2023\nToday Date: 26 Jul 2024"}
{"role": "user", "content": "Translate the following segment
into XX. Do not add any additional content. Do not add
parentheticals. Only provide the translation. The English
segment:"}
]

3 The example translations are identical to the WMT24 evaluation scripts specific to the target
language. The examples can be found at https://github.com/wmt-conference/
wmt-collect-translations/tree/main/few_shots. Each example is put in the
same format. Language names exchanged when necessary:

[
{"role": "user", "content": "Translate the following text
from English into German. The English Segment: example
source}
{"role": "assistant", "content": "{example translation}"}
]

Table 7: LLaMa prompting messages.
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B Additional Languages900

We additionally study the ensembling of these mod-901

els with ABE by comparing the performance in902

other languages (cs, es, uk). We compare NLLB,903

Tower, and LLaMa and display the results in Ta-904

ble 8. Similar to before, we notice mixed perfor-

m1 m2 ABE ∆

NLLB + Tower
cs 26.8 14.1 24.0 -2.8
es 43.2 41.0 44.4 +1.2
uk 26.3 6.1 24.1 -2.2

NLLB + LLaMa
cs 26.8 19.6 25.3 -1.5
es 43.2 37.1 42.7 -0.5
uk 26.3 20.3 26.2 -0.1

Tower + LLaMa
cs 14.1 19.6 21.7 +2.1
es 41.0 37.1 42.0 +1.0
uk 6.1 20.3 22.4 +2.1

Table 8: BLEU scores for different ensembling pairs
and their individual models. m1 and m2 denote the in-
dividual model score while ABE denotes the ensembled
score. ∆ is the difference between ABE and max(m1,
m2). The model versions are M2M 1.2B, NLLB 3.3B,
Tower v0.2 7B, LLaMa 3.1 8B 3-shot.

905
mance across model pairs and target languages. We906

suspect this is due to underlying model differences.907

Tower and LLaMa, a consistently successful en-908

sembling pair, see improvements in all three lan-909

guages. According to their respective documenta-910

tion, neither model explicitly supports cs or uk.911

Still, there were likely substantial amounts of these912

languages in the pretraining data. We see improve-913

ments in the BLEU score in both models using914

ABE.915

C Sampling916

One common use case with autoregressive mod-917

els is sampling. As with other search procedures,918

standard ensembling works transparently with sam-919

pling. As a procedure, sampling is easy to imple-920

ment with ABE. Instead of searching over the grid,921

we sample from each model consecutively (skip-922

ping over stalled models). The vocabulary which923

we sample from is renormalized to only allow for924

agreeing tokens.925

We experimented with adding sampling to926

Agreement-Based Ensembling but found that it927

did not work well. We hypothesize the instabil-928

ity of sampling with this method stems in some929

part from the underlying idea that most tokenizers930

denote whitespace as leading (designating word931

beginnings) and not as trailing (designating word932

endings). This idea has been shown to have inter- 933

esting effects on probability distributions (Oh and 934

Schuler, 2024). 935

As an illustrative example, consider the follow- 936

ing German indefinite articles: “ein” and “eine.” 937

The key difference being that “eine” is feminine. 938

Both of these words are short and fundamental to 939

the German vocabulary, so it is almost guaranteed 940

that both words in their full form are in the model 941

vocabulary. We further suspect that models with 942

both of these words in their vocabulary have never 943

seen “eine” tokenized as “_ein” + “e” in their train- 944

ing data. 945

Now consider our previously stated sampling 946

procedure. Assume from m1, we sample “_Eine.” 947

When conditioned on this decision, we are likely to 948

see both “_Ein“ and “_Eine” holding most of the 949

probability mass of m2. Let’s assume we sample 950

“_Ein” from m2. Since the local hypothesis of m1 951

(“_Eine”) and the local hypothesis of m2 (“_Ein”) 952

are in agreement, this is a valid state to be in. How- 953

ever, when we next sample from m2 to catch up 954

to m1 it is not going to have a high probability on 955

“e” because it has never seen “Eine” tokenized that 956

way during training. 957

We understand that m1 has implicitly decided to 958

generate the entire word “Ein”, but it was unable 959

to convey that it was also modeling the end of that 960

word due to the tokenization scheme. 961

Now consider a word-ending tokenization 962

scheme. Now, m1 samples “Eine_” signifying that 963

it is done with this word. When we constrain the 964

output of m2 on this hypothesis, “Ein_” is not go- 965

ing to be sampled because it does not agree. In 966

order to get into the same predicament, it would 967

need to place high probability on “Ein”, specifi- 968

cally not ending the word which is unlikely if both 969

models wish to generate some version of the word 970

“a.” 971
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