
Under review as a conference paper at ICLR 2022

A BRANCH AND BOUND FRAMEWORK FOR STRONGER
ADVERSARIAL ATTACKS OF RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Strong adversarial attacks are important for evaluating the true robustness of deep
neural networks. Most existing attacks find adversarial examples by searching the
input space, e.g., using gradient descent, and may miss adversarial examples due
to non-convexity. In this work, we search adversarial examples in the activation
space of ReLU networks, which allows a systematic search of adversarial exam-
ples and can tackle hard instances where none of the existing adversarial attacks
succeed. Unfortunately, searching the activation space typically relies on generic
mixed integer programming (MIP) solvers and is limited to small networks and
easy problem instances. To improve scalability and practicability, we use branch
and bound (BaB) with specialized GPU-based bound propagation methods, and
propose a top-down beam-search approach to quickly identify the subspace that
may contain adversarial examples. Moreover, we build an adversarial candidates
pool using cheap attacks to further assist the search in activation space via diving
techniques and a bottom-up large neighbourhood search (LNS). Our adversarial
attack framework, BaB-Attack, opens up a new opportunity for designing novel
adversarial attacks not limited to searching the input space, and enables us to bor-
row techniques from integer programming theory and neural network verification
to build stronger attacks. In experiments, we can successfully generate adversar-
ial examples for hard input instances where existing strong adversarial attacks fail,
and outperform off-the-shelf MIP solver based attacks in both success rates and
efficiency. Our results further close the gap between the upper bound of robust
accuracy obtained by attacks and the lower bound obtained by verification.

1 INTRODUCTION

Adversarial attacks aim to find adversarial examples (Szegedy et al., 2013), which are close to benign
inputs in certain distance metrics yet trigger wrong behavior of neural networks (Carlini & Wagner,
2017; Madry et al., 2018; Athalye et al., 2018; Croce & Hein, 2020b). Adversarial attacks are
important tools to gauge the empirical robustness of deep neural networks. Finding an adversarial
example can be generally formulated as a constrained optimization problem:

xadv = arg min
x∈C

f(x) (1)

where C is often an `∞ or `2 norm ball around the original input x0, and f(x) is an attack success
criterion involving a neural network (such as the margin between the groundtruth class and another
class): f(x) < 0 indicates a successful attack. A straightforward way of solving Eq. (1) is via first-
order constrained optimization methods, such as projected gradient descent (PGD) (Madry et al.,
2018) and its variants (Croce & Hein, 2020b; Tashiro et al., 2020; Croce & Hein, 2020a; Xie et al.,
2019; Dong et al., 2018; Zheng et al., 2019). Additionally, some gradient-free attacks were pro-
posed (Brendel et al., 2018; Cheng et al., 2018; Alzantot et al., 2019; Andriushchenko et al., 2020),
mostly based on certain heuristic search on the input space x.

Limitations of existing attacks. As f(x) usually consists of a highly non-convex neural network,
solving Eq. (1) to its global minimum is challenging. This leads to failures in adversarial attacks:
an adversarial example may exist but no attacks can find it, giving a false sense of security (Athalye
et al., 2018). Especially, gradient based attacks can be easily trapped into a local minimum or
misguided by masked gradients (Papernot et al., 2016; Tramèr et al., 2017). Even if we give the
attacker an infinite amount of time (e.g., run a very large number of PGD steps, or allowing a large
number of samples on input space), it is still hard to guarantee to find the adversarial example, since

1

Under review as a conference paper at ICLR 2022

it is extremely difficult to systematically search the high dimensional and continuous input space.
Models concluded robust under existing attacks might still have security vulnerability in practice,
leading to an urgent request for stronger attacks that can possibly approach ground-truth robustness.

The mixed-integer approach. This paper seeks stronger adversarial attacks from a different an-
gle: instead of searching for adversarial examples in the input space, we look for adversarial ex-
amples in the activation space. The main intuition is that neural networks with piece-wise linear
activation functions (e.g., ReLU) can be seen as a piece-wise linear function and each piece is
uniquely defined by a specific setting of activation function status. For ReLU networks, each neu-
ron can either be active (its input is positive) or inactive (its input is negative so the output is 0),
which can be encoded by discrete 0-1 variables. This leads to a mixed integer programming (MIP)
formulation (Ehlers, 2017), and Tjeng et al. (2019) conducted attacks using a MIP solver.

Benefits of the MIP formulation. The MIP formulation with the 0-1 encoding of ReLU neurons
allows us to systematically search all the linear pieces in the input space, theoretically guarantee to
enumerate the entire input space and obtain the global minimum of Eq. (1) given sufficient time.
Practically, MIP-based attacks can often find adversarial examples that are missed by existing attacks
and identify true weaknesses of a model. It also helps to close the gap between the upper and lower
bounds of robust accuracy (i.e., attack accuracy vs. verified accuracy). Existing works aimed to
reducing this gap by tightening the lower bound with stronger verifiers (Raghunathan et al., 2018b;
Wang et al., 2021), while our work aims to tighten the upper bound by a systematic search of
adversarial examples. Closing this gap is difficult even on small models (Dathathri et al., 2020).

Generic MIP solvers are inefficient for adversarial attacks. Despite its strengths, a MIP-based
attack are often a few orders of magnitudes slower than existing attacks due to the high cost of
running an off-the-shelf solver such as Gurobi (Tjeng et al., 2019). There are three root causes for
its inefficiency. First, an off-the-shelf solver is not aware of the underlying optimization problem
corresponds to a neural network, and has to apply generic solving techniques (e.g., using Simplex
algorithm with relaxations) which can be expensive or ineffective. Second, it cannot utilize solutions
obtained cheaply from gradient based attacks to accelerate its search. Third, generic MIP solvers are
mostly restricted to CPUs and can hardly utilize GPU acceleration, which is crucial for efficiency.

Contributions of this paper. We address the above weaknesses in MIP solvers for adversarial
attacks, by developing a GPU-accelerated branch and bound procedure to systematically search
adversarial examples in the activation space, which is more efficient than generic MIP solvers. We
focus on solving hard instances, where none of existing adversarial attacks based on searching the
input space are successful but no verifier can prove their robustness. Our contributions includes:
• We apply the GPU-accelerated bound propagation based methods (Wang et al., 2021; Xu et al.,
2020; Zhang et al., 2018; Wong & Kolter, 2018), which were originally developed for neural net-
work verification, to the adversarial attack setting. These specialized methods can quickly examine
thousands of regions in activation space in parallel and rule out the regions with no adversarial
examples, which is difficult in off-the-shelf MIP solvers with a generic solving procedure.
• We employ a top-down beam-search to explore the activation space. Unlike the best-first search
scheme used in many neural network verifiers, we can quickly go deep in the search tree and identify
the most promising regions with adversarial examples. A smaller sub-MIP can then be created on-
the-fly to search adversarial examples in the reduced regions with much fewer integer variables.
• We collect adversarial examples generated by cheap attacks in a candidate pool and utilize them in
two ways. First, we conduct a bottom-up search on examples close to decision boundary by applying
large neighborhood search (LNS). Second, when conducting the top-down search, we adopt diving
by fixing integer variables according to adversarial examples in the pool to reduce the search space.
• Our new attack framework, BaB-Attack, is designed to tackle hard instances where existing strong
adversarial attacks (such as AutoAttack) cannot succeed. Despite being more expensive than attacks
on the input space, BaB-Attack is about an order of magnitude faster than using an MIP solver on
hard instances, and can find adversarial examples that cannot be discovered by any existing attacks.

2 BACKGROUND

Notations. We define a L layer feed-forward ReLU network as f : Rn0 → R and f(x) :=
z(L)(x), where z(i)(x) = W(i)ẑ(i−1)(x) + b(i) with i-th layer weight matrix W(i) and bias b(i),
ẑ(i)(x) = ReLU(z(i)(x)), and input ẑ(0)(x) = x. Layer i has dimension ni, and N is the total
number of neurons. We denote the j-th neuron in layer i as z(i)j . For a simpler presentation, we

2

Under review as a conference paper at ICLR 2022

assume f(x) is a binary classifier and benign input x0 has f(x0) > 0. An attacker seeks to minimize
f(x) within a `∞ norm perturbation set C to make f(x) < 0. We can attack a multi-class classifier by
considering each pair of target and ground-truth label individually where f is defined as the margin
between them, similarly to (Gowal et al., 2019b). We use [N] to represent the set {1, · · · , N}.
The MIP formulation for adversarial attack. Tjeng et al. (2019) formulated the adversarial
attack and verification of ReLU network into a mixed integer programming (MIP) problem, solved
by existing MIP solvers (refer to as the “MIP attack”). It has binary variables s(i)j for each ReLU:

min f(x) s.t. z(i)(x) = W(i)ẑ(i−1)(x) + b(i); f(x) = z(L)(x); x ∈ C;

ẑ
(i)
j (x) ≥ z(i)j (x); ẑ

(i)
j (x) ≤ u(i)j s

(i)
j ; ẑ

(i)
j (x) ≤ z(i)j (x)− l(i)j (1− s(i)j);

ẑ
(i)
j (x) ≥ 0; z

(i)
j (x) ∈ [l

(i)
j , u

(i)
j]; s

(i)
j ∈ {0, 1}; i ∈ [L], j ∈ [ni]

(2)

where s(i)j indicating the two status of a ReLU neuron: (1) inactive: when s(i)j = 0, constraints on

ẑ
(i)
j simplifies to ẑ(i)j = 0; or (2) active: when s(i)j = 1 we have ẑ(i)j = z

(i)
j . Here l(i)j , u(i)j are pre-

computed intermediate lower and upper bounds on pre-activation z(i)j such that l(i)j ≤ z
(i)
j (x) ≤ u(i)j

for any x ∈ C. The complexity of this problem can increase exponentially with the number of ReLU
neurons, so it can take hours to run even on a small network, unless the network is trained with a
strong regularization such as a certified dense (Wong & Kolter, 2018; Xiao et al., 2019).

-10.3

-5.4 -4.8

-2.1 -3.6 -4.2 1.9

0.4 0.1 -0.01

...

Leaf nodes: all binary variables have been fixed

Adversarial
example

Figure 1: A branch and bound search
tree. Each node represents a subdomain
determined by S, and the numbers are
LB(S). No adversarial example exist in
the subdomain if LB(S) > 0 (green).
A concrete adversarial example is a leaf
node Sleaf where LB(Sleaf) < 0.

Searching in the Activation Space via Branch and Bound.
Given the formulation in Eq. (2), we can view a neural net-
work in the activation spaceA = [0, 1]N whereN is the total
number of neurons, and each dimension corresponds to the
setting of a s(i)j ∈ {0, 1} variable. To determine s(i)j corre-
sponding to a known adversarial example xadv, we can prop-
agate xadv through the network and check the sign of each
neuron z(i)j , so s(i)j = 1(z

(i)
j ≥ 0). This uniquely locates the

linear piece of f(x) where xadv lies, because Eq. (2) becomes
a set of linear inequalities when all s(i)j are fixed. Intuitively,

we can search adversarial examples by fixing all s(i)j to one
of the 2N possible combinations inA , and then solve Eq. (2)
exactly using linear programming; an adversarial example is
found when the solution is negative. To avoid clutter, we flat-
ten the ordering of s(i)j for i ∈ [L], j ∈ [ni] and use a single
subscript s1, · · · , sN to denote all binary variables.

To effectively and systematically search in the activation
space, instead of fixing all si (i ∈ [N]), we can first fix a subset of them and bound the objective f(x)
to guide the search, leading to the branch and bound (BaB) method. In BaB, we solve Eq. (2) by cre-
ating subproblems constraining some binary variables, for example, s1 = 0 or s1 = 1 (since we can
branch on the neurons in any fixed order, without loss of generality, we branch the neurons chrono-
logically). We define a set S containing all the branching constraints (e.g., S = {s1 = 0, s2 = 1}),
which corresponds to a subdomain of the original problem Eq. (2). BaB requires the LB primitive
on S, which relaxes the remaining binary variables to obtain a lower bound of Eq. (2):

Lower bound in subdomain: LB(S) ≤ min f(x) s.t. s ∈ S and all other constraints in Eq. (2)

Here s ∈ S means setting binary variables s(i)j according to the constraints in S . Typically, more
constraints in S lead to tighter bounds. LB(S) > 0 indicates that no adversarial example exist
within this subdomain, otherwise adversarial examples may exist in this subdomain.

We illustrate a BaB search tree in Fig. 1. Initially, Sroot = ∅, where x ∈ C without any extra
constraints in activation space and a lower bound of Eq. (2) is obtained. When LB(∅) < 0, an
adversarial example may exist, and we branch Sroot into two subdomains:

S1− = Sroot ∪ {s1 = 0}; S1+ = Sroot ∪ {s1 = 1}
Then we bound each subdomain. Since more constraints are added, LB(S1−) and LB(S1+) are
usually improved. The branching procedure continues recursively, and if any LB(S) > 0, no further

3

Under review as a conference paper at ICLR 2022

branching is needed since no adversarial examples are in that subdomain. Each branching increases
the cardinality of S by 1, and eventually we reach leaf nodes with |Sleaf| = N , each leaf locating a
linear piece of f(x). In that case, LB(Sleaf) is an exact solution since no binary variables are left,
and if LB(Sleaf) < 0, a concrete adversarial example is the minimizer x∗ of Eq. (2) with s ∈ Sleaf.
Since N can be quite large and adversarial examples lie in the leaf level, we must guide the search
to reach there quickly. Although BaB is used in existing neural network verifiers (Bunel et al., 2018;
De Palma et al., 2021a), they do not aim to reach the leaf level and typically branch the node with
the worst bound first, generally leading to a wide but shallow search tree and unsuitable for detecting
adversarial examples. We will discuss our search algorithm in Sec. 3.
Bounding in Branch and Bound of Neural Networks. The LB(S) primitive is crucial in the
BaB process: it needs to provide a tight lower bound efficiently. A simple way to lower bound
the objective of Eq. (2) is via relaxation of integer variables and linear programming (LP) (Bunel
et al., 2018; Lu & Kumar, 2020); but an LP solver is needed which restricts its efficiency. Recently,
a popular choice in neural network verifiers is the specialized bound propagation methods (Zhang
et al., 2018; Wong & Kolter, 2018) which exploit the structure of the optimization problem (which
a generic LP/MIP solver cannot) and give LB(S) efficiently on GPUs without an LP solver. Essen-
tially, they relax each ReLU neuron into convex domains (Salman et al., 2019) and propagate them
layer by layer through the network while maintaining sound bounds. A BaB and bound propagation
based verifier α,β-CROWN (Zhang et al., 2018; Xu et al., 2021; Wang et al., 2021), achieves the
state-of-the-art verification performance (Bak et al., 2021), and we utilize its bounding subprocedure
to produce LB(S). Importantly, we will show that how we use LB(S) to guide adversarial attacks,
while existing works mostly use them for verification.

3 METHOD Beam SearchVerifier
, -CROWN

Adversarial
Candidates

Pool

Sub-MIP
SolverLocal Search

Diving

Input:

s.t.
PGD attack with
 random starts

Output - adversarial example detected:

Common
adversarial

patterns
Promising

subdomains

Promising
adversarial
candidates

Disagreed
adversarial

patterns

upper
bounds

subdomain
 lower bounds

K subdomains

Top-Down thread on GPUs

Bottom-Up thread on CPUs

Solutions

Sub-MIPs

Sub-MIPs

Figure 2: Overview of BaB attack.

Overview of BaB attack. To systematically
search adversarial examples in activation space,
we must explore the search tree and enumerate
as more leaf nodes as possible. Although the
worst case search time complexity is exponen-
tial in the numbers of ReLU neurons (visiting ev-
ery leaf node of the tree), practically, if a right
search procedure is chosen, only a small fraction
of nodes need to be visited to find an adversarial
example. In this paper, we propose BaB attack,
specializing the BaB searching strategy over the
activation space for the purpose of adversarial at-
tacks. The search is well guided by (1) a top-down
beam-search thread accelerated on GPUs which quickly goes deep into the search tree, and (2) a
bottom-up search thread on CPUs for large neighborhood search. The top-down and bottom-up
searches run in parallel threads and they both benefit from the adversarial candidates pool P , which
contains examples P = {xc1 , · · · , xcM } where M is the pool capacity. f(xci) is still positive but
small; the pool keeps the M best (ranked by f(xci); smaller is better) examples it receives. The
activation space representations of these candidates are used as extra information to guide the search
towards adversarial examples. We detail each part of BaB attack in next sub-sections.

3.1 TOP-DOWN BEAM SEARCH GUIDED BY NEURAL NETWORK VERIFIERS

Challenges in searching adversarial examples. The activation space can be quite large (e.g.,
with thousands or more dimensions), and adversarial examples are at the leaf level of the search
tree. Searching directly from the root node and traversing the search tree in an exhaustive manner
(such as BFS or DFS) can be quite insufficient. To locate adversarial examples faster, we propose to
use beam search guided by lower bounds from neural network verifiers, as detailed below.
Beam search in activation space. The key insight in our procedure is to accelerate the search
by prioritizing suspicious subdomains with small LB(S), quickly excluding the tree branches that
are guaranteed with no adversarial examples. At the root node in the search tree, our beam search
procedure expands the tree by D levels, yielding 2D subdomains:

S1 = Sroot ∪ {s1 = 0, s1 = 0 · · · , sD = 0}, S2 = Sroot ∪ {s1 = 1, s1 = 0 · · · , sD = 0},
S3 = Sroot ∪ {s1 = 0, s1 = 1 · · · , sD = 0}, · · · , S2D = Sroot ∪ {s1 = 1, s1 = 1 · · · , sD = 1}

4

Under review as a conference paper at ICLR 2022

For each subdomain, we obtain its lower bound via the primitive LB(S). We use the bound propaga-
tion procedure in the α,β-CROWN verifier to efficiently provide LB(S), but other efficient bounding
methods can also be used in principle. Then, we sample K subdomains without replacement out of
the 2D domains, with the following probability associated with each Si:

pi =
exp (−T · LB(Si)) · 1(LB(Si) < 0)∑2D

i=1 exp (−T · LB(Si)) · 1(LB(Si) < 0)
, i ∈ {1, · · · , 2D}, T is the temperature, set to 0.1

-10.3

-2.1 -3.6 -4.2 1.9

...

Beam search
expands to 4

domains

-2.8 -2.4 -3.8 0.5

0.4 0.1 -0.01

Leaf nodes: all binary variables have been fixed

Adversarial
examples-0.02

Choose 2 most
promising domains

Figure 3: Beam search: we select K
subdomains probabilistically accord-
ing to LB(S), and expand the search
tree by D levels using bound propaga-
tion on GPU.

A subdomain with more negative lower bound has a higher
probability to be selected, since the large negative bounds may
indicate a higher chance of the existence of adversarial exam-
ples. Subdomains with positive bounds will never be selected,
since they are guaranteed to not contain adversarial examples.
The picked out subdomains S ′1, · · · ,S ′K become the parent
nodes for the next iteration of beam search. In the next itera-
tions, we explore K · 2D subdomains and increase the depth by
D per iteration. Since all the subdomain lower bounds are com-
puted in a large batch on GPUs and only take a few seconds,
our search procedure quickly explore deep in the search tree.
Our specialized top-down beam search procedure with lower
bounds computed efficiently by bound propagation methods on
GPUs brings us great advantages over existing MIP solvers,
which conduct BaB on CPUs using a generic procedure such
as the Simplex algorithm. In practice, we can visit several or-
ders of magnitude more subdomains.
Sub-MIP on most promising subdomains. Before the beam search reaches the leaf level, we
start searching adversarial examples in the most promising subdomains (e.g., in some of the selected
domains S ′1, · · · ,S ′K), by constructing a sub-MIP problem of Eq. (2): in the k-th sub-MIP, we fix its
binary variables s(i)j based on constraints in S ′k. In this step, although a generic MIP solver is used,
it is instructed to search in subdomains guided by beam search to be likely to contain adversarial
examples. With a large number of s(i)j fixed during beam search, the MIP solver only needs to work
on a much smaller problem and can be much more effective than solving Eq. (2) directly.
Completeness. Beam search, if implemented with back-tracking, can achieve completeness (Zhou
& Hansen, 2005): given sufficient time, it will systematically visit all leaf nodes, and guarantee to
either locate an adversarial example, or prove the network safe. However, due to the large number of
neurons and associated binary variables, achieving completeness often requires an infeasibly large
amount of time and space. We thus focus on searching adversarial examples as fast as possible rather
than exhaustively visiting every node, although theoretically our procedure can be made complete.

3.2 DIVING IN BRANCH AND BOUND WITH COMMON ADVERSARIAL PATTERNS

What is diving? “Diving” refers to diving deep in the BaB search tree by heuristically fixing some
integer variables without exploring all possible branches. It is a common strategy in generic MIP
solvers, able to quickly uncover feasible solutions of a MIP problem (Berthold, 2006; Nair et al.,
2020). In our case, we want to fix binary variables s(i)j in Eq. (2), and a feasible solution x with
f(x) < 0 is an adversarial example (Figure 4). A generic MIP solver uses diving to hopefully find
high quality feasible solutions quickly, however it cannot use the information provided by cheaply
generated adversarial examples like PGD attack to guide this heuristic. In this work, we propose a
specialized diving scheme in the activation space based on the statistics in the adversarial candidates
pool, and construct sub-MIPs with additional diving constraints to reduce the search space.
Diving with common adversarial patterns. Given the candidates pool P = {xc1 , · · · , xcM }, we
first extract the corresponding binary variables si for each example, by propagating them through the
network (see Section 2). The binary variable corresponds to the i-th neuron of the m-th adversarial
example is denoted as si,m (0 or 1). A variable si is called a common activation when the function
c(i) is greater than a threshold:

c(i) :=

∣∣∣∑M
m=1 si,m −M/2

∣∣∣
M

+ 0.5 ≥ C, C ∈ [0.5, 1.0]

For example, when C = 0.9, a common activation requires that at least 90% examples in the pool
share the same value of si (0 or 1). All the common activations and their common values (0 or 1)

5

Under review as a conference paper at ICLR 2022

are called common adversarial patterns, indicating that an adversarial examples will be very likely
to contain these settings of si. We can thus construct a set of constraints Scommon, setting common
activations and their common values:

Scommon = {si = 1(

M∑
m=1

si,m ≥
M

2
), c(i) ≥ C, i ∈ [N]}

Then, when constructing the top-down sub-MIPs in Sec. 3.1, we provide additional constraints
Scommon. Including these additional constraints further reduces the search space for the MIP solver
(the MIP solver solves Eq. (2) with both beam search constraints S ′1 and diving constraints Scommon),
making it easier to find an solution. The threshold C controls the aggressiveness of diving; too much
diving may lead to a too small search space so good adversarial examples cannot be found.

Leaf nodes: all binary variables have been fixed

-10.3

-2.8 -2.4 -3.8 0.5

-0.01

... ...

Adversarial
example

-1.8

0.3

...

Dive Node

Beam search

-2.1 -3.6 -4.2 1.9

Fix more variables

Figure 4: We dive the search tree with
additional constraints constructed by
common adversarial patterns to greatly
reduce top-down sub-MIP search space.

How to fill the adversarial candidates pool? To obtain use-
ful common adversarial pattern, we maintain an adversarial
candidates pool with up toM most promising adversarial can-
didates (f(x) is close to 0 but the label is not yet flipped).
The pool is initialized with perturbed samples bounded within
C found with output diversified PGD (Tashiro et al., 2020),
which creates a diverse set of adversarial candidates. Dur-
ing our BaB attack process, new adversarial candidates come
from three sources: (1) some neural network verifier provides
upper bounds for each subdomain during beam search; in
α,β-CROWN these upper bounds are obtained via conduct-
ing PGD on its dual solutions (Wang et al., 2021) produced
by the solver, and they are added to the pool; (2) the solutions
returned by the top-down sub-MIP solved with beam search
and diving constraints, and (3) the solutions returned by the
bottom-up sub-MIP with large neighborhood search (which
will be discussed in the next subsection). When new adver-
sarial candidates are inserted, they are compared to existing
ones in the pool, and we keep the best M adversarial candi-
dates with distinct activation patterns.

3.3 BOTTOM-UP LARGE NEIGHBORHOOD SEARCH (LNS)

Leaf nodes: all binary variables have been fixed

0.01Reference
point

-1.9

-0.01

-1.8

-2.7

Adversarial
example

free variable

free variable
sub-MIP

with 2 free
variables

Figure 5: In bottom-up search, we free
some fixed integer variables at a leaf
node (an adversarial candidate) search-
ing its neighborhood in activation space.

What is bottom-up search? The bottom-up search proce-
dure starts at the leaf nodes of the BaB search tree (Figure 5):
we start from a known adversarial candidate xc that is close
to decision boundry (f(xc) > 0 but very small), and want to
further reduce f(xc) by searching around xc. A naive way is
to conduct PGD attack in the input space with xc as the start-
ing point, but we found it not helpful because the adversarial
candidates in the pool have already been optimized using PGD
or stronger attacks. Thus, we propose to use a large neighbor-
hood search in the activation space.
Bottom-up search via large neighborhood search. Large neighborhood Search (LNS) (Walser,
2003; Schrijver, 2003) is a generic local search heuristic: one defines a neighborhood around a ref-
erence point (a feasible solution) and finds the optimum objective in this neighborhood, typically by
constructing a sub-MIP problem with neighborhood constraints. In the setting of integer program-
ming, the neighborhood can be defined by freeing certain fixed integer variables, allowing them to
be optimized while fixing other integer variables. However, traditional local search algorithms in
MIP solvers has little guidance regarding promising subdomains in common adversarial examples
and can be ineffective due to the high dimensional search space in the adversarial attack problem.

In BaB attack, we extend the general idea of LNS to a specialized local search for adversarial attacks
by selecting the most promising adversarial candidates in the pool as the reference point and then
use the statistics from the pool to free certain binary variables si. Specifically, among all the binary
variables corresponding to ReLU neurons on the selected candidate, we find the ReLU neurons
where adversarial candidates in the pool that disagree the most and define the disagreed adversarial
patterns. Formally, similar to the setting in Sec. 3.2, a variable si is called a disagreed activation if:

c̄(i) := 1− c(i) ≥ C̄, C̄ ∈ [0.0, 0.5]

6

Under review as a conference paper at ICLR 2022

(a) MNIST CNN-A-Adv (b) MNIST Small-Adv (c) CIFAR CNN-B-Adv

(d) CIFAR CNN-A-Mix (e) CIFAR Marabou (f) MNIST Conv-Small
Figure 6: For examples that all attacks failed, we compare the minimum margin between the ground-truth
label and all other target labels for the adversarial candidate. A smaller margin is better. Our attack achieves
noticeably smaller margins compared to other attacks (margins from other attacks are below the y = x line).

For example, when C̄ = 0.3, si is a disagreed activation when there are at least 30% examples in
the pool do not share the same value of si. Since these variables are quite different across existing
adversarial examples, we remove their corresponding binary variables to allow the MIP solver to
search for a better setting of these variables. The aggressiveness of freeing variables in LNS is
determined by C̄. The set of disagreed adversarial patterns is a set of binary variables:

Sdisagreed = {si | c̄(i) ≥ C̄, i ∈ [N]}

Formally, to search around an adversarial candidate xc, we first propagate xc through the network
and obtain activation values zi, extract the corresponding binary variables si for xc, and remove the
constraints that are in Sdisagreed to construct the set of constraints for bottom-up search:

Sbottom-up = {si = 1(zi ≥ 0), si /∈ Sdisagreed, i ∈ [N]}

We then construct a sub-MIP using Eq. (2) with the additional constraints Sbottom-up and solve it
using a MIP solver. The optimal solution to each sub-MIP (if still not an adversarial example) will
be added back to adversarial candidates pool again waiting for another round of local search.

4 EXPERIMENTS
Setup. We evaluate our methods on all 10,000 test examples of MNIST (LeCun, 1998) and CI-
FAR10 (Krizhevsky et al., 2009) dataset, and select 9 models which are mostly benchmarking mod-
els used in previous works or competitions (details in Appendix A). For each model, we first run
three commonly used strong adversarial attacks: a multi-targeted PGD (MT-PGD) attack (Gowal
et al., 2019a) with 100 Adam steps and 30 random restarts; a multi-targeted PGD attack with Out-
put Diversified Sampling (ODS-PGD) (Tashiro et al., 2020) with 100 Adam steps and 30 random
restarts, and AutoAttack (Croce & Hein, 2020b) which is an ensemble of parameter-free attacks.
The remaining robust images are then tested with α,β-CROWN verifier (Wang et al., 2021; Xu
et al., 2021; Zhang et al., 2018) to see if they can be verified robust so no further attack is needed.
Any images that failed with the verifier are then evaluated in an MIP formulation (Tjeng et al., 2019)
solved using Gurobi. The MIP solver is used as the last resort because it is usually much more ex-
pensive than other approaches. We set an one hour timeout for MIP attack and our BaB attack,
but our attack usually terminates much faster than a generic MIP solver. Any instance that cannot
be attacked via a combination of MT-PGD, ODS-PGD and AutoAttack nor verified is referred to
as a hard instance, and the main evaluation is conducted on these instances. All attacks are `∞
norm-based with ε listed in Table 1. The hyperparameters can be found in Appendix A.2.

7

Under review as a conference paper at ICLR 2022

100 101 102 103

MNIST Small-Adv: Running time (in s)

0

5

10

15

20

25

30

35

n
u
m

b
e
r

o
f

im
a
g

e
 a

tt
a
ck

e
d

BaB Attack

MIP Attack

(a) MNIST Small-Adv

100 101 102 103 104

MNIST CNN-A-Adv: Running time (in s)

0

10

20

30

40

50

60

70

n
u
m

b
e
r

o
f

im
a
g

e
 a

tt
a
ck

e
d BaB Attack

MIP Attack

(b) MNIST CNN-A-ADV
Figure 7: Running time vs. num-
ber of attacked images compared to
MIP attack.

Results. Table 1 shows a breakdown of all 10,000 test exam-
ples on the 5 models. Among these models, MNIST Small-Adv,
MNIST Conv-Small, CIFAR LPD-CNN-A, and LPD-ResNet are
relatively easy, and most of datapoints can be either attacked or
verified by SOTA tools. TheLPD-CNN-A andLPD-ResNet mod-
els were among the largest ones in (Tjeng et al., 2019), however
they have become quite easy due to the recent progress of neu-
ral network verifiers - only 2 and 1 (out of 10,000) examples are
hard instances. On the relatively small MNIST Small-Adv model,
a MIP solver can terminate within a reasonable amount of time,
and we can attack the same number of images while being faster.
On the MNIST CNN-A-Adv model, many instances timeout with
the MIP solver and we can attack more images under less time;
see Fig. 7 and Fig. 8 (in Appendix) for time vs. number of images
attacked. The CIFAR CNN-B-Adv, CNN-A-Mix, and Marabou
models are much harder, and we managed to solve 5, 17, and 27
more images compared to MIP attack within much shorter time.
BaB attack can solve the same number of images as MIP attack
on MNIST Conv-Small and CIFAR CNN-A-Adv but is over 10x
faster in average. For images that none of the attacks work, we
plot the minimum margin between the ground-truth label and other
labels in Fig. 6 and compare the margins against ODS-PGD, MT-
PGD attacks and AutoAttack. Our method consistently achieves smaller margins on all 6 models.
Comparison to more attacks. We compare our BaB attack to 5 state-of-the-art attacks on all hard
instances in Table 2. Attacks we evaluated include 1) FAB attack (Croce & Hein, 2020a): a white-
box boundary adversarial attack; 2) Square attack (Andriushchenko et al., 2020): a query-efficient
black-box adversarial attack using randomized search with localized square-shaped updates; 3)
DIFGSM attack (Xie et al., 2019): a white box attack leveraging input diversity; 4) MIFGSM at-
tack (Dong et al., 2018): a momentum-based iterative white box attack to escape from poor local
maxima and 5) Distributional attack (Zheng et al., 2019): a white box attack considering adversarial-
data distribution. We increased steps and iterations to make some attacks stronger; hyperparameters
are in Appendix A.3. Most attacks are not effective on these hard instances. Square attack is the
strongest among them but still finds less adversarial examples than us and is also relatively slow.
Ablation study. To fully understand how each proposed component contributes to the overall
performance of BaB attack, we conduct ablation study on MNIST Small-Adv and MNIST CNN-A-
Adv models and show the number of successfully attacked instances and average time in Table 3. We
first show that the beam search guided by verifier α,β-CROWN significantly helps the performance
compared to random top-down search without any guidance. We then show that the top-down diving
and bottom-up large neighborhood search contribute to different hard instances and the combination
of them lead to the best attack performance. Note that the average time here is on successfully
attacked samples by each method only, showing the efficiency of each component instead of strength.

Dataset Model eps Clean Acc. Total verified Total attacked Hard instances MIP attack Avg. time(s) BaB attack Avg. time(s)

Small-Adv 0.3 97.94% 8176 1559 59 37 439.88 37 16.15
MNIST CNN-A-Adv 0.3 96.33% 6757 2239 637 51 2546.13 67 111.77

Conv-Small 0.12 98.04% 7628 2159 38 17 3358.49 17 8.52

LPd-CNN-A 2/255 60.86% 5019 1065 2 2 13.80 2 9.90
LPd-RES 8/255 27.07% 2243 463 1 0 - 0 -

CIFAR CNN-A-Adv 2/255 65.63% 4755 1660 148 8 906.77 8 57.98
CNN-B-Adv 2/255 78.25% 4539 1735 1551 1 3661.40 6 65.61
CNN-A-Mix 2/255 74.18% 4298 2058 1062 2 3467.52 19 71.65

Marabou 2/255 63.14% 875 4188 1251 15 1470.22 42 56.82

Table 1: Comparison between MIP attack (Tjeng et al., 2019) (using Gurobi) and our BaB Attack. Both
attacks focus on hard instances where a combination of MT-PGD, ODS-PGD and AutoAttack cannot attack
and their robustness also cannot be verified using a verifier. We are faster than MIP Attack and can also find
more adversarial examples in all models. Average time excludes examples where all methods time out.

5 RELATED WORK
Adversarial examples and attacks. Adversarial examples were first discovered in (Szegedy et al.,
2013; Biggio et al., 2013) and they can be easily constructed by single-/multi-step gradient descent
to fool regularly trained neural networks (Kurakin et al., 2016; Goodfellow et al., 2015). However,
purely gradient-based methods can fail due to gradient masking and obfuscated gradients (Tramèr
et al., 2017; Papernot et al., 2016; Athalye et al., 2018). Popular attacks like PGD (Madry et al.,
2018) or CW (Carlini & Wagner, 2017) can lead to overestimation of robustness (Mosbach et al.,

8

Under review as a conference paper at ICLR 2022

Dataset Model # Total FAB Square DIFGSM MIFGSM Distributional BaB attack
succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s)

Small-Adv 59 1 32.29 12 79.61 0 0.04 0 0.02 0 0.03 37 16.15
MNIST CNN-A-Adv 637 0 33.96 17 117.51 0 0.04 0 0.02 1 0.01 67 111.77

Conv-Small 38 1 31.90 14 113.03 0 0.04 0 0.02 1 0.03 17 8.52

LPd-CNN-A 2 0 34.61 0 117.33 0 0.02 0 0.02 0 0.64 2 9.90
LPd-RES 1 0 48.98 0 242.52 0 0.42 0 0.06 0 1.62 0 -

CIFAR CNN-A-Adv 148 0 33.22 0 116.76 0 0.39 0 0.02 0 0.01 8 57.98
CNN-B-Adv 1551 3 16.81 3 119.88 2 0.01 2 0.02 2 0.01 6 65.61
CNN-A-Mix 1062 0 34.13 0 117.16 0 0.04 0 0.02 0 0.02 19 71.65

Marabou 1251 0 29.21 0 111.70 0 0.04 0 0.02 1 0.03 42 56.82

Table 2: Number of successfully (# succ.) attacked hard instances (from Table 1) under five more attacks.
MNIST-Small-Adv MNIST-CNN-A-Adv

success # total Avg. time # success # total Avg. time

Random top-down beam search 8 59 19.52 22 637 13.46
Verifier guided beam search 36 59 21.58 54 637 203.75
Verifier guided beam search + diving 36 59 20.63 57 637 105.49
Verifier guided beam search + bottomup search 36 59 22.67 66 637 110.65
Verifier guided beam search + diving + bottomup search 37 59 16.15 67 637 111.77

Table 3: Ablation study on how each proposed component contributes to the overall performance.

2018; Croce et al., 2020) despite their empirically good performance and efficiency. A large body of
white-box adversarial attacks have been proposed to strengthen adversarial attacks; many of them
are variants of PGD based attacks (Zheng et al., 2019; Tashiro et al., 2020; Gowal et al., 2019b;
Wang et al., 2019). Due to non-convexity of the adversarial attack objective, gradient-free methods
and black-box attacks are also widely explored but mostly result in similar or worse performance
compared to gradient-based ones (Papernot et al., 2017; Chen et al., 2017; Ilyas et al., 2018a;b; Xiao
et al., 2018; Andriushchenko et al., 2020). Recently, stronger attacks (Croce & Hein, 2020a;b) are
proposed but they are also restricted to searching in input space. In this paper, we are the first to
conduct a systematic and efficient search of adversarial examples in activation space inspired by
branch and bound techniques used for integer optimization and neural network verification.
Neural network verification. Early neural network verifiers solve the verification problem with
satisfiability modulo theories (SMT) or MIP solvers and can only scale to very small networks (Katz
et al., 2017; Huang et al., 2017; Ehlers, 2017; Dutta et al., 2018; Tjeng et al., 2019). Efficient
verification methods with various sound relaxations are then proposed for verifying larger networks
but without completeness guarantee (Wong & Kolter, 2018; Dvijotham et al., 2018; Raghunathan
et al., 2018a;b; Singh et al., 2018b;a; Zhang et al., 2018; Tjandraatmadja et al., 2020). Branch and
bound (BaB) based verifiers can efficiently branch on ReLU neurons and achieve completeness on
ReLU networks using efficient incomplete verifiers (Bunel et al., 2018; Wang et al., 2018a; Lu &
Kumar, 2020; Botoeva et al., 2020). BaB based methods with input domain split and refinements
are also investigated but they are limited to low input dimensions (Wang et al., 2018b; Royo et al.,
2019; Anderson et al., 2019). Recent verifiers use GPU accelerated incomplete solvers to further
scale up verification and achieve several orders of magnitude speedup (Bunel et al., 2020; De Palma
et al., 2021b; Anderson et al., 2020; Xu et al., 2021; Müller et al., 2021; 2020; Wang et al., 2021).
Our BaB attack relies on the lower bounds of BaB subdomains computed by α,β-CROWN (Zhang
et al., 2018; Xu et al., 2021; Wang et al., 2021), one of the most efficient GPU-based verifiers that
won the second neural network verification competition (VNN-COMP 2021) (Bak et al., 2021).

6 CONCLUSION
In this paper, we proposed BaB attack, a strong adversarial attack using branch and bound to sys-
tematically search adversarial examples in activation space. We propose a top-down beam search
utilizing bound propagation methods from neural network verifiers on GPUs to quickly locate po-
tential subdomains containing adversarial examples. We further exploit the common activation pat-
terns of adversarial candidates obtained by cheap attacks to guide the searching process with diving.
Moreover, a bottom-up large neighborhood search procedure explores around promising adversarial
candidates to find potential adversarial examples. Experimental results show that our BaB attack can
find adversarial examples for hard input instances where SOTA adversarial attacks fail. We achieve
higher attack success rates within much less time compared to generic MIP solver based attacks.
Limitations of this study. One limitation of BaB Attack is speed - it usually takes a few minutes
to explore a branch and bound tree using beam search, while gradient based adversarial attacks are
often very fast, in a few seconds. Practically, BaB attack is mostly useful for hard instances, and we
can use other simpler attacks as a filter to reduce the number of inputs for BaB attack. Additionally,
BaB attack currently relies on neural network verifiers to give a lower bound for each subdomain
to guide the beam search, so its scalability is limited by SOTA verification tools. Yet, we have
demonstrated that it is faster and also more effective than attacks using an off-the-shelf MIP solver.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh, and Mani B
Srivastava. Genattack: Practical black-box attacks with gradient-free optimization. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pp. 1111–1119, 2019.

Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and abstraction:
A synergistic approach for analyzing neural network robustness. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), 2019.

Ross Anderson, Joey Huchette, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong convex
relaxations and mixed-integer programming formulations for trained neural networks. Mathemat-
ical Programming, 2020.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision, pp. 484–501. Springer, 2020.

Anish Athalye, Nicolas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In ICML, 2018.

Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498,
2021.

Timo Berthold. Primal heuristics for mixed integer programs. 2006.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, 2013.

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. Effi-
cient verification of relu-based neural networks via dependency analysis. In AAAI Conference on
Artificial Intelligence (AAAI), 2020.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. In ICLR, 2018.

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Lagrangian decomposition for neural network verifica-
tion. Conference on Uncertainty in Artificial Intelligence (UAI), 2020.

Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A unified
view of piecewise linear neural network verification. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2018.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Security and Privacy (SP), 2017 IEEE Symposium on, pp. 39–57. IEEE, 2017.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order opti-
mization based black-box attacks to deep neural networks without training substitute models. In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pp. 15–26. ACM,
2017.

Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. Query-
efficient hard-label black-box attack: An optimization-based approach. arXiv preprint
arXiv:1807.04457, 2018.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. In International Conference on Machine Learning, pp. 2196–2205. PMLR,
2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In International conference on machine learning, pp. 2206–
2216. PMLR, 2020b.

10

Under review as a conference paper at ICLR 2022

Francesco Croce, Jonas Rauber, and Matthias Hein. Scaling up the randomized gradient-free adver-
sarial attack reveals overestimation of robustness using established attacks. International Journal
of Computer Vision, 2020.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, et al.
Enabling certification of verification-agnostic networks via memory-efficient semidefinite pro-
gramming. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with active sets. International Conference on Learning Representations
(ICLR), 2021a.

Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip HS Torr, and M Pawan Kumar. Improved branch and bound for neural network verification
via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021b.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-
ing adversarial attacks with momentum. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 9185–9193, 2018.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output range analysis
for deep feedforward neural networks. In NASA Formal Methods Symposium, 2018.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy Mann, and Pushmeet Kohli. A
dual approach to scalable verification of deep networks. Conference on Uncertainty in Artificial
Intelligence (UAI), 2018.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis (ATVA), 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In ICLR, 2015.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation for
training verifiably robust models. Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2019a.

Sven Gowal, Jonathan Uesato, Chongli Qin, Po-Sen Huang, Timothy Mann, and Pushmeet Kohli.
An alternative surrogate loss for pgd-based adversarial testing. arXiv preprint arXiv:1910.09338,
2019b.

Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
networks. In International Conference on Computer Aided Verification (CAV), 2017.

Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks with
limited queries and information. In International Conference on Machine Learning (ICML),
2018a.

Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-box adversarial
attacks with bandits and priors. arXiv preprint arXiv:1807.07978, 2018b.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In International Conference on Computer
Aided Verification (CAV), 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical Report TR-2009, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

11

Under review as a conference paper at ICLR 2022

Jingyue Lu and M Pawan Kumar. Neural network branching for neural network verification. Inter-
national Conference on Learning Representation (ICLR), 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations (ICLR), 2018.

Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Dietrich Klakow.
Logit pairing methods can fool gradient-based attacks. arXiv preprint arXiv:1810.12042, 2018.

Christoph Müller, Gagandeep Singh, Markus Püschel, and Martin Vechev. Neural network robust-
ness verification on gpus. arXiv preprint arXiv:2007.10868, 2020.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. Pre-
cise multi-neuron abstractions for neural network certification. arXiv preprint arXiv:2103.03638,
2021.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the science of
security and privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 506–519. ACM, 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial exam-
ples. International Conference on Learning Representations (ICLR), 2018a.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certify-
ing robustness to adversarial examples. In Advances in Neural Information Processing Systems
(NeurIPS), 2018b.

Vicenc Rubies Royo, Roberto Calandra, Dusan M Stipanovic, and Claire Tomlin. Fast neural net-
work verification via shadow prices. arXiv preprint arXiv:1902.07247, 2019.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2003.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast
and effective robustness certification. In Advances in Neural Information Processing Systems
(NeurIPS), 2018a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certifica-
tion of neural networks. In International Conference on Learning Representations, 2018b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2013.

Yusuke Tashiro, Yang Song, and Stefano Ermon. Diversity can be transferred: Output diversification
for white-and black-box attacks. Advances in Neural Information Processing Systems (NeurIPS),
2020.

Christian Tjandraatmadja, Ross Anderson, Joey Huchette, Will Ma, Krunal Patel, and Juan Pablo
Vielma. The convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural
network verification. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. International Conference on Learning Representations (ICLR), 2019.

12

Under review as a conference paper at ICLR 2022

Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-
Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204,
2017.

Joachim P Walser. Integer optimization by local search: A domain-independent approach. Springer,
2003.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In USENIX Security Symposium, 2018b.

Shiqi Wang, Yizheng Chen, Ahmed Abdou, and Suman Jana. Enhancing gradient-based attacks
with symbolic intervals. arXiv preprint arXiv:1906.02282, 2019.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification. arXiv preprint arXiv:2103.06624, 2021.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning (ICML), 2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adver-
sarial examples with adversarial networks. International Joint Conference on Artificial Intelli-
gence (IJCAI), 2018.

Kai Y Xiao, Vincent Tjeng, Nur Muhammad Shafiullah, and Aleksander Madry. Training for faster
adversarial robustness verification via inducing relu stability. In ICLR, 2019.

Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille.
Improving transferability of adversarial examples with input diversity. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2730–2739, 2019.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. Advances in Neural Information Processing Systems (NeurIPS), 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. International Conference on Learning Representations (ICLR), 2021.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural net-
work robustness certification with general activation functions. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Tianhang Zheng, Changyou Chen, and Kui Ren. Distributionally adversarial attack. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2019.

Rong Zhou and Eric A Hansen. Beam-stack search: Integrating backtracking with beam search. In
ICAPS, pp. 90–98, 2005.

13

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILS OF MODELS

MNIST CNN-A-Adv, CIFAR CNN-A-Adv, CIFAR CNN-B-Adv and CIFAR CNN-A-Mix models
are provided by (Dathathri et al., 2020) and were trained with adversarial training, except that CI-
FAR CNN-A-Mix is trained with a mixture of adversarial training loss and certified defense loss.
These models were used as a benchmark to evaluate the gap between verified accuracy and attack
acucracy in a few papers (Dathathri et al., 2020; Wang et al., 2021; Müller et al., 2021). MNIST
Small-Adv is trained using adversarial training with architecture similar to the MNIST model used
in (Madry et al., 2018) but scaled down by 4X and maxpool layers removed. MNIST Conv-Small
is a naturally trained model from the ERAN benchmarks (Singh et al., 2018a; Müller et al., 2021).
CIFAR LPd-CNN-A and LPd-RES (Tjeng et al., 2019) are trained using a dual linear programming
based certified defense (Wong et al., 2018), so they are relatively easy to attack and verify. The CI-
FAR Marabou model is from the marabou-cifar10 benchmark in 2nd International Verification
of Neural Networks Competition (VNN-Comp) 2021 (Bak et al., 2021); the model (original name
cifar10 small.onnx) is naturally trained on CIFAR-10 dataset.

A.2 HYPERPARAMETERS FOR OUR BAB ATTACK

We set the common adversarial pattern thresholdC to be 1.0 for both top-down diving and disagreed
adversarial pattern threshold C̄ to 0.0 for bottom-up large neighborhood search. We use state-
of-the-art verifier α,β-CROWN to provide verified lower bounds LB(S), prioritizing suspicious
subdomains. We use the default learning rates 0.01 and 0.05 for both α-CROWN and β-CROWN.
To tighten the estimation for each subdomain and provide more accurate guidance for suspicious
ones, we increase the optimization iterations to 100 for both α-CROWN and β-CROWN with a
learning rate decay of 0.999. We use the maximal batch size B to fit into the GPU memory. For
each step of our beam search, we set the depth for each iteration of beam search D to be 8 and the
number of picked out subdomains K to be B/2D. One can adjust D to control the searching speed.

We run all our experiments on a EPYC 7502 CPU with 32 physical cores, and use up to 32 sub-MIP
threads for top-down or bottom-up search. We set a timeout threshold for each sub-MIP to be 30
seconds for MNIST-Small-Adv (because it is a relatively small model), 180s for the other MNIST
models and 360s for CIFAR10 models. We run each attack for up to an hour to be consistent with
the timeout threshold of baseline MIP attack while our BaB attack usually terminates much faster.

A.3 SETUP FOR COMPARED ATTACKS

We did a small scale grid search for the best combination of hyperparameters for each attack. For
FAB attack, we select a 100-steps attack with 50 restarts and set αmax = 0.1, β = 0.9 and η = 1.05;
for Square attack, we use 7000 queries, 20 restarts and set 0.6 as the size of squares. Note that
FAB and Square attacks are part of the AutoAttack suite, but here we significantly increased their
steps and number of iterations compared to the defaults in AutoAttack. For DIFGSM attack, we
set α = 6/255, decay rate as 0.9, number of iterations as 50 and the probability of applying input
diversity as 0.5; for MIFGSM attack, we set α = 2/255, decay rate as 0.9 and number of iterations as
20; for Distributional attack, we used 100 attack iterations, step size 0.01, and a balancing parameter
of 0.05.

A.4 MORE EXPERIMENTAL RESULTS

We plot running time vs. number of attacked images for five more models in Figure 7. Our BaB at-
tack achieves distinctly faster running time and produces more successful attacked images compared
to the MIP attack using an off-the-shelf sovler.

14

Under review as a conference paper at ICLR 2022

1 10 100 1000
MNIST-Conv-Small: running time (in s)

0

5

10

15

No
. o

f i
m

ag
es

 a
tta

ck
ed

BaB attack
MIP attack

1 10 100 1000
CIFAR-CNN-A-Adv: running time (in s)

0

2

4

6

8

No
. o

f i
m

ag
es

 a
tta

ck
ed BaB attack

MIP attack

1 10 100 1000
CIFAR-CNN-B-Adv: running time (in s)

0

2

4

6

No
. o

f i
m

ag
es

 a
tta

ck
ed BaB attack

MIP attack

1 10 100 1000
CIFAR-CNN-A-Mix: running time (in s)

0

5

10

15

No
. o

f i
m

ag
es

 a
tta

ck
ed BaB attack

MIP attack

1 10 100 1000
CIFAR-Marabou: running time (in s)

0

10

20

30

40

N
o
.
o
f

im
a
g
e
s

a
tt

a
ck

e
d

BaB attack

MIP attack

Figure 8: Running time vs. number of attacked images compared to MIP attack on five models.

15

	Introduction
	Background
	Method
	Top-down Beam Search Guided by Neural Network Verifiers
	Diving in Branch and Bound with Common Adversarial Patterns
	Bottom-Up Large neighborhood Search (LNS)

	Experiments
	Related Work
	Conclusion
	Appendix
	Details of Models
	Hyperparameters for our BaB Attack
	Setup for Compared Attacks
	More Experimental Results

