
Published as a conference paper at ICLR 2022

TOPOLOGICAL GRAPH NEURAL NETWORKS

Max Horn1, 2, ∗ Edward De Brouwer3, ∗ Michael Moor1, 2 Yves Moreau3

Bastian Rieck1, 2, 4, 5, † Karsten Borgwardt1, 2, †

1Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
2SIB Swiss Institute of Bioinformatics, Switzerland
3ESAT-STADIUS, KU Leuven, 3001 Leuven, Belgium
4Institute of AI for Health, Helmholtz Munich, 85764 Neuherberg, Germany
5Technical University of Munich, 80333 Munich, Germany
∗These authors contributed equally.
†These authors jointly supervised this work.

ABSTRACT

Graph neural networks (GNNs) are a powerful architecture for tackling graph learn-
ing tasks, yet have been shown to be oblivious to eminent substructures such as
cycles. We present TOGL, a novel layer that incorporates global topological infor-
mation of a graph using persistent homology. TOGL can be easily integrated into
any type of GNN and is strictly more expressive (in terms the Weisfeiler–Lehman
graph isomorphism test) than message-passing GNNs. Augmenting GNNs with
TOGL leads to improved predictive performance for graph and node classification
tasks, both on synthetic data sets, which can be classified by humans using their
topology but not by ordinary GNNs, and on real-world data.

1 INTRODUCTION

Graphs are a natural representation of structured data sets in many domains, including bioinformatics,
image processing, and social network analysis. Numerous methods address the two dominant
graph learning tasks of graph classification or node classification. In particular, graph neural
networks (GNNs) describe a flexible set of architectures for such tasks and have seen many successful
applications over recent years (Wu et al., 2021). At their core, many GNNs are based on iterative
message passing schemes (see Shervashidze and Borgwardt (2009) for an introduction to iterative
message passing in graphs and Sanchez-Lengeling et al. (2021) for an introduction to GNNs). Since
these schemes are collating information over the neighbours of every node, GNNs cannot necessarily
capture certain topological structures in graphs, such as cycles (Bouritsas et al., 2021). These
structures are highly relevant for applications that require connectivity information, such as the
analysis of molecular graphs (Hofer et al., 2020; Swenson et al., 2020).

We address this issue by proposing a Topological Graph Layer (TOGL) that can be easily integrated
into any GNN to make it ‘topology-aware.’ Our method is rooted in the emerging field of topological
data analysis (TDA), which focuses on describing coarse structures that can be used to study the shape
of complex structured and unstructured data sets at multiple scales. We thus obtain a generic way to
augment existing GNNs and increase their expressivity in graph learning tasks. Figure 1 provides a
motivational example that showcases the potential benefits of using topological information: (i) high
predictive performance is reached earlier for a smaller number of layers, and (ii) learnable topological
representations outperform fixed ones if more complex topological structures are present in a data set.

Our contributions. We propose TOGL, a novel layer based on TDA concepts that can be inte-
grated into any GNN. Our layer is differentiable and capable of learning contrasting topological
representations of a graph. We prove that TOGL enhances expressivity of a GNN since it incorporates
the ability to work with multi-scale topological information in a graph. Moreover, we show that
TOGL improves predictive performance of several GNN architectures when topological information
is relevant for the respective task.
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Figure 1: As a motivating example, we introduce two topology-based data sets whose graphs can
be easily distinguished by humans; the left data set can be trivially classified by all topology-
based methods, while the right data set necessitates learnable topological features. We show the
performance of (i) a GCN with k layers, (ii) our layer TOGL (integrated into a GCN with k − 1
layers): GCN-TOGL, (iii) the Weisfeiler–Lehman (WL) graph kernel using vertex degrees as the
node features, and (iv) a method based on static topological features (PH). Next to the performance
charts, we display examples of graphs of each class for each of the data sets.

2 BACKGROUND: COMPUTATIONAL TOPOLOGY

We consider undirected graphs of the form G = (V,E) with a set of vertices V and a set of
edges E ⊆ V × V . The basic topological features of such a graph G are the number of connected
components β0 and the number of cycles β1. These counts are also known as the 0-dimensional and
1-dimensional Betti numbers, respectively; they are invariant under graph isomorphism (Hatcher,
2002, pp. 103–133) and can be computed efficiently. The expressivity of Betti numbers can be
increased using a graph filtration, i.e. a sequence of nested subgraphs of G such that ∅ = G(0) ⊆
G(1) ⊆ G(2) ⊆ · · · ⊆ G(n−1) ⊆ G(n) = G. A filtration makes it possible to obtain more insights
into the graph by ‘monitoring’ topological features of each G(i) and calculating their topological
relevance, also referred to as their persistence. If a topological feature appears for the first time in G(i)

and disappears in G(j), we assign this feature a persistence of j − i. Equivalently, we can represent
the feature as a tuple (i, j), which we collect in a persistence diagram D. If a feature never disappears,
we represent it by a tuple (i,∞); such features are the ones that are counted for the respective Betti
numbers. This process was formalised and extended to a wider class of structured data sets, namely
simplicial complexes, and is known under the name of persistent homology. One of its core concepts
is the use of a filtration function f : V → Rd, with d = 1 typically, to accentuate certain structural
features of a graph. This replaces the aforementioned tuples of the form (i, j) by tuples based on
the values of f , i.e. (fi, fj). Persistent homology has shown excellent promise in different areas of
machine learning research (see Hensel et al. (2021) for a recent survey and Appendix A for a more
technical description of persistent homology), with existing work stressing that choosing or learning
an appropriate filtration function f is crucial for high predictive performance (Hofer et al., 2020;
Zhao and Wang, 2019).

Notation. We denote the calculation of persistence diagrams of a graph G under some filtration
f by ph(G, f). This will result in two persistence diagrams D(0),D(1), containing information
about topological features in dimension 0 (connected components) and dimension 1 (cycles). The
cardinality of D(0) is equal to the number of nodes n in the graphs and each tuple in the 0-dimensional
diagram is associated with the vertex that created it. The cardinality of D(1) is the number of cycles;
we pair each tuple in D(1) with the edge that created it. Unpaired edges—edges that are not used to
create a cycle—are assigned a ‘dummy’ tuple value, such as (0, 0). All other edges will be paired
with the maximum value of the filtration, following previous work by Hofer et al. (2017).

3 RELATED WORK

Graph representation learning has received a large amount of attention by the machine learning
community. Graph kernel methods address graph classification via (implicit or explicit) embeddings
in Reproducing Kernel Hilbert Spaces (Borgwardt et al., 2020; Kriege et al., 2020; Nikolentzos et al.,
2019). While powerful and expressive, they cannot capture partial similarities between neighbour-
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hoods. This can be achieved by graph neural networks, which typically employ message passing
on graphs to learn hidden representations of graph structures (Kipf and Welling, 2017; Wu et al.,
2021). Recent work in this domain is abundant and includes attempts to utilise additional substruc-
tures (Bouritsas et al., 2021) as well as defining higher-order message passing schemes (Morris et al.,
2019) or algorithms that generalise message passing to more complex domains (Bodnar et al., 2021).

Our approach falls into the realm of topological data analysis (Edelsbrunner and Harer, 2010) and
employs persistent homology, a technique for calculating topological features—such as connected
components and cycles—of structured data sets. These features are known to be highly characteristic,
leading to successful topology-driven graph machine learning approaches (Hofer et al., 2017; 2020;
Rieck et al., 2019; Zhao and Wang, 2019). At their core is the notion of a filtration, i.e. a sequence
of nested subgraphs (or simplicial complexes in a higher-dimensional setting). Choosing the right
filtration is known to be crucial for obtaining good performance (Zhao and Wang, 2019). This used to
be a daunting task because persistent homology calculations are inherently discrete. Recent advances
in proving differentiability enable proper end-to-end training of persistent homology (Carrière et al.,
2021), thus opening the door for hybrid methods of increased expressivity by integrating the somewhat
complementary view of topological features. Our method TOGL builds on the theoretical framework
by Hofer et al. (2020), who (i) demonstrated that the output of a GNN can be used to ‘learn’ one
task-specific filtration function, and (ii) described the conditions under which a filtration function f
is differentiable. This work culminated in GFL, a topological readout function that exhibited
improved predictive performance for graph classification tasks. We substantially extend the utility
of topological features by making existing GNNs ‘topology-aware’ through the development of a
generic layer that makes topological information available to all downstream GNN layers: TOGL can
be integrated into any GNN architecture, enabling the creation of hybrid models whose expressivity
is provably more powerful than that of a GNN alone. Moreover, while GFL only uses the output of
a GNN to drive the calculation of topological features by means of a single filtration (thus limiting
the applicability of the approach, as the topological features cannot inform the remainder of a
network), TOGL learns multiple filtrations of a graph in an end-to-end manner. More precisely,
TOGL includes topological information in the hidden representations of nodes, enabling networks to
change the importance of the topological signal. Closest to the scope of TOGL is Zhao et al. (2020),
who enhanced GNNs using topological information for node classification. In their framework,
however, topology is only used to provide additional scalar-valued weights for the message passing
scheme, and topological features are only calculated over small neighbourhoods, making use of
a static vectorisation technique of persistence diagrams. Similarly, Wong and Vong (2021) use
static, i.e. non-learnable, topological features for 3D shape segmentation. By contrast, TOGL, being
end-to-end differentiable, is more general and permits the calculation of topological features at all
scales—including graph-level features—as well as an integration into arbitrary GNN architectures.

4 TOGL: A TOPOLOGICAL GRAPH LAYER

TOGL is a new type of graph neural network layer that is capable of utilising multi-scale topological
information of input graphs. In this section, we give a brief overview of the components of this
layer before discussing algorithmic details, theoretical expressivity, computational complexity, and
limitations. Figure 2 presents an overview of our method (we show only a single graph being encoded,
but in practice, the layer operates on batches of graphs).

The layer takes as input a graph G = (V,E) equipped with a set of n vertices V and a set of edges E,
along with a set of d-dimensional node attribute vectors x(v) ∈ Rd for v ∈ V . These node attributes
can either be node features of a data set or hidden representations learnt by some GNN. We employ
a family of k vertex filtration functions of the form fi : R

d → R for i = 1, . . . , k. Each filtration
function fi can focus on different properties of the graph. The image of fi is finite and results in
a set of node values a(1)i < · · · < a

(n)
i such that the graph G is filtered according to ∅ = G

(0)
i ⊆

G
(1)
i ⊆ · · · ⊆ G

(n)
i = G, where G

(j)
i =

(
V

(j)
i , E

(j)
i

)
, with V

(j)
i :=

{
v ∈ V | fi

(
x(v)

)
≤ a

(j)
i

}
,

and E
(j)
i :=

{
v, w ∈ E | max

{
fi
(
x(v)

)
, fi

(
x(w)

)}
≤ a

(j)
i

}
. Given this filtration, we calculate a

set of persistence diagrams, i.e. ph(G, fi) =
{
D(0)

i , . . . ,D(l)
i

}
. We fix l = 1 (i.e. we are capturing

connected components and cycles) to simplify our current implementation, but our layer can be
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Figure 2: Overview of TOGL, our topological graph layer. a) The node attributes x(v) ∈ Rd of graph
G serve as input. b) A network Φ maps x(v) to k node values {a(v)1 , . . . , a

(v)
k } ⊂ R. c) Applying Φk

to the attributes of each vertex v results in k views of G. d) A vertex filtration fi is computed for the
ith view of G. e) A set of k persistence diagrams is encoded via the embedding function Ψ, where
Ψ[v] denotes the embedding of vertex v. f) The embedded topological features are combined with
the input attributes x(v). g) Finally, this yields x̃(v) ∈ Rd, which acts as a new node representation
augmented with multi-scale topological information.

extended to arbitrary values of l (see Appendix C for a discussion). In order to benefit from representa-
tions that are trainable end-to-end, we use an embedding function Ψ(l) :

{
D(l)

1 , . . . ,D(l)
k

}
→ Rn′×d

for embedding persistence diagrams into a high-dimensional space that will be used to obtain the
vertex representations, where n′ is the number of vertices n if l = 0 and the number of edges if l = 1.
This step is crucial as it enables us to use the resulting topological features as node features, making
TOGL a layer that can be integrated into arbitrary GNNs. We later explain the precise mapping of
Ψ(l) from a set of diagrams to the elements of a graph.

Details on filtration computation and output generation. We compute our family of k vertex-based
filtrations using Φ: Rd → Rk, an MLP with a single hidden layer, such that fi := πi ◦ Φ, i.e. the
projection of Φ to the ith dimension. We apply Φ to the hidden representations x(v) of all vertices in
the graph. Moreover, we treat the resulting persistence diagrams in dimension 0 and 1 differently.
For dimension 0, we have a bijective mapping of tuples in the persistence diagram to the vertices
of the graph, which was previously exploited in topological representation learning (Moor et al.,
2020). Therefore, we aggregate Ψ(0) with the original node attribute vector x(v) of the graph in a
residual fashion, i.e. x̃(v) = x(v) + Ψ(0)

(
D(0)

1 , . . . ,D(0)
k

) [
v
]
, where Ψ(0)[v] denotes taking vth

row of Ψ(0) (i.e the topological embedding of vertex v). The output of our layer for dimension 0
therefore results in a new representation x̃(v) ∈ Rd for each vertex v, making it compatible with any
subsequent (GNN) layers. By contrast, Ψ(1) is pooled into a graph-level representation, to be used in
the final classification layer of a GNN. This is necessary because there is no bijective mapping to the
vertices, but rather to edges. For stability reasons (Bendich et al., 2020), we consider it more useful
to have this information available only on the graph level. For further details on the computational
aspects, please refer to Section A.4.

Complexity and limitations. Persistent homology can be calculated efficiently for dimensions 0
and 1, having a worst-case complexity of O (mα (m)) for a graph with m sorted edges, where α(·)
is the extremely slow-growing inverse Ackermann function, which can be treated as constant for all
intents and purposes. The calculation of ph is therefore dominated by the complexity of sorting all
edges, i.e. O (m logm), making our approach efficient and scalable. Higher-dimensional persistent
homology calculations unfortunately do not scale well, having a worst-case complexity of O

(
md

)
for

calculating d-dimensional topological features, which is why we restrict ourselves to l = 1 here. Our
approach is therefore limited to connected components and cycles. Plus, our filtrations are incapable
of assessing topological feature interactions; this would require learning multifiltrations (Carlsson
et al., 2009), which do not afford a concise, efficient representation as the scalar-valued filtrations
discussed in this paper. We therefore leave their treatment to future work.

4.1 CHOOSING AN EMBEDDING FUNCTION Ψ

The embedding function Ψ influences the resulting representation of the persistence diagrams
calculated by our approach. It is therefore crucial to pick a class of functions that are sufficiently
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powerful to result in expressive representations of a persistence diagram D. We consider multiple
types of embedding functions Ψ, namely (i) a novel approach based on DeepSets (Zaheer et al.,
2017), (ii) the rational hat function introduced by Hofer et al. (2019), as well as (iii) the triangle
point transformation, (iv) the Gaussian point transformation, and (v) the line point transformation,
with the last three transformations being introduced in Carrière et al. (2020). Except for the deep sets
approach, all of these transformations are local in that they apply to a single point in a persistence
diagram without taking the other points into account. These functions can therefore be decomposed
as Ψ(j)

(
D(j)

1 , . . . ,D(j)
k

) [
v
]
= Ψ̃(j)

(
D(j)

1 [v], . . . ,D(j)
k [v]

)
for an index v. By contrast, our novel

deep sets approach uses all tuples in the persistence diagrams to compute embeddings. In practice,
we did not find a significant advantage of using any of the functions defined above; we thus treat
them as a hyperparameter and refer to Appendix I for a detailed analysis.

4.2 DIFFERENTIABILITY & EXPRESSIVE POWER

The right choice of Ψ will lead to a differentiable downstream representation. The map ph(·) was
shown to be differentiable (Gameiro et al., 2016; Hofer et al., 2020; Moor et al., 2020; Poulenard
et al., 2018), provided the filtration satisfies injectivity at the vertices. We have the following theorem,
whose proof is due to Hofer et al. (2020, Lemma 1).
Theorem 1. Let fθ be a vertex filtration function fθ : V → R with continuous parameters θ, and
let Ψ be a differentiable embedding function of unspecified dimensions. If the vertex function values
of fθ are distinct for a specific set of parameters θ′, i.e. fθ(v) ̸= fθ(w) for v ̸= w, then the map
θ 7→ Ψ(ph(G, fθ)) is differentiable at θ′.

This theorem is the basis for TOGL, as it states that the filtrations, and thus the resulting ‘views’ on
a graph G, can be trained end-to-end. While Hofer et al. (2020) describe this for a single filtration,
their proof can be directly extended to multiple filtrations as used in our approach.

The expressive power of graph neural networks is well-studied (Chen et al., 2020b; Xu et al., 2019)
and typically assessed via the iterative Weisfeiler–Lehman label refinement scheme, denoted as
WL[1]. Given a graph with an initial set of vertex labels, WL[1] collects the labels of neighbouring
vertices for each vertex in a multiset and ‘hashes’ them into a new label, using a perfect hashing
scheme so that vertices/neighbourhoods with the same labels are hashed to the same value. This
procedure is repeated and stops either when a maximum number of iterations has been reached
or no more label updates happen. The result of each iteration h of the algorithm for a graph G

is a feature vector ϕ(h)
G that contains individual label counts. Originally conceived as a test for

graph isomorphism (Weisfeiler and Lehman, 1968), WL[1] has been successfully used for graph
classification (Shervashidze and Borgwardt, 2009). The test runs in polynomial time, but is known to
fail to distinguish between certain graphs, i.e. there are non-isomorphic graphs G and G′ that obtain
the same labelling by WL[1] Fürer (2017). Surprisingly, Xu et al. (2019) showed that standard graph
neural networks based on message passing are no more powerful than WL[1]. Higher-order refinement
schemes, which pass information over tuples of nodes, for instance, can be defined (Maron et al.,
2019; Morris et al., 2019). Some of these variants are strictly more powerful (they can distinguish
between more classes of graphs) than WL[1] but also computationally more expensive.

To prove the expressivity of our method, we will show that (i) TOGL can distinguish all the graphs
WL[1] can distinguish, and (ii) that there are graphs that WL[1] cannot distinguish but TOGL can.
The higher expressivity of TOGL does not necessarily imply that our approach will perform generally
better. In fact, WL[1] and, by extension, GNNs, are capable of identifying almost all non-isomorphic
graphs (Babai et al., 1980). However, the difference in expressivity implies that TOGL can capture
features that cannot be captured by GNNs, which can improve predictive performance if those features
cannot be obtained otherwise. Since persistent homology is an isomorphism invariant, we first show
that we distinguish the same graphs that WL[1] distinguishes. We do this by showing the existence
of an injective filtration function f 1, thus ensuring differentiability according to Theorem 1.
Theorem 2. Persistent homology is at least as expressive as WL[1], i.e. if the WL[1] label sequences
for two graphs G and G′ diverge, there exists an injective filtration f such that the corresponding
0-dimensional persistence diagrams D0 and D′

0 are not equal.
1We drop θ in this notation since we do not require f to have a set of continuous parameters here; the

subsequent theorem is thus covering a more general case than Theorem 1.
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Proof sketch. We first assume the existence of a sequence of WL[1] labels and show how to construct
a filtration function f from this. While f will result in persistence diagrams that are different, thus
serving to distinguish G and G′, it does not necessarily satisfy injectivity. We therefore show that there
is an injective function f̃ that is arbitrarily close to f and whose corresponding persistence diagrams
D̃0, D̃′

0 do not coincide. Please refer to Appendix B for the detailed version of the proof.

The preceding theorem proves the existence of such a filtration function. Due to the capability
of GNNs to approximate the Weisfeiler–Lehman test (Xu et al., 2019) and the link between graph
isomorphism testing and universal function approximation capabilities (Chen et al., 2019, Theorem 4),
we can deduce that they are also able to approximate f and f̃ , respectively. Yet, this does not mean
that we always end up learning f or f̃ . This result merely demonstrates that our layer can theoretically
perform at least as well as WL[1] when it comes to distinguishing non-isomorphic graphs; this does
not generally translate into better predictive performance, though. In practice, TOGL may learn other
filtration functions; injective filtrations based on WL[1] are not necessarily optimal for a specific
task (we depict some of the learnt filtrations in Appendix G).

To prove that our layer is more expressive than a GCN, we show that there are pairs of graphs
G,G′ that cannot be distinguished by WL[1] but that can be distinguished by ph(·) and by TOGL,
respectively: let G be a graph consisting of the disjoint union of two triangles, i.e. , and let G′

be a graph consisting of a hexagon, i.e. . WL[1] will be unable to distinguish these two graphs
because all multisets in every iteration will be the same. Persistent homology, by contrast, can
distinguish G from G′ using their Betti numbers. We have β0(G) = β1(G) = 2, because G consists
of two connected components and two cycles, whereas β0(G

′) = β1(G
′) = 1 as G′ only consists of

one connected component and one cycle. The characteristics captured by persistent homology are
therefore different from the ones captured by WL[1]. Together with Theorem 2, this example implies
that persistent homology is strictly more powerful than WL[1] (see Appendix C for an extended
expressivity analysis using higher-order topological features). The expressive power of TOGL hinges
on the expressive power of the filtration—making it crucial that we can learn it.

5 EXPERIMENTS

We showcase the empirical performance of TOGL on a set of synthetic and real-world data sets,
with a primary focus on assessing in which scenarios topology can enhance and improve learning
on graph. Next to demonstrating improved predictive performance for synthetic and structure-
based data sets (Section 5.2 and Section 5.3), we also compare TOGL with existing topology-based
algorithms (Section 5.5).

5.1 EXPERIMENTAL SETUP

Following the setup of Dwivedi et al. (2020), we ran all experiments according to a consistent training
setup and a limited parameter budget to encourage comparability between architectures. For further
details, please refer to Appendix D. In all tables and graphs, we report the mean test accuracy along
with the standard deviation computed over the different folds. All experiments were tracked (Biewald,
2020); experimental logs, reports, and code will be made publicly available.

Baselines and comparison partners. We compare our method to several GNN architectures from
the literature, namely (i) Graph Convolutional Networks (Kipf and Welling, 2017, GCN), (ii) Graph
Attention Networks (Veličković et al., 2018, GAT), (iii) Gated-GCN (Bresson and Laurent, 2017),
(iv) Graph Isomorphism Networks (Xu et al., 2019, GIN), (v) the Weisfeiler–Lehman kernel (Sher-
vashidze and Borgwardt, 2009, WL), and (vi) WL-OA (Kriege et al., 2016). The performance of
these methods has been assessed in benchmarking papers (Borgwardt et al., 2020; Dwivedi et al.,
2020; Morris et al., 2020), whose experimental conditions are comparable. We use the same folds
and hyperparameters as in the corresponding benchmarking papers to ensure a fair comparison.

TOGL setup. We add our layer to existing GNN architectures, replacing the second layer by TOGL,
respectively.2 For instance, GCN-4 refers to a GCN with four layers, while GCN-3-TOGL-1 refers

2We investigate the implications of different layer placements in Appendix H and find that the best placement
depends on the data set; placing the layer second is a compromise choice.
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to method that has been made ‘topology-aware’ using TOGL. This setup ensures that both the
original and the modified architecture have approximately the same number of parameters. We
treat the choice of the embedding function Ψ as a hyperparameter in our training for all subsequent
experiments. Appendix I provides a comprehensive assessment of the difference between the
DeepSets approach (which is capable of capturing interactions between tuples in a persistence
diagram) and decomposed embedding functions, which do not account for interactions.

5.2 PERFORMANCE ON SYNTHETIC DATA SETS

As an illustrative example depicted in Figure 1, we use two synthetic balanced 2-class data sets
of 1000 graphs each. In the CYCLES data set (Figure 1a, right), we generate either one large
cycle (class 0) or multiple small ones (class 1). These graphs can be easily distinguished by any
topological approach because they differ in the number of connected components and the number
of cycles. For the NECKLACES data set (Figure 1b, right), we generate ‘chains’ of vertices with
either two individual cycles, or a ‘merged’ one. Both classes have the same number of cycles, but
the incorporation of additional connectivity information along their neighbourhoods makes them
distinguishable for TOGL, since appropriate filtrations for the data can be learnt. All synthetic data
sets use node features consisting of 3-dimensional vectors sampled from a Normal distribution. As
PH and WL would consider all instances of graphs being distinct and thus remove any potential
signal, we used the node degrees as features instead as commonly done (Borgwardt et al., 2020).

For this illustrative example, we integrate TOGL with a GCN. We find that TOGL performs well
even without any GCN layers—thus providing another empirical example of improved expressivity.
Moreover, we observe that standard GCNs require at least four layers (for CYCLES) or more (for
NECKLACES) to approach the performance of TOGL. WL[1], by contrast, fails to classify CYCLES
and still exhibits a performance gap to the GCN for NECKLACES, thus showcasing the benefits of
having access to a learnable node representation. It also underscores the observations in Section 4.2:
the higher expressive power of WL[1] as compared to a standard GCN does not necessarily translate to
higher predictive performance. Appendix F provides an extended analysis with more configurations;
we find that (i) both cycles and connected components are crucial for reaching high predictive
performance, and (ii) the static variant is performing slightly better than the standard GCN, but
significantly worse than TOGL, due to its very limited access to topological information. A simple
static filtration (based on node degrees), which we denote by PH, only works for the CYCLES
data set (this is a consequence of the simpler structure of that data set, which can distinguished by
Betti number information already), whereas the more complex structure of the NECKLACES data
necessitates learning a task-based filtration.

5.3 STRUCTURE-BASED GRAPH AND NODE CLASSIFICATION PERFORMANCE

A recent survey (Borgwardt et al., 2020) showed that the node features of benchmark graphs already
carry substantial information, thus suppressing the signal carried by the graph structure itself to some
extent. This motivated us to prepare a set of experiments in which we classify graphs solely based on
graph structure. We achieve this by replacing all node labels and node features by random ones, thus
leaving only structural/topological information for the classification task. In the case of the PATTERN
dataset we use the original node features which are random by construction (Dwivedi et al., 2020).

Table 1 depicts the results for graph and node classification tasks on such graphs; we observe a clear
advantage of TOGL over its comparison partners: making an existing GNN topology-aware via
TOGL improves predictive performance in virtually all instances. In some cases, for instance when
comparing GCN-4 to GCN-3-TOGL-1 on MNIST, the gains are substantial with an increase of more
than 8%. This also transfers to other model architectures, where in most cases TOGL improves the
performance across datasets. Solely the GIN model on PROTEINS and the GAT model on PATTERN
decrease in performance when incorporating topological features. The deterioration of TOGL on
PATTERNS is especially significant. Nevertheless, the inferior performance is in line with the low
performance of GAT in general compared to the other methods we considered. In this context the
lower performance of TOGL is not surprising as it relies on the backbone model for the construction
of a filtration. This demonstrates the utility of TOGL in making additional structural information
available to improve classification performance.

7



Published as a conference paper at ICLR 2022

Table 1: Results for the structure-based experiments. We depict the test accuracy obtained on various
benchmark data sets when only considering structural information (i.e. the network has access to
uninformative node features). For MOLHIV, the ROC-AUC is reported. Graph classification results
are shown on the left, while node classification results are shown on the right. We compare three
architectures (GCN-4, GIN-4, GAT-4) with corresponding models where one layer is replaced with
TOGL and highlight the winner of each comparison in bold.

Graph classification

METHOD DD ENZYMES MNIST PROTEINS MOLHIV

GCN-4 68.0±3.6 22.0±3.3 76.2±0.5 68.8±2.8 66.4±1.8
GCN-3-TOGL-1 75.1±2.1 30.3±6.5 84.8±0.4 73.8±4.3 69.4±1.8

GIN-4 75.6±2.8 21.3±6.5 83.4±0.9 74.6±3.1 68.7±0.9
GIN-3-TOGL-1 76.2±2.4 23.7±6.9 84.4±1.1 73.9±4.9 65.1±6.2

GAT-4 63.3±3.7 21.7±2.9 63.2±10.4 67.5±2.6 51.8±5.6
GAT-3-TOGL-1 75.7±2.1 23.5±6.1 77.2±10.5 72.4±4.6 68.6±1.7

Node classification

PATTERN

85.5±0.4
86.6±0.1

84.8±0.0
86.7±0.1

73.1±1.9
59.6±3.3

Table 2: Test accuracy on benchmark data sets (following standard practice, we report weighted
accuracy on CLUSTER and PATTERN). Methods printed in black have been run in our setup, while
methods printed in grey are cited from the literature, i.e. Dwivedi et al. (2020), Morris et al. (2020) for
IMDB-B and REDDIT-B, and Borgwardt et al. (2020) for WL/WL-OA results. Graph classification
results are shown on the left; node classification results are shown on the right. Following Table 1,
we take existing architectures and replace their second layer by TOGL; we use italics to denote the
winner of each comparison. A bold value indicates the overall winner of a column, i.e. a data set.

Graph classification

METHOD CIFAR-10 DD ENZYMES MNIST PROTEINS-FULL IMDB-B REDDIT-B

GATED-GCN-4 67.3±0.3 72.9±2.1 65.7±4.9 97.3±0.1 76.4±2.9 — —
WL — 77.7±2.0 54.3±0.9 — 73.1±0.5 71.2±0.5 78.0±0.6
WL-OA — 77.8±1.2 58.9±0.9 — 73.5±0.9 74.0±0.7 87.6±0.3

GCN-4 54.2±1.5 72.8±4.1 65.8±4.6 90.0±0.3 76.1±2.4 68.6±4.9 92.8±1.7
GCN-3-TOGL-1 61.7±1.0 73.2±4.7 53.0±9.2 95.5±0.2 76.0±3.9 72.0±2.3 89.4±2.2

GIN-4 54.8±1.4 70.8±3.8 50.0±12.396.1±0.3 72.3±3.3 72.8±2.5 81.7±6.9
GIN-3-TOGL-1 61.3±0.4 75.2±4.2 43.8±7.9 96.1±0.1 73.6±4.8 74.2±4.2 89.7±2.5

GAT-4 57.4±0.6 71.1±3.1 26.8±4.1 94.1±0.3 71.3±5.4 73.2±4.1 44.2±6.6
GAT-3-TOGL-1 63.9±1.2 73.7±2.9 51.5±7.3 95.9±0.3 75.2±3.9 70.8±8.0 89.5±8.7

Node classification

CLUSTER

60.4±0.4
—
—

57.0±0.9
60.4±0.2

58.5±0.1
60.4±0.2

56.6±0.4
58.4±3.7
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Figure 3: Classification performance when
analysing the structural variant of MNIST.

Varying the number of layers in this experiment un-
derscores the benefits of including TOGL in a stan-
dard GCN architecture. Specifically, an architec-
ture that incorporates TOGL reaches high predic-
tive performance earlier, i.e. with fewer layers, than
other methods, thus reducing the risk of oversmooth-
ing (Chen et al., 2020a). Figure 3 depicts this for
MNIST; we observe similar effects on the other data
sets. Appendix I presents a detailed performance
comparison ,and extended analysis, and a discussion
of the effects of different choices for an embedding function Ψ.

5.4 PERFORMANCE ON BENCHMARK DATA SETS

Having ascertained the utility of TOGL for classifying data sets with topological information, we
now analyse the effects of TOGL in standard graph and node classification tasks. Table 2 depicts
the results on well-known benchmark data sets for graph and node classification. We see that
TOGL performs better than its comparison partners (i.e. GCN-4, GIN-4, GAT-4) on most of the data
sets, showcasing the benefits of substituting a layer of GNN with TOGL. Concerning ENZYMES
performance, we experienced a severe degree of overfitting during training. This was exacerbated
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Table 3: Test accuracy when comparing TOGL (integrated into a simplified architecture) with existing
topology-based embedding functions or readout functions. Results shown in grey are cited from
the respective papers (Carrière et al., 2020; Hofer et al., 2020). For GFL, we cite degree-based results
so that its performance values pertain to the same scenario.

METHOD REDDIT-5K IMDB-MULTI NCI1 REDDIT-B IMDB-B

GFL 55.7±2.1 49.7±2.9 71.2±2.1 90.2±2.8 74.5±4.6
PersLay 55.6 48.8 73.5 — 71.2

GCN-1-TOGL-1 56.1±1.8 52.0±4.0 75.8±1.8 90.1±0.8 74.3±3.6
GCN-1-TOGL-1 (static) 55.5±1.8 48.3±4.9 75.1±1.2 90.4±1.4 72.2±2.1

by the fact that ENZYMES is the smallest of the compared data sets and we eschewed the tuning
of regularisation hyperparameters such as ‘dropout’ for the sake of being comparable with the
benchmark results (Dwivedi et al., 2020). With the GAT-based GNN, we generally observe an high
degree of variance, as already reported in previous studies (Dwivedi et al., 2020). In particular, we
experienced issues in training it on the REDDIT-B dataset. The addition of TOGL seems to address
this issue, which we consider to underline the overall potential of topological features (at least for
data sets with distinct topological information).

5.5 COMPARISON TO OTHER TOPOLOGY-BASED ALGORITHMS

In light of TOGL containing existing embedding functions Ψ (Carrière et al., 2020), we compare its
performance to other topology-based algorithms that have been used for graph classification. Table 3
summarises the performance (for comparison purposes, we also show the results for a ‘static’ variant
of our layer; see Appendix D for more details). In order to permit a fair comparison, we integrate
TOGL into a simpler GNN architecture, consisting of a single GCN message passing layer.

We observe that our filtration learning approach outperforms the fixed filtrations used by Carrière et al.
(2020), highlighting the utility of a layer specifically designed to be integrated into GNNs. TOGL
also fares well in comparison to the readout function by Hofer et al. (2020). While large standard
deviations (due to the small size of the data sets) preclude an assessment of significant differences,
we hypothesise that the benefits of having access to multiple filtrations will be more pronounced for
large data sets containing more pronounced topological features, such as molecular graphs. Notice
that in contrast to Hofer et al. (2020), our layer can be included at different stages of the overal GNN
architecture. We investigate the impact of different positions in Appendix H and show that different
positions can lead significantly different performance. These results further motivate the importance
of a flexible topological layer as opposed to readout functions or static filtrations.

6 CONCLUSION

We presented TOGL, a generically-applicable layer that incorporates topological information into any
GNN architecture. We proved that TOGL, due to its filtration functions (i.e. input functions) being
learnable, is more expressive than WL[1], the Weisfeiler–Lehman test for graph isomorphism, and
therefore also increases expressivity of GNNs. On data sets with pronounced topological structures,
we found that our method helps GNNs obtain substantial gains in predictive performance. We also saw
that the choice of function for embedding topological descriptors is crucial, with embedding functions
that can handle interactions between individual topological features typically performing better than
those that cannot. On benchmark data sets, we observed that our topology-aware approach can help
improve predictive performance while overall exhibiting favourable performance in comparison to the
literature. We also observed that topological information may sometimes lead to overfitting issues on
smaller data sets, and leave the investigation of additional regularisation strategies for our method for
future work. Furthermore, we hypothesise that the use of different filtration types (Milosavljević et al.,
2011), together with advanced persistent homology algorithms, such as extended persistence (Cohen-
Steiner et al., 2009), will prove beneficial for predictive performance.
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REPRODUCIBILITY STATEMENT

We have provided the code for our experiments along with the seeds used for training. All experiments
were run on single GPUs, which avoids additional sources of randomness. Details are provided
in Section 5.1. The parameters and performance metrics during training were tracked and will be
made publicly available (Biewald, 2020). Our code is released under a BSD-3-Clause License and
can be accessed under https://github.com/BorgwardtLab/TOGL.
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A TOPOLOGICAL DATA ANALYSIS

We provide a more formal introduction to persistent homology, the technique on which TOGL is
fundamentally based. Persistent homology arose as one of the flagship approaches in the field of
computational topology, which aims to make methods from this highly abstract branch of mathematics
available for data analysis purposes.

To gain a better understanding, we will briefly take a panoramic tour through algebraic topology,
starting from simplicial homology, an algebraic technique for ‘calculating’ the connectivity of
topological spaces, represented in the form of simplicial complexes, i.e. generalised graphs. Simplicial
homology is said to assess the connectivity of a topological space by ‘counting its high-dimensional
holes’. We will see how to make this description more precise.

A.1 SIMPLICIAL HOMOLOGY

Simplicial complexes are the central concept in algebraic topology. A simplicial complex K consists
of a set of simplices of certain dimensions, such as vertices (dimension 0), edges (dimension 1), and
triangles (dimension 2). Each simplex σ ∈ K has a set of faces, and each face τ has to satisfy τ ∈ K.
Moreover, if σ ∩ σ′ ̸= ∅ for σ, σ′ ∈ K, then σ ∩ σ′ ∈ K. Thus, K is ‘closed under calculating the
faces of a simplex’. A graph can be seen as a low-dimensional simplicial complex that only contains
0-simplices (vertices) and 1-simplices (edges), so everything we say applies, mutatis mutandis, also
to graphs.

Chain groups. For a simplicial complex K, we denote by Cd(K) the vector space generated over
Z2 (the field with two elements). The elements of Cd(K) are the d-simplices in K, or rather their
formal sums with coefficients in Z2. For example, σ + τ is an element of the chain group, also called
a simplicial chain. Addition is well-defined and easy to implement as an algorithm since a simplex
can only be present or absent over Z2 coefficients.3 The use of chain groups lies in providing the
underlying vector space to formalise boundary calculations over a simplicial complex. The boundary
calculations, in turn, are necessary to quantify the connectivity!

Boundary homomorphism. Given a d-simplex σ = (v0, . . . , vd) ∈ K, we can formalise its face
or ‘boundary’ calculation by defining the boundary operator ∂d : Cd(K) → Cd−1(K) as a sum of the
form

∂d(σ) :=

d∑
i=0

(v0, . . . , vi−1, vi+1, . . . , vd), (1)

i.e. we leave out every vertex vi of the simplex once. Since only sums are involved, this operator
is seen to be a homomorphism between the chain groups; the calculation extends to Cd(K) by
linearity. The boundary homomorphism gives us a way to precisely define what we understand by
connectivity. To this end, note that its kernel and image are well-defined. The kernel ker ∂d contains
all d-dimensional simplicial chains that do not have a boundary. We can make this more precise by
using a construction from group theory.

Homology groups. The last ingredient for the connectivity analysis involves calculating a special
group, the homology group. The dth homology group Hd(K) of K is defined as the quotient group
Hd(K) := ker ∂d/ im ∂d+1. The quotient operation can be thought of as calculating a special subset—
the kernel of the boundary operator—and then removing another subset, namely the image of the
boundary operator with an increased dimension. This behoves a short explanation. The main reason
behind this operation is that just the kernel calculation is insufficient to properly count a hole. For
example, if we take the three edges of any triangle, their boundary will always be empty, i.e. they are
a part of ker ∂1. However, if the interior of the triangle is also part of the simplicial complex—in
other words, if we have the corresponding 2-simplex as well—we should not count the edges as
a hole. This is why we need to remove all elements in the image of ∂2. Coincidentally, this also
explains why cycles in a graph never ‘vanish’—there are simply no 2-simplices available since the
graph is only a 1-dimensional simplicial complex.

3Different choices of coefficient fields would be possible, but are rarely used for data analysis purposes.
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Betti numbers. To fully close the loop, as it were, it turns out that we can calculate Betti numbers
from homology groups. Specifically, the rank of the dth homology group—in the group-theoretical
sense—is precisely the dth Betti number βd, i.e. βd(K) := rankHd(K). The sequence of Betti
numbers β0, . . . , βd of a d-dimensional simplicial complex is commonly used as a complexity
measure, and they can be used to discriminate manifolds. For example, a 2-sphere has Betti numbers
(1, 0, 1), while a 2-torus has Betti numbers (1, 2, 1). As we outlined in the main text, Betti numbers
are of limited use when dealing with complex graphs, however, because they are very coarse counts
of features. It was this limited expressivity that prompted the development of persistent homology.

A.2 PERSISTENT HOMOLOGY

Persistent homology is an extension of simplicial homology, which employs filtrations to imbue a
simplicial complex K with scale information. Let us assume the existence of a function f : K → R,
which only attains a finite number of function values f (0) ≤ f (1) ≤ · · · ≤ . . . f (m−1) ≤ f (m). We
may now, as in the main text, sort K according to f , leading again to a nested sequence of simplicial
complexes

∅ = K(0) ⊆ K(1) ⊆ · · · ⊆ K(m−1) ⊆ K(m) = K, (2)

in which K(i) :=
{
σ ∈ K | f(σ) ≤ f (i)

}
, i.e. each subset contains only those simplices whose

function value is less than or equal to the threshold. In contrast to simplicial homology, the filtration
holds potentially more information because it can track changes! For example, a topological feature
might be created (a new connected component might arise) or destroyed (two connected components
might merge into one), as we go from some K(i) to K(i+1). At its core, persistent homology is
‘just’ a way of tracking topological features, representing each one by a creation and destruction
value (f (i), f (j)) ∈ R2, with i ≤ j. In case a topological feature is still present in K(m) = K, such
as a cycle in a graph, it can also be assigned a tuple of the form (f (i),∞). Such tuples constitute
essential features of a simplicial complex and are usually assigned a large destruction value or treated
separately in an algorithm (Hofer et al., 2017). While it is also possible to obtain only tuples with
finite persistence values, a process known as extended persistence (Cohen-Steiner et al., 2009), we
focus only on ‘ordinary’ persistence in this paper because of the lower computational complexity.

Persistent homology groups. The filtration above is connected by the inclusion homomorphism
between K(i) ⊆ K(i+1). The respective boundary homomorphisms induce a homomorphism between
corresponding homology groups of the filtration, i.e. a map i

(i,j)
d : Hd(Ki) → Hd(Kj). This family

of homomorphisms gives rise to a sequence of homology groups

Hd

(
K(0)

)
i
(0,1)
d−−−→ Hd

(
K(1)

)
i
(1,2)
d−−−→ . . .

i
(m−2,m−1)
d−−−−−−−→

Hd

(
K(m−1)

)
i
(m−1,m)
d−−−−−−→ Hd

(
K(m)

)
= Hd (K)

(3)

for every dimension d. For i ≤ j, the dth persistent homology group is defined as

H
(i,j)
d := ker ∂d

(
K(i)

)
/
(
im ∂d+1

(
K(j)

)
∩ ker ∂d

(
K(i)

))
. (4)

Intuitively, this group contains all homology classes created in K(i) that are also present in K(j).
Similar to the ‘ordinary’ Betti number, we may now define the dth persistent Betti number as the rank
of this group, i.e.

β
(i,j)
d := rankH

(i,j)
d . (5)

Noting the set of indices i, j, we can see persistent homology as generating a sequence of Betti
numbers, as opposed to just calculating a single number. This makes it possible for us to describe
topological features in more detail, and summarise them in a persistence diagram.

Persistence diagrams. Given a filtration induced by a function f : K → R as described above, we
store each tuple (f (i), f (j)) with multiplicity

µ
(d)
i,j :=

(
β
(i,j−1)
d − β

(i,j)
d

)
−
(
β
(i−1,j−1)
d − β

(i−1,j)
d

)
(6)
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in the dth persistence diagram Dd. Notice that for most pairs of indices, µ(d)
i,j = 0. Given a point

(x, y) ∈ Dd, we refer to the quantity pers(x, y) := |y − x| as its persistence. The idea of persistence
arose in multiple contexts (Barannikov, 1994; Edelsbrunner et al., 2002; Verri et al., 1993), but it
is nowadays commonly used to analyse functions on manifolds, where high persistence is seen to
correspond to features of the function, while low persistence is typically considered noise.

A.3 EXAMPLES OF GRAPH FILTRATIONS

Before discussing the computational complexity of persistent homology, we briefly provide some
worked examples that highlight the impact of choosing different filtrations for analysing graphs.
Filtrations are most conveniently thought of as arising from a function f : G → R, which assigns
a scalar-valued function value to each node and edge of the graph by means of setting f(u, v) :=
max{f(u), f(v)} for an edge (u, v). In this context, f is often picked to measure certain salient
vertex features of G, such as the degree (Hofer et al., 2017), or its structural role in terms of a heat
kernel (Carrière et al., 2020). The resulting topological features are then assigned the respective
function values, i.e. (i, j) 7→ (f(ui), f(uj)). As a brief example, consider a degree-based filtration
of a simple graph. The filtration values are shown as numbers next to a vertex; we use a(j) to denote
the filtration value at step j (this notation will be useful later when dealing with multiple filtrations).
In each filtration step, the new nodes and edges added to the graph are shown in red, while black
elements indicate the structure of the graph that already exists at this step.

1

1 3

3

2

G(1) G(2) G(3)

Since all edges are inserted at a(3) = 3, we obtain the following 0-dimensional persistence diagram
D0 = {(1,∞), (1, 3), (2, 3), (3, 3), (3, 3)}. The existence of a single tuple of the form (·,∞) indi-
cates that β0 = 1. Similarly, there is only one cycle in the data set, which is created at a(3), leading to
D1 = {(3,∞)} and β1 = 1. If we change the filtration such that each vertex has a unique filtration
value, we obtain a different ordering and different persistence tuples, as well as more filtration steps:

1

2 3

4

5

G(1) G(2) G(3) G(4) G(5)

Here, connected components are not all created ‘at once’, but more gradually, leading to D0 =
{(1,∞), (3, 3), (2, 4), (4, 4), (5, 5)}. Of particular interest is the tuple (2, 4). It was created by the
vertex with filtration value 2. In G(3) it merges with another connected component, namely the
one created by the vertex with function value 3. This leads to the tuple (3, 3), because in each
merge, we merge from the ‘younger’ component (the one arising later in the filtration) to the ‘older’
component (the arising earlier in the filtration). Again, there is only a single cycle in the data set,
which we detect at a(5) = 5, leading to D1 = {(5,∞)}.

A.4 COMPUTATIONAL DETAILS

The cardinality of the persistence diagram of dimension-0, D0 is equal to the number of vertices, n in
the graph. A natural pairing of persistence tuples then consists in assigning each tuple to the node
that generated it. As for dimension-1, D1 contains as many tuples as cycles in the graph. However,
there is no bijective mapping between dimension-1 persistence tuples and vertices. Rather, we link
each dimension-1 tuple to the edge that created that particular cycle. To account for multiple distinct
filtrations and because the same cycle can be assigned to different edges depending on the specific
filtration function, we define a dummy tuple for edges that are not linked to any cycle for a particular
filtration. The set of persistence diagrams (D(l)

1 , . . . ,D(l)
k ) can then be concatenated as a matrix in

Rdl×2·k, with dl = |V | (the number of vertices in graph G) if l = 0 and dl = |E| (the number of
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edges in G) if l = 1. Remarkably, that leads to Ψ(l)
(
D(l)

1 , . . . ,D(l)
k

)
being an operator on a matrix,

significantly facilitating computations.

Because of its natural indexing to the vertices, Ψ(0)
(
D(0)

1 , . . . ,D(0)
k

)
can be mapped back to

the graph as explained in Section 4. For l = 1, we pool Ψ(1)
(
D(1)

1 , . . . ,D(1)
k

)
to a graph-level

embedding, and mask out the edge indices that are not assigned a persistence pair in any of the D(1)
k .

B THEORETICAL EXPRESSIVITY OF TOGL: PROOFS

This section provides more details concerning the proofs about the expressivity of our method.
We first state a ‘weak’ variant of our theorem, in which injectivity of the filtration function is not
guaranteed. Next, we show that the filtration function f constructed in this theorem can be used to
prove the existence of an injective function f̃ that is arbitrarily close to f and provides the same
capabilities of distinguishing graphs.
Theorem 3 (Expressivity, weak version). Persistent homology is at least as expressive as WL[1], i.e.
if the WL[1] label sequences for two graphs G and G′ diverge, there is a filtration f such that the
corresponding 0-dimensional persistence diagrams D0 and D′

0 are not equal.

Proof. Assume that the label sequences of G and G′ diverge at iteration h. Thus, ϕ(h)
G ̸= ϕ

(h)
G′ and

there exists at least one label whose count is different. Let L(h) := {l1, l2, . . . } be an enumeration
of the finitely many hashed labels at iteration h. We can build a filtration function f by assigning
a vertex v with label li to its index, i.e. f(v) := i, and setting f(v, w) := max {f(v), f(w)} for
an edge (v, w). The resulting 0-dimensional persistence diagram D0 (and D′

0 for G′) will contain
tuples of the form (i, j), and each vertex is guaranteed to give rise to exactly one such pair. Letting
µ
(i,j)
0 (D0) refer to the multiplicity of a tuple in D0, we know that, since the label count is different,

there is at least one tuple (k, l) with µ
(k,l)
0 (D0) ̸= µ

(k,l)
0 (D′

0). Hence, D0 ̸= D′
0.

While Theorem 3 proves the existence of a filtration, the proof is constructive and relies on the
existence of the WL[1] labels. Moreover, the resulting filtration is typically not injective, thus
precluding the applicability of Theorem 1. The following Lemma discusses a potential fix for
filtration functions of arbitrary dimensionality; our context is a special case of this.

Lemma 1. For all ϵ > 0 and f : V → Rd there is an injective function f̃ such that ∥f − f̃∥∞ < ϵ.

Proof. Let V = {v1, . . . , vn} the vertices of a graph and im f = {u1, . . . , um} ⊂ Rd their images
under f . Since f is not injective, we have m < n. We resolve non-injective vertex pairs iteratively.
For u ∈ im f , let V ′ := {v ∈ V | f(v) = u}. If V ′ only contains a single element, we do not
have to do anything. Otherwise, for each v′ ∈ V ′, pick a new value from Bϵ(u) \ im f , where
Br(x) ⊂ Rd refers to the open ball of radius r around a point x (for our case, i.e. d = 1, this
becomes an open interval in R). Since we only ever remove a finite number of points, such a new
value always exists, and we can modify im f accordingly. The number of vertex pairs for which f is
non-injective decreases by at least one in every iteration, hence after a finite number of iterations, we
have modified f to obtain f̃ , an injective approximation to f . By always picking new values from
balls of radius ϵ, we ensure that ∥f − f̃∥∞ < ϵ, as required.

Using this Lemma, we can ensure that the function f in Theorem 3 is injective, thus ensuring
differentiability according to Theorem 1. However, we need to make sure that the main message of
Theorem 2 still holds, i.e. the two graphs G and G′ must lead to different persistence diagrams even
under the injective filtration function f̃ . This is addressed by the following lemma, which essentially
states that moving from f to an injective f̃ does not result in coinciding persistence diagrams.
Lemma 2. Let G and G′ be two graphs whose 0-dimensional persistence diagrams D0 and D′

0 are
calculated using a filtration function f as described in Theorem 3. Moreover, given ϵ > 0, let f̃ be an
injective filtration function with ∥f − f̃∥∞ and corresponding 0-dimensional persistence diagrams
D̃0 and D̃′

0. If D0 ̸= D′
0, we also have D̃0 ̸= D̃′

0.
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Proof. Since f̃ is injective, each tuple in D̃0 and D̃′
0 has multiplicity 1. But under f , there were

differences in multiplicity for at least one tuple (k, l). Hence, given f̃ , there exists at least one
tuple (k, l) ∈ D̃0 ∪ D̃′

0 with (k, l) /∈ D̃0 ∩ D̃′
0. As a consequence, D̃0 ̸= D̃′

0.

For readers familiar with TDA, this lemma can also be proved in a simpler way by noting that if the
bottleneck distance between D0 and D′

0 is non-zero, it will remain so if one picks a perturbation that
is sufficiently small (this fact can also be proved more rigorously). In any case, the preceding proofs
enable us to finally state a stronger variant of the expressivity theorem, initially stated as Theorem 2
in the main paper. For consistency reasons with the nomenclature in this section, we slightly renamed
the filtration function.
Theorem 4 (Expressivity, strong version). Persistent homology is at least as expressive as WL[1], i.e.
if the WL[1] label sequences for two graphs G and G′ diverge, there exists an injective filtration f̃

such that the corresponding 0-dimensional persistence diagrams D̃0 and D̃′
0 are not equal.

Proof. We obtain a non-injective filtration function f from Theorem 3, under which D0 and D′
0 are

not equal. By Lemma 1, for every ϵ > 0, we can find an injective function f̃ with ∥f − f̃∥∞ < ϵ.
According to Lemma 2, the persistence diagrams calculated by this function do not coincide, i.e.
D̃0 ̸= D̃′

0. Hence, f̃ is a filtration function and, according to Theorem 1, differentiability is
ensured.

C EMPIRICAL EXPRESSIVITY: ANALYSIS OF (STRONGLY) REGULAR GRAPHS

A k-regular graph is a graph G = (V,E) in which all vertices have degree k. For k = {3, 4}, such
graphs are also known as cubic and quartic graphs, respectively. The Weisfeiler–Lehman test is
capable of distinguishing between certain variants of these graphs (even though we observe that
WL[1] is not sufficient to do so). Similarly, a strongly regular graph is a graph G = (V,E) with two
integers λ, µ ∈ N such that each pair of adjacent vertices has λ common neighbours, whereas every
pair of non-adjacent vertices has µ common neighbours.

Persistent homology can make use of higher-order connectivity information to distinguish between
these data sets. To demonstrate this, we use a standard degree filtration and compute persistent
homology of the graph, including all higher-order cliques. We then calculate the total persistence
of each persistence diagram D, and use it to assign a feature vector to the graph. This is in some
sense the simplest way of employing persistent homology; notice that we are not learning a new
filtration but keep a fixed one. Even in this scenario, we find that there is always a significant number
of pairs of graphs whose feature vectors do not coincide—or, conversely speaking, as Table S4
shows, there are only between 14%–22% of pairs of graphs that we cannot distinguish by this simple
scheme. This illustrates the general expressivity that a topology-based perspective can yield. For the
strongly-regular graphs, we observe even lower error rates: we only fail to distinguish about 1.2% of
all pairs (specifically, 8236 out of 7424731 pairs) of the 3854 strongly-regular graphs on 35 vertices
with λ = µ = 9 (McKay and Spence, 2001).

A note on computational complexity. At the same time, this approach is also not without its
disadvantages. Since we perform a clique counting operation, the complexity of the calculation in-
creases considerably, and we would not suggest to use persistent homology of arbitrary dimensions in
practice. While there are some algorithmic improvements in topological constructions (Zomorodian,
2010), naı̈ve persistent homology calculations of arbitrary order may quickly become infeasible for
larger data sets. This can be alleviated to a certain extent by approximating persistent homology (Ca-
vanna et al., 2015a;b; Sheehy, 2013), but the practical benefits of this are unclear. Nevertheless, this
experiment should therefore be considered as an indication of the utility of topological features in
general to complement and enhance existing architectures.

D EXPERIMENTAL SETUP & COMPUTATIONAL RESOURCES

Following the setup of Dwivedi et al. (2020), we implemented the following training procedure: All
models are initialised with an initial learning rate lrinit, which varies between the data sets. During
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Table S4: Error rates when using persistent homology with a degree filtration to classify pairs of
k-regular on n vertices. R3-N12 denotes 3-regular graphs on 12 vertices, for instance. This list is by
no means exhaustive, but indicates the general utility of persistent homology and its filtration-based
analysis.

Data set Graphs Pairs Error Error rate

R3-N12 85 3570 712 19.94%
R3-N14 509 129286 26745 20.69%
R3-N16 4060 8239770 1757385 21.33%
R4-N10 59 1711 229 13.38%
R4-N11 265 34980 4832 13.81%
R4-N12 1544 1191196 170814 14.34%

Table S5: Parameters of learning rate scheduling (including ‘patience’ parameters) for training of
models in this work.

NAME MNIST, CIFAR-10, PATTERNS,
CLUSTER

PROTEINS, ENZYMES, DD

lrinit 1× 10−3 7× 10−4

lrmin 1× 10−5 1× 10−6

lrpatience 10 25

training the loss on the validation split is monitored and the learning rate is halved if the validation
loss does not improve over a period of lrpatience. Runs are stopped when the learning rate gets
reduced to a value of lower than lrmin. The parameters for the different data sets are shown in
Table S5.

Our method is implemented in Python, making heavy use of the pytorch-geometric li-
brary (Fey and Lenssen, 2019), licensed under the MIT License, and the pytorch-lightning
library (Falcon et al., 2019), licensed under the Apache 2.0 License. The training and hyperparameter
selection was performed using ‘Weights and Biases’ (Biewald, 2020), resulting in additional reports,
tables, and log information, which will simplify the reproducibility of this work. We will make
our own code available, using either the MIT License or a BSD 3-Clause license, which precludes
endorsing/promoting our work without prior approval. All licenses used for the code are compatible
with this licensing choice.

As for the data sets, we use data sets that are available in pytorch-geometric for graph learning
tasks. Some of the benchmark data sets have been originally provided by Morris et al. (2020),
others (CIFAR-10, CLUSTER, MNIST, PATTERN) have been provided by Dwivedi et al. (2020) in
the context of a large-scale graph neural network benchmarking effort.

Ablated static variant of TOGL. Next to all the experiments presented in the main paper, we also
developed a static variant of our layer, serving as an additional ablation method (this nomenclature
will be used in all supplementary tables). The static variant mimics the calculation of a filtration
in terms of the number of parameters but without taking topological features into account. The
layer uses a static mapping (instead of a dynamic one based on persistent homology) of vertices
to themselves (for dimension 0), and employs a random edge selection process (for dimension 1).
This has the effect of learning graph-level information that is not strictly based on topology but on
node feature values. The static variant of TOGL reduces to an MLP that is applied per vertex in case
interactions between tuples are not considered, and to the application of a DeepSet Zaheer et al.
(2017) to the vertex representations if interactions between tuples are incorporated. Generally, if the
static variant performs well on a data set, we assume that performance is driven much more by the
availability of any graph-level type of information, such as the existence of certain nodes or groups of
nodes, as opposed to topological information.

Compute resources. Most of the jobs were run on our internal cluster, comprising 64 physical
cores (Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz) with 8 GeForce GTX 1080
GPUs. A smaller fraction has been run on another cluster, containing 40 physical cores (Intel(R)
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Table S6: The set of hyperparameters that we use to train TOGL, along with their respective value
ranges. Notice that ‘dropout‘ could be made configurable, but this would make our setup incomparable
to the setup proposed by Dwivedi et al. (2020) for benchmarking GNNs.

NAME VALUE(S)

DeepSet {True, False}
Depth {3, 4}
Dim1 True (by default, we always use cycle information)

Dropout 0.
Early Topo (True, False)
Static {True, False} (to evaluate the static variant)

Filtration Hidden Dimension 32
Hidden Dimension 138–146
No. coordinate functions 3
No. filtrations 8
Residual and Batch Norm True
Share filtration parameters True

Xeon(R) CPU E5-2630L v4 @ 1.80GHz) with 2 Quadro GV100 GPUs and 1 Titan XP
GPU.

E HYPERPARAMETERS

Table S6 contains a listing of all hyperparameters used to train TOGL. For the Weisfeiler–Lehman
subtree kernel, which we employed as a comparison partner on the synthetic data sets, we
used a support vector machine classifier with a linear kernel, whose regularisation parameter
C ∈ {10−4, 10−3, . . . , 104} is trained via 5-fold cross validation, which is repeated 10 times to
obtain standard deviations. This follows closely the setup in graph classification literature.

F EXTENDED RESULTS FOR THE SYNTHETIC DATA SETS

In the main paper, we depicted a concise analysis of synthetic data sets (Figure 1). Here, we provide
a more detailed ablation of this data set, highlighting the differences between TOGL and its static
baseline, but also disentangling the performance of 0-dimensional and 1-dimensional topological
features, i.e. connected components and cycles, respectively. Figure S4 depicts the results. As stated
in the main paper, we observe that (i) both cycles and connected components are crucial for reaching
high predictive performance, and (ii) the static variant is performing slightly better than the standard
GCN, but significantly worse than TOGL, due to its very limited access to topological information.

G VISUALISATION OF THE LEARNT FILTRATIONS

TOGL can learn an arbitrary number of filtrations on the graphs. In Figure S7, we display 3 different
filtrations learnt on an randomly picked graph from the DD data set and compare it against the
classical node degree filtration. The width of the nodes is plotted proportional to the node degree
filtration while the colour saturation is proportional to the learnt filtration. Filtration 0 appears to be
correlated with the degree filtration, while other filtrations learnt by TOGL seem to focus on different
local properties of the graph.

H EXPERIMENTS ON LAYER PLACEMENT

A priori, it is not clear where to place TOGL. We therefore investigated the impact of putting TOGL
first (thus imbuing the graph with topological features arising from the neighbours of nodes) or at
another position in the network. In Table Table S7, we investigate the performance of the layer when
TOGL is placed at different positions in a GNN architecture composed of 3 graph convolution layers.
It appears that for this dataset, positioning TOGL before the last GNN layer leads to best performance
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(b) Performance for NECKLACES

Figure S4: Performance comparison on synthetic data sets as a function of the number of GCN layers
or Weisfeiler–Lehman iterations. This is an extended version of Figure 1. For TOGL, we show the
performance with respect to the dimensionality of topological features that are being used. Since the
standard deviations are negligible, we refrain from showing them here.

(a) DD (b) ENZYMES (c) PROTEINS

Figure S5: Example graphs of the benchmark data sets that describe molecular structures. These
graphs give rise to complex topological structures that can be exploited.

21



Published as a conference paper at ICLR 2022

(a) IMDB-BINARY (b) REDDIT-BINARY

Figure S6: Example graphs of the benchmark data sets that correspond to extracted social networks.
These graphs are best described in terms of clique connectivity; the existence of a single ‘hub’ node
does not give rise to a complex topological structures that can be exploited a priori.

(a) Filtration 0 (b) Filtration 1 (c) Filtration 2

Figure S7: Examples of different filtrations jointly learnt on an example graph randomly picked from
the DD data set. The width of each node dot is proportional to its node degree, the colour saturation
is proportional to the filtration value.
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Table S7: Test accuracies for different layer positions. TOGL can be placed at different positions.
When placed at position 0, all downstream layers incorporate topological information, but only as
much as can be gleaned from the nodes of graph. By contrast, placing TOGL last makes a readout
function that incorporates information from multiple filtrations.

LAYER POSITION METHOD NECKLACES

3 GCN-3-TOGL-1 (no interaction) 97.17± 0.4
GCN-3-TOGL-1 (static - no interaction) 94.5± 2.9

2 GCN-3-TOGL-1 (no interaction) 98.8± 0.8
GCN-3-TOGL-1 (static - no interaction) 77.2± 4.5

1 GCN-3-TOGL-1 (no interaction) 97.4± 1.8
GCN-3-TOGL-1 (static - no interaction) 66.3± 5.8

0 GCN-3-TOGL-1 (no interaction) 98.6± 2.1
GCN-3-TOGL-1 (static - no interaction) 61.8± 5.3

Table S8: Test accuracies for different layer positions. TOGL can be placed at different positions.
When placed at position 0, all downstream layers incorporate topological information, but only as
much as can be gleaned from the nodes of graph. By contrast, placing TOGL last makes a readout
function that incorporates information from multiple filtrations.

LAYER POSITION METHOD IMDB-BINARY REDDIT-BINARY PROTEINS-FULL DD

4 GCN-3-TOGL-1 (interaction) 74.9± 4.0 92.7± 1.4 74.9± 3.3 71.5± 4.5
GCN-3-TOGL-1 (no interaction) 71.6± 2.1 89.4± 2.1 75.9± 4.0 74.8± 2.0
GCN-3-TOGL-1 73.4± 3.2 90.0± 2.8 75.6± 4.0 72.3± 4.6
GCN-3-TOGL-1 (static - interaction) 74.2± 3.7 91.9± 1.6 75.2± 2.7 71.1± 5.1
GCN-3-TOGL-1 (static - no interaction) 73.8± 4.8 89.4± 2.1 75.8± 4.0 70.9± 2.6
GCN-3-TOGL-1 (static) 74.2± 4.7 92.3± 2.3 75.2± 3.9 70.3± 5.0

3 GCN-3-TOGL-1 (interaction) 70.6± 5.6 92.2± 1.3 75.5± 3.1 73.0± 2.8
GCN-3-TOGL-1 (no interaction) 76.1± 3.9 90.4± 1.6 75.7± 3.1 75.5± 3.4
GCN-3-TOGL-1 74.8± 5.7 91.0± 1.7 73.9± 3.4 73.9± 3.4
GCN-3-TOGL-1 (static - interaction) 72.0± 3.0 92.9± 1.2 76.0± 2.1 71.5± 5.8
GCN-3-TOGL-1 (static - no interaction) 74.0± 6.8 90.8± 4.4 75.5± 3.8 71.8± 4.1
GCN-3-TOGL-1 (static) 73.4± 6.2 92.2± 1.3 75.8± 2.7 71.6± 4.5

2 GCN-3-TOGL-1 (interaction) 73.2± 2.1 91.7± 0.5 75.4± 2.9 74.2± 2.7
GCN-3-TOGL-1 (no interaction) 74.9± 2.3 87.6± 4.1 75.5± 4.3 74.7± 4.3
GCN-3-TOGL-1 74.8± 1.9 89.6± 2.2 75.4± 4.1 74.9± 3.5
GCN-3-TOGL-1 (static - interaction) 72.2± 4.4 91.6± 2.9 76.0± 4.1 72.7± 3.9
GCN-3-TOGL-1 (static - no interaction) 72.4± 4.3 87.6± 4.1 74.4± 4.1 70.7± 3.4
GCN-3-TOGL-1 (static) 73.6± 4.3 92.4± 0.8 74.5± 3.8 71.5± 4.1

1 GCN-3-TOGL-1 (interaction) 69.6± 4.3 91.1± 0.7 75.7± 2.6 74.1± 4.1
GCN-3-TOGL-1 (no interaction) 71.8± 2.7 89.6± 1.7 75.3± 4.2 75.6± 3.5
GCN-3-TOGL-1 70.6± 3.5 89.9± 1.6 75.2± 3.9 74.7± 3.0
GCN-3-TOGL-1 (static - interaction) 73.4± 4.6 90.5± 1.4 76.3± 3.4 73.2± 3.6
GCN-3-TOGL-1 (static - no interaction) 72.4± 3.1 89.6± 1.7 75.2± 3.4 72.7± 3.8
GCN-3-TOGL-1 (static) 73.4± 4.6 90.1± 0.9 75.6± 3.8 72.5± 4.3

when the non-static version is considered. Importantly, this contrasts with the approach of Hofer et al.
(2019), where topological information is only available at the read-out level, which would lead to the
worst performance on this dataset.

We complemented our experiments on layer placement with an exhaustive assessment of the perfor-
mance of our model on on the IMDB-Binary, Reddit-Binary, Proteins and DD datasets. Please refer
to Table S8 for these results.

I EXTENDED EXPERIMENTS FOR STRUCTURED-BASED GRAPH
CLASSIFICATION

This section contains more results for the structured-based classification of graph data sets shown
in Section 5.3 and Figure 3. Table Table S9 contains a detailed listing of performance values under
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(b) Performance for ENZYMES-STRUCT
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(c) Performance for PROTEINS-FULL-STRUCT
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(e) Performance for PATTERN-STRUCT
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(f) Performance for MNIST-STRUCT

Figure S8: Comparison of test accuracy for the structure-based variants of the benchmark data sets
while varying network depth, i.e. the number of GCN layers. Error bars denote the standard deviation
of test accuracy over 10 cross-validation folds. Interaction refers to using a DeepSets approach
for embedding persistence diagrams, whereas no interaction uses persistence diagrams coordinate
functions that do not account for pairwise interactions.

certain additional ablation scenarios, such as a disentangled comparison of the performance with
respect to picking a certain type of embedding scheme for topological features, i.e. deep sets versus
known embedding functions for persistence diagrams, the latter of which cannot handle interactions
between tuples in a diagram. The version labelled General consist of non-static versions where
the type of feature embedding scheme is considered as an hyper-parameter. We then report the test
accuracy of the version whose validation accuracy was highest. The General -Static variant is similar
but for the static version of TOGL. Figure S8 depicts the performance on different data sets, focusing
on a comparison between the different embedding types and the static variant of our layer.

The behaviour of our static variant indicates that predictive performance is not driven by having
access to topological information on the benchmark data sets. To some extent, this is surprising, as
some of the data sets turn out to contain salient topological features even visual inspection (Figure S5),
whereas the social networks exhibit more community-like behaviour (Figure S6). Together with the
results from Section 5.3, this demonstrates that existing data sets often ‘leak’ structural information
through their labels/features. Yet, for the node classification data sets CLUSTER and PATTERN,
GCN-3-TOGL-1 or its static variant perform best among all comparison partners.4

4On these data sets, our results on GCN-4 differ slightly due to a known misalignment in the implementation
of Dwivedi et al. (2020), as compared to the original GCN architecture.
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Table S9: Test Accuracies for different structural data sets.

Depth GCN GIN GAT GCN-TOGL (General) GCN-TOGL (General - Static) GCN-TOGL (No Interaction) GCN-TOGL (Interaction) GCN-TOGL (Static - No Interaction) GCN-TOGL (Static-Interaction)
Data Set

DD 1 64.9± 3.5 75.0± 2.3 59.8± 2.0 76.1± 2.7 68.8± 4.1 75.5± 3.0 75.6± 2.9 69.4± 4.2 66.7± 3.2
DD 2 67.7± 4.7 75.4± 3.1 61.6± 4.3 74.8± 2.7 66.5± 2.8 75.0± 2.3 75.9± 2.4 67.1± 3.3 66.5± 3.2
DD 3 67.4± 3.0 74.9± 3.3 62.0± 4.3 75.3± 2.4 68.8± 4.5 75.0± 2.1 75.6± 2.2 68.8± 4.5 65.6± 2.2
DD 4 68.0± 3.6 75.6± 2.8 63.3± 3.7 75.1± 2.1 68.0± 2.4 75.6± 2.5 74.9± 2.3 68.4± 2.6 64.4± 4.8
DD 5 66.8± 3.3 75.6± 2.1 62.6± 3.9 75.9± 3.3 67.6± 4.1 76.1± 3.3 75.0± 2.4 67.7± 4.2 68.3± 3.6
Proteins 1 68.6± 4.1 72.0± 3.4 66.8± 3.5 75.3± 3.4 70.3± 2.6 74.8± 4.0 75.3± 3.6 70.3± 3.9 71.0± 3.6
Proteins 2 69.6± 3.1 73.1± 4.1 66.8± 3.2 74.9± 3.5 71.0± 3.5 74.6± 3.8 74.8± 3.2 70.7± 4.1 71.2± 4.7
Proteins 3 70.6± 3.7 73.0± 4.4 67.0± 3.4 73.8± 4.3 70.5± 3.7 74.3± 3.5 74.3± 4.4 70.6± 3.7 70.0± 3.1
Proteins 4 68.8± 2.8 74.6± 3.1 67.5± 2.6 73.8± 3.7 71.2± 5.1 74.6± 4.0 74.1± 2.5 70.7± 5.8 70.6± 3.1
Proteins 5 67.7± 3.1 73.0± 3.2 65.7± 1.7 74.7± 3.3 71.2± 1.9 74.6± 3.6 74.6± 2.8 71.1± 1.7 71.1± 3.7
Enzymes 1 21.7± 5.3 20.8± 4.2 15.3± 3.1 26.3± 6.4 23.0± 6.3 26.0± 6.6 26.2± 6.9 24.8± 6.0 21.8± 4.0
Enzymes 2 23.5± 3.3 20.5± 5.3 17.5± 5.2 26.2± 8.1 21.2± 4.6 27.2± 6.4 23.0± 8.3 20.8± 4.0 21.5± 5.9
Enzymes 3 23.8± 3.9 20.5± 6.0 16.3± 7.0 29.2± 6.1 24.3± 6.1 27.3± 6.1 29.3± 7.9 24.5± 6.0 21.2± 3.4
Enzymes 4 22.0± 3.3 21.3± 6.5 21.7± 2.9 30.3± 6.5 23.7± 5.4 30.0± 7.0 29.8± 6.4 23.2± 5.7 22.7± 4.2
Enzymes 5 25.3± 5.6 21.0± 4.4 19.8± 5.8 29.0± 5.2 26.8± 7.2 29.5± 5.2 28.0± 6.2 25.8± 6.7 26.8± 5.3
Pattern 1 84.2± 0.0 69.5± 0.0 55.2± 3.6 85.7± 0.0 84.6± 0.0 84.6± 0.0 85.7± 0.1 84.7± 0.0 84.2± 0.0
Pattern 2 84.8± 0.0 84.3± 0.0 55.1± 6.3 86.1± 0.0 85.5± 0.0 85.3± 0.1 86.0± 0.1 85.5± 0.0 84.9± 0.0
Pattern 3 85.4± 0.1 84.7± 0.0 62.9± 5.2 86.7± 0.0 85.7± 0.0 85.7± 0.0 86.7± 0.0 85.7± 0.0 85.6± 0.0
Pattern 4 85.6± 0.0 84.8± 0.0 58.3± 8.8 86.7± 0.0 85.8± 0.0 85.9± 0.4 86.7± 0.0 85.8± 0.0 85.7± 0.0
Cluster 1 16.8± 0.1 16.7± 0.1 16.7± 0.1 16.6± 0.0 16.7± 0.0 16.7± 0.1 16.6± 0.1 16.6± 0.1 16.6± 0.0
Cluster 2 16.6± 0.1 16.6± 0.1 16.6± 0.1 16.6± 0.0 16.6± 0.0 16.6± 0.1 16.7± 0.1 16.7± 0.1 16.6± 0.1
Cluster 3 16.6± 0.0 16.4± 0.2 16.7± 0.1 16.6± 0.0 16.6± 0.0 16.7± 0.1 16.7± 0.1 16.7± 0.1 16.6± 0.2
Cluster 4 16.7± 0.0 16.4± 0.1 16.7± 0.0 16.8± 0.0 16.8± 0.0 16.7± 0.3 16.7± 0.1 16.6± 0.2 16.6± 0.3
MNIST 1 42.0± 2.2 42.9± 0.0 40.4± 2.9 66.4± 0.0 60.3± 0.0 62.6± 1.1 65.9± 0.4 60.0± 0.3 56.4± 0.4
MNIST 2 56.4± 0.9 68.3± 0.7 48.1± 7.3 77.4± 0.0 75.3± 0.0 70.3± 2.4 77.1± 0.4 75.5± 0.2 70.5± 0.9
MNIST 3 71.4± 0.9 79.1± 0.3 68.7± 2.6 82.3± 0.0 81.3± 0.0 77.9± 0.6 82.0± 0.3 81.7± 0.3 78.8± 0.8
MNIST 4 76.2± 0.5 83.4± 0.9 63.2± 10.4 84.8± 0.0 82.9± 0.0 81.0± 0.4 84.3± 0.7 83.4± 0.4 82.0± 0.9
MNIST 5 77.6± 0.4 85.1± 0.6 56.8± 20.4 84.0± 0.0 85.0± 0.0 81.3± 0.9 84.2± 0.3 85.1± 0.4 83.1± 0.5

Table S10: Results for the structure-based experiments. We depict the test accuracy obtained on
various benchmark data sets when only considering structural information (i.e. the network has
access to uninformative node features). Graph classification results are shown on the left, while node
classification results are shown on the right.

Graph classification

METHOD DD ENZYMES MNIST PROTEINS

GAT-4 63.3±3.7 21.7± 2.9 63.2±10.4 67.5± 2.6
GIN-4 75.6±2.8 21.3± 6.5 83.4± 0.9 74.6± 3.1

GCN-4 (baseline) 68.0±3.6 22.0± 3.3 76.2± 0.5 68.8± 2.8
GCN-3-TOGL-1 75.1±2.1 30.3± 6.5 84.8± 0.4 73.8± 4.3
GCN-3-TOGL-1 (static) 68.0±2.4 23.7± 5.4 82.9± 0.0 71.2± 5.1
GIN-3-TOGL-1 76.2±2.4 23.7± 6.9 84.4± 1.1 73.9± 4.9
GIN-3-TOGL-1 (static) 76.3±2.8 25.2± 7.0 83.9± 0.1 74.2± 4.2
GAT-3-TOGL-1 75.7±2.1 23.5± 6.1 77.2±10.5 72.4± 4.6
GAT-3-TOGL-1 (static) 68.4±3.4 22.7± 3.9 81.9± 1.1 68.9± 4.0

Node classification

CLUSTER PATTERN

16.7± 0.0 58.3±8.8
16.4± 0.1 84.8±0.0

16.7± 0.0 85.6±0.0
16.8± 0.0 86.7±0.0
16.8± 0.0 85.8±0.0
16.6± 0.3 86.6±0.1
16.4± 0.1 85.4±0.1
16.5± 0.1 75.9±3.1
16.7± 0.0 60.5±3.0

Table S11: Test accuracy on benchmark data sets (following standard practice, we report weighted
accuracy on CLUSTER and PATTERN). Methods printed in black have been run in our setup, while
methods printed in grey are cited from the literature, i.e. Dwivedi et al. (2020), Morris et al. (2020)
for IMDB-B and REDDIT-B, and Borgwardt et al. (2020) for WL/WL-OA results GIN-4 results
printed in italics are 1-layer GIN-ϵ, as reported in Morris et al. (2020). Graph classification results
are shown on the left, while node classification results are shown on the right.

Graph classification

METHOD CIFAR-10 DD ENZYMES MNIST PROTEINS-FULL IMDB-B REDDIT-B

GAT-4 64.2± 0.4 75.9± 3.8 68.5± 5.2 95.5± 0.2 76.3± 2.4 — —
GATED-GCN-4 67.3± 0.3 72.9± 2.1 65.7± 4.9 97.3± 0.1 76.4± 2.9 — —
GIN-4 55.5± 1.5 71.9± 3.9 65.3± 6.8 96.5± 0.3 74.1± 3.4 72 .9 ± 4 .7 89 .8 ± 2 .2
WL — 77.7± 2.0 54.3± 0.9 — 73.1± 0.5 71.2± 0.5 78.0± 0.6
WL-OA — 77.8± 1.2 58.9± 0.9 — 73.5± 0.9 74.0± 0.7 87.6± 0.3

GCN-4 (baseline) 54.2± 1.5 72.8± 4.1 65.8± 4.6 90.0± 0.3 76.1± 2.4 68.6± 4.9 92.8± 1.7
GCN-3-TOGL-1 61.7± 1.0 73.2± 4.7 53.0± 9.2 95 .5 ± 0 .2 76.0± 3.9 72.0± 2.3 89.4± 2.2
GCN-3-TOGL-1 (static) 62.1± 0.5 71.0± 2.8 49.8± 7.0 95.4± 0.1 75.7± 3.6 72.8± 5.4 92.1± 1.6
GIN-3-TOGL-1 61.3± 0.4 75.2± 4.2 43.8± 7.9 96.1± 0.1 73.6± 4.8 74.2± 4.2 89 .7 ± 2 .5
GIN-3-TOGL-1 (static) 61.8± 0.6 72.2± 5.3 43.3± 8.3 96.4± 0.1 74.7± 3.1 73.8± 2.4 89.1± 4.4
GAT-3-TOGL-1 52.8± 3.4 73.7± 2.9 51.5± 7.3 0.0± 0.0 75.2± 3.9 70.8± 8.0 82.5± 8.7
GAT-3-TOGL-1 (static) 50.8± 3.6 72.8± 3.4 55.2± 9.1 96.2± 0.3 74.4± 2.5 68.7± 9.4 70.1± 9.9

Node classification

CLUSTER PATTERN

57.7± 0.3 75.8± 1.8
60.4± 0.4 84.5± 0.1
58.4± 0.2 85.6± 0.0

— —
— —

57.0± 0.9 85.5± 0.4
60.4± 0.2 86.6± 0.1
60.5± 0.2 85.6± 0.1
60.4± 0.2 86.7± 0.1
60.6± 0.3 85.5± 0.1
58.4± 3.7 59.6± 3.3
58.7± 2.2 64.5± 14.2
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Table S12: Test accuracy of the different methods on the Spheres vs. Torus classification task. We
compare two architectures (GCN-4, GIN-4) with corresponding models where one layer is replaced
with TOGL and highlight the winner of each comparison in bold.

METHOD SPHERES VS. TORUS

GCN-4 77.8±2.1
GCN-3-TOGL-1 98.5±1.3

GIN-4 76.2±3.5
GIN-3-TOGL-1 99.6±0.9

Table S13: Graph classification results for the structure-based experiments. We depict the test
accuracy obtained on various benchmark data sets when only considering structural information (i.e.
the network has access to uninformative node features). We compare two architectures (GCN-4,
GIN-4) with corresponding models where one layer is replaced with TOGL and highlight the winner
of each comparison in bold.

Graph classification

METHOD DD PROTEINS CIFAR-10

GCN-6 70.5±4.9 70.1±4.0 45.4±0.5
GCN-5-TOGL-1 75.9±2.5 73.5±3.5 54.4±0.7

GCN-8 68.5±3.6 72.0±3.3 45.6±0.5
GCN-7-TOGL-1 75.6±2.9 73.5±3.3 54.1±1.1

GIN-6 76.1±2.4 72.9±3.4 53.6±1.4
GIN-5-TOGL-1 76.5±2.0 72.1±3.6 54.1±1.2

GIN-8 76.5±2.4 72.9±4.0 51.4±2.4
GIN-7-TOGL-1 76.0±3.6 72.6±4.1 55.3±0.7

J GEOMETRIC DATASET

In this section, we showcase the potential of TOGL for improving performance on tasks of geometric
data sets. Tasks such as 3D object recognition are gathering increasing attention in the machine
learning community and our approach represents a promising direction to explore that area. We
consider a simple synthetic data set consisting of graphs linking points on geometrical objects. In
particular, we create a data set with two classes where one consists of graphs lying on a sphere and
the other of graphs lying on a torus. The nodes of these graphs are composed of points sampled on the
geometrical objects and embedded in an higher dimensional space. The graph is then constructed as a
fully connected graphs between all sampled points. Table S12 presents the classification accuracy of
different methods on this experiment. We observe that substituting a GNN layer with a TOGL layer
allows to obtain nearly perfect accuracy, showcasing the crucial importance of a topology-informed
layer in geometric data sets.

K LARGER NUMBER OF LAYERS IN THE GNN ARCHITECTURE

In this section, we investigate the performance of our approach. on architecture with a larger number
of layers. For computational reasons, we limit our analysis to 3 data sets, namely DD, PROTEINS
and CIFAR-10. We re-use the experimental setup as detailed in Section 5.1. Tables S13 and S14
show the classification accuracy for the structural and the benchmark setup respectively. What we
observe is that the advantage of including TOGL is generally conserved, and similar to the one
observed in the 4 layers case. In absolute terms, for the structural dataset, the performance on the DD
dataset increases with more layers (for both the baseline and the TOGL version) but decreases for the
PROTEINS dataset. On the benchmark dataset (including node features), the performance tends to
increase for all three datasets compared to the 4-layers version.
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Table S14: Test accuracy on benchmark data sets. Graph classification results are shown on the left;
node classification results are shown on the right. Following Table 1, we take existing architectures
and replace their second layer by TOGL; we use italics to denote the winner of each comparison. A
bold value indicates the overall winner of a column, i.e. a data set.

Graph classification

METHOD CIFAR-10 DD PROTEINS-FULL

GCN-6 53.6±0.6 72.7±2.8 76.3±3.6
GCN-5-TOGL-1 63.0±0.8 76.0±3.2 76.0±3.2

GCN-8 52.9±0.9 70.7±4.5 75.4±2.4
GCN-7-TOGL-1 61.6±0.5 72.1±7.3 75.6±3.5

GIN-6 55.7±2.8 73.1±3.7 74.1±3.1
GIN-5-TOGL-1 61.5±1.2 72.7±4.2 73.8±3.3

GIN-8 56.0±3.5 71.6±5.8 74.8±3.2
GIN-7-TOGL-1 61.1±0.8 72.4±4.6 74.3±2.5
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