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Abstract

Deep reinforcement learning (DRL) for combinatorial optimization has drawn
attention as an alternative for human-designed solvers. However, training DRL
solvers for large-scale tasks remains challenging due to combinatorial optimization
problems’ NP-hardness. This paper proposes a novel scale-conditioned adaptation
(SCA) scheme that improves the transferability of the pre-trained solvers on larger-
scale tasks. The main idea is to design a scale-conditioned policy by plugging a
simple deep neural network, denoted as scale-conditioned network (SCN), into the
existing DRL model. SCN extracts a hidden vector from a scale value, and then we
add it to the representation vector of the pre-trained DRL model. The increment of
the representation vector captures the context of scale information and helps the
pre-trained model effectively adapt the policy to larger-scale tasks. Our method is
verified to improve the zero-shot and few-shot performance of DRL-based solvers
in various large-scale combinatorial optimization tasks.

1 Introduction

Combinatorial Optimization (CO) is a research field that deals with various important problems.
A representative CO problem is the traveling salesman problem (TSP) [1] which aims to find the
shortest path of the Hamiltonian cycle: the salesman must visit every city and get back to the initial
city. TSP can extend to several practical problems such as capacitated vehicle routing problems
(CVRP) [2]. However, TSP is proven to be NP-hard [1] so that it is intractable to find an optimal
solution in a practical time budget. To this end, several heuristic methods were suggested to find
sub-optimal solutions on a reasonable budget [3, 4]. However, these methods are handcrafted by
domain experts and are hard to be extended to a similar class of CO problems.

Related Works. Deep reinforcement learning (DRL) methods [5, 6, 7, 8, 9, 10, 11] are drawing
considerable attention to replace handcrafted heuristic methods because they can generate design
solvers using the high expression power of deep neural network (DNN), which can be trained without
a labeled optimal solution. Remarkably, some studies [8, 10, 11, 12] already proposed that a DRL-
based solver, a general purpose method, outperforms problem-specialized handcrafted heuristics.
However, DRL-based methods suffer from scalability issues; it has only been verified in small-scale
CO problems. To tackle this issue, an Effective Active Search (EAS) [12], a transfer learning method
for a DRL-based CO solver, was proposed. However, the EAS was verified on insufficiently larger
scales N = 125, 150, 200 than the previous method N = 100, where N is the number of cities to
visit in TSP and CVRP.

Contribution. This paper proposes a scale-conditioned adaptation (SCA), a fast adaptation scheme
combining the EAS with a novel scale-conditioned network (SCN). The SCN reduces the number of

∗Equal Contribution.
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Figure 1: The scale conditioned network combined with DRL model for combinatorial optimization.

transfer iterations (K) of the EAS algorithm and maximize performance with a limited K by tackling
distributional shift according to scale variations. Specifically, the SCN is a simple DNN model that
effectively modifies the hidden representation by adapting distributional shift to the original hidden
representation for the larger-scale tasks. Technically, the SCN takes the scale value input N and
outputs an increment vector for the pre-trained DRL model’s hidden representation vector. With the
implementation of SCN to a pre-trained DRL model, the overall policy becomes a scale-conditioned
policy that can effectively adapt to larger-scale tasks using the EAS. According to the experimental
results, our SCA consistently improved the transfer-ability of two representative DRL models (POMO
and Sym-NCO) in large-scale (N = 500, 1000) CO tasks (TSP and CVRP).

2 Preliminary

2.1 Problem Description with Target DRL models
The Policy Optimization for Multiple Optima (POMO) [9] is a DRL method that trains the attention
model (AM) [7], which is a transformer-based encoder-decoder [13] model. The POMO-trained AM
using the REINFORCE [14] with their novel shared baseline scheme leverages the TSP’s symmetric
nature. The Symmetric Neural Combinatorial Optimization (Sym-NCO) [11] is an expansion of the
POMO scheme for the general purpose symmetricity learning that achieved higher performance on
various TSP variants including CVRP.

Both POMO and Sym-NCO have a similar structure to generate an instance-conditioned policy p(π|x)
(see Fig. 1 for encoder-decoder processing of policy). They encode a N -scaled instance x = {xi}Ni=1,
which contains 2D euclidean coordinates, into high dimensional hidden vector h = {hi}Ni=1. Then,
the decoder auto-regressively generates permutation index π = {πi}Ni=1 of input indices (i.e.,
πi ∈ {1, ..., N}) exploiting h. The permutation index π becomes the order of visiting the cities in x.
The decoder architecture has a multi-head attention (MHA) layer, which processes three different
vectors from h: query q, key k, value v similar to the transformer. The query q is carefully designed
to capture the contextual information of CO instances: q = g1(

1
N

∑N
i=1 hi) + g2(hprev) where g1

and g2 are linear-projections. The 1
N

∑N
i=1 hi is designed to capture the global feature of instances.

The hprev is a hidden vector of a previously selected city to facilitate the auto-regressive process of
the decoder. See [7] for detailed process. Note that both POMO and Sym-NCO are trained on a fixed
scale of N = 100.

2.2 Effective Active Search: Transfer Learning of Pre-trained DRL model
The Effective Active Search (EAS) [12] is a transfer learning method that was validated to improve the
POMO’s performance on larger scale tasks, N = 125, 150, 200. EAS has three different variations;
the EAS-lay gives the most powerful performance. EAS-lay adds one multi-layer perceptron (MLP)
to process the hidden vector of h. The MLP is trained to adapt to larger-scale tasks, whereas other
the pre-trained layers are not updated during the adaptation. See [12] for detailed process of EAS.

3 Scale-Conditioned Adapatation

We propose a scale-conditioned adaptation (SCA) method by combining EAS with a novel scale-
conditioned network (SCN). The SCN is a simple MLP model fθ(N) where the input is N and output
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Figure 2: The zero-shot performance of POMO and Sym-NCO for various scales of TSP and CVRP.

is an increment vector for q (see Fig. 1 for SCA process). The fθ(N) can be pre-trained so that can
effectively improve the transferability of the DRL model within a limited adaptation time.

The fθ(N) outputs qscale, which is an increment of query vector of the pre-trained DRL model as
follows:

qnew = q + qscale = q + fθ(N) (1)

This simple process can give the scale conditioning to the original policy as: p(π|x, N), which can
effectively adapt to new N by simply inserting a scale value N during the adaptation phase.

3.1 Pre-training SCN (see Appendix A.2 for detail)
The SCN is trained to capture the contextual features of scale N by training with variations of N ,
and to infer a proper increment of the query as qscale (which does not need additional training in the
adaptation phase). To this end, we train the SCN that is plugged into the pre-trained DRL model,
using the EAS algorithm (only with K = 0).

3.2 Adaptation Phase (see Appendix A.3 for detail)
During the training phase, we just leverage three task scales N = 125, 150, 200. Then, in the
adaptation phase, we input much larger scales to the SCA: N = 500, 1000. We expect that the scale
context can be captured by SCA with variations of small-scaled data. This extrapolation process can
support scaling in several practical CO applications because some CO application needs enormous
computing cost to evaluate reward in the large-scale task.

Integration of SCN and EAS. We implemented the EAS-lay as the main adaptation scheme for
large-scale tasks. In the adaptation phase, our SCA is not updated but only infers qscale from N to
support the EAS-lay process. Note that our SCA can improve both the zero-shot transfer-ability of
the DRL model (without EAS-lay) and the few-shot transfer-ability of EAS-lay.

4 Experimental Results
4.1 SCA for large scale combinatorial optimization

To verify the effectiveness of SCA, we conducted experiments by adding a neural network that
gives the scale information to the pre-trained models, POMO and Sym-NCO, for routing problems
(TSP and CVRP). The routing problems aim to minimize the total cost of visiting all customers.
Additionally, CVRP [2] considers multi-vehicles with capacity constraints, whereas TSP considers
the single-vehicle setting. The size of routing problems is defined by the number of customers N .

Setup. We use the pre-trained POMO and Sym-NCO on N = 100 for both TSP and CVRP.
We freeze the pre-trained models’ parameters and train scale-conditioned network fθ(N) to give
additional scale information to the original models. We randomly generated 1, 000 TSP and CVRP
instances for each size N = 125, 150, 200 with the same instance generation rule as Kool et al.[7]
to train fθ(N). Using the same rule, 100 instances of TSP and CVRP with N = 500, 1000 were
generated for evaluation.
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Table 1: Performance evaluation on K shot adaptation to large-scale CVRP.
CVRP (N = 500) CVRP (N = 1, 000)

K = 0 K = 1 K = 5 K = 10 K = 0 K = 1 K = 5 K = 10

POMO 150.93 131.39 81.57 74.83 371.23 315.68 182.70 165.55
POMO + SCA (ours) 111.17 95.52 76.33 72.33 259.08 221.25 179.99 163.39
Sym-NCO 79.61 72.44 71.54 69.07 202.59 162.51 146.01 137.85
Sym-NCO + SCA (ours) 68.76 68.65 68.23 67.87 154.94 144.68 140.50 135.69

Table 2: Performance evaluation on K shot adaptation to large scale TSP.
TSP (N = 500) TSP (N = 1, 000)

K = 0 K = 1 K = 5 K = 10 K = 0 K = 1 K = 5 K = 10

POMO 22.85 22.10 21.19 21.12 42.54 39.94 37.04 36.93
POMO + SCA (ours) 21.55 21.50 21.34 21.23 38.22 37.96 37.37 36.96
Sym-NCO 23.33 22.40 21.19 21.17 43.97 40.38 37.06 37.06
Sym-NCO + SCA (ours) 21.80 21.75 21.64 21.46 38.58 38.33 37.49 37.18Ablation Study. We experimentally demonstrate the effectiveness of the additional information

extracted from scale values via SCN fθ(N) by evaluating models with different input values in
[100, 900]. We evaluate zero-shot performances using 10 instances of TSP and CVRP with various
sizes (N = 300, 500, 800). As shown in Fig. 2, the average cost tends to increase when the input
scale values are not aligned with N . In Fig. 2a, Fig. 2b, and Fig. 2d, the average costs are minimized
when the input scale values are approximately at 500 for N = 800. We conjecture that SCN suffers
from extrapolation since we trained fθ(N) with N ≤ 200 and tested in N = 800. This shows that
fθ(N) captures meaningful contextual features of N , which make the pre-trained models adapt well
to different Ns.

Performance Evaluation. We measure the performance of zero-shot and few-shot to demonstrate
whether SCA improves the performance of the original model. The performance is calculated as the
average cost. We employ EAS-lay described in Section 2.2 to implement the few-shot adaptation.
We used K = 0, 1, 5, 10, where K refers to the number of transfer iterations (see [12] in details).

As shown in Table 1 and Table 2, SCA successfully improves the performance when K ∈ {0, 1}
for TSP task and K ∈ {0, 1, 5, 10} for CVRP task. We observe that SCA is more effective in the
early adaptation phase (i.e., K is small) because we conduct EAS with K = 0 during the SCA
training phase (see Appendix C for additional analysis). Therefore, in the current phase, the SCA
can be positioned as an effective adaptation scheme for zero-shot (K = 0) and few-shot (K ≤ 10)
adaptation but has limitations on large-shot adaptation (K > 100).

5 Future Direction

In this paper, we proposed a new strategy, the scale-conditioned adaptation (SCA) for solving
large-scale routing problems which are hard to address due to their combinatorial nature. The SCA
was effective few shot adaptation (small K) but had limitations on large shot adaptation (large K).
To resolve this limitation, we suggest the below strategy as a future direction:

1. Expands the scale-conditioned network (SCN) to have input N and K together: i.e. expands
fθ(N) as fθ(N,K).

2. Train fθ(N,K) with variation of N and variation of K (using EAS).
3. Pre-trained fθ(N,K) infers qscale adaptively not only with N but also with K.
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A Detail of SCA Process

SCA has three phases (1) pre-training the model, which is plugged with scale conditioned network,
(2) training the scale conditional network (3) combining with SCA and EAS strategy. We provide the
details of this procedure in this section.

A.1 Pre-training the model.

We use the models which are POMO[9] and Sym-NCO[11]. These models are trained on instances
with N = 100, where N is the number of cities to visit, made available by the POMO authors.

A.2 Training scale conditional network.

The next phase is training the scale conditioned network fθ. The purpose of this phase is to train scale
conditioned network to capture the context information from the scale. Scale conditioned network
consists of two layers of MLP with ReLU activation function. This network’s input N, the scale of
corresponding problem instances, goes into the network; then, the output with the context of scale
comes out. As we describe in Section 2.1 POMO and Sym-NCO have encoder-decoder structures. In
the model’s decoder, there is a query which is one of the components of decoder architecture and
contains contextual information of instance. While we train the scale conditioned network, we freeze
the model’s parameter and only update two layers of MLP, which are composed of scale conditioned
network.(see Fig. 3) We use various scale instances for training fθ and get qscale which adds to
model’s query q to get new query qnew from each scale of instance.

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝒙 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}

Encoder
𝑣

Decoder

𝑁 = 5

L
in

e
a
r

(1
2
8
X
1
2
8
)

R
E
LU

L
in

e
a
r

(1
X
1
2
8
)

𝑘
ℎ

𝑞𝑛𝑒𝑤 = 𝑞𝑚𝑜𝑑𝑒𝑙 + 𝑞𝑠𝑐𝑎𝑙𝑒

𝑥1

𝑥2

𝑥3
𝑥4

𝑥5

𝝅 = {1,2,5,4,3}

𝑓𝜃

Update by 𝐿

(ours)

𝐿: Model loss

Figure 3: The procedure of training scale conditioned network.

A.3 Combining with SCA and EAS-lay

After training fθ, we solve the target problem K (number of adaptation) times by employing EAS-lay
method. For detail, the trained scale conditioned network is plugged with the model and adjust the
model’s query q to qnew by adding qscale, which is extracted from the target instance’s scale N .
From the qnew, model infers the solution π, which is the order of visiting the city and MLP provided
by EAS-lay is updated K times by utilizing the EAS-lay method. Note that the model and scale
conditioned network are not updated during the EAS-lay. (see Fig. 4)
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B Implementation of Details of Proposed Method

B.1 Hyperparameter for training scale conditioned network

We set the same hyperparameters to train the scale conditioned model which is plugged to POMO
and Sym-NCO

TSP CVRP
Batch size 16 16
Learning rate 3.2e-4 4.2e-4
Weight decay 1e-6 1e-6
Epochs 1 1
Epoch size 1000 1000

Table 3: Hyperparameter setting of training scale conditioned network.

B.2 Hyperparameter for SCA with EAS-lay

We set the same hyperparameters to employ EAS-lay with SCA

TSP CVRP
Learning rate 3.2e-4 4.2e-4
Weight decay 1e-6 1e-6
Imiation rate 1.2e-3 1.3e-3

Table 4: Hyperparameter setting of utilizing EAS-lay.
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Figure 5: The few-shot performance for various K of TSP and CVRP.

C Analysis on K-shot Adaptation

We compare K-shot adaptation performances of TSP and CVRP for various K to analyze the effects
of SCN in few-shot adaptation. Experiments are conducted on TSP and CVRP with N = 500, 800.
The parameters of SCN fθ(N) trained in Section 4 are used without additional training. Fig. 5
illustrates that SCN with any input scale value outperforms EAS without SCN in zero-shot (K = 0).
When K increases, SCN gives higher average costs than EAS for large input scale values in both
N = 500 and 800, but it still gives lower costs with input scale values less than 600. It is noticeable
that the cost-minimizing input scale values are shifted to the left as K increases, which means SCN
achieves better performances with mismatched input scale values. Thus, we conjecture that SCN is
less effective when the number of adaptations increases since SCN is trained for zero-shot adaptation.
However, SCN has the potential to adapt K by extending fθ(N) as fθ(N,K): i.e., conditioning both
N and K for shot-adaptive adaptation.
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