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ABSTRACT

In the domain of machine learning, the assumption that training and test data share
the same distribution is often violated in real-world scenarios, requiring effective
out-of-distribution (OOD) detection. This paper presents a novel OOD detection
method that leverages the unique local neuroplasticity property of Kolmogorov-
Arnold Networks (KANs). Unlike traditional multilayer perceptrons, KANs ex-
hibit local plasticity, allowing them to preserve learned information while adapt-
ing to new tasks. Our method compares the activation patterns of a trained KAN
against its untrained counterpart to detect OOD samples. We validate our ap-
proach on benchmarks from image and medical domains, demonstrating superior
performance and robustness compared to state-of-the-art techniques. These results
underscore the potential of KANs in enhancing the reliability of machine learning
systems in diverse environments.

1 INTRODUCTION

Most machine learning algorithms operate under the assumption that training and test data share the
same distribution. However, this assumption frequently fails in real-world scenarios where models
encounter out-of-distribution (OOD) data—samples that deviate from the training distribution, such
as those belonging to novel categories. This mismatch can significantly impair a model’s accuracy
and reliability. As a result, OOD detection has become a critical area of research, aiming to discern
when inputs fall outside the scope of the distribution used for training. Effective OOD detection not
only enhances a model’s robustness by identifying and handling these anomalous inputs but also
ensures that the model maintains reliable performance on known, in-distribution data (Yang et al.,
2022).

OOD detection poses a significant challenge due to the diverse nature of OOD types. While many
OOD detectors excel when tested against specific OOD datasets, they often struggle to maintain
high performance across a broad range of OOD samples. As stated by Zhang et al. (2023a) there
is no single winner that always outperforms others across multiple datasets. One reason for this
inconsistency is that OOD instances can vary widely, from subtle variations near the distribution
boundary to completely dissimilar and far-off examples. As a result, developing a universal OOD
detection method that performs robustly across multiple datasets, spanning near to far OOD samples,
remains challenging.

In this paper, we present a novel OOD detection method using Kolmogorov-Arnold Networks
(KANs) (Liu et al., 2024b). KANs are neural networks with a unique architecture that enhances in-
terpretability, improves the accuracy-to-parameter ratio, and mitigates catastrophic forgetting com-
pared to multilayer perceptrons (MLPs). Our approach takes advantage of KANs’ distinctive prop-
erty of local neuroplasticity—a characteristic absent in traditional MLPs due to their reliance on
shared, non-trainable activation functions. In contrast, KANs demonstrate local plasticity owing to
their spline-based architecture. This characteristic ensures that learning a new task impacts only the
regions of the network activated by the training data, thereby preserving the integrity of distant and
unrelated regions.

As illustrated in Figure 1, our method compares the activation patterns of two identically initialized
KANs: one trained on In-Distribution (InD) data and the other left untrained. OOD samples will
predominantly trigger the regions of the trained network that were not adapted during the learning
phase, thus the samples will produce a response closer to the untrained network.
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Figure 1: Overview of the proposed
method: the detector compares the ac-
tivation function response of a trained
KAN model with its untrained counter-
part. A difference in the response in-
dicates the sample is InD, a similar re-
sponse suggests it is OOD.

Conversely, InD samples will mostly engage the neurons
that have been trained, resulting in a noticeable difference
in the activation between the two models.

We tested our method on six different benchmarks
from two different domains: the OpenOOD CIFAR-10,
CIFAR-100, and ImageNet-200 (Yang et al., 2022) for
the image domain, and the Ethnicity, Age, and Synthetic
OOD benchmarks for the tabular medical data domain
(Azizmalayeri et al., 2023). Our experiments demonstrate
that the KAN detector outperforms current State-Of-The-
Art (SOTA) techniques across all six benchmarks on the
overall average AUROC that considers both near and
far OOD. Additionally, in contrast to many other SOTA
methods, our approach’s performance does not vary sig-
nificantly based on the number of training samples. This
indicates that leveraging KANs leads to highly effective
OOD detection, underscoring the potential of this novel architecture in developing more robust ma-
chine learning systems capable of operating reliably in diverse and unpredictable environments.

2 KAN-BASED OOD DETECTION

This section begins by providing a short background on KANs and their working principle. Next,
we delve into the core concept underlying our proposed method for OOD detection. Finally, we
describe the primary limitation of the KAN detector and propose a strategy to enable its deployment
in complex real-world scenarios.

2.1 BACKGROUND

KANs are neural network architectures based on the Kolmogorov-Arnold representation theorem.
This theorem states that any continuous multivariate function can be represented as a sum of con-
tinuous functions of a single variable. Hence, KANs approximate high-dimensional functions using
simpler, univariate components, effectively addressing the curse of dimensionality in machine learn-
ing.

In practice, KANs decompose multivariate functions into univariate B-spline functions with learn-
able coefficients. Let xp be the p-th component (feature) of the input vector x ∈ Rnin and let yq
be the q-th component (feature) of the output vector y ∈ Rnout . A KAN layer transforms x into y
using a matrix of univariate functions Φ = {ϕp,q}, where each ϕp,q is parameterized by a B-spline.
Each B-spline consists of a linear combination of G + k B-spline basis functions with learnable
coefficients cp,q,i. The spline order is denoted as k (usually k = 3) and G is the grid size.

yq =
∑
p

ϕp,q(xp) with: ϕp,q(xp) =

G+k∑
i=0

cp,q,iBi(xp). (1)

KAN layers can be stacked to construct deeper networks, allowing for complex transformations
across multiple stages. Performance is further enhanced by incorporating residual connections,
which add flexibility to the spline functions through trainable weights and additional basis func-
tions (Liu et al., 2024b).

Local neuroplasticity in KANs is facilitated by two key properties. First, each input feature xp

is processed independently by its own set of activation functions {ϕp,q | ∀q}. Second, during
backpropagation, only the spline coefficients near sample xp are modified, leaving the other areas
of the activation function largely unchanged.
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2.2 OOD DETECTION WITH KANS

We propose leveraging the local plasticity of KANs for OOD detection. The InD data seen dur-
ing training only affects specific regions (spline grid coefficients) of the network. By determining
whether a region contains InD data and inspecting which regions are activated by each sample,
the KAN-based detector can distinguish between InD and OOD samples. This differentiation is
achieved by comparing the output of the trained activation functions with their values prior to train-
ing. The step-by-step procedure is as follows:

• Setup: Initialize an untrained KAN and create a copy. Train one KAN with the InD dataset
while keeping the other untrained.

• Detection: Perform a forward pass on both networks with the given sample x, and save the
output of the activation functions:

ϕtrained
p,q (xp), ϕuntrained

p,q (xp) ∀p, q (2)

Compute the difference between the responses:

∆p,q(xp) =
∣∣ϕtrained

p,q (xp)− ϕuntrained
p,q (xp)

∣∣ . (3)

Analyze the difference matrix ∆. OOD samples will tend to have a higher ratio of the
entries in the ∆ matrix close to zero. To obtain a scalar InD score S(x), we aggregate the
differences using a scoring function Fscore (detailed in Appendix A.1):

S(x) = Fscore(∆(x)). (4)

To clarify our method’s working principle, let us rewrite ∆p,q(xp) using Eq. 1:

∆p,q(xp) =
∑
i

∣∣ctrained
p,q,i − cuntrained

p,q,i

∣∣ ·Bi(xp). (5)

The terms
∣∣ctrained

p,q,i − cuntrained
p,q,i

∣∣ define the locations within the network where InD information is
stored, while Bi(xp) serves as a mask and specify the regions activated by the sample x. Con-
sequently, multiplying these two terms provides a quantitative measure of the overlap between InD
regions and the given sample. This overlap is subsequently utilized to compute the InD score.

Once the InD score is obtained, it is thresholded to classify the sample as InD or OOD:

D(x) =
{

InD, if S(x) ≥ λ

OOD, if S(x) < λ,
(6)

where λ is a predefined threshold. A test sample with a InD score less than λ is categorized as OOD.
Otherwise, it is classified as InD.

Figure 2 illustrates the working principle of the proposed algorithm using a modified version of
the toy example proposed by Liu et al. (2024b). The dataset is a one-dimensional regression task
featuring five Gaussian peaks. We used two of these peaks as the training set and InD test set, while
the remaining three peaks are the OOD test set. Here the KAN model is composed of a single layer
with one input and one output, i.e. a single univariate function ϕ with 200 spline coefficients.

2.3 CAPTURING THE JOINT FEATURE DISTRIBUTION

Like MLPs, KANs are capable of processing multivariate inputs and producing multivariate outputs.
However, differently from MLPs where activation functions receive a weighted sum of all inputs,
in KANs, each activation function receives only a single input. While this characteristic allows the
KAN detector to effectively capture the marginal distributions of input features, it also constrains its
ability to model the joint distribution of features.

To overcome this limitation we propose to partition the InD dataset and train separate KAN models
for each partition. In this way, the complex training distribution is decomposed into smaller parts
that can be accurately described using only the marginal feature distribution. Various techniques can
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Figure 2: (a) Visualization of the training dataset, showing the relationship between inputs and
targets. (b) Response of the untrained KAN model across the entire input range. (c) Response
of the trained KAN model across the entire input range. (d) Test dataset illustrating inputs versus
targets, created by combining the training dataset (InD) with three additional Gaussian peaks over
the remaining input range (OOD). (e) InD score S(x)∀x ∈ [−1, 1] using the median as scoring
function (Fscore). (f) Final results after applying a threshold (λ = 1e − 3) to the InD scores: blue
regions indicate predicted InD areas and red regions indicate predicted OOD areas.

be employed to partition the dataset. A simple, yet effective approach is to split the dataset based
on class labels. An alternative approach, which also works when class labels are absent, such as
in regression tasks, is to apply a clustering algorithm like k-means (Lloyd, 1982). Formally, the
dataset D is partitioned into P non-overlapping subsets D1,D2, . . . ,DP . For each partition Di, we
train a separate detector, denoted as KANi. While the partition Di is different for each KANi, the
training task is always the same (e.g., classification). During inference, we compute the InD score
for a sample x by aggregating the InD score from each KAN model. Let ∆i(x) be the difference
matrix of KANi:

S(x) = Fagg.(Fscore(∆
1(x)), Fscore(∆

2(x)), . . . , Fscore(∆
P(x)), (7)

where Fagg. is a suitable aggregation function, such as the maximum function. Since the partitions
are non-overlapping, for InD samples, there will be only one model that recognises the sample as
InD (high InD score), while the other will flag it as OOD (low InD score).

Through this partitioning, our detector is now composed of multiple KAN models, and the strategy
resembles ensemble methods. Furthermore, if all models are initialized with the same weights, the
untrained KAN can be shared, reducing the number of forward passes at inference time.

To demonstrate the effectiveness of our proposed improvement method, we designed a specialized
L-shaped dataset where the base KAN detector fails. This dataset consists of 2D points, with the
training task being regression to a predefined constant. Figure 3 illustrates the results, showing the
performance of the default KAN detector compared to the partitioning method.

3 EXPERIMENTS

First, we describe the benchmarks, metrics, and implementation details used in our study. The re-
sults demonstrate the superior performance of our method, highlighting its key advantages. Finally,
a comprehensive ablation study analyzes each hyperparameter and component, elucidating their im-
pact on performance.
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Figure 3: 2D L-shape toy dataset: The blue point cloud shows the training distribution and the red
points are OOD test samples. The black contour represents the thresholded score function (median)
separating InD from OOD samples. (a) Default KAN detector limited by the marginal distribution
of x1 and x2. (b) Improved performance by partitioning the training dataset with KMeans clustering
(P = 2) and Fagg. = max as aggregation function.

3.1 EVALUATION PROTOCOL

Setup. The evaluation of the proposed method is performed on six different benchmarks from two
different domains: OOD detection in images and tabular medical data.

For OOD detection in images, the experimental setup adheres to the OpenOOD (Yang et al., 2022)
benchmark protocol. We evaluate the KAN detector on the CIFAR-10 benchmark, using CIFAR-
10 (Krizhevsky et al., b) as the InD dataset. The OOD datasets are categorized into near OOD
datasets (CIFAR-100 (Krizhevsky et al., a) and Tiny ImageNet (TIN) (Le & Yang, 2015)) and far
OOD datasets (MNIST (Deng, 2012), SVHN (Netzer et al., 2011), Textures (Cimpoi et al., 2014),
and Places365 (Zhou et al., 2018)). The CIFAR-100 benchmark contains the same datasets as the
CIFAR-10 benchmark except for the CIFAR-10 and CIFAR-100 datasets which have an inverted
role (CIFAR-100 as training data and CIFAR-10 as OOD dataset). To evaluate the scalability of our
method, we also tested it on the full-spectrum version of the ImageNet-200 benchmark. Compared
to CIFAR-10 and CIFAR-100, this benchmark features five times more training images, each with
a size seven times larger. The full-spectrum version increases the detection challenge but at the
same time, it makes it closer to real-world applications by enriching the InD test set with covariate-
shifted InD samples (Yang et al., 2023). The datasets used in this benchmark are: ImageNet-200
(Deng et al., 2009) as training set, ImageNet-V2 (Recht et al., 2019), ImageNet-C (Hendrycks &
Dietterich, 2019), ImageNet-R (Hendrycks et al., 2021) as covariate-shifted InD test set, SSB-hard
(Vaze et al., 2022), NINCO (Bitterwolf et al., 2023) as near OOD, and iNaturalist (Van Horn et al.,
2018), Textures, OpenImage-O (Wang et al., 2022) as far OOD.

For OOD detection in tabular medical data, we follow the benchmark proposed by Azizmalayeri
et al. (2023). We consider the benchmarks derived from the eICU dataset (Pollard et al., 2018),
which contains clinical data of tens of thousands of Intensive Care Unit (ICU) patients in several
hospitals. In the near OOD benchmarks, the eICU dataset is divided into InD and OOD according
to some features such as ethnicity (Caucasian as InD) or age (older than 70 as InD). The feature
used for splitting the dataset is then removed. In the synthetic OOD benchmark, the OOD data is
generated by scaling a single feature from the InD set by a factor F . For each factor, the experiment
is repeated 100 times with different features, to minimize the impact of the chosen feature. By
varying the scaling factor, the generated samples range from near to far OOD.

In contrast to training-time regularization methods (e.g., MOS (Huang & Li, 2021), CIDER (Ming
et al., 2023)), our detector operates in a post-hoc manner and can be seamlessly integrated with any
pre-trained classifier, regardless of model architecture, training procedures, or types of OOD data.
The backbone is used to perform the classification or regression task and in the case of post-hoc
methods it is trained independently from the detector. The OOD detector only uses the latent features
of the backbone for InD/OOD classification. The considered OpenOOD benchmarks employ a
pre-trained ResNet-18 backbone (He et al., 2015) for feature extraction, while the tabular medical
benchmarks use an FT-Transformer backbone (Gorishniy et al., 2021).
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Given that the benchmarks we considered are all based on classification tasks and require a pre-
trained backbone network, we conducted additional experiments on regression-based datasets, ap-
plying the detector directly to the data without a feature extractor. The results, presented in Appendix
A.2, demonstrate that our method also performs well in these scenarios.

Metrics. In all benchmarks, the primary metric used to evaluate the OOD detection performance
is the Area Under the Receiver Operating Characteristic curve (AUROC). This threshold-free metric
provides a robust assessment of the model’s ability to distinguish between InD and OOD samples.

In our evaluation, we focus on the average AUROC across all test datasets, including both near
and far OOD (for more details on how the overall average is computed see Appendix A.3). This
approach is motivated by the desire to develop a method that performs well across diverse datasets,
as real-world applications often encounter unknown types of OOD samples. We acknowledge that
achieving consistent performance across multiple datasets is challenging, as many methods excel on
specific datasets but struggle to generalize.

Following the OpenOOD CIFAR-10 and CIFAR-100 benchmarks guidelines, we report the results
averaged over three seeds, corresponding to three pre-trained backbones. The results are averaged
over five seeds for the tabular medical data benchmarks. Our approach also introduces some stochas-
ticity due to the KAN initialization. To assess its impact on performance, we initialized the detector
with five different seeds for each pre-trained backbone. The results indicate that the stochasticity
due to the KAN initialization is lower than the one due to the backbone training (see Appendix A.4).

Figure 4: Distribution of activation’s
differences (∆) for three different sam-
ples (InD, near and far OOD). The InD
sample tends to produce bigger values
in the ∆ matrix compared to the OOD
samples. Using the median as a scor-
ing function (vertical dashed lines) ef-
fectively separates InD from OOD.

Implementation details. The detectors are trained us-
ing the InD dataset. During the evaluation phase, InD
scores are calculated for all the test data. All hyperpa-
rameters are tuned using the validation set, according to
the OpenOOD benchmark guidelines. The tabular medi-
cal data benchmarks follow a similar structure.

On all benchmarks, we used the median as the scoring
function and the maximum as the aggregation function.
The median is particularly effective due to its robustness
to outliers, making it reliable for distinguishing between
InD and OOD samples, as illustrated in Figure 4. These
choices for both (scoring and aggregation) are further mo-
tivated in Appendix A.1.

The latent features of the backbones exhibited a highly
skewed distribution. To address this skewness and
achieve a more balanced distribution that fully utilizes the
KAN’s grid range, we applied histogram normalization.

We leverage information from multiple latent layers of
the pre-trained backbone. As demonstrated by Liu et al.
(2024a), this multi-layer integration enriches the feature representation, leading to improved detec-
tion accuracy. Specifically, the authors claim that the last layer contains predominantly semantic
information while including the layers closer to the input allows the detector to capture also the
covariate information.

3.2 RESULTS

Table 1 presents the results of our experiments on the CIFAR-10 and CIFAR-100 benchmarks, com-
paring the KAN detector with several SOTA OOD detection methods (see Appendix A.5 for a list of
all the considered baselines). On top of the numerous baselines provided by the benchmark we also
compare our approach to the current best post-hoc method on the CIFAR leaderboard: the NAC (Liu
et al., 2024a). The results show that the KAN detector outperforms all previous methods on both
benchmarks, demonstrating the effectiveness of leveraging spline-based local activation functions
for OOD detection.
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Table 1: Comparison of OOD detection performance (AUROC) on CIFAR-10 and CIFAR-100
benchmarks. In each column, we highlight in bold the best-performing method as well as any other
methods that do not show a statistically significant difference from the best-performing method.
Statistical significance is assessed using Welch’s t-test with p < 0.05.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
CIFAR TIN MNIST SVHN Textures Places365

CIFAR-10 Benchmark
OpenMax 86.91±0.31 88.32±0.28 90.50±0.44 89.77±0.45 89.58±0.60 88.63±0.28 87.62±0.29 89.62±0.19 88.95±0.41

ODIN 82.18±1.87 83.55±1.84 95.24±1.96 84.58±0.77 86.94±2.26 85.07±1.24 82.87±1.85 87.96±0.61 86.26±1.73

MDS 83.59±2.27 84.81±2.53 90.10±2.41 91.18±0.47 92.69±1.06 84.90±2.54 84.20±2.40 89.72±1.36 87.88±2.05

MDSEns 61.29±0.23 59.57±0.53 99.17±0.41 66.56±0.58 77.40±0.28 52.47±0.15 60.43±0.26 73.90±0.27 69.41±0.40

RMDS 88.83±0.35 90.76±0.27 93.22±0.80 91.84±0.26 92.23±0.23 91.51±0.11 89.80±0.28 92.20±0.21 91.40±0.40

Gram 58.33±4.49 58.98±5.19 72.64±2.34 91.52±4.45 62.34±8.27 60.44±3.41 58.66±4.83 71.73±3.20 67.37±5.04

ReAct 85.93±0.83 88.29±0.44 92.81±3.03 89.12±3.19 89.38±1.49 90.35±0.78 87.11±0.61 90.42±1.41 89.31±1.96

VIM 87.75±0.28 89.62±0.33 94.76±0.38 94.50±0.48 95.15±0.34 89.49±0.39 88.68±0.28 93.48±0.24 91.88±0.37

KNN 89.73±0.14 91.56±0.26 94.26±0.38 92.67±0.30 93.16±0.24 91.77±0.23 90.64±0.20 92.96±0.14 92.19±0.27

ASH 74.11±1.55 76.44±0.61 83.16±4.66 73.46±6.41 77.45±2.39 79.89±3.69 75.27±1.04 78.49±2.58 77.42±3.76

SHE 80.31±0.69 82.76±0.43 90.43±4.76 86.38±1.32 81.57±1.21 82.89±1.22 81.54±0.51 85.32±1.43 84.06±2.16

GEN 87.21±0.36 89.20±0.25 93.83±2.14 91.97±0.66 90.14±0.76 89.46±0.65 88.20±0.30 91.35±0.69 90.30±1.02

NAC 89.83±0.29 92.02±0.20 94.86±1.37 96.06±0.47 95.64±0.45 91.85±0.28 90.93±0.23 94.60±0.50 93.37±0.64

KAN 90.06±0.47 91.92±0.52 97.86±0.73 97.39±0.42 95.85±0.28 91.64±0.91 90.99±0.50 95.69±0.22 94.12±0.59

CIFAR-100 Benchmark
OpenMax 74.38±0.37 78.44±0.14 76.01±1.39 82.07±1.53 80.56±0.09 79.29±0.40 76.41±0.25 79.48±0.41 78.46±0.88

ODIN 78.18±0.14 81.63±0.08 83.79±1.31 74.54±0.76 79.33±1.08 79.45±0.26 79.90±0.11 79.28±0.21 79.49±0.77

MDS 55.87±0.22 61.50±0.28 67.47±0.81 70.68±6.40 76.26±0.69 63.15±0.49 58.69±0.09 69.39±1.39 65.82±2.66

MDSEns 43.85±0.31 48.78±0.19 98.21±0.78 53.76±1.63 69.75±1.14 42.27±0.73 46.31±0.24 66.00±0.69 59.44±0.93

RMDS 77.75±0.19 82.55±0.02 79.74±2.49 84.89±1.10 83.65±0.51 83.40±0.46 80.15±0.11 82.92±0.42 82.00±1.15

Gram 49.41±0.58 53.91±1.58 80.71±4.15 95.55±0.60 70.79±1.32 46.38±1.21 51.66±0.77 73.36±1.08 66.12±1.98

ReAct 78.65±0.05 82.88±0.08 78.37±1.59 83.01±0.97 80.15±0.46 80.03±0.11 80.77±0.05 80.39±0.49 80.52±0.79

VIM 72.21±0.41 77.76±0.16 81.89±1.02 83.14±3.71 85.91±0.78 75.85±0.37 74.98±0.13 81.70±0.62 79.46±1.62

KNN 77.02±0.25 83.34±0.16 82.36±1.52 84.15±1.09 83.66±0.83 79.43±0.47 80.18±0.15 82.40±0.17 81.66±0.87

ASH 76.48±0.30 79.92±0.20 77.23±0.46 85.60±1.40 80.72±0.70 78.76±0.16 78.20±0.15 80.58±0.66 79.79±0.69

SHE 78.15±0.03 79.74±0.36 76.76±1.07 80.97±3.98 73.64±1.28 76.30±0.51 78.95±0.18 76.92±1.16 77.59±1.78

GEN 79.38±0.04 83.25±0.13 78.29±2.05 81.41±1.50 78.74±0.81 80.28±0.27 81.31±0.08 79.68±0.75 80.23±1.10

NAC 72.02±0.69 79.86±0.23 93.26±1.34 92.60±1.14 89.36±0.54 73.06±0.63 75.94±0.41 87.07±0.30 83.36±0.84

KAN 72.97±0.17 81.37±0.22 92.29±1.85 87.16±4.46 89.43±0.39 77.42±0.35 77.17±0.17 86.57±0.70 83.44±1.99

Table 2: Comparison of OOD detection performance (AUROC) on ImageNet-200 full-spectrum
benchmark.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
SSB-hard NINCO iNaturalist Textures OpenImage-O

OpenMax 47.64±0.20 54.15±0.23 72.44±0.87 69.12±0.36 62.31±0.24 50.89±0.18 67.96±0.39 61.13±0.46

ODIN 44.31±0.02 52.36±0.08 70.19±0.92 67.10±0.34 61.48±0.31 48.33±0.05 66.25±0.42 59.09±0.46

MDS 48.59±0.88 56.65±0.94 68.25±1.51 73.84±0.75 61.90±0.57 52.62±0.90 68.00±0.87 61.85±0.98

MDSEns 34.22±0.44 41.58±0.17 43.63±0.48 67.54±0.35 48.38±0.36 37.90±0.20 53.18±0.39 47.07±0.38

RMDS 56.24±0.62 60.95±0.94 71.71±1.49 64.61±1.07 63.52±0.83 58.59±0.77 66.62±1.11 63.41±1.03

Gram 59.12±0.73 63.35±0.76 58.42±0.75 75.86±0.10 61.51±0.39 61.23±0.74 65.26±0.31 63.65±0.61

ReAct 47.25±0.57 53.84±0.55 69.45±3.94 71.45±2.04 62.30±2.32 50.55±0.19 67.73±2.76 60.86±2.27

VIM 45.34±0.72 57.09±1.03 71.34±1.68 82.54±0.73 65.70±0.94 51.22±0.86 73.19±1.10 64.40±1.08

KNN 44.05±0.42 54.51±0.62 71.53±1.32 81.88±0.19 62.12±0.79 49.28±0.51 71.84±0.72 62.82±0.77

ASH 50.96±0.93 58.51±0.60 77.96±1.58 79.39±0.61 69.09±0.71 54.74±0.74 75.48±0.95 67.18±0.96

SHE 52.82±0.65 56.64±0.69 72.20±2.65 74.27±0.63 64.95±1.25 54.73±0.67 70.47±1.39 64.18±1.41

GEN 48.33±0.27 54.85±0.42 68.94±0.63 66.58±0.47 60.87±0.28 51.59±0.34 65.46±0.44 59.91±0.43

NAC 45.42±0.11 53.80±0.08 65.83±1.22 74.41±0.35 60.79±0.23 49.61±0.06 67.01±0.53 60.05±0.58

KAN 58.37±0.47 61.10±0.53 84.13±0.35 83.30±0.35 70.40±0.26 59.74±0.46 79.28±0.18 71.46±0.40

The KAN detector ranks first on the ImageNet-200 benchmark as shown in Table 2 and it consis-
tently ranks in the top three across all tabular medical data benchmarks as reported in Tables 3, 4
and 5.

In Appendix A.6 we report the results with all the baselines available in the benchmarks for the
AUROC and FPR@95 metrics.

Moreover, our method demonstrates significant robustness to variations in the number of training
samples. Table 6 analyses this phenomenon on the CIFAR-10 and CIFAR-100 benchmarks, compar-
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Table 3: Tab. Med.
Caucasian Eth. as InD

(AUROC metric).

Method eICU - Eth.
MDS 58.5±2.2

RMDS 51.6±1.5

KNN 55.8±1.9

VIM 57.3±2.3

SHE 50.5±1.7

KLM 51.6±2.1

OpenMax 48.7±0.8

KAN 61.4±3.1

Table 4: Tab. Med.
> 70 y.o. as InD
(AUROC metric).

Method eICU - Age
MDS 50.8±1.1

RMDS 48.3±0.7

KNN 49.6±0.2

VIM 48.8±0.1

SHE 50.4±0.7

KLM 51.0±0.7

OpenMax 48.1±0.5

KAN 50.5±0.5

Table 5: Tab. Med.
Feature multiplication

(AUROC metric).

Method eICU - Synthetic OOD Avg Overall
F = 10 F = 100 F = 1000

MDS 59.9±1.4 79.5±1.4 87.5±0.9 75.63±1.26

RMDS 51.5±1.3 57.8±7.4 64.0±13.0 57.77±8.67

KNN 57.3±1.4 75.4±2.2 86.5±1.3 73.07±1.68

VIM 57.9±1.6 77.6±1.3 88.3±0.7 74.60±1.26

SHE 55.7±1.3 71.2±2.9 80.4±1.6 69.10±2.05

KLM 54.1±0.8 63.1±1.1 72.1±4.2 63.10±2.55

OpenMax 51.0±0.7 56.1±2.7 71.4±3.2 59.50±2.45

KAN 64.6±2.2 83.0±2.6 89.8±1.8 79.13±2.22

ing the performance of the three previously best-performing methods and our approach by evaluating
all methods with different dataset sizes only. Unlike other methods that achieve peak performance
only with an optimal number of training samples, our approach consistently performs well across
different dataset sizes. The performance of VIM and KNN is closely tied to the size of the InD
dataset, while NAC achieves its best results when only 2% of the training samples are used. In con-
trast, the KAN detector maintains high performance across a wide range of training dataset sizes,
with only a minor decrease observed in the extreme case of five samples per class. Robustness to
variations in training dataset sizes is crucial in real-world scenarios where the number of training
samples may be insufficient to capture the underlying distribution’s characteristics. Additionally,
this property is advantageous when scaling to large datasets. We attribute the strong performance of
our approach across all considered benchmarks also to this key characteristic.

Table 6: The effect of training dataset sizes on AUROC performance.

Method CIFAR-10 benchmark CIFAR-100 benchmark
100% 10% 1% 0.1% 100% 10% 1%

VIM 91.88±0.37 91.69±0.38 88.67±1.29 76.38±3.83 79.46±1.62 78.83±1.67 67.06±2.63

KNN 92.19±0.27 91.72±0.28 88.94±0.70 8.15±0.86 81.66±0.87 80.05±0.85 27.03±1.71

NAC 87.05±1.14 89.74±0.90 93.09±0.65 89.29±0.78 80.80±0.67 81.72±0.59 80.97±1.09

KAN 94.12±0.59 93.95±0.61 93.90±0.62 93.21±0.53 83.44±1.99 83.11±2.43 81.44±1.21

3.3 ABLATION STUDY

Parameter analysis. The main hyperparameters that regulate the performance of the proposed
method are the number of partitions P and the grid size G. Table 7 illustrates the variations in
AUROC performance as a function of the number of partitions obtained through k-means clustering.
Increasing P enhances the detector’s ability to capture the joint distribution of features, resulting
in higher AUROC values. However, there is an upper limit beyond which further increasing the
number of partitions does not lead to performance improvements. The choice of k-means clustering
over other methods is justified by its simplicity and excellent scaling performance. Additionally,
empirical evidence, as reported in Appendix A.7, demonstrates that the choice of the clustering
algorithm does not significantly affect detection performance.

According to the authors of KAN (Liu et al., 2024b), varying the grid size has a similar effect to
varying the width and depth of a traditional MLP. A fine-grained grid (higher G) should improve the
accuracy of the network. In the case of our detector, as reported in Table 8, increasing the density of
the grid above a certain threshold does not result in higher OOD detection performance.

Splines’ smoothing operation. KANs incorporate splines that perform an essential smoothing
operation, which is crucial given the continuous nature of the input space. To demonstrate the su-
periority of the KAN detector, we implemented a baseline histogram method by replacing all the
univariate functions ϕp,q in KAN with simple histograms that record the presence of InD samples in
a binary manner. The histogram method achieves an overall AUROC of 85.29%, which is approxi-
mately 9% lower than that of the KAN detector, clearly demonstrating the superiority of the KAN’s
splines approach.
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Table 7: KAN detector w.r.t different datasets
partitions over CIFAR-10.

Partitions (P) AUROC
P = 1 46.08±15.58

P = 5 90.39±2.78

P = 10 94.12±0.59

P = 20 94.10±0.62

P = 30 94.05±0.53

Table 8: KAN detector w.r.t different grid
sizes over CIFAR-10.

Grid size (G) AUROC
k = 5 87.20±1.52

k = 10 91.72±0.54

k = 50 93.92±0.40

k = 100 94.12±0.59

k = 200 94.03±0.49

Partitioning alternatives. To capture the joint feature distribution, the partitioning method is not
the only solution. Another approach is to augment the input features with new features that are
combinations of the original ones. This can be efficiently achieved using techniques like Principal
Component Analysis (PCA) or autoencoders. PCA provides features that are linear combinations of
the original ones, while autoencoders generate features that are non-linear combinations. Although
this technique worked well on a toy L-shaped dataset (Appendix A.8), it did not yield the desired
results on high-dimensional feature spaces in other benchmarks. It resulted in a lower AUROC
compared to the partitioning method.

Influence of the training task. Since KANs are differentiable, they can be trained similarly to
conventional MLPs using backpropagation. In our approach, the KAN is trained with latent features
extracted from the backbone as inputs, and the training task mirrors that of the backbone network,
specifically multi-class classification. For more details on the used training parameters see Appendix
A.9. Importantly, the training task does not need to directly relate to the OOD detection problem.
Similar to the histogram baseline, our primary objective is to register all input samples within the
correct spline coefficients. Any training task that adjusts the spline coefficients in the vicinity of the
InD samples can yield a valid OOD detector.

We experimentally verified our hypothesis by training the KAN using a different loss function and
an unrelated task, namely regression to a constant value. The results from this regression task
demonstrate that the detector effectively distinguishes between InD and OOD samples. Compared
to the KAN trained on the classification task, we observed an improvement of approximately 0.2%
in AUROC performance on the image benchmarks. However, on the tabular data benchmarks, the
performance decreased by approximately 3%. These findings indicate that while modifying the
training task of the detector can still yield satisfactory performance, the extent of this effect appears
to be benchmark-dependent.

4 RELATED WORK

This section reviews recent advancements in OOD detection, provides an overview of the latest in-
novations to enhance KAN performance, and explores the diverse sectors where KANs have demon-
strated successful applications.

4.1 OUT-OF-DISTRIBUTION DETECTION

OOD detection focuses on identifying instances with semantic shifts, a special case of distribu-
tional shift. OOD detection methods can be broadly classified into the following categories (Yang
et al., 2024). Classification-based methods use the output of classification models, such as softmax
scores, to distinguish between InD and OOD samples. Examples include Maximum Softmax Prob-
ability (MSP) (Hendrycks & Gimpel, 2017), which uses the softmax score of the predicted class
as a confidence score, and ODIN (Liang et al., 2018), which applies temperature scaling and input
perturbations to enhance the separability of InD and OOD samples. More recent methods that fall in
this category are SCALE (Xu et al., 2024a), ASH (Djurisic et al., 2023), VIM (Wang et al., 2022),
and KNN (Sun et al., 2022). Gradient-based methods also belong to this category. Examples include
GradNorm (Huang et al., 2021) and NAC (Liu et al., 2024a), which use gradients calculated from the
KL divergence between the model’s output and a uniform probability distribution. Density-based
methods model the probability distribution of the training data to identify deviations. This is often
achieved using a Gaussian mixture model (Zong et al., 2018) or normalizing flows (Zisselman &
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Tamar, 2020; Jiang et al., 2022). Reconstruction-based methods typically use autoencoders to re-
construct input samples and measure the reconstruction error as a signal for OOD detection (Jiang
et al., 2023; Zhou, 2022). Distance-based methods rely on distance metrics in the feature space
to identify OOD samples. The Mahalanobis distance-based detector (Lee et al., 2018) first models
the feature distribution with a class-conditional Gaussian distribution and then it derives the InD
score using the Mahalanobis distance between the InD centroids and the input sample. fDBD (Liu
& Qin, 2024) measures the distance between the latent feature of the sample and the class decision
boundaries. Our method also falls into this category, as it computes the InD score by measuring the
distance between the network’s regions activated during training (InD regions) and those activated
by the test sample.

4.2 KOLMOGOROV-ARNOLD NETWORKS

The recently introduced KAN (Hou & Zhang, 2024) represents a significant advancement in neural
network architectures, offering a potential alternative to traditional MLPs by not only enhancing
accuracy but also leading to more interpretable models. As a result, numerous studies have tried to
innovate and refine KANs further. For example, many articles replace the spline architecture with
more efficient or accurate alternatives such as Chebyshev polynomials (SS et al., 2024), wavelet-
based structures (Bozorgasl & Chen, 2024), sinusoidal functions (Reinhardt et al., 2024), and ra-
dial basis functions (Li, 2024). Others try to replicate advanced neural network architectures using
KAN’s characteristics. This includes convolutional neural networks (Bodner et al., 2024) and graph
neural networks (Kiamari et al., 2024; Bresson et al., 2024; Zhang & Zhang, 2024), further demon-
strating the versatility and potential of KANs. Applications of KANs have rapidly expanded across
various domains, including time series analysis (Vaca-Rubio et al., 2024; Xu et al., 2024b), solving
ordinary and partial differential equations (Koenig et al., 2024; Wang et al., 2024), hyperspectral
image classification (Seydi, 2024; Jamali et al., 2024), and computer vision (Azam & Akhtar, 2024;
Li et al., 2024; Cheon, 2024). Additionally, KANs have recently been applied to fields similar to
OOD detection, such as abnormality detection (Huang et al., 2024) and AI-generated image detec-
tion (Anon & Emon, 2024). These studies leverage the superior accuracy and interpretability of
KANs (Liu et al., 2024b) to uncover more complex patterns in the data. While their work focuses
on developing robust models that demonstrate KANs’ capacity to generalize effectively to unseen
samples, they do not address the detection of these samples. In contrast, we present a novel OOD
detection method that leverages the unique local plasticity property of KANs, applicable to any
backbone architecture.

5 CONCLUSIONS

This paper introduces a novel approach to OOD detection using KANs, capitalizing on their unique
local neuroplasticity property. Our method effectively differentiates between InD and OOD samples
by comparing the activation patterns of a trained KAN against its untrained counterpart. The experi-
mental results show that our KAN-based detector reaches SOTA performance across six benchmarks
from two different domains. Importantly, our experiments show that the previous methods suffer
from a non-optimal InD dataset size, while our method is unaffected by these perturbations. This
makes the KAN detector a robust and versatile method that can maintain high performance across
diverse and unpredictable data distributions. Future work will further explore the effect of different
training tasks on detection performance.

REPRODUCIBILITY STATEMENT

We will publicly release our code along with detailed instructions. Our implementation adheres
rigorously to the benchmark guidelines. Detailed information on the hardware and software utilized
is provided in Appendix A.10, while the inference time performance of our method is discussed in
Appendix A.11. The settings and hyperparameters for each benchmark are reported in Appendix
A.12.
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A APPENDIX

A.1 SCORING AND AGGREGATION FUNCTIONS

The trainable coefficients of the detector networks are initialized randomly. As a result, it may
occasionally occur that some of these coefficients are initialized to the exact values they would attain
post-training. Consequently, the training procedure does not modify these coefficients, as they are
already optimal. This phenomenon can lead to false positives in detection, as both the trained and
untrained networks might exhibit the same response to an InD sample. This issue can be mitigated
using a scoring function that is more robust to outliers, such as the median. This hypothesis is
experimentally validated in Table 9.

The use of the maximum function for aggregation allows us to select the detector closest to the
test sample, which intuitively possesses the best information for decision-making. This approach is
experimentally verified in Table 10.

Table 9: AUROC performance variation on
the CIFAR-10 benchmark for different scor-
ing Fscore functions.

Scoring Fscore AUROC
min 90.84±0.35

mean 92.04±0.37

median 94.12±0.59

max 54.99±12.02

Table 10: AUROC performance variation on
the CIFAR-10 benchmark for different ag-
gregation Fagg. functions.

Aggregation Fagg. AUROC
min 91.55±0.97

mean 91.99±2.30

median 90.31±3.28

max 94.12±0.59

A.2 DETECTION ON REGRESSION-BASED DATASETS

As the standard benchmarks used in OOD detection mainly focus on classification tasks, we test our
method on three additional regression-based datasets: the California Housing dataset (Kelley Pace
& Barry, 1997), the Wine Quality dataset (Cortez et al., 2009), and the Friedman synthetic dataset
(Friedman, 1991). To generate the InD and OOD partitions and ensure that the OOD samples are
semantically different from the InD ones, we thresholded the regression (output) value. The KAN
is then directly applied to the raw dataset features, highlighting that the method is not only effective
on regression-based tasks but also in the absence of a feature extractor backbone network. This is
not possible for other methods such as NAC that require the gradients of the backbone network for
detection. Thus, as a baseline detector method, we used KNN, which, according to the results in
Section 3.2, is one of the best approaches across all benchmarks. Table 11 reports the detection
results in terms of AUROC on the three datasets, showing that the KAN detector outperforms the
KNN baseline on all of them.

Table 11: Detection (AUROC) results for regression-based datasets.

Method California Housing Wine Quality Friedman
KNN 68.73 68.69 67.30
KAN 70.53 71.32 69.42

On the California Housing and Wine Quality datasets, we used only one partition (P) for the KAN
detector because a value greater than one did not improve performance. This indicates that either the
partitioning method does not work well on regression-based datasets, possibly due to poor internal
separability of data clusters, or these datasets do not require the detector to capture the joint feature
distribution to effectively separate InD and OOD samples. To investigate this observation further,
we also tested our method on the Friedman dataset. Here, the regression output is generated by the
following non-linear function of the inputs, ensuring that the samples are not separable using only
the marginal feature distribution:

y(x) = 10 · sin(π · x0 · x1) + 20 · (x2 − 0.5)2 + 10 · x3 + 5 · x4 +N (0, σ). (8)
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In this case, peak performance is achieved with a minimum of four partitions, as shown in Table
12. This shows that even for regression-based datasets our method can capture the joint feature
distribution.

Table 12: AUROC performance as a function of the number of partitions (P) in the Friedman
dataset.

Partitions (P) 1 2 3 4
AUROC 52.11 64.15 63.83 69.42

A.3 AVERAGE OVERALL METRIC

Many benchmarks (including the OpenOOD CIFAR-10 and CIFAR-100) assess OOD detection
performance on multiple OOD datasets. However, they lack an overall average that gives a holistic
overview of the methods’ performance. In our experiments, we additionally evaluate our method on
the following overall metric:

µoverall =
1

N

N∑
i=1

µi, σoverall =

√√√√ 1

N

N∑
i=1

σ2
i (9)

where µi, σi are the mean and standard deviation of dataset i calculated over multiple seeds.

A.4 EFFECT OF KAN STOCHASTICITY

All benchmarks average results over multiple seeds to address the inherent randomness associated
with weight initialization in the backbone model. Our method introduces an additional layer of
randomness due to the KAN initialization process. To illustrate that the variability introduced by our
detector is significantly lower than that stemming from the backbone initialization, we conducted
the following experiment.

We repeated the CIFAR-10 benchmark using five distinct KAN initialization seeds (N = 5). For
each KAN initialization seed i, we recorded the mean and standard deviation (µi, σi) of the exper-
iment conducted on the three pre-trained backbones specified in the benchmark. The results are
summarized in Table 13.

Table 13: CIFAR-10 benchmark results across different KAN initializations.

KAN seed (i) 1 2 3 4 5
AUROC (µi ± σi) 94.12±0.59 94.02±0.58 94.11±0.52 94.17±0.57 94.06±0.39

We compute the overall standard deviation attributable to the backbone initialization (σb) and that
of our detector (σd) as follows:

σb =
1

N

N∑
i=1

σi = 0.53, σd =

√√√√ 1

N

N∑
i=1

(σi − µb)2 = 0.05 with µb =
1

N

N∑
i=1

µi = 94.10 (10)

The calculated standard deviations σb and σd differ by approximately an order of magnitude, indi-
cating that the randomness introduced by our detector has a negligible effect on the overall results.

A.5 BASELINES METHODS

The baselines used in the banchmarks are: OpenMax (Bendale & Boult, 2016), MSP (Hendrycks &
Gimpel, 2017), TempScale (Guo et al., 2017), ODIN (Liang et al., 2018), MDS (Lee et al., 2018),
MDSEns (Lee et al., 2018), RMDS (Ren et al., 2021), Gram (Sastry & Oore, 2020), EBO (Liu et al.,
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2020), OpenGAN (Kong & Ramanan, 2021), GradNorm (Huang et al., 2021), ReAct (Sun et al.,
2021), MLS (Hendrycks et al., 2022), KLM (Hendrycks et al., 2022), VIM (Wang et al., 2022),
KNN (Sun et al., 2022), DICE (Sun & Li, 2022), RankFeat (Song et al., 2022), ASH (Djurisic et al.,
2023), SHE (Zhang et al., 2023b), GEN (Liu et al., 2023), and NAC (Liu et al., 2024a).

A.6 FULL BENCHMARK RESULTS

In Table 18, we present the AUROC results for all officially available baselines on the CIFAR-10 and
CIFAR-100 benchmarks. Table 23 provides the results for the same set of baselines and benchmarks
using the FPR@95 metric. Similarly, Tables 19 and 24 report the AUROC and FPR@95 results
respectivaely for all the avaialble baselines on the ImageNet-200 full-spectrum benchmark. The
same metrics are reported for all the available baselines for the tabular medical benchmarks in Tables
20, 21, 22 for AUROC and 25, 26, 27 for FPR@95.

A.7 INFLUENCE OF CLUSTERING METHOD

This experiment analyzes the effect of different clustering methods on detection performance. We
considered five popular clustering approaches as alternatives to k-means: spectral (Ng et al., 2001),
agglomerative (Murtagh & Legendre, 2014), bisecting k-means (Rohilla et al., 2019), BIRCH
(Zhang et al., 1996), and DBSCAN (Ester et al., 1996). Table 14 presents the experimental results
for the CIFAR-10 benchmark.

Table 14: Detection performance with different clustering algorithms on the CIFAR-10 benchmark.

k-means spectral agglomerative bisecting k-means BIRCH DBSCAN
AUROC 94.12±0.59 94.11±0.59 94.12±0.59 94.10±0.57 94.12±0.59 89.82±4.64

The results show that the choice of clustering method has a negligible impact on detection perfor-
mance, except for DBSCAN, which yields an approximate 4% drop. One reason for this behavior is
that DBSCAN is the only algorithm among those considered that does not necessarily assign a clus-
ter to all samples. In our implementation, these unclustered samples are grouped into an additional
cluster. However, the samples in this extra cluster do not share common characteristics and can
belong to different and distant regions of the input space. Although we are not focused on obtaining
semantically meaningful clusters, we aim to divide the InD samples into smaller regions that can be
effectively processed by a KAN. The leftover samples cluster in DBSCAN has a counterproductive
effect, as it can span a wide region of the input space, making it difficult for the KAN to handle
effectively.

A.8 CAPTURING THE JOINT FEATURE DISTRIBUTION

An alternative approach to the partitioning method for capturing the joint feature distribution is to
expand the input features with additional values. We applied this technique to the 2D L-shaped toy
dataset, as illustrated in Figure 5. In this scenario, the two input features are concatenated with the
latent features derived from a variational autoencoder trained on the two original features, resulting
in an augmented input space of size 2 + 64.

This method demonstrates promising results, comparable to those achieved with the partitioning
method. However, its applicability to high-dimensional input spaces remains uncertain. We hypoth-
esize that the number of required features would become excessively large, leading to computational
inefficiencies.

A.9 TRAINING PARAMETERS

Finding the optimal training hyperparameters for KANs can initially be challenging, as they may
not follow the same intuitions as MLPs and other networks (Liu et al., 2024b).

In our experiments, we use a learning rate of 0.1 and limit the training to a single epoch. With these
settings, the trained KAN achieved a classification accuracy on the CIFAR-10 dataset of approxi-
mately 94.50%, comparable to the one of the ResNet-18 of 95.06%.
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(b) Feature augmentation

Figure 5: 2D L-shape toy dataset: The blue point cloud shows the training distribution and the red
points are OOD test samples. The black contour represents the thresholded score function (median)
separating InD from OOD samples. (a) Default KAN detector limited by the marginal distribution
of x1 and x2. (b) Improved performance by concatenating the input features with the latent features
of a variational autoencoder.

To enhance memory efficiency, we employed the AdamW optimizer (Loshchilov & Hutter, 2019)
instead of the LBFGS optimizer (Liu & Nocedal, 1989) originally suggested by the KAN authors.

A.10 SOFTWARE AND HARDWARE

All experiments are performed on a single NVIDIA GeForce GTX 1080Ti GPU. For testing larger
models and accelerating the hyperparameter optimization, we leveraged a cloud computing platform
with an NVIDIA A100 GPU.

We used Python version 3.10 together with PyTorch 2.3.1 as the deep learning framework and lever-
aged CUDA 11.8 for GPU acceleration.

A.11 INFERENCE TIME AND SCALABILITY ANALYSIS

Table 15 reports the inference time of a single sample for various methods. The measurements are
averaged over 1000 samples, using 100 extra samples as GPU warmup. The results show a positive
correlation between the inference time and the overall AUROC performance.

Although the KAN method is currently the slowest among the tested ones, it is important to em-
phasize that the KAN architecture has just been developed recently. In just a few months since its
release, its performance has been steadily improving thanks to many architecture refinements (e.g.,
replacing splines with Gaussian radial basis functions improves forward speed by approximately a
factor of 3.3 (Li, 2024)). We believe that in the future, KANs will achieve efficiency comparable
to MLPs. Furthermore, it is worth considering that inference time is not always a critical concern
in various applications, particularly in medical contexts. In such scenarios, the enhanced detection
performance offered by our method positions it as a more advantageous choice compared to faster
alternatives.

Table 15: Inference time of single sample compared to the overall AUROC on CIFAR10.

Method Inference time (ms) Overall AUROC
VIM 0.271 91.88
KNN 0.175 92.19
NAC 0.681 93.37
KAN 2.216 94.12

In Table 16, we report the setup time of our detector for different training dataset sizes and various
numbers of partitions (P), using the KNN method as a reference baseline.

The results indicate that the biggest factor influencing setup time (which includes inference on the
backbone model, the partitioning method and the training of the KANs) is the dataset size; however,
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Table 16: Setup time in seconds for different training dataset sizes and number of partitions.

Method 10K 100K 1M
KAN - P = 1 2.84 17.49 165.86
KAN - P = 10 2.82 17.44 166.45
KAN - P = 100 3.19 18.24 172.66

KNN 3.27 15.51 141.75

our method shows comparable speeds to the KNN baseline. On the other hand, varying the number
of partitions seems to have a smaller influence, likely due to GPU parallelization.

The number of parameters in the KAN network is determined by the product of three factors: the
number of inputs, the number of outputs, and the grid size. The grid size depends on the specific
benchmark, and our experiments indicate that it does not correlate with the benchmark’s complexity.
For instance, on CIFAR-10 the optimal value is 100, while on CIFAR-100 it is 50. Scalability to
larger images, or more generally to large input spaces, is typically not an issue as our detector is
applied to the latent space of the backbone model, which is usually much smaller than the inputs.
For example, ImageNet-200 has an input space of roughly 150k dimensions, but it is compressed
by the backbone into a latent space of just 512 features. Lastly, our preliminary results presented
in Section 3.3 demonstrate that changing the training task of the KAN detector can lead to similar
performance. This can potentially allow us to reduce the number of outputs required by the KAN
model, further improving scalability.

A.12 HYPERPARAMETERS

Table 17 reports all hyperparameters and settings for the five benchmarks. The search space of each
hyperparameter is as follows: [10, 200] for the grid size, [1, 200] for the partitions, [0.0001, 0.1] for
the learning rate, [1, 100] for the epochs, and [1, 100] for the histogram bins.

Table 17: Hyperparameters.

Parameter OpenOOD-CIFAR10 OpenOOD-CIFAR100 OpenOOD-ImageNet200 TabMed-Ethnicity TabMed-Age TabMed-Synthetic
Grid size 100 50 10 100 50 50
Partitions 10 100 200 30 30 10
Train Size 100% 100% 100% 100% 100% 100%

Learning rate 0.1 0.1 0.1 0.1 0.1 0.1
Epochs 1 1 1 1 1 1

Partitioning method k-means class-based class-based k-means k-means k-means
Histogram norm. yes yes yes yes no no
Histogram bins 5 10 5 40 - -

Backbone ResNet-18 ResNet-18 ResNet-18 FT-Transformer FT-Transformer FT-Transformer
Pre-Trained backbone yes yes yes no no no
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Table 18: AUROC performance on CIFAR-10 and CIFAR-100 benchmarks.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
CIFAR TIN MNIST SVHN Textures Places365

CIFAR-10 Benchmark
OpenMax 86.91±0.31 88.32±0.28 90.50±0.44 89.77±0.45 89.58±0.60 88.63±0.28 87.62±0.29 89.62±0.19 88.95±0.41

MSP 87.19±0.33 88.87±0.19 92.63±1.57 91.46±0.40 89.89±0.71 88.92±0.47 88.03±0.25 90.73±0.43 89.83±0.76

TempScale 87.17±0.40 89.00±0.23 93.11±1.77 91.66±0.52 90.01±0.74 89.11±0.52 88.09±0.31 90.97±0.52 90.01±0.86

ODIN 82.18±1.87 83.55±1.84 95.24±1.96 84.58±0.77 86.94±2.26 85.07±1.24 82.87±1.85 87.96±0.61 86.26±1.73

MDS 83.59±2.27 84.81±2.53 90.10±2.41 91.18±0.47 92.69±1.06 84.90±2.54 84.20±2.40 89.72±1.36 87.88±2.05

MDSEns 61.29±0.23 59.57±0.53 99.17±0.41 66.56±0.58 77.40±0.28 52.47±0.15 60.43±0.26 73.90±0.27 69.41±0.40

RMDS 88.83±0.35 90.76±0.27 93.22±0.80 91.84±0.26 92.23±0.23 91.51±0.11 89.80±0.28 92.20±0.21 91.40±0.40

Gram 58.33±4.49 58.98±5.19 72.64±2.34 91.52±4.45 62.34±8.27 60.44±3.41 58.66±4.83 71.73±3.20 67.37±5.04

EBO 86.36±0.58 88.80±0.36 94.32±2.53 91.79±0.98 89.47±0.70 89.25±0.78 87.58±0.46 91.21±0.92 90.00±1.22

OpenGAN 52.81±7.69 54.62±7.68 56.14±24.08 52.81±27.60 56.14±18.26 53.34±5.79 53.71±7.68 54.61±15.51 54.31±17.45

GradNorm 54.43±1.59 55.37±0.41 63.72±7.37 53.91±6.36 52.07±4.09 60.50±5.33 54.90±0.98 57.55±3.22 56.67±4.88

ReAct 85.93±0.83 88.29±0.44 92.81±3.03 89.12±3.19 89.38±1.49 90.35±0.78 87.11±0.61 90.42±1.41 89.31±1.96

MLS 86.31±0.59 88.72±0.36 94.15±2.48 91.69±0.94 89.41±0.71 89.14±0.76 87.52±0.47 91.10±0.89 89.90±1.20

KLM 77.89±0.75 80.49±0.85 85.00±2.04 84.99±1.18 82.35±0.33 78.37±0.33 79.19±0.80 82.68±0.21 81.52±1.08

VIM 87.75±0.28 89.62±0.33 94.76±0.38 94.50±0.48 95.15±0.34 89.49±0.39 88.68±0.28 93.48±0.24 91.88±0.37

KNN 89.73±0.14 91.56±0.26 94.26±0.38 92.67±0.30 93.16±0.24 91.77±0.23 90.64±0.20 92.96±0.14 92.19±0.27

DICE 77.01±0.88 79.67±0.87 90.37±5.97 90.02±1.77 81.86±2.35 74.67±4.98 78.34±0.79 84.23±1.89 82.27±3.43

RankFeat 77.98±2.24 80.94±2.80 75.87±5.22 68.15±7.44 73.46±6.49 85.99±3.04 79.46±2.52 75.87±5.06 77.07±4.95

ASH 74.11±1.55 76.44±0.61 83.16±4.66 73.46±6.41 77.45±2.39 79.89±3.69 75.27±1.04 78.49±2.58 77.42±3.76

SHE 80.31±0.69 82.76±0.43 90.43±4.76 86.38±1.32 81.57±1.21 82.89±1.22 81.54±0.51 85.32±1.43 84.06±2.16

GEN 87.21±0.36 89.20±0.25 93.83±2.14 91.97±0.66 90.14±0.76 89.46±0.65 88.20±0.30 91.35±0.69 90.30±1.02

NAC 89.83±0.29 92.02±0.20 94.86±1.37 96.06±0.47 95.64±0.45 91.85±0.28 90.93±0.23 94.60±0.50 93.37±0.64

KAN 90.06±0.47 91.92±0.52 97.86±0.73 97.39±0.42 95.85±0.28 91.64±0.91 90.99±0.50 95.69±0.22 94.12±0.59

CIFAR-100 Benchmark
OpenMax 74.38±0.37 78.44±0.14 76.01±1.39 82.07±1.53 80.56±0.09 79.29±0.40 76.41±0.25 79.48±0.41 78.46±0.88

MSP 78.47±0.07 82.07±0.17 76.08±1.86 78.42±0.89 77.32±0.71 79.22±0.29 80.27±0.11 77.76±0.44 78.60±0.90

TempScale 79.02±0.06 82.79±0.09 77.27±1.85 79.79±1.05 78.11±0.72 79.80±0.25 80.90±0.07 78.74±0.51 79.46±0.92

ODIN 78.18±0.14 81.63±0.08 83.79±1.31 74.54±0.76 79.33±1.08 79.45±0.26 79.90±0.11 79.28±0.21 79.49±0.77

MDS 55.87±0.22 61.50±0.28 67.47±0.81 70.68±6.40 76.26±0.69 63.15±0.49 58.69±0.09 69.39±1.39 65.82±2.66

MDSEns 43.85±0.31 48.78±0.19 98.21±0.78 53.76±1.63 69.75±1.14 42.27±0.73 46.31±0.24 66.00±0.69 59.44±0.93

RMDS 77.75±0.19 82.55±0.02 79.74±2.49 84.89±1.10 83.65±0.51 83.40±0.46 80.15±0.11 82.92±0.42 82.00±1.15

Gram 49.41±0.58 53.91±1.58 80.71±4.15 95.55±0.60 70.79±1.32 46.38±1.21 51.66±0.77 73.36±1.08 66.12±1.98

EBO 79.05±0.11 82.76±0.08 79.18±1.37 82.03±1.74 78.35±0.83 79.52±0.23 80.91±0.08 79.77±0.61 80.15±0.97

OpenGAN 63.23±2.44 68.74±2.29 68.14±18.78 68.40±2.15 65.84±3.43 69.13±7.08 65.98±1.26 67.88±7.16 67.25±8.47

GradNorm 70.32±0.20 69.95±0.79 65.35±1.12 76.95±4.73 64.58±0.13 69.69±0.17 70.13±0.47 69.14±1.05 69.47±2.01

ReAct 78.65±0.05 82.88±0.08 78.37±1.59 83.01±0.97 80.15±0.46 80.03±0.11 80.77±0.05 80.39±0.49 80.52±0.79

MLS 79.21±0.10 82.90±0.05 78.91±1.47 81.65±1.49 78.39±0.84 79.75±0.24 81.05±0.07 79.67±0.57 80.14±0.93

KLM 73.91±0.25 79.22±0.28 74.15±2.59 79.34±0.44 75.77±0.45 75.70±0.24 76.56±0.25 76.24±0.52 76.35±1.10

VIM 72.21±0.41 77.76±0.16 81.89±1.02 83.14±3.71 85.91±0.78 75.85±0.37 74.98±0.13 81.70±0.62 79.46±1.62

KNN 77.02±0.25 83.34±0.16 82.36±1.52 84.15±1.09 83.66±0.83 79.43±0.47 80.18±0.15 82.40±0.17 81.66±0.87

DICE 78.04±0.32 80.72±0.30 79.86±1.89 84.22±2.00 77.63±0.34 78.33±0.66 79.38±0.23 80.01±0.18 79.80±1.18

RankFeat 58.04±2.36 65.72±0.22 63.03±3.86 72.14±1.39 69.40±3.08 63.82±1.83 61.88±1.28 67.10±1.42 65.36±2.43

ASH 76.48±0.30 79.92±0.20 77.23±0.46 85.60±1.40 80.72±0.70 78.76±0.16 78.20±0.15 80.58±0.66 79.79±0.69

SHE 78.15±0.03 79.74±0.36 76.76±1.07 80.97±3.98 73.64±1.28 76.30±0.51 78.95±0.18 76.92±1.16 77.59±1.78

GEN 79.38±0.04 83.25±0.13 78.29±2.05 81.41±1.50 78.74±0.81 80.28±0.27 81.31±0.08 79.68±0.75 80.23±1.10

NAC 72.02±0.69 79.86±0.23 93.26±1.34 92.60±1.14 89.36±0.54 73.06±0.63 75.94±0.41 87.07±0.30 83.36±0.84

KAN 72.97±0.17 81.37±0.22 92.29±1.85 87.16±4.46 89.43±0.39 77.42±0.35 77.17±0.17 86.57±0.70 83.44±1.99
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Table 19: AUROC performance on ImageNet-200 full-spectrum benchmark.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
SSB-hard NINCO iNaturalist Textures OpenImage-O

OpenMax 47.64±0.20 54.15±0.23 72.44±0.87 69.12±0.36 62.31±0.24 50.89±0.18 67.96±0.39 61.13±0.46

MSP 50.94±0.25 57.76±0.46 70.42±0.67 65.11±0.43 62.80±0.24 54.35±0.35 66.11±0.37 61.41±0.44

TempScale 50.05±0.28 56.86±0.47 70.18±0.76 65.65±0.43 62.29±0.26 53.46±0.37 66.04±0.41 61.01±0.48

ODIN 44.31±0.02 52.36±0.08 70.19±0.92 67.10±0.34 61.48±0.31 48.33±0.05 66.25±0.42 59.09±0.46

MDS 48.59±0.88 56.65±0.94 68.25±1.51 73.84±0.75 61.90±0.57 52.62±0.90 68.00±0.87 61.85±0.98

MDSEns 34.22±0.44 41.58±0.17 43.63±0.48 67.54±0.35 48.38±0.36 37.90±0.20 53.18±0.39 47.07±0.38

RMDS 56.24±0.62 60.95±0.94 71.71±1.49 64.61±1.07 63.52±0.83 58.59±0.77 66.62±1.11 63.41±1.03

Gram 59.12±0.73 63.35±0.76 58.42±0.75 75.86±0.10 61.51±0.39 61.23±0.74 65.26±0.31 63.65±0.61

EBO 47.56±0.29 53.45±0.32 65.91±1.41 68.03±0.48 59.83±0.59 50.51±0.30 64.59±0.76 58.96±0.74

OpenGAN 41.58±5.51 46.51±2.97 61.78±8.75 59.02±4.68 58.53±3.57 44.04±4.21 59.78±4.65 53.48±5.48

GradNorm 53.50±1.03 55.32±0.88 70.38±2.68 73.12±0.59 63.52±1.33 54.41±0.94 69.01±1.39 63.17±1.49

ReAct 47.25±0.57 53.84±0.55 69.45±3.94 71.45±2.04 62.30±2.32 50.55±0.19 67.73±2.76 60.86±2.27

MLS 48.18±0.28 54.43±0.32 67.94±1.20 67.12±0.45 60.66±0.44 51.30±0.30 65.24±0.61 59.67±0.64

KLM 54.03±0.71 60.52±0.13 75.37±0.91 64.12±0.65 66.20±0.29 57.28±0.41 68.56±0.52 64.05±0.61

VIM 45.34±0.72 57.09±1.03 71.34±1.68 82.54±0.73 65.70±0.94 51.22±0.86 73.19±1.10 64.40±1.08

KNN 44.05±0.42 54.51±0.62 71.53±1.32 81.88±0.19 62.12±0.79 49.28±0.51 71.84±0.72 62.82±0.77

DICE 48.11±0.51 54.31±0.55 66.53±2.14 72.51±0.66 61.73±0.94 51.21±0.53 66.92±1.12 60.64±1.14

RankFeat 46.41±0.23 43.03±2.29 22.74±4.50 20.60±3.08 40.74±4.41 44.72±1.07 28.03±3.96 34.70±3.30

ASH 50.96±0.93 58.51±0.60 77.96±1.58 79.39±0.61 69.09±0.71 54.74±0.74 75.48±0.95 67.18±0.96

SHE 52.82±0.65 56.64±0.69 72.20±2.65 74.27±0.63 64.95±1.25 54.73±0.67 70.47±1.39 64.18±1.41

GEN 48.33±0.27 54.85±0.42 68.94±0.63 66.58±0.47 60.87±0.28 51.59±0.34 65.46±0.44 59.91±0.43

NAC 45.42±0.11 53.80±0.08 65.83±1.22 74.41±0.35 60.79±0.23 49.61±0.06 67.01±0.53 60.05±0.58

KAN 58.37±0.47 61.10±0.53 84.13±0.35 83.30±0.35 70.40±0.26 59.74±0.46 79.28±0.18 71.46±0.40

Table 20: Tab. Med.
Caucasian Eth. as InD

(AUROC metric).

Method eICU - Eth.
MDS 58.5±2.2

RMDS 51.6±1.5

KNN 55.8±1.9

VIM 57.3±2.3

SHE 50.5±1.7

KLM 51.6±2.1

OpenMax 48.7±0.8

MSP 48.4±1.0

MLS 49.1±1.1

TempScale 48.4±1.0

ODIN 48.4±1.0

EBO 49.1±1.1

GRAM 50.8±2.7

GradNorm 50.4±3.4

ReAct 48.1±1.1

DICE 49.9±2.8

ASH 52.6±2.7

KAN 61.4±3.1

Table 21: Tab. Med.
> 70 y.o. as InD
(AUROC metric).

Method eICU - Age
MDS 50.8±1.1

RMDS 48.3±0.7

KNN 49.6±0.2

VIM 48.8±0.1

SHE 50.4±0.7

KLM 51.0±0.7

OpenMax 48.1±0.5

MSP 48.1±0.5

MLS 48.0±0.5

TempScale 48.1±0.5

ODIN 48.1±0.5

EBO 48.0±0.5

GRAM 48.6±0.6

GradNorm 48.7±0.8

ReAct 48.2±0.7

DICE 48.1±0.6

ASH 48.6±1.3

KAN 50.5±0.5

Table 22: Tab. Med.
Feature multiplication

(AUROC metric).

Method eICU - Synthetic OOD Avg Overall
F = 10 F = 100 F = 1000

MDS 59.9±1.4 79.5±1.4 87.5±0.9 75.63±1.26

RMDS 51.5±1.3 57.8±7.4 64.0±13.0 57.77±8.67

KNN 57.3±1.4 75.4±2.2 86.5±1.3 73.07±1.68

VIM 57.9±1.6 77.6±1.3 88.3±0.7 74.60±1.26

SHE 55.7±1.3 71.2±2.9 80.4±1.6 69.10±2.05

KLM 54.1±0.8 63.1±1.1 72.1±4.2 63.10±2.55

OpenMax 51.0±0.7 56.1±2.7 71.4±3.2 59.50±2.45

MSP 50.9±0.6 55.8±2.7 71.3±3.1 59.33±2.40

MLS 50.9±0.7 55.8±3.1 70.8±3.1 59.17±2.56

TempScale 50.9±0.6 55.8±2.7 71.3±3.1 59.33±2.40

ODIN 50.9±0.6 55.9±2.7 71.4±3.1 59.40±2.40

EBO 50.9±0.7 55.5±3.1 70.2±3.2 58.87±2.60

GRAM 48.9±0.1 50.1±0.8 62.5±3.0 53.83±1.79

GradNorm 52.0±0.8 59.5±2.9 73.6±2.9 61.70±2.41

ReAct 50.9±0.8 55.7±3.4 69.9±3.2 58.83±2.73

DICE 52.2±1.5 62.8±2.5 75.6±1.4 63.53±1.87

ASH 50.1±1.4 54.6±2.1 69.7±1.3 58.13±1.64

KAN 64.6±2.2 83.0±2.6 89.8±1.8 79.13±2.22
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Table 23: FPR@95 performance on CIFAR-10 and CIFAR-100 benchmarks.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
CIFAR TIN MNIST SVHN Textures Places365

CIFAR-10 Benchmark
OpenMax 48.06±3.25 39.18±1.44 23.33±4.67 25.40±1.47 31.50±4.05 38.52±2.27 43.62±2.27 29.69±1.21 34.33±3.11

MSP 53.08±4.86 43.27±3.00 23.64±5.81 25.82±1.64 34.96±4.64 42.47±3.81 48.17±3.92 31.72±1.84 37.21±4.19

TempScale 55.81±5.07 46.11±3.63 23.53±7.05 26.97±2.65 38.16±5.89 45.27±4.50 50.96±4.32 33.48±2.39 39.31±5.01

ODIN 77.00±5.74 75.38±6.42 23.83±12.34 68.61±0.52 67.70±11.06 70.36±6.96 76.19±6.08 57.62±4.24 63.81±8.14

MDS 52.81±3.62 46.99±4.36 27.30±3.55 25.96±2.52 27.94±4.20 47.67±4.54 49.90±3.98 32.22±3.40 38.11±3.86

MDSEns 91.87±0.10 92.66±0.42 1.30±0.51 74.34±1.04 76.07±0.17 94.16±0.33 92.26±0.20 61.47±0.48 71.73±0.53

RMDS 43.86±3.49 33.91±1.39 21.49±2.32 23.46±1.48 25.25±0.53 31.20±0.28 38.89±2.39 25.35±0.73 29.86±1.92

Gram 91.68±2.24 90.06±1.59 70.30±8.96 33.91±17.35 94.64±2.71 90.49±1.93 90.87±1.91 72.34±6.73 78.51±8.16

EBO 66.60±4.46 56.08±4.83 24.99±12.93 35.12±6.11 51.82±6.11 54.85±6.52 61.34±4.63 41.69±5.32 48.24±7.39

OpenGAN 94.84±3.83 94.11±4.21 79.54±19.71 75.27±26.93 83.95±14.89 95.32±4.45 94.48±4.01 83.52±11.63 87.17±15.21

GradNorm 94.54±1.11 94.89±0.60 85.41±4.85 91.65±2.42 98.09±0.49 92.46±2.28 94.72±0.82 91.90±2.23 92.84±2.46

ReAct 67.40±7.34 59.71±7.31 33.77±18.00 50.23±15.98 51.42±11.42 44.20±3.35 63.56±7.33 44.90±8.37 51.12±11.75

MLS 66.59±4.44 56.06±4.82 25.06±12.87 35.09±6.09 51.73±6.13 54.84±6.51 61.32±4.62 41.68±5.27 48.23±7.37

KLM 90.55±5.83 85.18±7.60 76.22±12.09 59.47±7.06 81.95±9.95 95.58±2.12 87.86±6.37 78.31±4.84 81.49±8.08

VIM 49.19±3.15 40.49±1.55 18.36±1.42 19.29±0.41 21.14±1.83 41.43±2.17 44.84±2.31 25.05±0.52 31.65±1.94

KNN 37.64±0.31 30.37±0.65 20.05±1.36 22.60±1.26 24.06±0.55 30.38±0.63 34.01±0.38 24.27±0.40 27.52±0.88

DICE 73.71±7.67 66.37±7.68 30.83±10.54 36.61±4.74 62.42±4.79 77.19±12.60 70.04±7.64 51.76±4.42 57.85±8.50

RankFeat 65.32±3.48 56.44±5.76 61.86±12.78 64.49±7.38 59.71±9.79 43.70±7.39 60.88±4.60 57.44±7.99 58.59±8.30

ASH 87.31±2.06 86.25±1.58 70.00±10.56 83.64±6.48 84.59±1.74 77.89±7.28 86.78±1.82 79.03±4.22 81.61±6.00

SHE 81.00±3.42 78.30±3.52 42.22±20.59 62.74±4.01 84.60±5.30 76.36±5.32 79.65±3.47 66.48±5.98 70.87±9.31

GEN 58.75±3.97 48.59±2.34 23.00±7.75 28.14±2.59 40.74±6.61 47.03±3.22 53.67±3.14 34.73±1.58 41.04±4.87

NAC 35.15±0.40 26.55±0.18 15.13±2.62 14.33±1.26 17.05±0.60 26.73±0.81 30.85±0.19 18.31±0.93 22.49±1.27

KAN 40.81±2.91 34.17±1.85 11.63±3.11 14.13±2.38 21.30±0.98 32.49±2.21 37.49±2.36 19.89±1.19 25.75±2.35

CIFAR-100 Benchmark
OpenMax 60.17±0.97 52.99±0.51 53.82±4.74 53.20±1.78 56.12±1.91 54.85±1.42 56.58±0.73 54.50±0.68 55.19±2.33

MSP 58.91±0.93 50.70±0.34 57.23±4.68 59.07±2.53 61.88±1.28 56.62±0.87 54.80±0.33 58.70±1.06 57.40±2.30

TempScale 58.72±0.81 50.26±0.16 56.05±4.61 57.71±2.68 61.56±1.43 56.46±0.94 54.49±0.48 57.94±1.14 56.79±2.31

ODIN 60.64±0.56 55.19±0.57 45.94±3.29 67.41±3.88 62.37±2.96 59.71±0.92 57.91±0.51 58.86±0.79 58.54±2.45

MDS 88.00±0.49 79.05±1.22 71.72±2.94 67.21±6.09 70.49±2.48 79.61±0.34 83.53±0.60 72.26±1.56 76.01±2.99

MDSEns 95.94±0.16 95.82±0.12 2.83±0.86 82.57±2.58 84.94±0.83 96.61±0.17 95.88±0.04 66.74±1.04 76.45±1.17

RMDS 61.37±0.24 49.56±0.90 52.05±6.28 51.65±3.68 53.99±1.06 53.57±0.43 55.46±0.41 52.81±0.63 53.70±3.03

Gram 92.71±0.64 91.85±0.86 53.53±7.45 20.06±1.96 89.51±2.54 94.67±0.60 92.28±0.29 64.44±2.37 73.72±3.35

EBO 59.21±0.75 52.03±0.50 52.62±3.83 53.62±3.14 62.35±2.06 57.75±0.86 55.62±0.61 56.59±1.38 56.26±2.25

OpenGAN 78.83±3.94 74.21±1.25 63.09±23.25 70.35±2.06 74.77±1.78 73.75±8.32 76.52±2.59 70.49±7.38 72.50±10.28

GradNorm 84.30±0.36 86.85±0.62 86.97±1.44 69.90±7.94 92.51±0.61 85.32±0.44 85.58±0.46 83.68±1.92 84.31±3.32

ReAct 61.30±0.43 51.47±0.47 56.04±5.66 50.41±2.02 55.04±0.82 55.30±0.41 56.39±0.34 54.20±1.56 54.93±2.50

MLS 59.11±0.64 51.83±0.70 52.95±3.82 53.90±3.04 62.39±2.13 57.68±0.91 55.47±0.66 56.73±1.33 56.31±2.24

KLM 84.77±2.95 71.07±0.59 73.09±6.67 50.30±7.04 81.80±5.80 81.40±1.58 77.92±1.31 71.65±2.01 73.74±4.82

VIM 70.59±0.43 54.66±0.42 48.32±1.07 46.22±5.46 46.86±2.29 61.57±0.77 62.63±0.27 50.74±1.00 54.70±2.49

KNN 72.80±0.44 49.65±0.37 48.58±4.67 51.75±3.12 53.56±2.32 60.70±1.03 61.22±0.14 53.65±0.28 56.17±2.53

DICE 60.98±1.10 54.93±0.53 51.79±3.67 49.58±3.32 64.23±1.65 59.39±1.25 57.95±0.53 56.25±0.60 56.82±2.25

RankFeat 82.78±1.56 78.40±0.95 75.01±5.83 58.49±2.30 66.87±3.80 77.42±1.96 80.59±1.10 69.45±1.01 73.16±3.19

ASH 68.06±0.44 63.35±0.90 66.58±3.88 46.00±2.67 61.27±2.74 62.95±0.99 65.71±0.24 59.20±2.46 61.37±2.30

SHE 60.41±0.51 57.74±0.73 58.78±2.70 59.15±7.61 73.29±3.22 65.24±0.98 59.07±0.25 64.12±2.70 62.44±3.59

GEN 58.87±0.69 49.98±0.05 53.92±5.71 55.45±2.76 61.23±1.40 56.25±1.01 54.42±0.33 56.71±1.59 55.95±2.70

NAC 81.37±1.27 61.59±0.78 21.97±6.62 24.39±4.46 40.65±1.94 73.57±1.16 71.48±1.03 40.14±1.86 50.59±3.44

KAN 82.28±1.76 55.74±1.94 39.61±7.67 57.13±12.74 45.76±2.87 65.33±0.61 69.01±1.85 51.96±3.31 57.64±6.28
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Table 24: FPR@95 performance on ImageNet-200 full-spectrum benchmark.

Method Near OOD Far OOD Avg Near Avg Far Avg Overall
SSB-hard NINCO iNaturalist Textures OpenImage-O

OpenMax 91.55±0.05 85.00±0.26 68.19±0.77 76.72±0.33 77.39±0.28 88.27±0.14 74.10±0.46 79.77±0.41

MSP 89.08±0.03 79.30±0.42 67.24±0.64 79.79±0.36 74.22±0.10 84.19±0.21 73.75±0.26 77.93±0.38

TempScale 89.33±0.04 79.51±0.37 66.61±0.68 79.67±0.39 74.10±0.22 84.42±0.18 73.46±0.24 77.84±0.40

ODIN 91.71±0.09 86.66±0.39 65.50±1.53 79.13±0.77 76.03±0.28 89.18±0.16 73.55±0.63 79.81±0.80

MDS 93.90±0.16 88.52±0.16 74.46±1.37 74.10±1.07 83.68±0.52 91.21±0.07 77.41±0.78 82.93±0.82

MDSEns 96.28±0.11 95.83±0.15 91.39±0.26 84.83±0.16 93.52±0.13 96.06±0.13 89.91±0.10 92.37±0.17

RMDS 89.44±0.17 79.23±0.48 65.62±1.16 76.73±0.68 74.82±0.09 84.33±0.31 72.39±0.64 77.17±0.64

Gram 86.37±0.25 87.59±1.45 86.24±0.49 82.76±0.49 87.23±0.84 86.98±0.77 85.41±0.28 86.04±0.82

EBO 90.71±0.15 83.61±0.39 70.53±1.68 79.46±0.88 77.14±0.64 87.16±0.27 75.71±0.83 80.29±0.91

OpenGAN 95.90±0.21 94.47±1.39 81.85±4.09 84.76±1.87 86.71±0.61 95.18±0.60 84.44±0.80 88.74±2.12

GradNorm 91.16±0.41 91.68±0.31 78.68±2.25 82.11±1.95 84.81±0.53 91.42±0.32 81.86±0.44 85.69±1.37

ReAct 91.22±0.50 84.61±0.72 67.52±2.93 72.82±1.56 74.81±0.18 87.91±0.61 71.72±1.54 78.20±1.54

MLS 90.68±0.17 83.27±0.42 69.50±1.61 79.39±0.85 76.55±0.43 86.98±0.28 75.15±0.78 79.88±0.86

KLM 91.97±0.85 85.33±1.20 66.87±1.12 80.11±0.48 77.94±0.45 88.65±0.36 74.97±0.54 80.44±0.88

VIM 91.61±0.15 82.35±0.44 68.15±0.74 58.50±0.85 74.54±0.51 86.98±0.28 67.06±0.63 75.03±0.59

KNN 91.73±0.15 81.23±0.35 69.10±0.74 69.06±0.22 74.43±0.66 86.48±0.25 70.86±0.50 77.11±0.49

DICE 90.94±0.09 84.24±0.51 72.10±1.81 78.84±0.87 77.79±0.68 87.59±0.29 76.24±0.78 80.78±0.98

RankFeat 95.78±0.10 96.98±0.18 99.16±0.31 99.75±0.28 98.16±0.35 96.38±0.14 99.02±0.30 97.97±0.26

ASH 90.29±0.42 84.21±0.45 63.16±1.71 65.99±0.56 71.69±0.41 87.25±0.40 66.95±0.64 75.07±0.87

SHE 91.16±0.13 86.49±0.62 71.48±2.66 78.98±1.32 79.50±0.69 88.82±0.36 76.65±0.88 81.52±1.39

GEN 89.59±0.05 80.12±0.33 66.47±0.74 79.30±0.45 73.96±0.26 84.85±0.14 73.24±0.40 77.89±0.43

NAC 92.75±0.35 88.83±0.12 72.57±1.49 69.08±0.63 79.55±0.72 90.79±0.16 73.73±0.66 80.56±0.81

KAN 94.67±1.20 87.35±1.49 64.89±3.67 68.75±1.79 78.84±1.55 91.01±1.35 70.83±0.25 78.90±2.13

Table 25: Tab. Med.
Caucasian Eth. as InD

(FPR@95 metric).

Method eICU - Eth.
MDS 89.7±4.3

RMDS 93.1±1.6

KNN 91.8±2.0

VIM 90.7±4.3

SHE 93.2±1.8

KLM 92.8±1.4

OpenMax 93.8±1.9

MSP 93.5±1.6

MLS 93.4±1.6

TempScale 93.5±1.6

ODIN 93.5±1.6

EBO 93.3±1.6

GRAM 93.6±2.3

GradNorm 92.0±3.2

ReAct 94.5±2.3

DICE 93.0±2.2

ASH 92.6±2.1

KAN 91.6±3.4

Table 26: Tab. Med.
> 70 y.o. as InD

(FPR@95 metric).

Method eICU - Age
MDS 94.3±0.5

RMDS 95.6±0.1

KNN 94.7±0.2

VIM 94.6±0.0

SHE 95.1±0.3

KLM 95.2±0.3

OpenMax 95.2±0.1

MSP 95.3±0.2

MLS 95.3±0.1

TempScale 95.3±0.2

ODIN 95.3±0.2

EBO 95.2±0.1

GRAM 95.0±0.3

GradNorm 95.3±0.2

ReAct 95.2±0.2

DICE 94.9±0.1

ASH 95.3±0.1

KAN 97.3±0.9

Table 27: Tab. Med.
Feature multiplication

(FPR@95 metric).

Method eICU - Synthetic OOD Avg Overall
F = 10 F = 100 F = 1000

MDS 81.6±1.3 48.1±4.1 28.0±4.9 52.57±3.76

RMDS 91.9±2.3 78.7±10.4 64.2±17.7 78.27±11.93

KNN 83.6±1.8 53.4±5.3 29.8±5.6 55.60±4.57

VIM 81.9±2.8 48.7±3.5 26.6±3.0 52.40±3.11

SHE 88.2±2.5 63.0±6.6 41.6±4.4 64.27±4.80

KLM 91.0±1.8 79.5±4.4 60.9±9.7 77.13±6.24

OpenMax 91.2±1.9 80.7±4.8 60.6±9.2 77.50±6.09

MSP 91.0±1.4 79.2±2.5 58.8±5.3 76.33±3.48

MLS 91.2±1.0 80.4±3.7 61.0±7.7 77.53±4.97

TempScale 91.0±1.4 79.2±2.5 58.8±5.3 76.33±3.48

ODIN 90.9±1.4 79.0±2.4 58.4±5.1 76.10±3.35

EBO 91.6±0.8 82.0±5.1 63.7±9.0 79.10±5.99

GRAM 94.1±0.6 89.8±4.7 79.9±8.3 87.93±5.52

GradNorm 91.3±1.4 78.6±4.5 58.3±6.7 76.07±4.73

ReAct 91.8±0.7 82.9±3.9 65.5±6.7 80.07±4.49

DICE 88.3±1.1 66.9±2.3 45.1±2.7 66.77±2.14

ASH 91.6±0.7 81.0±4.5 61.0±6.9 77.87±4.77

KAN 77.2±4.0 49.3±5.5 33.7±5.2 53.42±4.94
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