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ABSTRACT

This paper introduces Gestalt Reasoning Machines (GRMs), a novel neuro-
symbolic framework that integrates Gestalt principles to enhance reasoning mod-
els with perception capabilities similar to human cognition. Traditional models,
which rely on large datasets and complex computations, often overlook the cru-
cial human cognitive function of grouping, resulting in inefficiencies when dealing
with abstract concepts. GRMs address this challenge by incorporating a grouping
mechanism grounded in Gestalt principles, enabling the system to recognize and
reason over complex visual patterns that are otherwise difficult to capture through
object-level features alone. This grouping capability allows GRMs to identify
higher-order structures and relational configurations that are essential for human-
like reasoning. We demonstrate that GRMs outperform purely neural baselines by
leveraging logic-based reasoning infused with perceptual grouping cues, offering
a more interpretable and cognitively aligned approach. Our contributions include
the design of GRMs and the empirical validation of their effectiveness in visual
reasoning tasks that demand structured perception.

1 INTRODUCTION

Human visual perception excels at organizing complex scenes into meaningful structures through
perceptual grouping. Gestalt principles—such as proximity, similarity, and continuity—explain
how individuals organize visual elements into coherent wholes rather than processing them as iso-
lated components. These principles, rooted in psychology research (Koffka, 1935; Wertheimer,
1938; Palmer, 1999; Ellis, 1999), are fundamental to how humans efficiently parse and reason about
visual scenes. As illustrated in Fig. 1 (right), humans naturally perceive objects based on their spa-
tial arrangements and shared attributes, identifying patterns that enable structured understanding of
complex visual environments.

Current approaches to visual reasoning typically rely on scaling up neural models with massive
datasets and parameters (Kojima et al., 2022; Huang & Chang, 2023; Cheng et al., 2024; Zhang et al.,
2025). However, these data-driven models struggle with abstract reasoning (Huang et al., 2024),
particularly in Vision-Language Models (VLMs) where reasoning capabilities remain severely lim-
ited (Chen et al., 2025; Wüst et al., 2025). Their reasoning often lacks grounding and becomes
inconsistent when processing complex multi-object scenes (Fu et al., 2024; Majumdar et al., 2024;
Zhang et al., 2024a), highlighting limitations in their ability to capture structured relationships.

Neuro-symbolic approaches offer a promising alternative by integrating symbolic reasoning with
neural perception. These models have demonstrated strong performance on complex reasoning
tasks requiring relational inference and numerical computation over visual inputs (Yi et al., 2018;
Amizadeh et al., 2020; Manhaeve et al., 2021; Marra et al., 2024). Differentiable rule learners (Evans
& Grefenstette, 2018; Shindo et al., 2023; 2024b) have been successfully applied to visual reasoning
challenges, discovering explicit rules to explain visual patterns through program induction (Shindo
et al., 2024a; Sudhakaran et al., 2025). However, existing neuro-symbolic approaches face a critical
scalability bottleneck: they lack effective grouping mechanisms that are fundamental to human vi-
sual perception (Han et al., 2002; Xu & Chun, 2007; Thórisson, 2019). When processing complex
scenes, humans naturally organize objects according to perceptual cues like similarity and proxim-
ity, enabling efficient reasoning by reducing redundant relational computations. In contrast, most
neuro-symbolic models rely on exhaustive pairwise relation generation, enumerating all possible
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Figure 1: Scene reasoning with Gestalt grouping. Left: Comparison of model perception. Neural-
only models process objects individually without structural organization, whereas GRM integrates
perceptual grouping with symbolic reasoning, producing interpretable group-based representations
(e.g., red vs. blue squares). Right: Examples of gestalt principles. Proximity, similarity, symmetry,
and continuity. Each of these principles guide how objects are grouped into meaningful structures.

object relationships. This approach becomes computationally prohibitive and brittle as scene com-
plexity increases. This raises the central research question: How can we endow neuro-symbolic
models with human-like grouping mechanisms that enable efficient and robust reasoning over com-
plex visual scenes?

We propose the Gestalt Reasoning Machine (GRM), a neuro-symbolic framework that explicitly
incorporates perceptual grouping into visual reasoning. Unlike conventional object-centric ap-
proaches, GRM first organizes scene elements into structured groups based on spatial and attri-
butional patterns (Fig. 1, left). These grouped entities serve as the foundation for symbolic rea-
soning, allowing the model to operate over scenes in a hierarchically structured and interpretable
manner. By treating scenes as compositions of perceptual groups rather than collections of isolated
objects, GRM captures higher-level regularities and solves complex visual problems that traditional
approaches often fail to address. Given a complex scene with multiple objects, GRMs perform
rule learning to identify and group objects that share underlying patterns, simultaneously producing
structured perceptual representations and symbolic programs for reasoning. The resulting structured
perception is then fed to the reasoning module, which efficiently infers solutions by operating over
these coherent groups rather than individual objects.

Our work makes the following key contributions:

• We introduce Gestalt Reasoning Machines (GRMs)1, the first neuro-symbolic framework
that integrates perceptual grouping with symbolic rule learning, offering a robust and inter-
pretable approach to complex visual scene understanding.

• We develop a scalable grouping mechanism that operates directly on visual input and seam-
lessly integrates with symbolic reasoning, enabling GRMs to scale effectively with increas-
ing numbers of objects by reducing unnecessary relational complexity.

• We demonstrate that GRMs significantly outperform existing neural and neuro-symbolic
models on structured visual reasoning tasks, with performance gains that increase as scene
complexity grows. Our results show that GRMs successfully bridge the gap between data-
driven modeling and efficient structured perception.

The remainder of this paper presents related work, details the GRM architecture and training proce-
dure, provides a comprehensive experimental evaluation, and concludes with implications for future
research in neuro-symbolic visual reasoning.

1We make our code publicly available at https://anonymous.4open.science/r/nesy_
causal_p-7487
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Figure 2: Overview of the Gestalt Reasoning Machine (GRM) Pipeline. An input image is
first processed by a Perception Backbone that detects objects and identifies Gestalt-based group
structures. Next, the Symbolic Abstraction module converts these perceptual features into a logical
fact base and generates candidate clauses. The Rule Learner then performs a search over this
symbolic space to discover a final set of interpretable rules. Finally, the Inference engine applies
these rules to a new visual input, employing a high-confidence prioritization strategy. This ensures
that predictions are based on highly certain, transparent rules whenever possible, falling back to a
weighted aggregation of evidence from all relevant rules in more ambiguous cases.

2 RELATED WORK

Visual reasoning is a fundamental problem in machine learning research, leading to the develop-
ment of various benchmarks (Antol et al., 2015; Johnson et al., 2017; Yi et al., 2020) and sub-
sequent frameworks (Yi et al., 2018; Mao et al., 2019; Amizadeh et al., 2020; Hsu et al., 2023)
focused on reasoning through symbolic programs and multi-modal transformers (Tan & Bansal,
2019). These benchmarks primarily aim to answer queries expressed in natural language in con-
junction with visual inputs. Our work evaluates Gestalt Reasoning Models (GRMs), particularly
emphasizing their ability to perform the grouping function based on Gestalt reasoning principles.
Reinforcement learning has been used to enhance the reasoning capability of large Vision-Language
Models (VLMs) (Liu et al., 2025; Tan et al., 2025; Zhai et al., 2024; Li et al., 2025). However,
the resulting reasoning traces are not logically grounded in terms of objects (Sarch et al., 2025).
Consequently, these models struggle to perform structured perception with grouping. We aim at
developing the foundaiton of performing structured perception with a neuro-symbolic approach.

Additionally, Abstract Visual Reasoning (AVR) explores the capability to apply previously acquired
knowledge and techniques in completely new contexts, posing unique challenges for deep neural net-
works (DNNs) (Hu et al., 2021; Malkinski & Mandziuk, 2023; Camposampiero et al., 2023). AVR
methods have been primarily evaluated through simple abstract puzzles like Raven’s progressive
matrices (Raven & Court, 1998). The Kandinsky patterns framework (Müller & Holzinger, 2021)
provides a unique method for generating patterns with abstract objects, which we have expanded to
address Gestalt reasoning tasks. To address these challenges, neuro-symbolic rule learning frame-
works have been developed, emphasizing the learning of discrete rule structures via backpropaga-
tion (Evans & Grefenstette, 2018; Minervini et al., 2020; Shindo et al., 2023; 2024b; Zimmer et al.,
2023; Sha et al., 2024). These methodologies have predominantly been tested on visual arithmetic
tasks or within synthetic environments tailored for reasoning (Stammer et al., 2021). Our work
on Gestalt Reasoning Models (GRMs) seeks to bridge the gap between existing neuro-symbolic
paradigms and elements of human cognitive processes.

Gestalt reasoning has been extensively studied in psychology (Wertheimer, 1938; Koffka, 1935;
Palmer, 1999; Ellis, 1999) and has also intersected significantly with machine learning and deep
learning research (Lörincz et al.; Hua & Kunda, 2020; Kim et al., 2021; Zhang et al., 2024b), al-
though previous efforts primarily focused on convolutional neural networks. GRMs represent the
first neuro-symbolic framework that explicitly encodes the grouping function in Gestalt principles.
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3 GESTALT REASONING MACHINES

The Gestalt Reasoning Machine (GRM) is a neuro-symbolic framework that integrates perceptual
organization with logical reasoning. Inspired by human visual cognition, it processes raw images to
detect objects and perceptual groups, abstracts them into object- and group-level facts, and applies
a logic-based rule learner to derive interpretable decision functions (Fig. 2). By combining neural
perception with symbolic abstraction and rule learning, GRM achieves flexible yet interpretable
reasoning over complex visual patterns. The following subsections detail its components.

3.1 PERCEPTION BACKBONE

The perceptual backbone of a GRM transforms raw visual input into structured symbolic and neu-
ral representations. This process operates at two levels: object-level perception and group-level
perception, each combining discrete symbolic attributes with continuous neural descriptors.

Object-Level Perception. Given an input image I , the system identifies a set of perceptual objects
O = {o1, o2, . . . , on}, where each object oi corresponds to a visually coherent region with binary
mask Mi ⊂ Z2 indicating its spatial extent. The GRM architecture is modular with respect to the
perception backbone: we instantiate it with color-based segmentation for synthetic environments and
neural object proposals for natural images. Each object maintains a dual representation combining
symbolic and neural features:

oi = (ϕsym
i , ϕneu

i ).

The symbolic features ϕsym
i encode high-level attributes including shape category, color, and spatial

position, extracted through dedicated neural components. The neural features ϕneu
i capture fine-

grained geometric structure through sampled contour points organized into local patches. This
patch-wise representation preserves local geometric details such as corners, curves, and edge ori-
entations that are crucial for detecting perceptual relationships. Two objects with aligned edges
or similar local curvatures can be identified through matching patches, while the full contour en-
ables robust shape classification. This dual representation thus bridges abstract reasoning with de-
tailed perceptual analysis, supporting both symbolic manipulation and learned grouping operations
in downstream modules. More detailed backbone architecture is available in App. A.

Group-Level Perception. Beyond individual objects, GRMs organize visual elements into per-
ceptual groups following Gestalt principles. We implement five principles: proximity, similarity,
closure, symmetry, and continuity. Rather than hard-coding separate mechanisms, we employ a
unified architecture with a shared encoder and lightweight principle-specific heads.

The shared encoder f transforms each object oi into a fixed-length embedding oi = f(oi). To
capture the global context for grouping decisions, the network evaluates pariwise relationships while
condditioning on all other objects in the scene. For each principle p, the network estimates affinities
between object pairs:

sp(oi, oj , I) = σ
(
hp

(
oi,oj ,o

∗
ij

))
,

𝑜!

𝑜" 𝑜"

𝑜!

Figure 3: Structured perception
by GRMs. Without contextual ob-
jects (left), group identification be-
comes ambiguous. GRMs lever-
age global context (right) by aggre-
gating embeddings from all objects
(green contour) into o∗

ij .

where hp is a principle-specific MLP, σ is the sigmoid acti-
vation, and o∗

ij represents the global context computed as the
mean embedding of all other objects in scene I (see Fig. 3).
This mean pooling is permutation-invariant and keeps the scale
of oij independent of the number of objects, which is impor-
tant for comparing scenes with different object counts. It plays
the role of a simple, scene-level context that informs whether
a local pair is typical or exceptional within its neighborhood
(Gaifman, 1982). A natural alternative is to use a Transformer
over the set of object embeddings, which can in principle han-
dle variable-length contextual input without an explicit pool-
ing step. We experimentally compare this Transformer-based
variant with our MLP + mean-pooling design in App. B.

The resulting affinity score sp indicates the confidence that two objects belong to the same group.
GRMs then threshold these affinities to extract groups and aggregate attributes such as color diver-
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sity and shape uniformity, producing a structured symbolic feature representation for each detected
group.

3.2 SYMBOLIC ABSTRACTION

Gestalt Rule Models (GRMs) use program induction to generate interpretable, Gestalt-based rules
from visual input. This is achieved by translating perceptual features into a first-order logic repre-
sentation suitable for rule learning.

First, GRMs convert observations into atomic formulas (facts) using domain-specific predi-
cates, yielding two distinct fact sets. The first, Fobj, encodes object-level properties such as
shape, color, and position (e.g., shape(obj1, circle), pos(obj1, 5, 10)). The sec-
ond, Fgrp, captures group-level structures like Gestalt principles and membership relations (e.g.,
principle(g1, proximity), member(obj1, g1)).

From this symbolic representation, GRMs construct an initial candidate clause set, Rinit. This set
contains simple clauses, each composed of a head and body atom, that serve as a starting point for a
subsequent search step where they are expanded into more complex clauses. By bridging perceptual
processing with logical reasoning, GRMs enable the discovery of compositional clauses that explain
complex visual patterns.

3.3 RULE LEARNING WITH STRUCTURED PERCEPTION

GRMs leverage the initial candidate clause set Rinit to learn target rules2 that explain visual scenes
according to Gestalt principles. For every candidate clause in Rinit, GRM create two variants: an
existence clause and a universal clause. They are defined as below:3

Existential Clauses (∃) are satisfied if at least one group in a scene meets a specific condition. For
example, the rule for Fig. 4(a) requires that “there exists a group containing objects of the
same color.”

Universal Clauses (∀) are satisfied only if every group in a scene meets a specific condition. For
instance, the rule for Fig. 4(b) requires that “all groups must contain both a yellow and a
blue object.”

(a) (b)
∃

∀

Figure 4: GRM Scoring with
quantifiers. GRMs use existential
(∃) and universal (∀) quantifiers to
define rules over groups of objects
as shown in the red shade.

Learning then proceeds via a top-k beam search over Rinit
for at most T expansion steps: in each step, every clause is
assigned a soft confidence score determined by its head (see
App. C for the scoring equations), clauses are ranked by con-
fidence, and only the top-k clauses are expanded to uncover
the scene’s underlying group structures. The search termi-
nates either after T steps or early when a high-confidence rule
has been found, with an overall computational complexity of
O(|C|T · tC), where |C| is the number of clauses considered
and tC is the cost of evaluating a clause.

3.4 INFERENCE

With the learned rules, GRMs finally perform inference on
new inputs. At test time, the model performs interpretable inference by applying its learned sym-
bolic rules to a given visual scene. This process unfolds in three stages. First, in the symbolic
grounding stage, a perceptual backbone analyzes the input image to detect objects and groups, con-
verting them into a logical fact base (Ftest). Next, during rule evaluation, each rule from the final
learned set (Rfinal) is matched against this fact base to compute a soft satisfaction score (sj ∈ [0, 1]),
quantifying its relevance under potential perceptual uncertainty. Finally, the high-confidence prior-
itization strategy determines the output: if any high-confidence rules are activated, the prediction is

2We distinguish between clauses, the intermediate representations manipulated during the search, and rules,
the final explanatory solution.

3If no group-based patterns are found, GRMs can treat each object as an individual group. This fallback
allows them to handle non-Gestalt patterns, such as detecting the presence of a single red triangle in the image.
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derived exclusively from their outputs. In all other cases, the system falls back to a robust aggre-
gation method, computing a confidence-weighted average over all partially satisfied rules. For the
mathematical descriptions and more details, please check App. D. This two-tiered decision process
ensures that transparent, highly reliable rules govern predictions when applicable, while maintaining
robust performance in more ambiguous scenarios.

4 EXPERIMENTS

In this seciton, we evaluate Gestalt Reasoning Machines (GRM) on structured visual reasoning tasks
that require both perceptual organization and symbolic abstraction. Our experiments are designed
to assess GRM’s performance, interpretability, and scalability by answering three key questions:

(Q1) How does GRM perform on visual reasoning benchmarks compared to leading neural and
neuro-symbolic baselines?

(Q2) Does the perceptual grouping lead to more interpretable and well-structured symbolic rules?

(Q3) How robust is GRM to architectural ablations and increased task complexity?

Through comprehensive quantitative evaluations, qualitative analyses, and ablation studies, we
demonstrate that GRM provides an accurate, interpretable, and scalable approach to neuro-symbolic
reasoning, effectively guided by perceptual grouping principles.

4.1 EVALUATION PROTOCOL

Dataset and Task. We evaluate GRM on the ELVIS benchmark (Sha et al., 2025), a large-scale
collection of visual reasoning tasks grounded in Gestalt principles. While existing datasets like
CLEVR (Johnson et al., 2017) or RAVEN (Zhang et al., 2019) test object-centric and relational
reasoning respectively, they do not require group-centric reasoning. ELVIS is specifically designed
to fill this gap, with tasks that require models to first aggregate objects into meaningful higher-
order entities based on Gestalt principles (e.g., proximity, similarity) before applying logic. To our
knowledge, it is the only benchmark that systematically integrates these grouping principles into a
neuro-symbolic pipeline, making it uniquely suited for evaluating GRM.

The extensive benchmark features over 100 distinct tasks for each Gestalt principle. Each task is a
few-shot learning problem consisting of positive and negative example images. Positive examples
adhere to a latent symbolic rule (e.g., “at least one group of similar objects is all red”), while negative
examples subtly violate it. From a training set of 3 positive and 3 negative 224×224 RGB images,
the model’s objective is to infer the underlying rule and predict binary labels for a held-out test set
of the same size, without direct rule supervision.

Metrics. For each task, GRM is trained on the provided image set to induce a set of explanatory
rules. At test time, these rules are applied to the test images using our high-confidence prioritization
strategy to generate a final prediction. We evaluate performance using two primary metrics: Accu-
racy, the proportion of correctly classified images, and the F1 Score, the harmonic mean of precision
and recall. We report both scores averaged across all tasks associated with each Gestalt principle.
To this end, we perform qualitative evaluations of the interpretability and runtime comparisons.

Baselines. We compare GRM against a range of baselines to situate its performance and highlight
the benefits of its design. To simulate a few-shot learning scenario, all models are provided with just
3 positive and 3 negative examples for training or in-context learning, and evaluated on a held-out
test set of the same size. Our baseline suite begins with Human Performance, measured via a web
interface4 to provide a robust reference point. We include a standard deep learning approach, the
Vision Transformer (ViT-Small), trained end-to-end on raw pixels to capture low-level patterns with-
out structured reasoning. To assess the capabilities of state-of-the-art generalist models, we evaluate
three Large Multimodal Models: LLaVA-1.5 (Li et al., 2024) (zero-shot), the 78B-parameter variant
of InternVL3 (Chen et al., 2024), and GPT-5 (OpenAI, 2025), which are powerful on natural images
but are challenged by ELVIS’s abstract patterns. Finally, as a critical neuro-symbolic comparison,

4Link omitted for anonymous review.
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Table 1: Quantitative Performance on Gestalt Reasoning Tasks. We compare our model (GRM)
against baselines and human performance on the ELVIS benchmark. The table shows the mean and
standard deviation for Accuracy and F1 Score across five Gestalt principles. Bold indicates the best-
performing model in each column (excluding human performance). Cell colors are normalized to
visualize relative scores, from high (green) to low (pink). GRM consistently achieves state-of-the-art
or competitive results, demonstrating the strength of its group-based reasoning. Model shorthands
are as follows: ViT-16-224 is ViT-B/16; Llava-Qwen-7B is LLaVA-OneVision-Qwen2-7B-SI.

Met. Model Proximity Similarity Closure Symmetry Continuity

Acc.

ViT-16-224 0.56 ±0.19 0.54 ±0.15 0.59 ±0.20 0.53 ±0.18 0.53 ±0.19
Llava-Qwen-7B 0.50 ±0.13 0.50 ±0.10 0.53 ±0.12 0.57 ±0.14 0.55 ±0.15
InternVL3-78B 0.53 ±0.18 0.62 ±0.23 0.70 ±0.20 0.59 ±0.17 0.72 ±0.21
GPT-5 0.72±0.23 0.71 ±0.22 0.66 ±0.23 0.52 ±0.14 0.81±0.19
NEUMANN 0.58 ±0.15 0.52 ±0.08 0.71 ±0.18 0.53 ±0.09 0.50 ±0.03
GRM 0.71 ±0.17 0.72±0.21 0.78±0.16 0.64±0.17 0.78 ±0.17
Human 0.97± 0.03 0.87± 0.13 0.92± 0.08 0.85± 0.15 0.98± 0.02

F1

ViT-16-224 0.50 ±0.29 0.45 ±0.30 0.56 ±0.28 0.48±0.29 0.55 ±0.25
Llava-Qwen-7B 0.22 ±0.30 0.27 ±0.32 0.53 ±0.28 0.38 ±0.34 0.24 ±0.33
InternVL3-78B 0.32 ±0.33 0.45 ±0.39 0.59 ±0.34 0.36 ±0.35 0.52 ±0.41
GPT-5 0.65 ±0.33 0.61 ±0.34 0.56 ±0.35 0.22 ±0.30 0.71 ±0.29
NEUMANN 0.27 ±0.37 0.13 ±0.24 0.59 ±0.36 0.30 ±0.35 0.33 ±0.33
GRM 0.65±0.29 0.63±0.33 0.78±0.22 0.48±0.35 0.78±0.22
Human 0.96± 0.04 0.81± 0.19 0.90± 0.10 0.81± 0.19 0.97± 0.03

we evaluate NEUMANN (Shindo et al., 2024b), which learns object-level rules but lacks perceptual
grouping, thereby serving as an ablation to isolate the contribution of GRM’s core mechanism.

Pretraining. GRM’s perception backbone uses pre-trained object and group detectors that are
fixed during reasoning. An object detector identifies shapes, while separate models, one for each
Gestalt principle, cluster objects into groups based on learned affinities. These detector outputs,
along with attributes like color and position derived directly from the object masks, are converted
into a symbolic fact base for the rule learner. Complete list of these predicates is provided in App. E.

Hardware Requirements In our experiments, we ran InterVL3-78B on 3 NVIDIA A100-SXM4-
80GB, ran GPT-5 via API and ran rest of the models on a single NVIDIA A100-SXM4-80GB. The
GRM, NEUMANN and ViT-16-224 models are runnable on a MacBook Pro with M2 Chip whereas
the others cannot.

4.2 QUANTITATIVE AND QUALITATIVE EVALUATION

To answer Q1, we evaluate GRM on the ELVIS benchmark, spanning five Gestalt principles: prox-
imity, similarity, closure, symmetry, and continuity. Each task shares a latent structural rule but
varies in features like shape, color, and size, requiring both object recognition and group reasoning.

Tab. 1 compares GRM against five baselines (ViT, LLaVA, InternVL3, GPT-5, NEUMANN). GRM
outperforms all neural and neuro-symbolic baselines on three principles and achieves its strongest
result on closure (0.78), demonstrating that explicit grouping enhances symbolic generalization be-
yond purely object-centric models. Fig. 5 (middle) further analyzes performance by conditioning
on object- and group-level properties. GRM maintains balanced accuracy (∼73%) across shape,
color, size, group number, and group size, whereas GPT-5 shows imbalances (e.g., strong on shape
but weaker on size and color). This consistency highlights the benefit of rule-based evaluation in
avoiding confusion from perceptually similar attributes, generalizing to various abstract concepts.

We further evaluate the quality of symbolic fact extraction on 500 test tasks. Object-level properties
are extracted with high reliability, including size (99%), position (95%), and color (90%). In con-
trast, group-level attributes are more challenging due to abstraction and perceptual ambiguity: group
label reaches 71% accuracy, object count 92%, group number 76%, and per-group count only 44%.
These results indicate that while low-level symbolic properties are robustly recovered, higher-order
group-related facts remain a bottleneck for reasoning. Full results are provided in App. F.
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Figure 5: Combined Results. Left: Error breakdown by principle, showing grouping errors domi-
nate across all Gestalt principles. Middle: Average accuracy (%) over all principles for each prop-
erty and model. Object-level properties: size, color, shape; Group-level properties: group number
and group size. Right: Symbolic scalability across object counts, where group-level reasoning adds
moderate overhead when combined with object facts but remains lightweight when used alone.
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Figure 6: Qualitative Results of Group Detection. Visualization of predicted group structures on
randomly selected tasks from the ELVIS benchmark. Each image shows the original scene with pre-
dicted group bounding boxes overlaid, demonstrating how GRM organizes visual objects according
to different perceptual grouping principles. See App. F for more examples.

To answer Q2, we assess whether perceptual grouping improves the interpretability and structure
of induced rules. Unlike black-box baselines, GRM represents visual patterns as explicit symbolic
rules grounded in detected objects and groups. Fig. 6 visualizes predicted group structures (See
more examples in Fig. 8 in App. F), while Listing 1 shows representative rules. Together, they
reveal how GRM discovers human-readable rules (e.g., groups containing triangles or color–shape
combinations) and organizes objects into coherent groupings, providing transparent reasoning traces
aligned with Gestalt principles. App. G provides several task solving examples.

Listing 1: GRM learns interpretable rules over groups. Example rules discovered on ELVIS.� �
% Proximity principle
group_target(G,X):-has_shape(O,triangle),in_group(O,G).

[confidence=1.000, scope=universal]
group_target(G,X):-has_color(O,red),has_shape(O,square),in_group(O,G).

[confidence=1.000, scope=existential]� �
Fig. 5 (left) presents the distribution of GRM’s error sources: grouping errors, object detection
errors, and rule mismatches. Grouping emerges as the dominant source of failure, underscoring that
the transition from objects to coherent groups remains the most challenging stage. A common issue
is the grouping module mistakenly merging distinct structures into a single group, which disrupts
the construction of correct symbolic facts. For instance, in a closure task (see Fig. 8 in App. F),
separate closure groups are erroneously combined, preventing the reasoning module from deriving
correct group-level facts and leading to incorrect predictions. Currently, our grouping mechanism
uses relatively simple neural networks. Developing more robust and semantically informed grouping
mechanisms is a promising avenue for future work.

Beyond grouping, object detection errors constitute the second-largest category, often caused by
subtle color variations or incomplete contours due to occlusion or truncation. Rule mismatches ac-
count for the remaining cases, reflecting situations where both detection and grouping are correct
but the reasoning module still fails to align symbolic predicates with the intended rules. These re-
sults highlight that while GRM successfully integrates perceptual and symbolic components, future
improvements require both more robust grouping strategies and refined reasoning mechanisms to
reduce systematic errors.
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4.3 ROBUSTNESS AND COMPONENT ANALYSIS

To answer Q3, we analyzed GRM’s robustness through ablation studies and scalability tests.

Ablation of Perceptual Grouping. We performed an ablation study to quantify the contribution of
the grouping mechanism. As shown in Tab. 2, we compare the full GRM model (w/ Group), which
uses both object- and group-level facts, against a variant that reasons only over object-level features
(w/o Group), which correspond to conventional neuro-symbolic systems. The results demonstrate
that incorporating group-level information consistently and significantly improves accuracy, with
the most dramatic gains on tasks requiring continuity (+61%) and similarity (+36%). This confirms
that group-level abstraction provides a powerful inductive bias for structured reasoning.5

Table 2: Grouping enhances the reasoning per-
formance. Accuracy (%) comparisons of GRM
without grouping vs. with grouping. The green
values are the relative improvement of the w/-
Group relative to the w/o Group.

Principle w/o Group w/ Group
Proximity 58.0± 15.0 (0%) 70.0± 17.0 (+19%)

Similarity 52.0± 8.0 (0%) 70.0± 22.0 (+36%)

Symmetry 53.0± 9.0 (0%) 62.0± 18.0 (+17%)

Closure 71.0± 18.0 (0%) 79.0± 16.0 (+11%)

Continuity 50.0± 3.0 (0%) 81.0± 19.0 (+61%)

Scalability with Scene Complexity. We also
assessed scalability by measuring the growth of
the symbolic fact base as the number of objects
in a scene increases (Fig. 5, right). While a
purely object-based representation grows near-
quadratically, adding group-level facts intro-
duces only a modest representational overhead.
This small cost yields a substantial performance
benefit, as evidenced by the accuracy gains in
Tab. 2. Perceptual grouping therefore acts as a
lightweight yet highly effective enhancement to
the symbolic pipeline. It enriches the model’s
representational capacity and provides a natu-
ral mechanism for abstracting away redundant object-level details, pointing to promising directions
in group-guided symbolic compression.
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Figure 7: Task Solving Time
Comparison. The time is mea-
sured from the start of image input
to the completion of rule induction.

Computational Efficiency. In terms of time efficiency,
GRM is substantially more efficient than GPT-5 and remains
competitive with the highly stable InternVL3-78B, solving
most tasks in under 10 seconds while GPT-5 often exceeds
100 seconds (Fig. 7). A detailed analysis of how perceptual
grouping quality affects induction time is provided in App. H.

5 CONCLUSION

Before concluding, let us discuss the limitations of GRM. Our
experiments relied on synthetically generated visual scenes
(ELVIS). While this controlled setup was essential for the first
systematic study of Gestalt-based reasoning, GRM’s perfor-
mance on noisy, real-world images remains an open question.
A natural next step is to extend GRM to more practical do-
mains such as natural images (e.g., Visual Genome (Krishna et al., 2017)). This would not only test
the model’s robustness but also raise important questions on how abstract Gestalt principles apply
to real-world interpretation (See App. I for more discussion).

To conclude, we introduced GRM, a neuro-symbolic framework that integrates perceptual grouping
with symbolic rule induction to solve complex visual reasoning tasks grounded in Gestalt principles.
Our experiments demonstrate that GRM offers key advantages over purely data-driven models. The
formalism of rule induction ensures logical consistency, while the scalable grouping mechanism
maintains a compact symbolic representation, even in complex scenes. Together, these components
enable GRM to outperform state-of-the-art models, including GPT-5, on several Gestalt reasoning
principles. These results highlight the significant promise of structured neuro-symbolic architec-
tures, positioning GRM as a foundation for developing cognitive systems with more robust, inter-
pretable, and human-like structured perception.

5A group-only variant was not evaluated, as the reasoning tasks fundamentally require object-level predi-
cates (e.g., shape and color), and the groups themselves are derived from detected objects.
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A DETAILS ABOUT THE PERCEPTION BACKBONE

Object Model The object model is a two-layer MLP: it flattens input patches, maps them to 128
hidden units with ReLU, then outputs class scores. The input patches are extracted by identifying
the contours of regions in the image.

Group Model The group model is trained in an end-to-end supervised manner. The dataset used
for training the grouping model is synthetically generated based on the ELVIS pattern to provide
ground-truth groupings based on Gestalt principles. The model takes the object embeddings as
input and predicts the probability that two objects belong to the same group.

The structure of the group model includes a point encoder, a patch encoder and a classifier. A point
encoder: a two-layer MLP with ReLU, mapping each input point to a hidden dimension. A patch
encoder: a two-layer MLP with ReLU, mapping a flattened set of encoded points (a patch) to a patch
embedding. A classifier: a two-layer MLP with ReLU, taking the concatenation of two contour
embeddings and a context embedding, and outputting a single logit. The forward pass encodes
two input contours and their context, concatenates their embeddings, and passes them through the
classifier to produce a score.

B GROUP DETECTOR ARCHITECTURE COMPARISON

In the main text (Sec. 3.1), we implement GRM’s grouping module using a shared encoder and
principle-specific MLP heads with mean-pooled context. A natural alternative is to use a Trans-
former over the object set, which can in principle handle variable-length contextual input without an
explicit pooling step. To validate our design choice, we performed a controlled comparison between
the MLP and simple Transformer-based groupers on the ELVIS grouping task.

Experimental Setup. All learned groupers are trained to solve the same binary group-detection
task: given a candidate pair of objects, predict whether they belong to the same group under a given
Gestalt principle. We consider three learned variants, plus a large VLM baseline:

• MLP+Context. The architecture described in App. A: an MLP head hp that takes (oi,oj ,o
∗
ij),

where o∗
ij is the mean-pooled embedding of all other objects in the scene.

• Transformer+Context. A small Transformer encoder that takes as input the embeddings of the
candidate pair and all other objects. The output corresponding to the candidate pair is pooled and
fed to a classifier. This variant is meant to test whether a naı̈ve sequence Transformer can exploit
unordered, variable-size context more effectively than mean pooling.

• Transformer Pair Only. A Transformer that only sees the two candidate objects and ignores all
other objects, thereby exploiting purely pairwise cues.

• GPT-Zero-Shot. A large VLM (GPT-5) prompted in a zero-shot setting to directly predict group
membership for each candidate pair (no training on ELVIS).

All learned models are trained with the same data splits and loss as the main MLP grouper, and
evaluated on the five Gestalt principles. Runtime is measured as average wall-clock time per ELVIS
task on a single NVIDIA A100-SXM4-80GB GPU (GPT-5 timing is measured separately as an API
call latency).

Results. Table 3 reports per-principle accuracies, average accuracy and standard deviation across
principles, runtime, and parameter counts.

Discussion. Transformer-Pair-Only achieves the highest average accuracy (0.77), but it completely
ignores context and mainly exploits strong pairwise cues, especially for closure and continuity where
it reaches 0.97. MLP with mean-pooled context attains slightly lower average performance (0.71)
but is more balanced across principles (lower standard deviation) and remains far more efficient than
the GPT-zero-shot baseline.

By contrast, the naı̈ve Transformer+Context variant, which encodes the candidate pair together with
all other objects, fails to benefit from the additional context and collapses to chance level (around
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Table 3: Comparison of MLP and Transformer-based groupers. All learned models are trained
on the ELVIS grouping task; GPT-Zero-Shot denotes a large VLM (GPT-5) evaluated in a zero-shot
setting. Transformer-Pair-Only attains the highest average accuracy but ignores context; MLP with
mean-pooled context is slightly less accurate on average, but more balanced across principles and
more efficient than GPT-zero-shot, while a naı̈ve Transformer+Context fails to exploit context and
collapses near chance.

Metric MLP+Context Transformer+Context Transformer Pair Only GPT-Zero-Shot

Proximity 0.80 0.50 0.77 0.82
Similarity 0.57 0.50 0.55 0.51
Closure 0.80 0.50 0.97 0.72
Symmetry 0.61 0.50 0.60 0.27
Continuity 0.76 0.50 0.97 0.82

Mean Acc. 0.71 0.50 0.77 0.63
Acc. Std 0.11 0.00 0.20 0.24
Time/Task 1.94s 3.58s 3.46s 57s
Params 0.5M 3.2M 1.6M 635,000M

0.50 on all principles), despite having substantially more parameters. These results suggest that the
main challenge is not the mean-pooling bottleneck per se, but how unordered, variable-size context
is encoded: a straightforward sequence Transformer over all objects does not automatically learn
the relevant contextual interactions, whereas a simple MLP with permutation-invariant mean-pooled
context is robust and competitive.

Designing stronger context encoders for grouping is a promising direction (e.g., more structured
set-based architectures), but this is orthogonal to the main contribution of GRM, which is to show
that explicit grouping combined with neuro-symbolic reasoning already yields strong and efficient
performance on ELVIS.

C DETAILS ABOUT THE CLAUSE SCORING

During beam search, each candidate clause r is evaluated by a clause scorer that estimates how well r
explains the task’s training images while avoiding spurious matches on negatives. The score depends
on the type of head attached to r (image target, group target, or group universal) and
is normalized to lie in [0, 1].

Intuitively, the scorer rewards coverage of positive images (or groups) and penalizes violations on
negative images, thereby biasing the search towards clauses that capture stable Gestalt regularities
rather than accidental coincidences.

Formally, we define:

score(r) =



n+(r)

N+
·
(
1− n−(r)

N−

)
, image target,

n∃
+(r)

N+
·
(
1−

n∃
−(r)

N−

)
, group target,

1

N+

∑N+

i=1 min

(
mi

Mi
, 1

)
·
(
1−

n∀
−(r)

N−

)
, group universal.

(1)

D HIGH-CONFIDENCE PRIORITIZATION STRATEGY.

Given a set of learned rules Rfinal, each rule rj is associated with a confidence αj ∈ [0, 1] and
produces a soft match score sj ∈ [0, 1] on the test fact base. The final prediction score ŷtest is
computed as

ŷtest =


1

|H|
∑

rj∈H sj , if H ̸= ∅,∑
j α2

j ·sj∑
j α2

j+ϵ
, otherwise,
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where H = {rj | αj ≥ τ} is the set of rules firing with confidence above threshold τ , and ϵ is a
small constant for numerical stability. A higher τ enforces stricter rule selection. It can cover more
positive and fewer negative cases. which provides high precision and interpretability. For example,
the threshold τ = 0.99 is used to retain only those rules whose confidence exceeds 99%, meaning
the rule is highly consistent with the training examples. In the experiments, we choose τ = 0.99,
which keeps only the rules that reliably distinguish positive from negative examples.

If no rule fires at all, a fixed fallback prior (e.g., 0.1) is returned. This strategy prioritizes high-
confidence rules when available, while providing a smooth weighted aggregation otherwise.
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E SHARED BACKGROUND KNOWLEDGE FOR MODELS

For GRM, reasoning relies on a set of pre-defined predicate functions that serve as background
knowledge (Tab. 4). These predicates are not learned by the model but specified in advance by the
human, covering basic object- and group-level properties (e.g., shape, color, size, membership). The
advantage of this design is flexibility: different tasks can be supported by simply providing different
predicate sets, while the model pipeline itself remains unchanged. In this way, GRM decouples
symbolic knowledge specification from the reasoning procedure, enabling interpretable and task-
adaptive rule induction without modifying the architecture.

For fairness, all corresponding predicate definitions are also provided to LLM baselines in the form
of natural language prompts, so that both GRM and LLMs operate with the same symbolic informa-
tion. The background knowledge prompt is given as follows:

You are given images containing multiple objects and groups. Each object and
group has attributes: shape, color, size, position, and group membership. Logical
patterns in the image may involve single relations (e.g., all objects have the same
color) or combinations of multiple relations (e.g., objects with the same shape are
grouped together and mirrored along the x-axis). You can reason about: Individ-
ual attributes: shape, color, size, position; Group properties: number of members,
grouping principle; Relations: same/different shape, color, size; mirrored posi-
tions; unique/diverse attributes within groups. Analyze the image by identifying
both simple and complex combinations of these relations.

Table 4: List of predicate functions used in the model.

Predicate Type Description
has shape Object Returns shape index for each object
has color Object Returns color index for each object
x Object Returns x position for each object
y Object Returns y position for each object
w Object Returns width for each object
h Object Returns height for each object
in group Object Returns group membership matrix
not has shape rectangle Object True if object is not a rectangle
not has shape circle Object True if object is not a circle
not has shape triangle Object True if object is not a triangle
same shape Object Pairwise: True if objects have same shape
same color Object Pairwise: True if objects have same color
same size Object Pairwise: True if objects have same size
mirror x Object Pairwise: True if objects are mirrored along x-axis
same y Object Pairwise: True if objects share y-coordinate
group size Group Returns number of members in each group
principle Group Returns grouping principle index
no member rectangle Group True if group has no rectangle members
no member circle Group True if group has no circle members
no member triangle Group True if group has no triangle members
diverse shapes Group True if group contains at least two shapes
unique shapes Group True if group contains only one shape
diverse colors Group True if group contains at least two colors
unique colors Group True if group contains only one color
diverse sizes Group True if group contains at least two sizes
unique sizes Group True if group contains only one size
same group counts Group True if all groups have same member count
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F SYMBOLIC FACT EXTRACTION PERFORMANCE

Tab. 5 reports the detailed accuracy of symbolic fact extraction across 500 ELVIS test tasks. While
object-level properties such as shape (87%), color (90%), size (99%), and position (95%) are recov-
ered with high reliability, group-level properties are more challenging. Group label achieves 71%
accuracy, object count 92%, group number 76%, and per-group count only 44%. These results high-
light a gap between reliable low-level perception and more complex relational grouping, motivating
further improvements in symbolic abstraction. Fig. 8 shows the examples of grouping results over
different gestalt principles.

Table 5: Mean accuracy (%) and standard deviation of symbolic fact extraction across 500 ELVIS
test tasks.

Fact Type Shape Color Size Position Group Label Obj. Count Group # Per-Group Count

Accuracy 0.87± 0.03 0.90± 0.06 0.99± 0.01 0.95± 0.05 0.71± 0.21 0.92± 0.08 0.76± 0.24 0.44± 0.39

(a) Proximity (b) Similarity (c) Closure

(d) Continuity (e) Symmetry

Figure 8: Qualitative Results of Group Detection. Visualization of predicted group structures
for five Gestalt principles on randomly selected tasks from the ELVIS benchmark. Each image
shows the original scene with predicted group bounding boxes overlaid, demonstrating how GRM
organizes visual objects according to different perceptual grouping principles.
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G TASK EXAMPLES AND THE MODEL ANSWERS

G.1 EXAMPLE TASK 1

This is a task called Triangle in Groups following proximity principle. The ground-truth rule is
that each proximity group contains at least one triangle. Fig. 9 presents the positive and negative
examples.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 9: Triangle in Groups: Each proximity group has at least one triangle.

GRM. The induced rule from GRM is shown in Listing 2. The target rule is successfully identified
by GRM, but its confidence is only 0.667. This relatively low value reflects imperfect object or group
detection in the images (See Fig. 10 (d)), which reduces the rule’s overall confidence score.

Listing 2: Rules induced by GRM on Example Task 1
% Group-level rules
group_target(G,X) :- has_shape(O,0), in_group(O,G).

[confidence=0.667, scope=universal]

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 10: GRM grouping results of task 1 examples

GPT-5 The induced logic rules by GPT-5 are shown in Listing 3. The first rule correctly identifies
that each proximity group must contain a triangle, but it incorrectly constrains the group size to
exactly two, whereas the ground truth allows any size of two or more. The second rule does not
match the task semantics and is therefore incorrect.

Listing 3: Rules induced by GPT-5 on Example Task 1 (reformated by authors)
Grouping by proximity.
1. Every proximity group must be a pair of exactly two shapes:
one triangle and one non-triangle (circle or square).
2. No proximity group may contain two non-triangles or
have more/less than two members.
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G.2 EXAMPLE TASK 2

This is a task called Shape of Shape following closure principle. The ground-truth rule is that objects
form the shape of a triangle; all the objects have the same width and height. Fig. 11 presents the
positive and negative examples.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 11: Big Triangle: all the objects in the image have same size.

GRM. The induced rule from GRM is shown in Listing 4. The target rule is successfully identified
by GRM. The groups detected by the GRM are shown in Fig. 12.

Listing 4: Rules induced by GRM on Example Task 2
% Image-level rules
image_target(X) :- unique_sizes(I).

[confidence=1.000, scope=image]
group_target(G,X) :- unique_sizes(G).

[confidence=1.000, scope=image]
% Existential rule
group_target(G,X) :- unique_sizes(G).

[confidence=1.000, scope=existential]

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 12: GRM grouping results of task 2 examples

GPT-5. The induced rules by GPT-5 are shown in Listing 5. Rules 1–4 are logically correct but
not target rules, as they hold for both positive and negative cases. Rules 5 and 6 are incorrect and do
not reflect the task semantics.

Listing 5: Rules induced by GPT-5 on Example Task 2 (reformated by authors)
1. Objects are positioned so that their arrangement forms an implied
closed triangular contour (three sides meeting at three vertices);
2. Small gaps are allowed, but each side is perceptually continuous;
3. Most elements lie on the triangle perimeter;
4. The interior is largely empty.
5. Colors, shapes, sizes, and groupings of the objects are irrelevant.
6. Images that do not produce a clear, closed triangular outline
(scattered points, missing sides, or filled interiors) are negative.",
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G.3 EXAMPLE TASK 3

This is a task called One Splits Two following continuity principle. The ground-truth rule is that
objects with diverse sizes are arranged along a continuous path that later splits into two directions.
Fig. 13 presents the positive and negative examples.

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 13: Examples of task One Splits Two

GRM. The induced rules from GRM are shown in Listing 6. The first rule focuses on the x-
positions of two objects within a group; although unexpected, it still fits both training and test sets,
illustrating that high accuracy does not always imply correctness for the expected reasons. The
advantage of GRM is that such rules are interpretable and auditable: unlike black-box models,
unsafe or spurious rules can be manually removed or their confidence reduced by adding targeted
training examples. The second rule successfully matches the target rule, and the corresponding
grouping results are illustrated in Fig. 14.

Listing 6: Rules induced by GRM on Example Task 3
% Image-level rules
image_target(X) :- mirror_x(O1,O2), same_color(O1,O2).

[confidence=1.000, scope=image]
% Group-level rules
group_target(G,X) :- diverse_sizes(G).

[confidence=1.000, scope=universal]

(a) Positive (b) Positive (c) Negative (d) Negative

Figure 14: GRM grouping results of task 3 examples

GPT-5. The induced rules by GPT-5 are shown in Listing 7. Rules 1–4 are logically valid, with
Rule 2 matching the target, but the coverage is limited: precision reaches 1.0 while recall remains at
0.3, showing that even when the correct rule is discovered GPT-5 does not guarantee high recall.

Listing 7: Rules induced by GPT-5 on Example Task 3 (reformated by authors)
1. The scene contains exactly two groups.
2. Each group is homogeneous:
all members share the same shape and the same color.
3. Members of a group are arranged along a single smooth, continuous path
(straight or gently curved), showing clear positional continuity.
4. Along each path the sizes vary gradually in one direction
(monotonic size progression).
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H TASK SOLVING TIME ANALYSIS

Fig. 15 reports the average time required by GRM to induce target rules across the five Gestalt
principles, with comparisons to GPT-5 and InternVL3-78B.

InternVL3-78B exhibits the most stable efficiency, requiring about 15s across all principles. GPT-5
is slower and more variable, averaging around 100s per task. On symmetry, GPT-5 exceeds 150s,
consistent with its weaker accuracy: when uncertain, the model takes longer before committing to a
prediction.

GRM is generally efficient, with rule induction on proximity, closure, and continuity completed
in under 10s. On symmetry, GRM requires about 35s. The longer time is due to extended search:
when no high-confidence rules are quickly available, the search process continues until a satisfactory
candidate is identified or the maximum extended step is exceed.

The main outlier is similarity, where GRM averages nearly 90s. Unlike other principles, similarity
depends almost entirely on color and size cues, with minimal reliance on positional features. This
reduces grouping accuracy and often yields many spurious groups. A larger number of candidate
groups substantially enlarges the space of possible group-level rules, thereby increasing induction
time.

In summary, most GRM tasks can be solved within seconds to one minute, but tasks with weaker
grouping cues or more ambiguous structures can extend to several minutes. These results highlight
the impact of grouping quality on symbolic reasoning efficiency, and suggest that designing more
robust symbolic features and search strategies is a promising direction for improving scalability.

Proximity Similarity Closure Symmetry Continuity0
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Figure 15: Task Solving Time Comparison. The time is measured from the start of image input to
the completion of rule induction.
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I PILOT STUDY: TASK GROUPING ON COCO 2017

Figure 16: From left to right: labeled objects, labeled groups, predicted groups by a simple
threshold-based grouper, predicted groups by a small MLP

To nevertheless probe whether GRM-style grouping can be instantiated on real images, we construct
a small pilot dataset on COCO val2017. We select 30 images and manually annotate proximity
groups: for each image, the annotator is free to mark 1–3 sets of objects that form a proximity group
(e.g., a cluster of dishes on a table, a row of similar objects).

On this COCO subset, we keep the perception component fixed and only operate on the ground-truth
bounding boxes. For the grouping task, we use a small MLP-based grouper, in the same spirit as the
grouping module used in GRM, which takes as input the center position, width and height of two
boxes, together with a simple representation of their neighboring objects as context, and predicts
whether the pair belongs to the same group.

Qualitatively, we observe a characteristic failure mode of the proximity grouper: the model is prone
to collapsing all objects in the scene into a single group. Fig. 16 illustrates a typical example. From
left to right, we overlay all object boxes, the human-annotated task groups, and the MLP-based
predictions. In the middle panel, the annotator groups the four bench-like seats and the nearby
pedestrian as one proximity group, and the teenager and the skateboard as another. In contrast, the
MLP predicts that all objects belong to the same group, and this single mega-group behavior occurs
on most images in the pilot set. See Fig. 18 for more examples.

Camera

Human

skateboard

bench

Human

bench
bench bench

Figure 17: Top view of the Skate-
board example scene in Fig. 16

Limitations of 2D Image Coordinates for Capturing 3D
Grouping Structure In real-world scenes, human Gestalt
grouping is grounded in 3D structure: objects share common
supporting surfaces (e.g., the same ground plane or bench),
occupy similar depths, or form physical assemblies (e.g., a
person together with their skateboard). In contrast, datasets
such as COCO only provide 2D bounding boxes on the image
plane. When annotators decide which objects should form a
group, they inevitably rely on their 3D understanding of the
scene and on object semantics, whereas our grouping models
receive only 2D geometric features (position, size, aspect ra-
tio) and very local appearance cues. This creates an inherent
mismatch between the information used to define the “ground-
truth” groups and the information available to the model. In
Fig.16, for example, the four seats and the pedestrian form a
coherent 3D configuration on the far end of the scene; yet in
the 2D projection their bounding boxes can appear similarly spaced, and perspective can bring far
objects close together on the image plane. As a result, the person and his skateboard are close to
the benches and the far behind pedestrian on the image. Fig.17 shows a schematic top-view of the
same scene: the positions of the benches, pedestrian, skater, and skateboard clearly reveal two prox-
imity groups, but this depth axis is absent from the original image and from its 2D annotations. To
capture such structure, a grouping model would need access to explicit 3D or scene-level spatial
information, such as a RGB-D image, which current 2D bounding-box datasets do not provide.

As a consequence, grouping performance on COCO-style images is difficult to interpret as a clean
test of Gestalt principles: many apparent errors may reflect missing depth and scene structure rather
than limitations of the grouping mechanism itself. In this work we therefore use COCO only as a

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

qualitative case study, and base our quantitative evaluation on synthetic stimuli where 2D geometry,
grouping, and ground truth are perfectly aligned. Extending GRM to 3D object-centric representa-
tions (e.g., with estimated depth or reconstructed scenes) is an important direction for future work,
and would allow us to revisit real-image grouping under conditions where the model has access to
similar structural cues as human annotators.

Figure 18: From left to right: labeled objects, labeled groups, predicted groups by a simple
threshold-based grouper, predicted groups by a small MLP
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