

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GESTALT REASONING MACHINES: STRUCTURED PERCEPTION FOR NEURO-SYMBOLIC INFERENCE

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper introduces Gestalt Reasoning Machines (GRMs), a novel neuro-symbolic framework that integrates Gestalt principles to enhance reasoning models with perception capabilities similar to human cognition. Traditional models, which rely on large datasets and complex computations, often overlook the crucial human cognitive function of grouping, resulting in inefficiencies when dealing with abstract concepts. GRMs address this challenge by incorporating a grouping mechanism grounded in Gestalt principles, enabling the system to recognize and reason over complex visual patterns that are otherwise difficult to capture through object-level features alone. This grouping capability allows GRMs to identify higher-order structures and relational configurations that are essential for human-like reasoning. We demonstrate that GRMs outperform purely neural baselines by leveraging logic-based reasoning infused with perceptual grouping cues, offering a more interpretable and cognitively aligned approach. Our contributions include the design of GRMs and the empirical validation of their effectiveness in visual reasoning tasks that demand structured perception.

1 INTRODUCTION

Human visual perception excels at organizing complex scenes into meaningful structures through perceptual grouping. *Gestalt principles*—such as proximity, similarity, and continuity—explain how individuals organize visual elements into coherent wholes rather than processing them as isolated components. These principles, rooted in psychology research (Koffka, 1935; Wertheimer, 1938; Palmer, 1999; Ellis, 1999), are fundamental to how humans efficiently parse and reason about visual scenes. As illustrated in Fig. 1 (right), humans naturally perceive objects based on their spatial arrangements and shared attributes, identifying patterns that enable structured understanding of complex visual environments.

Current approaches to visual reasoning typically rely on scaling up neural models with massive datasets and parameters (Kojima et al., 2022; Huang & Chang, 2023; Cheng et al., 2024; Zhang et al., 2025). However, these data-driven models struggle with abstract reasoning (Huang et al., 2024), particularly in Vision-Language Models (VLMs) where reasoning capabilities remain severely limited (Chen et al., 2025; Wüst et al., 2025). Their reasoning often lacks grounding and becomes inconsistent when processing complex multi-object scenes (Fu et al., 2024; Majumdar et al., 2024; Zhang et al., 2024a), highlighting limitations in their ability to capture structured relationships.

Neuro-symbolic approaches offer a promising alternative by integrating symbolic reasoning with neural perception. These models have demonstrated strong performance on complex reasoning tasks requiring relational inference and numerical computation over visual inputs (Yi et al., 2018; Amizadeh et al., 2020; Manhaeve et al., 2021; Marra et al., 2024). Differentiable rule learners (Evans & Grefenstette, 2018; Shindo et al., 2023; 2024b) have been successfully applied to visual reasoning challenges, discovering explicit rules to explain visual patterns through program induction (Shindo et al., 2024a; Sudhakaran et al., 2025). However, existing neuro-symbolic approaches face a critical scalability bottleneck: they lack effective *grouping* mechanisms that are fundamental to human visual perception (Han et al., 2002; Xu & Chun, 2007; Thórisson, 2019). When processing complex scenes, humans naturally organize objects according to perceptual cues like similarity and proximity, enabling efficient reasoning by reducing redundant relational computations. In contrast, most neuro-symbolic models rely on exhaustive pairwise relation generation, enumerating all possible

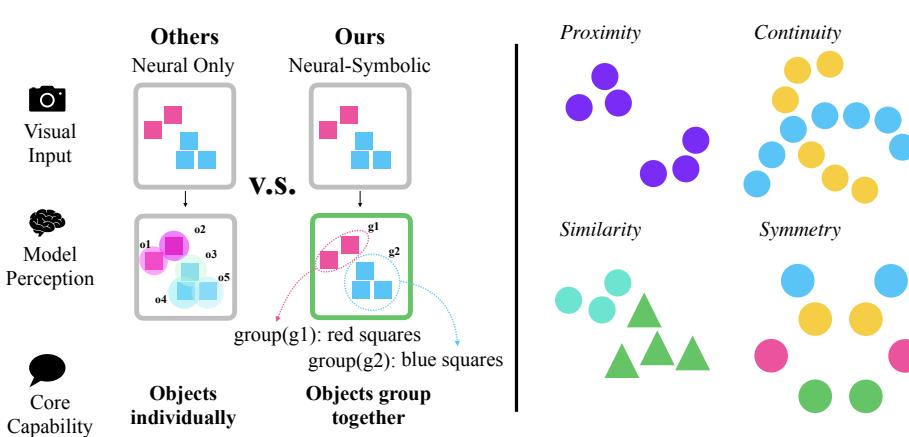


Figure 1: **Scene reasoning with Gestalt grouping.** **Left:** Comparison of model perception. Neural-only models process objects individually without structural organization, whereas GRM integrates perceptual grouping with symbolic reasoning, producing interpretable group-based representations (e.g., red vs. blue squares). **Right:** Examples of gestalt principles. Proximity, similarity, symmetry, and continuity. Each of these principles guide how objects are grouped into meaningful structures.

object relationships. This approach becomes computationally prohibitive and brittle as scene complexity increases. This raises the central research question: *How can we endow neuro-symbolic models with human-like grouping mechanisms that enable efficient and robust reasoning over complex visual scenes?*

We propose the *Gestalt Reasoning Machine (GRM)*, a neuro-symbolic framework that explicitly incorporates perceptual grouping into visual reasoning. Unlike conventional object-centric approaches, GRM first organizes scene elements into structured groups based on spatial and attributional patterns (Fig. 1, left). These grouped entities serve as the foundation for symbolic reasoning, allowing the model to operate over scenes in a hierarchically structured and interpretable manner. By treating scenes as compositions of perceptual groups rather than collections of isolated objects, GRM captures higher-level regularities and solves complex visual problems that traditional approaches often fail to address. Given a complex scene with multiple objects, GRMs perform rule learning to identify and group objects that share underlying patterns, simultaneously producing structured perceptual representations and symbolic programs for reasoning. The resulting structured perception is then fed to the reasoning module, which efficiently infers solutions by operating over these coherent groups rather than individual objects.

Our work makes the following key contributions:

- We introduce Gestalt Reasoning Machines (GRMs)¹, the first neuro-symbolic framework that integrates perceptual grouping with symbolic rule learning, offering a robust and interpretable approach to complex visual scene understanding.
- We develop a scalable grouping mechanism that operates directly on visual input and seamlessly integrates with symbolic reasoning, enabling GRMs to scale effectively with increasing numbers of objects by reducing unnecessary relational complexity.
- We demonstrate that GRMs significantly outperform existing neural and neuro-symbolic models on structured visual reasoning tasks, with performance gains that increase as scene complexity grows. Our results show that GRMs successfully bridge the gap between data-driven modeling and efficient structured perception.

The remainder of this paper presents related work, details the GRM architecture and training procedure, provides a comprehensive experimental evaluation, and concludes with implications for future research in neuro-symbolic visual reasoning.

¹We make our code publicly available at https://anonymous.4open.science/r/nesy_causal_p-7487

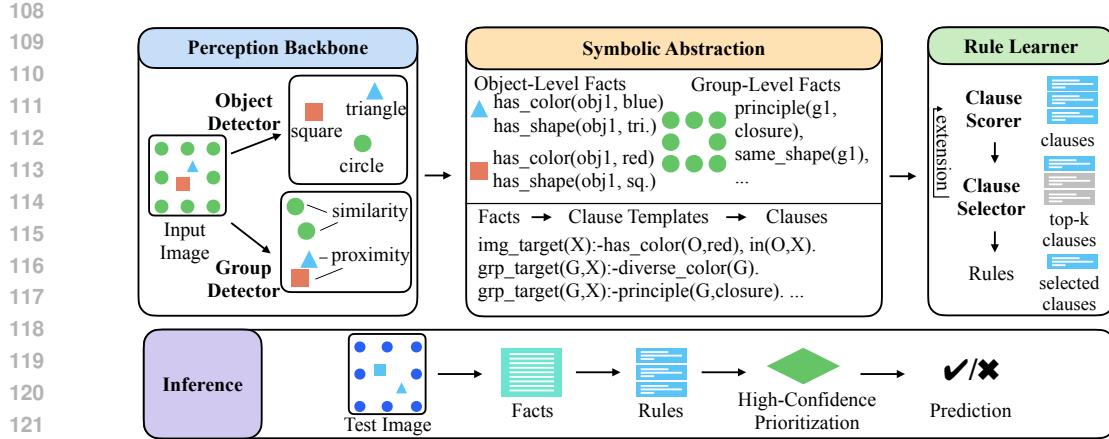


Figure 2: **Overview of the Gestalt Reasoning Machine (GRM) Pipeline.** An input image is first processed by a **Perception Backbone** that detects objects and identifies Gestalt-based group structures. Next, the **Symbolic Abstraction** module converts these perceptual features into a logical fact base and generates candidate clauses. The **Rule Learner** then performs a search over this symbolic space to discover a final set of *interpretable rules*. Finally, the **Inference** engine applies these rules to a new visual input, employing a *high-confidence prioritization strategy*. This ensures that predictions are based on highly certain, transparent rules whenever possible, falling back to a weighted aggregation of evidence from all relevant rules in more ambiguous cases.

2 RELATED WORK

Visual reasoning is a fundamental problem in machine learning research, leading to the development of various benchmarks (Antol et al., 2015; Johnson et al., 2017; Yi et al., 2020) and subsequent frameworks (Yi et al., 2018; Mao et al., 2019; Amizadeh et al., 2020; Hsu et al., 2023) focused on reasoning through symbolic programs and multi-modal transformers (Tan & Bansal, 2019). These benchmarks primarily aim to answer queries expressed in natural language in conjunction with visual inputs. Our work evaluates Gestalt Reasoning Models (GRMs), particularly emphasizing their ability to perform the grouping function based on Gestalt reasoning principles. Reinforcement learning has been used to enhance the reasoning capability of large Vision-Language Models (VLMs) (Liu et al., 2025; Tan et al., 2025; Zhai et al., 2024; Li et al., 2025). However, the resulting reasoning traces are not logically grounded in terms of objects (Sarch et al., 2025). Consequently, these models struggle to perform structured perception with grouping. We aim at developing the foundation of performing structured perception with a neuro-symbolic approach.

Additionally, Abstract Visual Reasoning (AVR) explores the capability to apply previously acquired knowledge and techniques in completely new contexts, posing unique challenges for deep neural networks (DNNs) (Hu et al., 2021; Malkinski & Mandziuk, 2023; Camposampiero et al., 2023). AVR methods have been primarily evaluated through simple abstract puzzles like Raven’s progressive matrices (Raven & Court, 1998). The Kandinsky patterns framework (Müller & Holzinger, 2021) provides a unique method for generating patterns with abstract objects, which we have expanded to address Gestalt reasoning tasks. To address these challenges, neuro-symbolic rule learning frameworks have been developed, emphasizing the learning of discrete rule structures via backpropagation (Evans & Grefenstette, 2018; Minervini et al., 2020; Shindo et al., 2023; 2024b; Zimmer et al., 2023; Sha et al., 2024). These methodologies have predominantly been tested on visual arithmetic tasks or within synthetic environments tailored for reasoning (Stammer et al., 2021). Our work on Gestalt Reasoning Models (GRMs) seeks to bridge the gap between existing neuro-symbolic paradigms and elements of human cognitive processes.

Gestalt reasoning has been extensively studied in psychology (Wertheimer, 1938; Koffka, 1935; Palmer, 1999; Ellis, 1999) and has also intersected significantly with machine learning and deep learning research (Lörincz et al.; Hua & Kunda, 2020; Kim et al., 2021; Zhang et al., 2024b), although previous efforts primarily focused on convolutional neural networks. GRMs represent the first neuro-symbolic framework that explicitly encodes the grouping function in Gestalt principles.

162 3 GESTALT REASONING MACHINES

164 The Gestalt Reasoning Machine (GRM) is a neuro-symbolic framework that integrates perceptual
 165 organization with logical reasoning. Inspired by human visual cognition, it processes raw images to
 166 detect objects and perceptual groups, abstracts them into object- and group-level facts, and applies
 167 a logic-based rule learner to derive interpretable decision functions (Fig. 2). By combining neural
 168 perception with symbolic abstraction and rule learning, GRM achieves flexible yet interpretable
 169 reasoning over complex visual patterns. The following subsections detail its components.

171 3.1 PERCEPTION BACKBONE

173 The perceptual backbone of a GRM transforms raw visual input into structured symbolic and neu-
 174 ral representations. This process operates at two levels: *object-level perception* and *group-level*
 175 *perception*, each combining discrete symbolic attributes with continuous neural descriptors.

177 **Object-Level Perception.** Given an input image I , the system identifies a set of perceptual objects
 178 $\mathcal{O} = \{o_1, o_2, \dots, o_n\}$, where each object o_i corresponds to a visually coherent region with binary
 179 mask $M_i \subset \mathbb{Z}^2$ indicating its spatial extent. The GRM architecture is modular with respect to the
 180 perception backbone: we instantiate it with color-based segmentation for synthetic environments and
 181 neural object proposals for natural images. Each object maintains a dual representation combining
 182 symbolic and neural features:

$$182 \quad o_i = (\phi_i^{\text{sym}}, \phi_i^{\text{neu}}).$$

184 The symbolic features ϕ_i^{sym} encode high-level attributes including shape category, color, and spatial
 185 position, extracted through dedicated neural components. The neural features ϕ_i^{neu} capture fine-
 186 grained geometric structure through sampled contour points organized into local patches. This
 187 patch-wise representation preserves local geometric details such as corners, curves, and edge ori-
 188 entations that are crucial for detecting perceptual relationships. Two objects with aligned edges
 189 or similar local curvatures can be identified through matching patches, while the full contour en-
 190 ables robust shape classification. This dual representation thus bridges abstract reasoning with de-
 191 tailed perceptual analysis, supporting both symbolic manipulation and learned grouping operations
 192 in downstream modules. [More detailed backbone architecture is available in App. A.](#)

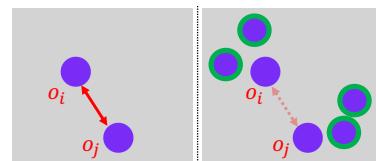
193 **Group-Level Perception.** Beyond individual objects, GRMs organize visual elements into per-
 194 ceptual groups following Gestalt principles. We implement five principles: *proximity*, *similarity*,
 195 *closure*, *symmetry*, and *continuity*. Rather than hard-coding separate mechanisms, we employ a
 196 unified architecture with a shared encoder and lightweight principle-specific heads.

197 The shared encoder f transforms each object o_i into a fixed-length embedding $\mathbf{o}_i = f(o_i)$. To
 198 capture the global context for grouping decisions, the network evaluates pairwise relationships while
 199 conditioning on all other objects in the scene. For each principle p , the network estimates affinities
 200 between object pairs:

$$201 \quad s_p(o_i, o_j, I) = \sigma(h_p(\mathbf{o}_i, \mathbf{o}_j, \mathbf{o}_{ij}^*)) ,$$

202 where h_p is a principle-specific MLP, σ is the sigmoid activation, and \mathbf{o}_{ij}^* represents the global context computed as the
 203 mean embedding of all other objects in scene I (see Fig. 3). This mean pooling is permutation-invariant and keeps the scale
 204 of \mathbf{o}_{ij} independent of the number of objects, which is important for comparing scenes with different object counts. It plays
 205 the role of a simple, scene-level context that informs whether a local pair is typical or exceptional within its neighborhood
 206 (Gaifman, 1982). A natural alternative is to use a Transformer over the set of object embeddings, which can in principle handle
 207 variable-length contextual input without an explicit pooling step. We experimentally compare this Transformer-based
 208 variant with our MLP + mean-pooling design in App. B.

209 The resulting affinity score s_p indicates the confidence that two objects belong to the same group.
 210 GRMs then threshold these affinities to extract groups and aggregate attributes such as color diver-



211 **Figure 3: Structured perception**
 212 **by GRMs.** Without contextual ob-
 213 jects (left), group identification be-
 214 comes ambiguous. GRMs lever-
 215 age global context (right) by aggre-
 216 gating embeddings from all objects
 217 (green contour) into \mathbf{o}_{ij}^* .

216 sity and shape uniformity, producing a structured symbolic feature representation for each detected
 217 group.
 218

219 **3.2 SYMBOLIC ABSTRACTION**
 220

221 Gestalt Rule Models (GRMs) use program induction to generate interpretable, Gestalt-based rules
 222 from visual input. This is achieved by translating perceptual features into a first-order logic repre-
 223 sentation suitable for rule learning.

224 First, GRMs convert observations into atomic formulas (facts) using domain-specific predi-
 225 cates, yielding two distinct fact sets. The first, \mathcal{F}^{obj} , encodes object-level properties such as
 226 shape, color, and position (e.g., `shape(obj1, circle)`, `pos(obj1, 5, 10)`). The sec-
 227 ond, \mathcal{F}^{grp} , captures group-level structures like Gestalt principles and membership relations (e.g.,
 228 `principle(g1, proximity)`, `member(obj1, g1)`).

229 From this symbolic representation, GRMs construct an initial candidate clause set, $\mathcal{R}_{\text{init}}$. This set
 230 contains simple clauses, each composed of a head and body atom, that serve as a starting point for a
 231 subsequent search step where they are expanded into more complex clauses. By bridging perceptual
 232 processing with logical reasoning, GRMs enable the discovery of compositional clauses that explain
 233 complex visual patterns.

235 **3.3 RULE LEARNING WITH STRUCTURED PERCEPTION**
 236

237 GRMs leverage the initial candidate clause set $\mathcal{R}_{\text{init}}$ to learn *target rules*² that explain visual scenes
 238 according to Gestalt principles. For every candidate clause in $\mathcal{R}_{\text{init}}$, GRM create two variants: an
 239 existence clause and a universal clause. They are defined as below:³

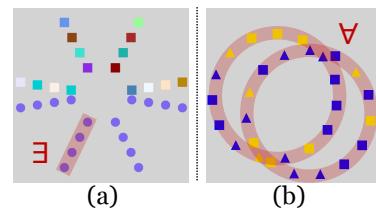
240 **Existential Clauses (\exists)** are satisfied if **at least one** group in a scene meets a specific condition. For
 241 example, the rule for Fig. 4(a) requires that “there exists a group containing objects of the
 242 same color.”

243 **Universal Clauses (\forall)** are satisfied only if **every** group in a scene meets a specific condition. For
 244 instance, the rule for Fig. 4(b) requires that “all groups must contain both a yellow and a
 245 blue object.”

246 Learning then proceeds via a top- k beam search over $\mathcal{R}_{\text{init}}$
 247 for at most T expansion steps: in each step, every clause is
 248 assigned a soft confidence score determined by its head (see
 249 App. C for the scoring equations), clauses are ranked by
 250 confidence, and only the top- k clauses are expanded to uncover
 251 the scene’s underlying group structures. The search termi-
 252 nates either after T steps or early when a high-confidence rule
 253 has been found, with an overall computational complexity of
 254 $O(|C|^T \cdot t_C)$, where $|C|$ is the number of clauses considered
 255 and t_C is the cost of evaluating a clause.

256 **3.4 INFERENCE**
 257

258 With the learned rules, GRMs finally perform inference on
 259 new inputs. At test time, the model performs interpretable inference by applying its learned sym-
 260 bolic rules to a given visual scene. This process unfolds in three stages. First, in the symbolic
 261 grounding stage, a perceptual backbone analyzes the input image to detect objects and groups, con-
 262 verting them into a logical fact base ($\mathcal{F}_{\text{test}}$). Next, during rule evaluation, each rule from the final
 263 learned set ($\mathcal{R}_{\text{final}}$) is matched against this fact base to compute a soft satisfaction score ($s_j \in [0, 1]$),
 264 quantifying its relevance under potential perceptual uncertainty. Finally, the *high-confidence prior-
 265 itization strategy* determines the output: if any high-confidence rules are activated, the prediction is



266 **Figure 4: GRM Scoring with**
 267 **quantifiers.** GRMs use existential
 268 (\exists) and universal (\forall) quantifiers to
 269 define rules over groups of objects
 as shown in the red shade.

267 ²We distinguish between *clauses*, the intermediate representations manipulated during the search, and *rules*,
 268 the final explanatory solution.

269 ³If no group-based patterns are found, GRMs can treat each object as an individual group. This fallback
 allows them to handle non-Gestalt patterns, such as detecting the presence of a single red triangle in the image.

270 derived exclusively from their outputs. In all other cases, the system falls back to a robust aggregation
 271 method, computing a confidence-weighted average over all partially satisfied rules. For the mathematical
 272 descriptions and more details, please check App. D. This two-tiered decision process ensures that transparent,
 273 highly reliable rules govern predictions when applicable, while maintaining robust performance in more ambiguous scenarios.
 274

276 4 EXPERIMENTS

278 In this section, we evaluate Gestalt Reasoning Machines (GRM) on structured visual reasoning tasks
 279 that require both perceptual organization and symbolic abstraction. Our experiments are designed
 280 to assess GRM’s performance, interpretability, and scalability by answering three key questions:
 281

- 282 (Q1) How does GRM perform on visual reasoning benchmarks compared to leading neural and
 283 neuro-symbolic baselines?
- 284 (Q2) Does the perceptual grouping lead to more interpretable and well-structured symbolic rules?
- 285 (Q3) How robust is GRM to architectural ablations and increased task complexity?

287 Through comprehensive quantitative evaluations, qualitative analyses, and ablation studies, we
 288 demonstrate that GRM provides an accurate, interpretable, and scalable approach to neuro-symbolic
 289 reasoning, effectively guided by perceptual grouping principles.

291 4.1 EVALUATION PROTOCOL

293 **Dataset and Task.** We evaluate GRM on the ELVIS benchmark (Sha et al., 2025), a large-scale
 294 collection of visual reasoning tasks grounded in Gestalt principles. While existing datasets like
 295 CLEVR (Johnson et al., 2017) or RAVEN (Zhang et al., 2019) test object-centric and relational
 296 reasoning respectively, they do not require *group-centric* reasoning. ELVIS is specifically designed
 297 to fill this gap, with tasks that require models to first aggregate objects into meaningful higher-
 298 order entities based on Gestalt principles (e.g., proximity, similarity) before applying logic. To our
 299 knowledge, it is the only benchmark that systematically integrates these grouping principles into a
 300 neuro-symbolic pipeline, making it uniquely suited for evaluating GRM.

301 The extensive benchmark features over 100 distinct tasks for each Gestalt principle. Each task is a
 302 few-shot learning problem consisting of positive and negative example images. Positive examples
 303 adhere to a latent symbolic rule (e.g., “at least one group of similar objects is all red”), while negative
 304 examples subtly violate it. From a training set of 3 positive and 3 negative 224×224 RGB images,
 305 the model’s objective is to infer the underlying rule and predict binary labels for a held-out test set
 306 of the same size, without direct rule supervision.

307 **Metrics.** For each task, GRM is trained on the provided image set to induce a set of explanatory
 308 rules. At test time, these rules are applied to the test images using our high-confidence prioritization
 309 strategy to generate a final prediction. We evaluate performance using two primary metrics: *Accu-*
 310 *racy*, the proportion of correctly classified images, and the *F1 Score*, the harmonic mean of precision
 311 and recall. We report both scores averaged across all tasks associated with each Gestalt principle.
 312 To this end, we perform qualitative evaluations of the interpretability and runtime comparisons.

313 **Baselines.** We compare GRM against a range of baselines to situate its performance and highlight
 314 the benefits of its design. To simulate a few-shot learning scenario, all models are provided with just
 315 3 positive and 3 negative examples for training or in-context learning, and evaluated on a held-out
 316 test set of the same size. Our baseline suite begins with *Human Performance*, measured via a web
 317 interface⁴ to provide a robust reference point. We include a standard deep learning approach, the
 318 *Vision Transformer (ViT-Small)*, trained end-to-end on raw pixels to capture low-level patterns with-
 319 out structured reasoning. To assess the capabilities of state-of-the-art generalist models, we evaluate
 320 three *Large Multimodal Models*: LLaVA-1.5 (Li et al., 2024) (zero-shot), the 78B-parameter variant
 321 of InternVL3 (Chen et al., 2024), and GPT-5 (OpenAI, 2025), which are powerful on natural images
 322 but are challenged by ELVIS’s abstract patterns. Finally, as a critical neuro-symbolic comparison,

323 ⁴Link omitted for anonymous review.

324 **Table 1: Quantitative Performance on Gestalt Reasoning Tasks.** We compare our model (**GRM**)
 325 against baselines and human performance on the ELVIS benchmark. The table shows the mean and
 326 standard deviation for Accuracy and F1 Score across five Gestalt principles. **Bold** indicates the best-
 327 performing model in each column (excluding human performance). Cell colors are normalized to
 328 visualize relative scores, from high (green) to low (pink). GRM consistently achieves state-of-the-art
 329 or competitive results, demonstrating the strength of its group-based reasoning. Model shorthands
 330 are as follows: ViT-16-224 is ViT-B/16; Llava-Qwen-7B is LLaVA-OneVision-Qwen2-7B-SI.

Met.	Model	Proximity	Similarity	Closure	Symmetry	Continuity
Acc.	ViT-16-224	0.56 \pm 0.19	0.54 \pm 0.15	0.59 \pm 0.20	0.53 \pm 0.18	0.53 \pm 0.19
	Llava-Qwen-7B	0.50 \pm 0.13	0.50 \pm 0.10	0.53 \pm 0.12	0.57 \pm 0.14	0.55 \pm 0.15
	InternVL3-78B	0.53 \pm 0.18	0.62 \pm 0.23	0.70 \pm 0.20	0.59 \pm 0.17	0.72 \pm 0.21
	GPT-5	0.72 \pm 0.23	0.71 \pm 0.22	0.66 \pm 0.23	0.52 \pm 0.14	0.81 \pm 0.19
	NEUMANN	0.58 \pm 0.15	0.52 \pm 0.08	0.71 \pm 0.18	0.53 \pm 0.09	0.50 \pm 0.03
	GRM	0.71 \pm 0.17	0.72 \pm 0.21	0.78 \pm 0.16	0.64 \pm 0.17	0.78 \pm 0.17
Human		0.97 \pm 0.03	0.87 \pm 0.13	0.92 \pm 0.08	0.85 \pm 0.15	0.98 \pm 0.02
F1	ViT-16-224	0.50 \pm 0.29	0.45 \pm 0.30	0.56 \pm 0.28	0.48 \pm 0.29	0.55 \pm 0.25
	Llava-Qwen-7B	0.22 \pm 0.30	0.27 \pm 0.32	0.53 \pm 0.28	0.38 \pm 0.34	0.24 \pm 0.33
	InternVL3-78B	0.32 \pm 0.33	0.45 \pm 0.39	0.59 \pm 0.34	0.36 \pm 0.35	0.52 \pm 0.41
	GPT-5	0.65 \pm 0.33	0.61 \pm 0.34	0.56 \pm 0.35	0.22 \pm 0.30	0.71 \pm 0.29
	NEUMANN	0.27 \pm 0.37	0.13 \pm 0.24	0.59 \pm 0.36	0.30 \pm 0.35	0.33 \pm 0.33
	GRM	0.65 \pm 0.29	0.63 \pm 0.33	0.78 \pm 0.22	0.48 \pm 0.35	0.78 \pm 0.22
Human		0.96 \pm 0.04	0.81 \pm 0.19	0.90 \pm 0.10	0.81 \pm 0.19	0.97 \pm 0.03

345
 346 we evaluate *NEUMANN* (Shindo et al., 2024b), which learns object-level rules but lacks perceptual
 347 grouping, thereby serving as an ablation to isolate the contribution of GRM’s core mechanism.
 348

349 **Pretraining.** GRM’s perception backbone uses pre-trained object and group detectors that are
 350 fixed during reasoning. An object detector identifies shapes, while separate models, one for each
 351 Gestalt principle, cluster objects into groups based on learned affinities. These detector outputs,
 352 along with attributes like color and position derived directly from the object masks, are converted
 353 into a symbolic fact base for the rule learner. Complete list of these predicates is provided in App. E.
 354

355 **Hardware Requirements** In our experiments, we ran InterVL3-78B on 3 NVIDIA A100-SXM4-
 356 80GB, ran GPT-5 via API and ran rest of the models on a single NVIDIA A100-SXM4-80GB. The
 357 GRM, NEUMANN and ViT-16-224 models are runnable on a MacBook Pro with M2 Chip whereas
 358 the others cannot.
 359

360 4.2 QUANTITATIVE AND QUALITATIVE EVALUATION

361 To answer **Q1**, we evaluate GRM on the ELVIS benchmark, spanning five Gestalt principles: *prox-
 362 imity*, *similarity*, *closure*, *symmetry*, and *continuity*. Each task shares a latent structural rule but
 363 varies in features like shape, color, and size, requiring both object recognition and group reasoning.
 364

365 Tab. 1 compares GRM against five baselines (ViT, LLaVA, InternVL3, GPT-5, NEUMANN). GRM
 366 outperforms all neural and neuro-symbolic baselines on three principles and achieves its strongest
 367 result on *closure* (0.78), demonstrating that explicit grouping enhances symbolic generalization be-
 368 yond purely object-centric models. Fig. 5 (middle) further analyzes performance by conditioning
 369 on object- and group-level properties. GRM maintains balanced accuracy ($\sim 73\%$) across shape,
 370 color, size, group number, and group size, whereas GPT-5 shows imbalances (e.g., strong on shape
 371 but weaker on size and color). This consistency highlights the benefit of rule-based evaluation in
 372 avoiding confusion from perceptually similar attributes, generalizing to various abstract concepts.
 373

374 We further evaluate the quality of symbolic fact extraction on 500 test tasks. Object-level properties
 375 are extracted with high reliability, including *size* (99%), *position* (95%), and *color* (90%). In con-
 376 trast, group-level attributes are more challenging due to abstraction and perceptual ambiguity: *group*
 377 *label* reaches 71% accuracy, *object count* 92%, *group number* 76%, and *per-group count* only 44%.
 378 These results indicate that while low-level symbolic properties are robustly recovered, higher-order
 379 group-related facts remain a bottleneck for reasoning. Full results are provided in App. F.
 380

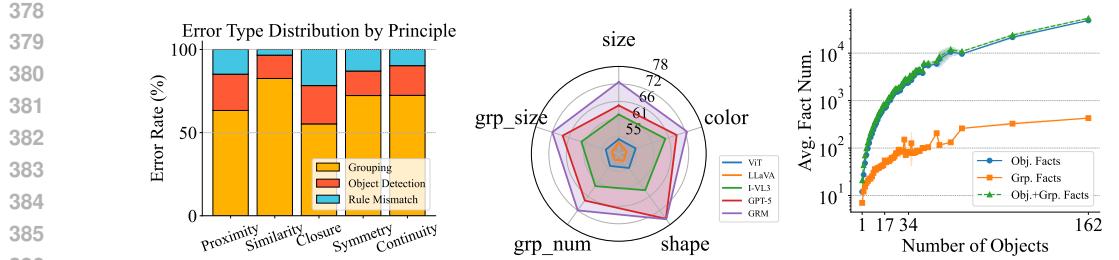


Figure 5: **Combined Results.** **Left:** Error breakdown by principle, showing grouping errors dominate across all Gestalt principles. **Middle:** Average accuracy (%) over all principles for each property and model. Object-level properties: size, color, shape; Group-level properties: group number and group size. **Right:** Symbolic scalability across object counts, where group-level reasoning adds moderate overhead when combined with object facts but remains lightweight when used alone.

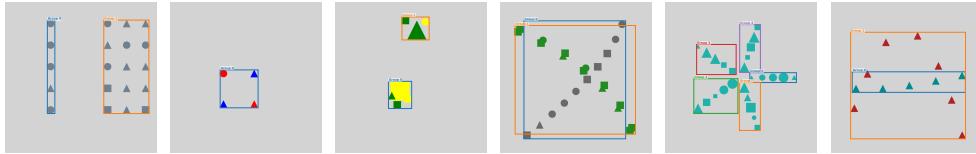


Figure 6: **Qualitative Results of Group Detection.** Visualization of predicted group structures on randomly selected tasks from the ELVIS benchmark. Each image shows the original scene with predicted group bounding boxes overlaid, demonstrating how GRM organizes visual objects according to different perceptual grouping principles. See App. F for more examples.

To answer **Q2**, we assess whether perceptual grouping improves the interpretability and structure of induced rules. Unlike black-box baselines, GRM represents visual patterns as explicit symbolic rules grounded in detected objects and groups. Fig. 6 visualizes predicted group structures (See more examples in Fig. 8 in App. F), while Listing 1 shows representative rules. Together, they reveal how GRM discovers human-readable rules (e.g., groups containing triangles or color–shape combinations) and organizes objects into coherent groupings, providing transparent reasoning traces aligned with Gestalt principles. App. G provides several task solving examples.

Listing 1: **GRM learns interpretable rules over groups.** Example rules discovered on ELVIS.

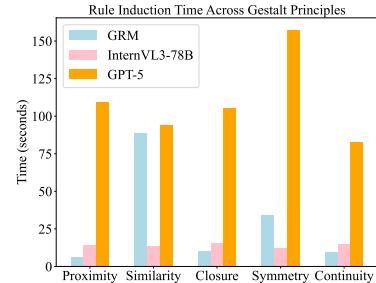
```
% Proximity principle
group_target(G, X) :- has_shape(O, triangle), in_group(O, G) .
  [confidence=1.000, scope=universal]
group_target(G, X) :- has_color(O, red), has_shape(O, square), in_group(O, G) .
  [confidence=1.000, scope=existential]
```

Fig. 5 (left) presents the distribution of GRM’s error sources: grouping errors, object detection errors, and rule mismatches. Grouping emerges as the dominant source of failure, underscoring that the transition from objects to coherent groups remains the most challenging stage. A common issue is the grouping module mistakenly merging distinct structures into a single group, which disrupts the construction of correct symbolic facts. For instance, in a *closure* task (see Fig. 8 in App. F), separate closure groups are erroneously combined, preventing the reasoning module from deriving correct group-level facts and leading to incorrect predictions. Currently, our grouping mechanism uses relatively simple neural networks. Developing more robust and semantically informed grouping mechanisms is a promising avenue for future work.

Beyond grouping, object detection errors constitute the second-largest category, often caused by subtle color variations or incomplete contours due to occlusion or truncation. Rule mismatches account for the remaining cases, reflecting situations where both detection and grouping are correct but the reasoning module still fails to align symbolic predicates with the intended rules. These results highlight that while GRM successfully integrates perceptual and symbolic components, future improvements require both more robust grouping strategies and refined reasoning mechanisms to reduce systematic errors.

432 4.3 ROBUSTNESS AND COMPONENT ANALYSIS
433434 To answer **Q3**, we analyzed GRM’s robustness through ablation studies and scalability tests.
435436 **Ablation of Perceptual Grouping.** We performed an ablation study to quantify the contribution of
437 the grouping mechanism. As shown in Tab. 2, we compare the full GRM model (*w/ Group*), which
438 uses both object- and group-level facts, against a variant that reasons only over object-level features
439 (*w/o Group*), which correspond to conventional neuro-symbolic systems. The results demonstrate
440 that incorporating group-level information consistently and significantly improves accuracy, with
441 the most dramatic gains on tasks requiring *continuity* (+61%) and *similarity* (+36%). This confirms
442 that group-level abstraction provides a powerful inductive bias for structured reasoning.⁵
443444 **Scalability with Scene Complexity.** We also
445 assessed scalability by measuring the growth of
446 the symbolic fact base as the number of objects
447 in a scene increases (Fig. 5, right). While a
448 purely object-based representation grows near-
449 quadratically, adding group-level facts intro-
450 duces only a modest representational overhead.
451 This small cost yields a substantial performance
452 benefit, as evidenced by the accuracy gains in
453 Tab. 2. Perceptual grouping therefore acts as a
454 lightweight yet highly effective enhancement to
455 the symbolic pipeline. It enriches the model’s
456 representational capacity and provides a nat-
457 ural mechanism for abstracting away redundant object-level details, pointing to promising directions
458 in group-guided symbolic compression.
459460 **Computational Efficiency.** In terms of time efficiency,
461 GRM is substantially more efficient than GPT-5 and remains
462 competitive with the highly stable InternVL3-78B, solving
463 most tasks in under 10 seconds while GPT-5 often exceeds
464 100 seconds (Fig. 7). A detailed analysis of how perceptual
465 grouping quality affects induction time is provided in App. H.
466467 5 CONCLUSION
468469 Before concluding, let us discuss the limitations of GRM. Our
470 experiments relied on synthetically generated visual scenes
471 (ELVIS). While this controlled setup was essential for the first
472 systematic study of Gestalt-based reasoning, GRM’s per-
473 formance on noisy, real-world images remains an open question.
474 A natural next step is to extend GRM to more practical do-
475 mains such as natural images (*e.g.*, Visual Genome (Krishna et al., 2017)). This would not only test
476 the model’s robustness but also raise important questions on how abstract Gestalt principles apply
477 to real-world interpretation (See App. I for more discussion).
478479 To conclude, we introduced GRM, a neuro-symbolic framework that integrates perceptual grouping
480 with symbolic rule induction to solve complex visual reasoning tasks grounded in Gestalt principles.
481 Our experiments demonstrate that GRM offers key advantages over purely data-driven models. The
482 formalism of rule induction ensures logical consistency, while the scalable grouping mechanism
483 maintains a compact symbolic representation, even in complex scenes. Together, these components
484 enable GRM to outperform state-of-the-art models, including GPT-5, on several Gestalt reasoning
485 principles. These results highlight the significant promise of structured neuro-symbolic architec-
486 tures, positioning GRM as a foundation for developing cognitive systems with more robust, inter-
487 pretable, and human-like structured perception.488 **Table 2: Grouping enhances the reasoning per-
489 formance.** Accuracy (%) comparisons of GRM
490 without grouping vs. with grouping. **The green
491 values are the relative improvement of the w/-
492 Group relative to the w/o Group.**

Principle	w/o Group	w/ Group
Proximity	58.0 \pm 15.0 (0%)	70.0 \pm 17.0 (+19%)
Similarity	52.0 \pm 8.0 (0%)	70.0 \pm 22.0 (+36%)
Symmetry	53.0 \pm 9.0 (0%)	62.0 \pm 18.0 (+17%)
Closure	71.0 \pm 18.0 (0%)	79.0 \pm 16.0 (+11%)
Continuity	50.0 \pm 3.0 (0%)	81.0 \pm 19.0 (+61%)

493 **Figure 7: Task Solving Time
494 Comparison.** The time is mea-
495 sured from the start of image input
496 to the completion of rule induction.497 ⁵A group-only variant was not evaluated, as the reasoning tasks fundamentally require object-level pre-
498 dictates (*e.g.*, shape and color), and the groups themselves are derived from detected objects.

486 REFERENCES
487

488 Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. Neuro-
489 symbolic visual reasoning: Disentangling "Visual" from "Reasoning". In *Proceedings of the*
490 *International Conference on Machine Learning (ICML)*, 2020.

491 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
492 nick, and Devi Parikh. Vqa: Visual question answering. In *Proceedings of the IEEE/CVF Inter-*
493 *national Conference on Computer Vision (ICCV)*, 2015.

494 Giacomo Camposampiero, Loïc Houmar, Benjamin Estermann, Joël Mathys, and Roger Watten-
495 hofer. Abstract visual reasoning enabled by language. In *Proceedings of the IEEE/CVF Con-*
496 *ference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 2642–2646, June
497 2023.

498 Shiqi Chen, Tongyao Zhu, Ruochen Zhou, Jinghan Zhang, Siyang Gao, Juan Carlos Niebles, Mor
499 Geva, Junxian He, Jiajun Wu, and Manling Li. Why is spatial reasoning hard for VLMs? an
500 attention mechanism perspective on focus areas. In *Forty-second International Conference on*
501 *Machine Learning (ICML)*, 2025.

502 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
503 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
504 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
505 *Vision and Pattern Recognition*, pp. 24185–24198, 2024.

506 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
507 and Sifei Liu. SpatialRGPT: Grounded spatial reasoning in vision-language models. In *The*
508 *Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2024.

509 510 Willis D. Ellis. *A Source Book of Gestalt Psychology*. Routledge, 1999.

511 Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. *Journal of*
512 *Artificial Intelligence Research (JAIR)*, 2018.

513 514 Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A
515 Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see but
516 not perceive. In *European Conference on Computer Vision*, pp. 148–166. Springer, 2024.

517 518 Haim Gaifman. On local and non-local properties. In J. Stern (ed.), *Proceedings of the Herbrand*
519 *Symposium*, volume 107 of *Studies in Logic and the Foundations of Mathematics*, pp. 105–135.
520 Elsevier, 1982. doi: [https://doi.org/10.1016/S0049-237X\(08\)71879-2](https://doi.org/10.1016/S0049-237X(08)71879-2). URL <https://www.sciencedirect.com/science/article/pii/S0049237X08718792>.

521 522 Shihui Han, Yulong Ding, and Yan Song. Neural mechanisms of perceptual grouping in humans as
523 revealed by high density event related potentials. *Neuroscience letters*, 319(1):29–32, 2002.

524 525 Joy Hsu, Jiayuan Mao, Joshua B. Tenenbaum, and Jiajun Wu. What's left? concept grounding
526 with logic-enhanced foundation models. In *Proceedings of the Annual Conference on Neural*
527 *Information Processing Systems (NeurIPS)*, 2023.

528 529 Sheng Hu, Yuqing Ma, Xianglong Liu, Yanlu Wei, and Shihao Bai. Stratified rule-aware network for
530 abstract visual reasoning. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 1567–1574,
531 2021.

532 533 Tianyu Hua and Maithilee Kunda. Modeling gestalt visual reasoning on raven's progressive matrices
534 using generative image inpainting techniques. In *Proceedings of the 42th Annual Meeting of the*
535 *Cognitive Science Society (CogSci)*, 2020.

536 537 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
538 In *Findings of the Association for Computational Linguistics (ACL)*, 2023.

539 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
540 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *Proceedings of the*
541 *International Conference on Learning Representations (ICLR)*, 2024.

540 Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
 541 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 542 reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-*
 543 *nition (CVPR)*, 2017.

544 Been Kim, Emily Reif, Martin Wattenberg, Samy Bengio, and Michael C. Mozer. Neural networks
 545 trained on natural scenes exhibit gestalt closure. *Computational Brain & Behavior*, 4(3):251–263,
 546 2021.

547 Kurt Koffka. *Principles of Gestalt Psychology*. Harcourt, Brace & World, 1935.

548 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 549 language models are zero-shot reasoners. In *Proceedings of the Annual Conference on Neural*
 550 *Information Processing Systems (NeurIPS)*, 2022.

551 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 552 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei.
 553 Visual genome: Connecting language and vision using crowdsourced dense image annotations.
 554 *International Journal of Computer Vision*, 2017.

555 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li,
 556 Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024.

557 Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao,
 558 Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforce-
 559 ment fine-tuning. *arXiv preprint arXiv:2504.06958*, 2025.

560 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 561 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.

562 András Lörincz, Áron Fóthi, Bryar O. Rahman, and Viktor Varga. Deep gestalt reasoning model:
 563 Interpreting electrophysiological signals related to cognition. In *IEEE International Conference*
 564 *on Computer Vision Workshops (ICCV Workshop)*, year = 2017.,

565 Arjun Majumdar, Anurag Ajay, Xiaohan Zhang, Pranav Putta, Sriram Yenamandra, Mikael Henaff,
 566 Sneha Silwal, Paul Mcvay, Oleksandr Maksymets, Sergio Arnaud, et al. Openeqa: Embodied
 567 question answering in the era of foundation models. In *Proceedings of the IEEE/CVF conference*
 568 *on computer vision and pattern recognition*, pp. 16488–16498, 2024.

569 Mikolaj Malkinski and Jacek Mandziuk. A review of emerging research directions in abstract visual
 570 reasoning. *Information Fusion*, 91:713–736, 2023.

571 Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
 572 Neural probabilistic logic programming in deepproblog. *Artif. Intell.*, 298:103504, 2021.

573 Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The Neuro-
 574 Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervi-
 575 sion. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.

576 Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statistical rela-
 577 tional to neurosymbolic artificial intelligence: A survey. *Artificial Intelligence (AIJ)*, 328:104062,
 578 2024. ISSN 0004-3702.

579 Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette, and Tim Rocktäschel.
 580 Learning reasoning strategies in end-to-end differentiable proving. In *Proceedings of the Interna-*
 581 *tional Conference on Machine Learning (ICML)*, 2020.

582 Heimo Müller and Andreas Holzinger. Kandinsky patterns. *Artificial Intelligence (AIJ)*, 2021.

583 OpenAI. Introducing GPT-5. <https://openai.com/index/introducing-gpt-5/>, Au-
 584 gust 2025. Accessed: 2025-08-29.

585 Stephen E. Palmer. *Vision Science: Photons to Phenomenology*. MIT Press, Cambridge, MA, 1999.

594 John C Raven and John Hugh Court. *Raven's progressive matrices and vocabulary scales*. Oxford
 595 Psychologists Press, Oxford, 1998.
 596

597 Gabriel Sarch, Snigdha Saha, Naitik Khandelwal, Ayush Jain, Michael Tarr, Aviral Kumar, and
 598 Katerina Fragkiadaki. Grounded reinforcement learning for visual reasoning. In *Proceedings of
 599 the Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2025.

600 Jingyuan Sha, Hikaru Shindo, Kristian Kersting, and Devendra Singh Dhami. Neuro-symbolic
 601 predicate invention: Learning relational concepts from visual scenes. *Neurosymbolic Artificial
 602 Intelligence*, 2024.

603 Jingyuan Sha, Hikaru Shindo, Kristian Kersting, and Devendra Singh Dhami. Gestalt vision: A
 604 dataset for evaluating gestalt principles in visual perception. In *Proceedings of the 19th Interna-
 605 tional Conference on Neurosymbolic Learning and Reasoning (NeSy)*, 2025.

606 Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. α ilp: thinking
 607 visual scenes as differentiable logic programs. *Machine Learning (MLJ)*, 2023.

608 Hikaru Shindo, Manuel Brack, Gopika Sudhakaran, Devendra Singh Dhami, Patrick Schramowski,
 609 and Kristian Kersting. Deisam: Segment anything with deictic prompting. In *Proceedings of the
 610 38th Conference on Neural Information Processing Systems (NeurIPS)*, 2024a.

611 Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. Learning dif-
 612 ferentiable logic programs for abstract visual reasoning. *Machine Learning (MLJ)*, 2024b.

613 Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for the right concept: Re-
 614 vising neuro-symbolic concepts by interacting with their explanations. In *Proceedings of the
 615 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

616 Gopika Sudhakaran, Hikaru Shindo, Patrick Schramowski, Simone Schaub-Meyer, Kristian Ker-
 617 sting, and Stefan Roth. Vision relation transformer for unbiased scene graph generation. In
 618 *Proceedings of the 20th IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025.

619 Hao Tan and Mohit Bansal. LXMERT: learning cross-modality encoder representations from trans-
 620 formers. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing
 621 (EMNLP)*, 2019.

622 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 623 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint
 624 arXiv:2503.20752*, 2025.

625 Kristinn R Thórisson. Simulated perceptual grouping: An application to human-computer interac-
 626 tion. In *Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society*, pp.
 627 876–881. Routledge, 2019.

628 Max Wertheimer. Laws of organization in perceptual forms. In Willis D. Ellis (ed.), *A Source Book
 629 of Gestalt Psychology*, pp. 71–88. Routledge & Kegan Paul, 1938.

630 Antonia Wüst, Tim Tobiasch, Lukas Helfff, Inga Ibs, Wolfgang Stammer, Devendra S Dhami, Con-
 631 stantin A Rothkopf, and Kristian Kersting. Bongard in wonderland: Visual puzzles that still make
 632 ai go mad? *International Conference on Machine Learning (ICML)*, 2025.

633 Yaoda Xu and Marvin M Chun. Visual grouping in human parietal cortex. *Proceedings of the
 634 national academy of sciences*, 104(47):18766–18771, 2007.

635 Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
 636 symbolic VQA: disentangling reasoning from vision and language understanding. In *Proceedings
 637 of the Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2018.

638 Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B.
 639 Tenenbaum. Cleverer: Collision events for video representation and reasoning. In *Proceedings of
 640 the International Conference on Learning Representations (ICLR)*, 2020.

648 Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie,
649 Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents
650 via reinforcement learning. In *Proceedings of the Annual Conference on Neural Information
651 Processing Systems (NeurIPS)*, 2024.

652 Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
653 and analogical visual reasoning. In *Proceedings of the IEEE Conference on Computer Vision and
654 Pattern Recognition (CVPR)*, 2019.

655 Jianrui Zhang, Mu Cai, Tengyang Xie, and Yong Jae Lee. CounterCurate: Enhancing physical and
656 semantic visio-linguistic compositional reasoning via counterfactual examples. In *Findings of the
657 Association for Computational Linguistics (ACL)*, 2024a.

658 Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, Zhiqing Sun, Zhe Gan, Yinfei Yang,
659 Ruoming Pang, and Yiming Yang. Improve vision language model chain-of-thought reasoning. In
660 *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL)*,
661 2025.

662 Yuyan Zhang, Derya Soydancer, Fatemeh Behrad, Lisa Koßmann, and Johan Wagemans. Investigating
663 the gestalt principle of closure in deep convolutional neural networks. In *32nd European
664 Symposium on Artificial Neural Networks (ESANN)*, 2024b.

665 Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui Jiang, Jianyi Zhang, Paul Weng, Dong Li,
666 Jianye Hao, and Wulong Liu. Differentiable logic machines. *Transactions on Machine Learning
667 Research (TMLR)*, 2023.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A DETAILS ABOUT THE PERCEPTION BACKBONE

704 **Object Model** The object model is a two-layer MLP: it flattens input patches, maps them to 128
 705 hidden units with ReLU, then outputs class scores. The input patches are extracted by identifying
 706 the contours of regions in the image.

708 **Group Model** The group model is trained in an end-to-end supervised manner. The dataset used
 709 for training the grouping model is synthetically generated based on the ELVIS pattern to provide
 710 ground-truth groupings based on Gestalt principles. The model takes the object embeddings as
 711 input and predicts the probability that two objects belong to the same group.

712 The structure of the group model includes a point encoder, a patch encoder and a classifier. A point
 713 encoder: a two-layer MLP with ReLU, mapping each input point to a hidden dimension. A patch
 714 encoder: a two-layer MLP with ReLU, mapping a flattened set of encoded points (a patch) to a patch
 715 embedding. A classifier: a two-layer MLP with ReLU, taking the concatenation of two contour
 716 embeddings and a context embedding, and outputting a single logit. The forward pass encodes
 717 two input contours and their context, concatenates their embeddings, and passes them through the
 718 classifier to produce a score.

720 B GROUP DETECTOR ARCHITECTURE COMPARISON

722 In the main text (Sec. 3.1), we implement GRM’s grouping module using a shared encoder and
 723 principle-specific MLP heads with mean-pooled context. A natural alternative is to use a Trans-
 724 former over the object set, which can in principle handle variable-length contextual input without an
 725 explicit pooling step. To validate our design choice, we performed a controlled comparison between
 726 the MLP and simple Transformer-based groupers on the ELVIS grouping task.

727 **Experimental Setup.** All learned groupers are trained to solve the same binary group-detection
 728 task: given a candidate pair of objects, predict whether they belong to the same group under a given
 729 Gestalt principle. We consider three learned variants, plus a large VLM baseline:

- 731 • **MLP+Context.** The architecture described in App. A: an MLP head h_p that takes $(\mathbf{o}_i, \mathbf{o}_j, \mathbf{o}_{ij}^*)$,
 732 where \mathbf{o}_{ij}^* is the mean-pooled embedding of all other objects in the scene.
- 733 • **Transformer+Context.** A small Transformer encoder that takes as input the embeddings of the
 734 candidate pair and all other objects. The output corresponding to the candidate pair is pooled and
 735 fed to a classifier. This variant is meant to test whether a naïve sequence Transformer can exploit
 736 unordered, variable-size context more effectively than mean pooling.
- 737 • **Transformer Pair Only.** A Transformer that only sees the two candidate objects and ignores all
 738 other objects, thereby exploiting purely pairwise cues.
- 739 • **GPT-Zero-Shot.** A large VLM (GPT-5) prompted in a zero-shot setting to directly predict group
 740 membership for each candidate pair (no training on ELVIS).

742 All learned models are trained with the same data splits and loss as the main MLP grouper, and
 743 evaluated on the five Gestalt principles. Runtime is measured as average wall-clock time per ELVIS
 744 task on a single NVIDIA A100-SXM4-80GB GPU (GPT-5 timing is measured separately as an API
 745 call latency).

746 **Results.** Table 3 reports per-principle accuracies, average accuracy and standard deviation across
 747 principles, runtime, and parameter counts.

749 **Discussion.** Transformer-Pair-Only achieves the highest average accuracy (0.77), but it completely
 750 ignores context and mainly exploits strong pairwise cues, especially for *closure* and *continuity* where
 751 it reaches 0.97. MLP with mean-pooled context attains slightly lower average performance (0.71)
 752 but is more balanced across principles (lower standard deviation) and remains far more efficient than
 753 the GPT-zero-shot baseline.

755 By contrast, the naïve Transformer+Context variant, which encodes the candidate pair together with
 all other objects, fails to benefit from the additional context and collapses to chance level (around

756 Table 3: **Comparison of MLP and Transformer-based groupers.** All learned models are trained
 757 on the ELVIS grouping task; GPT-Zero-Shot denotes a large VLM (GPT-5) evaluated in a zero-shot
 758 setting. Transformer-Pair-Only attains the highest average accuracy but ignores context; MLP with
 759 mean-pooled context is slightly less accurate on average, but more balanced across principles and
 760 more efficient than GPT-zero-shot, while a naïve Transformer+Context fails to exploit context and
 761 collapses near chance.

Metric	MLP+Context	Transformer+Context	Transformer Pair Only	GPT-Zero-Shot
Proximity	0.80	0.50	0.77	0.82
Similarity	0.57	0.50	0.55	0.51
Closure	0.80	0.50	0.97	0.72
Symmetry	0.61	0.50	0.60	0.27
Continuity	0.76	0.50	0.97	0.82
Mean Acc.	0.71	0.50	0.77	0.63
Acc. Std	0.11	0.00	0.20	0.24
Time/Task	1.94s	3.58s	3.46s	57s
Params	0.5M	3.2M	1.6M	635,000M

773
 774 0.50 on all principles), despite having substantially more parameters. These results suggest that the
 775 main challenge is not the mean-pooling bottleneck per se, but *how* unordered, variable-size context
 776 is encoded: a straightforward sequence Transformer over all objects does not automatically learn
 777 the relevant contextual interactions, whereas a simple MLP with permutation-invariant mean-pooled
 778 context is robust and competitive.

779 Designing stronger context encoders for grouping is a promising direction (e.g., more structured
 780 set-based architectures), but this is orthogonal to the main contribution of GRM, which is to show
 781 that explicit grouping combined with neuro-symbolic reasoning already yields strong and efficient
 782 performance on ELVIS.

784 C DETAILS ABOUT THE CLAUSE SCORING

785 During beam search, each candidate clause r is evaluated by a clause scorer that estimates how well r
 786 explains the task’s training images while avoiding spurious matches on negatives. The score depends
 787 on the type of head attached to r (`image_target`, `group_target`, or `group_universal`) and
 788 is normalized to lie in $[0, 1]$.

789 Intuitively, the scorer rewards coverage of positive images (or groups) and penalizes violations on
 790 negative images, thereby biasing the search towards clauses that capture stable Gestalt regularities
 791 rather than accidental coincidences.

792 Formally, we define:

$$793 \text{score}(r) = \begin{cases} \frac{n_+(r)}{N_+} \cdot \left(1 - \frac{n_-(r)}{N_-}\right), & \text{image_target,} \\ \frac{n_+^\exists(r)}{N_+} \cdot \left(1 - \frac{n_-^\exists(r)}{N_-}\right), & \text{group_target,} \\ \frac{1}{N_+} \sum_{i=1}^{N_+} \min\left(\frac{m_i}{M_i}, 1\right) \cdot \left(1 - \frac{n_-^\forall(r)}{N_-}\right), & \text{group_universal.} \end{cases} \quad (1)$$

802 D HIGH-CONFIDENCE PRIORITIZATION STRATEGY.

803 Given a set of learned rules $\mathcal{R}_{\text{final}}$, each rule r_j is associated with a confidence $\alpha_j \in [0, 1]$ and
 804 produces a soft match score $s_j \in [0, 1]$ on the test fact base. The final prediction score \hat{y}_{test} is
 805 computed as

$$806 \hat{y}_{\text{test}} = \begin{cases} \frac{1}{|\mathcal{H}|} \sum_{r_j \in \mathcal{H}} s_j, & \text{if } \mathcal{H} \neq \emptyset, \\ \sum_j \alpha_j^2 \cdot s_j, & \text{otherwise,} \\ \sum_j \alpha_j^2 + \epsilon, & \end{cases}$$

810 where $\mathcal{H} = \{r_j \mid \alpha_j \geq \tau\}$ is the set of rules firing with confidence above threshold τ , and ϵ is a
811 small constant for numerical stability. A higher τ enforces stricter rule selection. It can cover more
812 positive and fewer negative cases, which provides high precision and interpretability. For example,
813 the threshold $\tau = 0.99$ is used to retain only those rules whose confidence exceeds 99%, meaning
814 the rule is highly consistent with the training examples. In the experiments, we choose $\tau = 0.99$,
815 which keeps only the rules that reliably distinguish positive from negative examples.

816 If no rule fires at all, a fixed fallback prior (e.g., 0.1) is returned. This strategy prioritizes high-
817 confidence rules when available, while providing a smooth weighted aggregation otherwise.

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 E SHARED BACKGROUND KNOWLEDGE FOR MODELS
865

866 For GRM, reasoning relies on a set of pre-defined predicate functions that serve as background
867 knowledge (Tab. 4). These predicates are not learned by the model but specified in advance by the
868 human, covering basic object- and group-level properties (e.g., shape, color, size, membership). The
869 advantage of this design is flexibility: different tasks can be supported by simply providing different
870 predicate sets, while the model pipeline itself remains unchanged. In this way, GRM decouples
871 symbolic knowledge specification from the reasoning procedure, enabling interpretable and task-
872 adaptive rule induction without modifying the architecture.

873 For fairness, all corresponding predicate definitions are also provided to LLM baselines in the form
874 of natural language prompts, so that both GRM and LLMs operate with the same symbolic informa-
875 tion. The background knowledge prompt is given as follows:

876 You are given images containing multiple objects and groups. Each object and
877 group has attributes: shape, color, size, position, and group membership. Logical
878 patterns in the image may involve single relations (e.g., all objects have the same
879 color) or combinations of multiple relations (e.g., objects with the same shape are
880 grouped together and mirrored along the x-axis). You can reason about: Individ-
881 ual attributes: shape, color, size, position; Group properties: number of members,
882 grouping principle; Relations: same/different shape, color, size; mirrored posi-
883 tions; unique/diverse attributes within groups. Analyze the image by identifying
884 both simple and complex combinations of these relations.

885
886 Table 4: List of predicate functions used in the model.
887

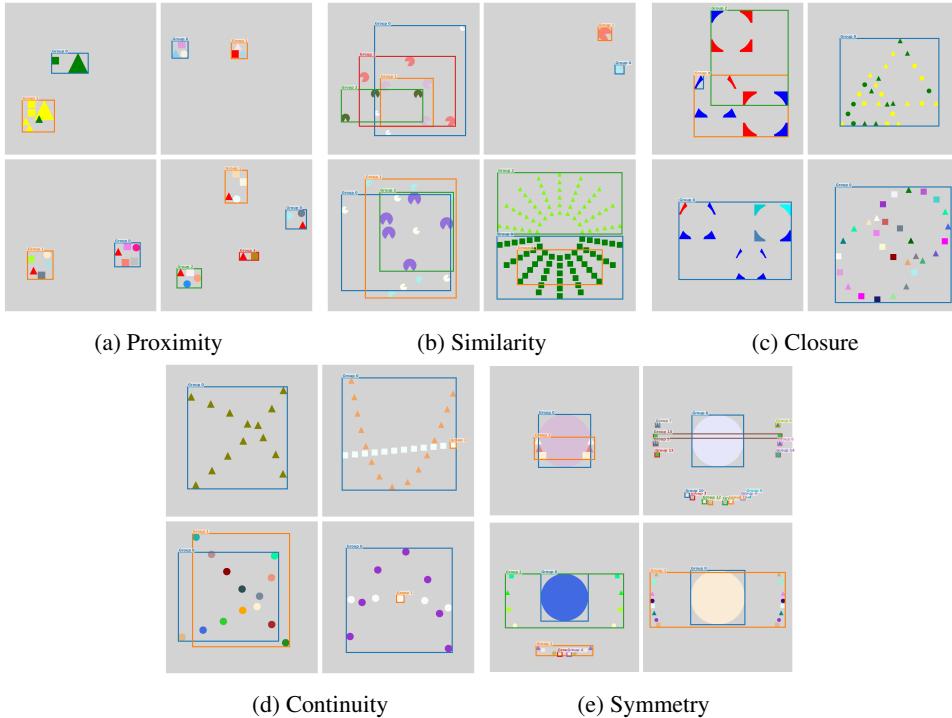
Predicate	Type	Description
889 has_shape	890 Object	891 Returns shape index for each object
890 has_color	891 Object	892 Returns color index for each object
891 x	892 Object	893 Returns x position for each object
892 y	893 Object	894 Returns y position for each object
893 w	894 Object	895 Returns width for each object
894 h	896 Object	897 Returns height for each object
895 in_group	898 Object	899 Returns group membership matrix
896 not_has_shape_rectangle	900 Object	901 True if object is not a rectangle
897 not_has_shape_circle	902 Object	903 True if object is not a circle
898 not_has_shape_triangle	904 Object	905 True if object is not a triangle
899 same_shape	906 Object	907 Pairwise: True if objects have same shape
900 same_color	908 Object	909 Pairwise: True if objects have same color
901 same_size	910 Object	911 Pairwise: True if objects have same size
902 mirror_x	912 Object	913 Pairwise: True if objects are mirrored along x-axis
903 same_y	914 Object	915 Pairwise: True if objects share y-coordinate
904 group_size	916 Group	917 Returns number of members in each group
905 principle	918 Group	919 Returns grouping principle index
906 no_member_rectangle	920 Group	921 True if group has no rectangle members
907 no_member_circle	922 Group	923 True if group has no circle members
908 no_member_triangle	924 Group	925 True if group has no triangle members
909 diverse_shapes	926 Group	927 True if group contains at least two shapes
910 unique_shapes	928 Group	929 True if group contains only one shape
911 diverse_colors	930 Group	931 True if group contains at least two colors
912 unique_colors	932 Group	933 True if group contains only one color
913 diverse_sizes	934 Group	935 True if group contains at least two sizes
914 unique_sizes	936 Group	937 True if group contains only one size
915 same_group_counts	938 Group	939 True if all groups have same member count

918 F SYMBOLIC FACT EXTRACTION PERFORMANCE
919

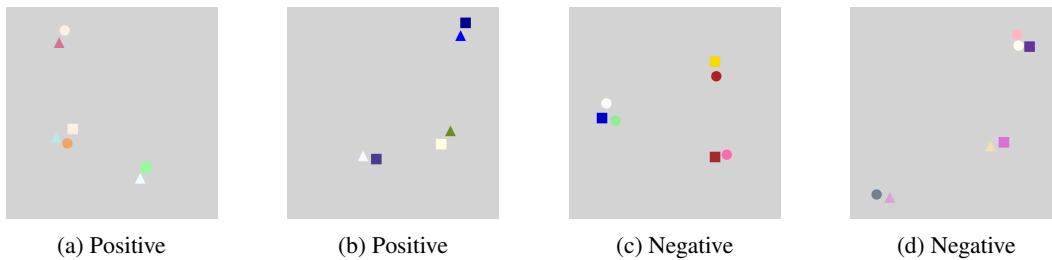
920 Tab. 5 reports the detailed accuracy of symbolic fact extraction across 500 ELVIS test tasks. While
921 object-level properties such as *shape* (87%), *color* (90%), *size* (99%), and *position* (95%) are recov-
922 ered with high reliability, group-level properties are more challenging. *Group label* achieves 71%
923 accuracy, *object count* 92%, *group number* 76%, and *per-group count* only 44%. These results high-
924 light a gap between reliable low-level perception and more complex relational grouping, motivating
925 further improvements in symbolic abstraction. Fig. 8 shows the examples of grouping results over
926 different gestalt principles.

927 Table 5: Mean accuracy (%) and standard deviation of symbolic fact extraction across 500 ELVIS
928 test tasks.
929

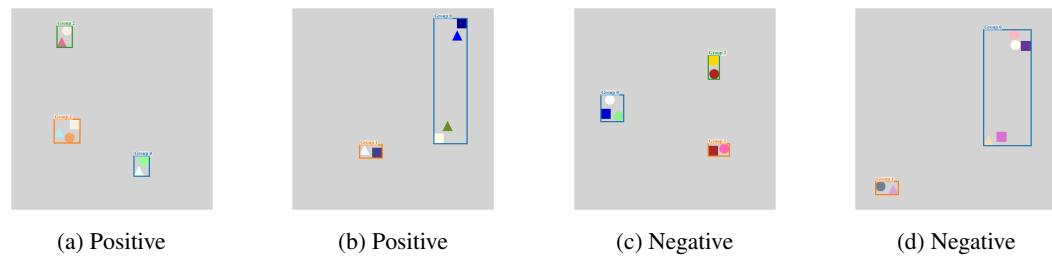
Fact Type	Shape	Color	Size	Position	Group Label	Obj. Count	Group #	Per-Group Count
Accuracy	0.87 ± 0.03	0.90 ± 0.06	0.99 ± 0.01	0.95 ± 0.05	0.71 ± 0.21	0.92 ± 0.08	0.76 ± 0.24	0.44 ± 0.39



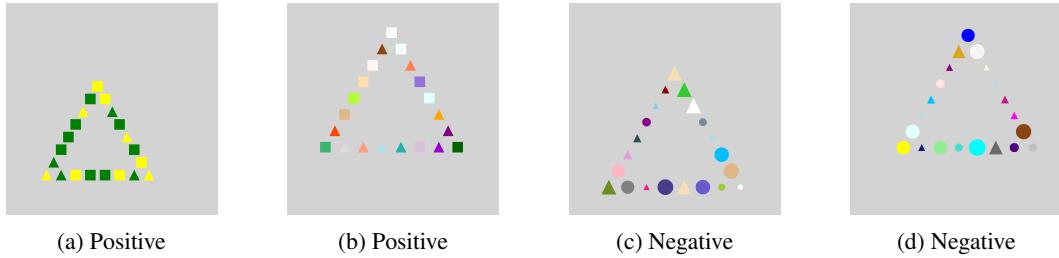
957 **Figure 8: Qualitative Results of Group Detection.** Visualization of predicted group structures
958 for five Gestalt principles on randomly selected tasks from the ELVIS benchmark. Each image
959 shows the original scene with predicted group bounding boxes overlaid, demonstrating how GRM
960 organizes visual objects according to different perceptual grouping principles.
961
962
963
964
965
966
967
968
969
970
971

972 G TASK EXAMPLES AND THE MODEL ANSWERS
973974 G.1 EXAMPLE TASK 1
975976 This is a task called *Triangle in Groups* following *proximity* principle. The ground-truth rule is
977 that each proximity group contains at least one triangle. Fig. 9 presents the positive and negative
978 examples.988 Figure 9: Triangle in Groups: Each proximity group has at least one triangle.
989990
991 **GRM.** The induced rule from GRM is shown in Listing 2. The target rule is successfully identified
992 by GRM, but its confidence is only 0.667. This relatively low value reflects imperfect object or group
993 detection in the images (See Fig. 10 (d)), which reduces the rule's overall confidence score.994 Listing 2: Rules induced by GRM on Example Task 1
995

```
% Group-level rules
group_target(G, X) :- has_shape(0, 0), in_group(0, G).
[confidence=0.667, scope=universal]
```

1009 Figure 10: GRM grouping results of task 1 examples
1101011 **GPT-5** The induced logic rules by GPT-5 are shown in Listing 3. The first rule correctly identifies
1012 that each proximity group must contain a triangle, but it incorrectly constrains the group size to
1013 exactly two, whereas the ground truth allows any size of two or more. The second rule does not
1014 match the task semantics and is therefore incorrect.1015 Listing 3: Rules induced by GPT-5 on Example Task 1 (reformulated by authors)
1016

```
Grouping by proximity.
1. Every proximity group must be a pair of exactly two shapes:
one triangle and one non-triangle (circle or square).
2. No proximity group may contain two non-triangles or
have more/less than two members.
```

1026 G.2 EXAMPLE TASK 2
10271028 This is a task called *Shape of Shape* following *closure* principle. The ground-truth rule is that objects
1029 form the shape of a triangle; all the objects have the same width and height. Fig. 11 presents the
1030 positive and negative examples.1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Figure 11: Big Triangle: all the objects in the image have same size.

GRM. The induced rule from GRM is shown in Listing 4. The target rule is successfully identified by GRM. The groups detected by the GRM are shown in Fig. 12.

Listing 4: Rules induced by GRM on Example Task 2

```
% Image-level rules
image_target(X) :- unique_sizes(I).
  [confidence=1.000, scope=image]
group_target(G,X) :- unique_sizes(G).
  [confidence=1.000, scope=image]
% Existential rule
group_target(G,X) :- unique_sizes(G).
  [confidence=1.000, scope=existential]
```

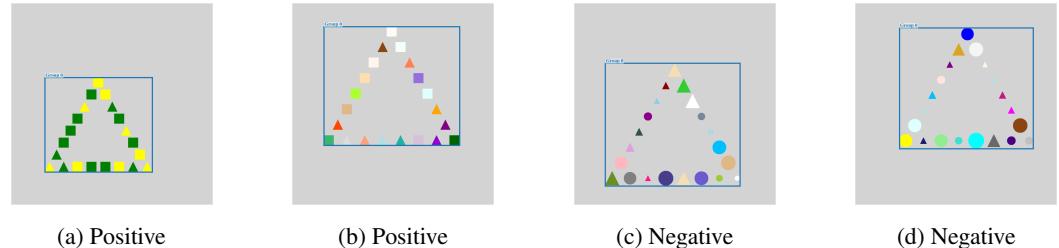


Figure 12: GRM grouping results of task 2 examples

GPT-5. The induced rules by GPT-5 are shown in Listing 5. Rules 1–4 are logically correct but not target rules, as they hold for both positive and negative cases. Rules 5 and 6 are incorrect and do not reflect the task semantics.

Listing 5: Rules induced by GPT-5 on Example Task 2 (reformulated by authors)

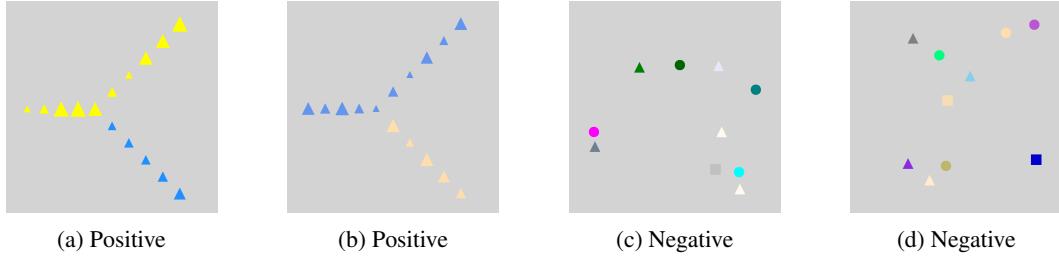
1. Objects are positioned so that their arrangement forms an implied closed triangular contour (three sides meeting at three vertices);
2. Small gaps are allowed, but each side is perceptually continuous;
3. Most elements lie on the triangle perimeter;
4. The interior is largely empty.
5. Colors, shapes, sizes, and groupings of the objects are irrelevant.
6. Images that do not produce a clear, closed triangular outline (scattered points, missing sides, or filled interiors) are negative.",

1080
1081

G.3 EXAMPLE TASK 3

1082
1083
1084

This is a task called *One Splits Two* following *continuity* principle. The ground-truth rule is that objects with diverse sizes are arranged along a continuous path that later splits into two directions. Fig. 13 presents the positive and negative examples.

1085
1086
1087
1088
1089
1090
1091
10921093
1094
1095
1096Figure 13: Examples of task *One Splits Two*1097
1098
1099
1100
1101
1102
1103

GRM. The induced rules from GRM are shown in Listing 6. The first rule focuses on the x -positions of two objects within a group; although unexpected, it still fits both training and test sets, illustrating that high accuracy does not always imply correctness for the expected reasons. The advantage of GRM is that such rules are interpretable and auditable: unlike black-box models, unsafe or spurious rules can be manually removed or their confidence reduced by adding targeted training examples. The second rule successfully matches the target rule, and the corresponding grouping results are illustrated in Fig. 14.

1104
1105
1106
1107
1108
1109
1110
1111

Listing 6: Rules induced by GRM on Example Task 3

```
% Image-level rules
image_target(X) :- mirror_x(O1,O2), same_color(O1,O2) .
  [confidence=1.000, scope=image]
% Group-level rules
group_target(G,X) :- diverse_sizes(G) .
  [confidence=1.000, scope=universal]
```

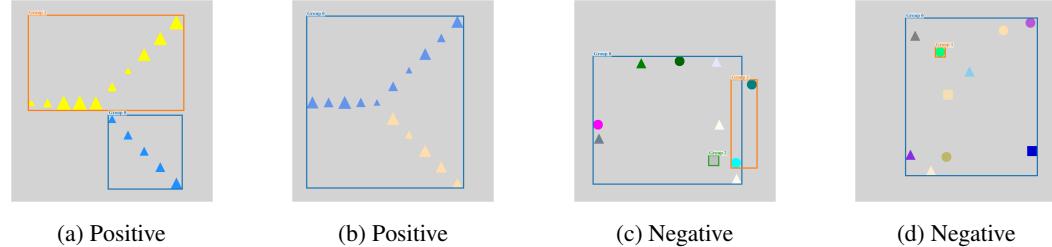
1112
1113
1114
1115
1116
1117
1118
1119
11201121
1122

Figure 14: GRM grouping results of task 3 examples

1123
1124
1125
1126

GPT-5. The induced rules by GPT-5 are shown in Listing 7. Rules 1–4 are logically valid, with Rule 2 matching the target, but the coverage is limited: precision reaches 1.0 while recall remains at 0.3, showing that even when the correct rule is discovered GPT-5 does not guarantee high recall.

1127

Listing 7: Rules induced by GPT-5 on Example Task 3 (reformulated by authors)

1128
1129
1130
1131
1132
1133

1. The scene contains exactly two groups.
2. Each group is homogeneous:
all members share the same shape and the same color.
3. Members of a group are arranged along a single smooth, continuous path (straight or gently curved), showing clear positional continuity.
4. Along each path the sizes vary gradually in one direction (monotonic size progression).

1134 H TASK SOLVING TIME ANALYSIS

1135
 1136 Fig. 15 reports the average time required by GRM to induce target rules across the five Gestalt
 1137 principles, with comparisons to GPT-5 and InternVL3-78B.

1138 InternVL3-78B exhibits the most stable efficiency, requiring about 15s across all principles. GPT-5
 1139 is slower and more variable, averaging around 100s per task. On *symmetry*, GPT-5 exceeds 150s,
 1140 consistent with its weaker accuracy: when uncertain, the model takes longer before committing to a
 1141 prediction.

1142 GRM is generally efficient, with rule induction on *proximity*, *closure*, and *continuity* completed
 1143 in under 10s. On *symmetry*, GRM requires about 35s. The longer time is due to extended search:
 1144 when no high-confidence rules are quickly available, the search process continues until a satisfactory
 1145 candidate is identified *or* the maximum extended step is exceed.

1146 The main outlier is *similarity*, where GRM averages nearly 90s. Unlike other principles, similarity
 1147 depends almost entirely on color and size cues, with minimal reliance on positional features. This
 1148 reduces grouping accuracy and often yields many spurious groups. A larger number of candidate
 1149 groups substantially enlarges the space of possible group-level rules, thereby increasing induction
 1150 time.

1151 In summary, most GRM tasks can be solved within seconds to one minute, but tasks with weaker
 1152 grouping cues or more ambiguous structures can extend to several minutes. These results highlight
 1153 the impact of grouping quality on symbolic reasoning efficiency, and suggest that designing more
 1154 robust symbolic features and search strategies is a promising direction for improving scalability.

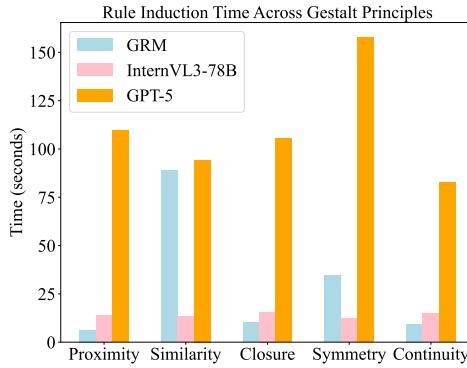


Figure 15: **Task Solving Time Comparison.** The time is measured from the start of image input to
 the completion of rule induction.

1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 **I PILOT STUDY: TASK GROUPING ON COCO 2017**
1189

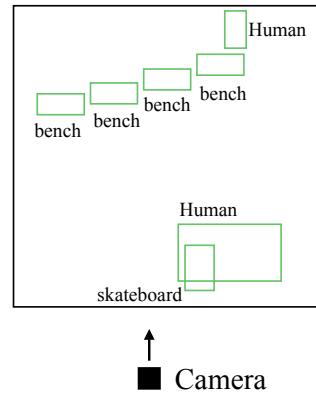
1198 Figure 16: From left to right: labeled objects, labeled groups, predicted groups by a simple
1199 threshold-based grouper, predicted groups by a small MLP
1200

1201 To nevertheless probe whether GRM-style grouping can be instantiated on real images, we construct
1202 a small pilot dataset on COCO val2017. We select 30 images and manually annotate *proximity*
1203 groups: for each image, the annotator is free to mark 1–3 sets of objects that form a proximity group
1204 (e.g., a cluster of dishes on a table, a row of similar objects).
1205

1206 On this COCO subset, we keep the perception component fixed and only operate on the ground-truth
1207 bounding boxes. For the grouping task, we use a small *MLP-based grouper*, in the same spirit as the
1208 grouping module used in GRM, which takes as input the center position, width and height of two
1209 boxes, together with a simple representation of their neighboring objects as context, and predicts
1210 whether the pair belongs to the same group.
1211

1212 Qualitatively, we observe a characteristic failure mode of the proximity grouper: the model is prone
1213 to collapsing all objects in the scene into a single group. Fig. 16 illustrates a typical example. From
1214 left to right, we overlay all object boxes, the human-annotated task groups, and the MLP-based
1215 predictions. In the middle panel, the annotator groups the four bench-like seats and the nearby
1216 pedestrian as one proximity group, and the teenager and the skateboard as another. In contrast, the
1217 MLP predicts that all objects belong to the same group, and this single mega-group behavior occurs
1218 on most images in the pilot set. See Fig. 18 for more examples.
1219

1220 **Limitations of 2D Image Coordinates for Capturing 3D**
1221 **Grouping Structure** In real-world scenes, human Gestalt
1222 grouping is grounded in 3D structure: objects share common
1223 supporting surfaces (e.g., the same ground plane or bench),
1224 occupy similar depths, or form physical assemblies (e.g., a
1225 person together with their skateboard). In contrast, datasets
1226 such as COCO only provide 2D bounding boxes on the image
1227 plane. When annotators decide which objects should form a
1228 group, they inevitably rely on their 3D understanding of the
1229 scene and on object semantics, whereas our grouping models
1230 receive only 2D geometric features (position, size, aspect ratio)
1231 and very local appearance cues. This creates an inherent
1232 mismatch between the information used to define the “ground-
1233 truth” groups and the information available to the model. In
1234 Fig. 16, for example, the four seats and the pedestrian form a
1235 coherent 3D configuration on the far end of the scene; yet in
1236 the 2D projection their bounding boxes can appear similarly spaced,
1237 and perspective can bring far objects close together on the image plane. As a result, the person and his skateboard are close to
1238 the benches and the far behind pedestrian on the image. Fig. 17 shows a schematic top-view of the
1239 same scene: the positions of the benches, pedestrian, skater, and skateboard clearly reveal two prox-
1240 imity groups, but this depth axis is absent from the original image and from its 2D annotations. To
1241 capture such structure, a grouping model would need access to explicit 3D or scene-level spatial
1242 information, such as a RGB-D image, which current 2D bounding-box datasets do not provide.
1243

1244 As a consequence, grouping performance on COCO-style images is difficult to interpret as a clean
1245 test of Gestalt principles: many apparent errors may reflect missing depth and scene structure rather
1246 than limitations of the grouping mechanism itself. In this work we therefore use COCO only as a
1247

1248 Figure 17: Top view of the Skate-
1249 board example scene in Fig. 16
1250

1242 qualitative case study, and base our quantitative evaluation on synthetic stimuli where 2D geometry,
 1243 grouping, and ground truth are perfectly aligned. Extending GRM to 3D object-centric representations
 1244 (e.g., with estimated depth or reconstructed scenes) is an important direction for future work,
 1245 and would allow us to revisit real-image grouping under conditions where the model has access to
 1246 similar structural cues as human annotators.

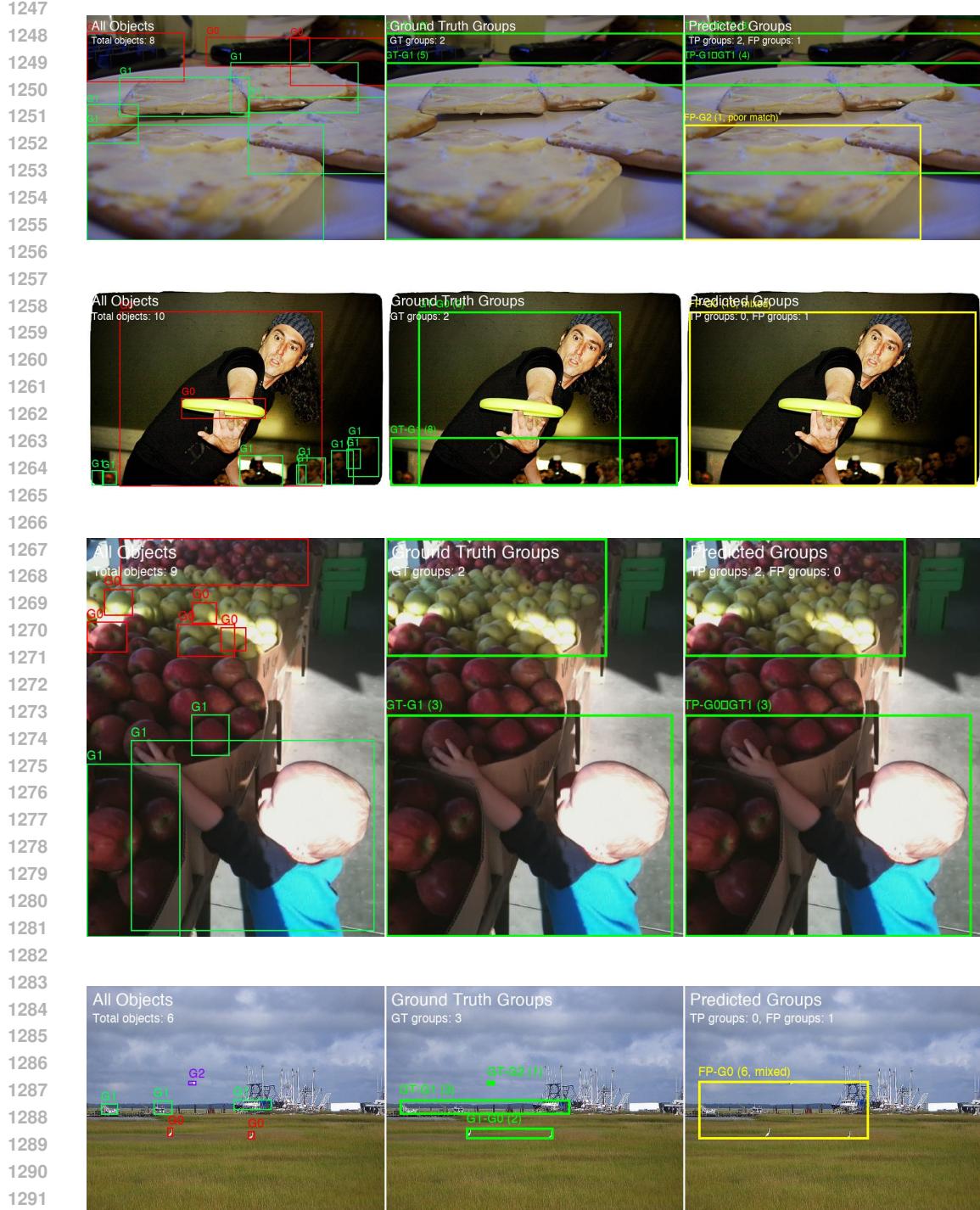


Figure 18: From left to right: labeled objects, labeled groups, predicted groups by a simple threshold-based grouper, predicted groups by a small MLP