Do We Need to Differentiate Negative Candidates Before Training a
Neural Ranker?

Anonymous ACL submission

Abstract

Retrieval-based Question Answering (ReQA)
requires a system to find candidates (e.g., sen-
tences or short passages) containing the an-
swer to a given question from a large corpus.
A promising way to solve this task is a two-
stage pipeline, where the first stage retrieves a
set of candidates, and the second stage uses a
neural network to rank the retrieved candidates.
There are three standard methods to train neu-
ral rankers, Binary Cross Entropy loss, Mean
Square Error loss, and Hinge loss. While all
these training strategies assign the same la-
bel for all the negative candidates, we argue
that negativeness is not binary but exists as a
spectrum, i.e., some candidates may be more
negative than the others, and thus should be
treated differently. We present SCONER—
scoring negative candidates before training
neural ranker—a model trained to differentiate
negative candidates. Our approach includes
1) semantic textual similarity-based scoring to-
gether with data augmentation for score gener-
ation of negative candidates; and 2) a neural
ranker trained on data using generated scores
as labels. Together, we systematically com-
pare three standard training methods and our
proposed method on a range of ReQA datasets
under multiple settings (i.e., single-domain
and multi-domain). Our finding suggests that
using more negative candidates to train neural
rankers are better than less in both single- and
multi-domain settings, where SCONER is the
best in the single-domain settings and Hinge
loss is the best in multi-domain settings.

1 Introduction

Retrieval Based Question Answering (ReQA) has
gained increasing interest and attention in re-
cent years, and many benchmarks have been pro-
posed (Cohen et al., 2018; Khot et al., 2020; Ah-
mad et al., 2019; Guo et al., 2020). The target of
such a task is to retrieve candidates (e.g., sentences
or snippets) containing the answer to a question

from a large corpus. ReQA is different from “read-
ing comprehension” which aims to extract answer
span(s) from a given passage. ReQA is closer to
real-world applications where the relevant passage
to a question is usually unknown and needs to be
retrieved from a large corpus.

A promising approach for solving ReQA in-
volves two stages (coarse-to-fine): first, retrieve
a small set of candidates from a large corpus and
second re-rank these candidates. The re-ranking
stage usually involves neural models to capture the
interactive contextual information (Yilmaz et al.,
2019; Nogueira and Cho, 2019) which can signif-
icantly improve the initial retrieval performance
(Ozyurt et al., 2020), and thus it is crucial for any
retrieval system (Ma et al., 2020). The focus of this
work is to study and improve the neural ranker.

A common strategy to train a neural ranker is
to treat it as a binary classification (or regression)
model which is trained on balanced positive exam-
ples (i.e. question and relevant candidate) and neg-
ative examples (i.e. question and irrelevant candi-
date). The positive examples are human-annotated
answers, and negative examples are usually ran-
domly selected from the corpus. However, this
strategy results in three issues that potentially lead
a model to underperform. Issue 1: Some semantic
relevant candidates which are not annotated as an-
swers might be selected as negative samples, which
injects noise into the training data. Issue 2: Many
negative samples are unused to keep a balanced
training set due to a small set of positive samples.
This issue is amplified in the low resource scenario
since the size of the training data is not enough to
train a neural model. Issue 3: All negative exam-
ples are equally treated, even though they are not
semantically equivalent to a question.

Apart from binary classification (or regression),
another training strategy is to use Hing Loss (ex-
plained in §5.2) so that more negative candidates
can be utilized. This strategy can resolve Issue 2,

however, issuel and issue3 remain. These issues
originate the question, “Do we need to differenti-
ate negative candidates before training a neural
ranker?”. Driven by this question, we propose
a scoring approach for negative candidates (§3),
which has two stages. First, we train a model on Se-
mantic Textual Similarity (STS) benchmark (Con-
neau and Kiela, 2018). This model generates a
high score for a two-sentences pair if they are se-
mantically similar; otherwise, a low score. Second,
we use this STS model to generate a score for a
question-negative candidate pair. Instead of using
straightforward questions and negative candidates
as input, we explore different data augmentation
approaches to ensure that the more information the
negative candidate has to answer the question, the
higher score the STS model generates for this pair.
This scoring approach allows: 1) a good candidate
that is not annotated as an answer to have a high
score—addresses Issue 1; 2) more negative samples
can be used to train a neural ranker—addresses Is-
sue 2, and 3) each negative candidate to receive a
“negativeness” score which can be helpful in differ-
entiating candidates—addresses Issue 3.

Figure 1(a) shows the pipeline of utilizing the
scoring approach to train a neural ranker. First, a set
of negative candidates are retrieved by BM25. Sec-
ond, the score generation module produces scores
for the question and negative candidate pairs. Last,
a neural ranker is trained on both negative samples
and positive samples. Figure 1(b) shows the infer-
ence pipeline: given a question, BM25 retrieves a
set of candidates, then, the neural ranker predicts
a score for each candidate, and finally, the top-k!
candidates are considered as the final prediction.

We compare three standard training strategies
and our proposed method on MultiReQA (Guo
et al., 2020) benchmark, which includes 5 in-
domain datasets and 4 out-of-domain datasets. We
observe that 1) using more negative candidates to
train a neural ranker is better in both single- and
multi-domains settings; 2) such advantage is more
obvious in low resource training data; 3) our pro-
posed score generation approach improves the per-
formance compared to three standard methods in
the single-domain and two in multi-domain setting;
4) the proposed data augmentation methods are
effective in generating better negativeness scores;
and 5) the knowledge of an STS model can be trans-
ferred to an answer selection model in two ways,

'k value depends on evaluation methods or tasks.

generating negativeness scores and initializing a
neural ranker with the STS model.

In summary, our contributions are in three folds.
First, we systematically study three standard train-
ing strategies of neural rankers. Second, we pro-
pose a scoring approach to differentiate negative
candidates to train a neural ranker. We refer to our
approach as SCONER, scoring negative candidates
before training neural ranker. Third, our exper-
iments conclude that differentiating the negative
candidate is helpful in the single-domain setting
but not in the multi-domain setting. To the best of
our knowledge, this is the first study that seeks to
incorporate the “negativeness” of negative samples
to train a neural ranker for ReQA tasks.

2 Related Work

Retrieval Based Question Answering ReQA is
to identify sentences from large corpus that con-
tain the answer to a question (Yang et al., 2015;
Cakaloglu et al., 2020; Ahmad et al., 2019; Guo
et al., 2020). It has practical applications such as s
Googles Talk to Books?. ReQA is similar to Open
Domain Question Answering (ODQA) but differ-
ent in the following aspect, ReQA aims to build an
efficient retrieval system, and the answer is a sen-
tence or a short passage (Ahmad et al., 2019); while
ODQA requires a retrieval system to find relevant
documents at a large scale and a machine read-
ing comprehension model to predict short answer
span from documents (Bilotti et al., 2007; Chen
and Van Durme, 2017; Chen et al., 2017; Min et al.,
2019; Karpukhin et al., 2020). In this paper, we
focus on the ReQA task and believe that building
an efficient system for ReQA is also beneficial for
the ODQA task. For example, QASC (Khot et al.,
2020) requires retrieving sentences from a large
corpus and composing them to answer a multiple-
choice question, and a good ReQA system can be
used to retrieve sentences in the first stage.

Neural Ranker Bag-of-words ranking models
like BM25 (Robertson and Zaragoza, 2009) have
been widely used for information retrieval for a
long time. Although efficient, such methods de-
pend on handcrafted features and can not be op-
timized on a specific task such as question an-
swering, therefore, neural networks have been ap-
plied as re-rankers (Guo et al., 2016; Hui et al.,
2017; Xiong et al., 2017; Dai et al., 2018; Mc-

Zhttps://books.google.com/talktobooks/

"/Stepz:
[Score generation for
negative candidates

AN

Step1:
Retrieval Keyword

Extraction

"""""""

i Training
i Neural-
1 Ranker

Neural Ranker

Neural
Ranker

andidatesll

BM25

Answer Question

(a) Training Pipeline

Question

(b) Inference Pipeline

Figure 1: (a) Training Pipeline: Stepl-retrieve negative candidates using BM25; Step2—use STS model to generate
negativeness scores together with data augmentation; and Step3—train a neural ranker with the generated scores as
labels. (b) Inference Pipeline: retrieve the top-200 candidates using BM25 and re-rank them using neural ranker.
Q’ and A’ means modified questions and answers, S’ means predicted scores of neural ranker.

Donald et al., 2018), also called as answer se-
lection model in some work (Rao et al., 2016,
2019; Laskar et al., 2020). Recently, transformer-
based models like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are widely used as re-
rankers (Nogueira and Cho, 2019; Yilmaz et al.,
2019; MacAvaney et al., 2019). Such re-rankers
belong to the cross-attention architecture, which
allows the rich interaction between the question
and the candidate. Our work belongs to this style
but has major difference with previous work, where
neural rankers are trained using the same label (or
score) for all negative candidates previously, in our
work, we train a model using different scores for
negative candidates.

3 Negative Candidate Scoring Approach

In this section, we review the concept of Semantic
Textual Similarity (STS). Then, we describe the
two stages of our scoring approach: (1) training an
STS model, and (2) using it to generate negative-
ness scores for question-negative candidate pairs.

3.1 Review: Semantic Textual Similarity

STS determines how close two sentences are in
terms of semantic meaning (Conneau and Kiela,
2018). Specifically, given two sentences, a high
STS score indicates that they present a similar
meaning, while a low score implies that they have
different meaning. The score is a float number
range in [0, 5]. Examples from STS-benchmark
are given in Appendix A.

3.2 Training an STS-model

The goal of the first stage is to build a model that
can generate a high score for a question-candidate
pair if the candidate has similar information with
the question; otherwise a low score. Furthermore,
the model should understand the semantic meaning
of the input rather than simply applying the word
matching technique (e.g. BM25).

To achieve this goal, we train a regression model
on the STS-benchmark, consisting of a RoBERTa
model (Liu et al., 2019) and a Multi-Layer Per-
ceptron (MLP) layer. In particular, the input
to the RoOBERTa model is [CLS] sentencel

[SEP] sentence?2 [SEP].Then we feed the
representation of the [CLS] token to the MLP
which predicts a score. We apply the Mean Squared
Error (MSE) loss as the training objective to mini-
mize the gap between the predicted score with the
ground truth STS score. The figure of the model’s
input and output is given in Appendix B.

3.3 Negativeness Score Generation via Data
Augmentation

In the second stage, we use the STS model to gen-
erate scores, where the sentencel is an aug-
mented question and sentence?2 is a negative
candidate. The intuition behind using augmented
questions rather than the original question is that
there is a difference between identifying semantic
similarity and answer ranking. The former focuses
on detecting meaning equivalence and the latter
emphasizes keyword matching and semantic under-

standing. Thus, even though a candidate is relevant
to a question, the STS model might not produce a
high score due to the semantic meaning gaps be-
tween the candidate and the question. To illustrate
this, consider a question “Beyonce has a fan base
that is referred to as what?” and a good candidate
“The name Bey Hive derives from the word beehive,

purposely misspelt to resemble her first name, and
was penned by fans after petitions on the online
social networking service Twitter and online news
reports during competitions,” (the answer is Bey
Hive), the STS model generate a low score for this
pair as shown in the first row (Q) of Table 1.

To overcome this issue, we propose three ways
to augment a question by using its answer. If any
candidate has information semantically similar to
the answer, the STS model is expected to generate
a higher score for this candidate than other candi-
dates which do not have any match (or less match)
with the answer. Next, we present each augmenta-
tion approach and Table 1 shows examples of each
approach and the corresponding generated score.

Question + Answer (Q+A) The first approach is
to concatenate the answer to the original question.

Question + Keywords of Answer (Q+KA) The
second approach is to extract the keywords from
the answer and concatenate the keywords to the
original question. We used Rapid Automatic Key-
word Extraction (RAKE) (Rose et al., 2010) to ex-
tract the keywords. The intuition is that the answer
might include irrelevant information. By extract-
ing keywords, some irrelevant information can be
removed, and we hypothesized that neglecting this
distracting information can help the STS model
generate a more reasonable negative score.

Keywords of Question and Answer (KQ+KA)
This method extracts the keywords not only for the
answer but also the question. Then we concatenate
the keywords sequentially. The intuition is the
same as the second approach and extends to the
question as well.

4 Neural Ranker

Our neural ranker has the identical model archi-
tecture as the STS model (§3.2) but with different
inputs i.e., the inputs of the STS model are a pair
of sentences from the STS-benchmark, while the
inputs of the neural ranker are question-candidate
pairs. Next, we describe the training and inference
pipelines of a neural-ranker.

4.1 Training Pipeline

The pipeline to train a neural ranker consists of
three steps (the left part in Figure 1). Stepl
(the green block): we use BM25 to retrieve the
topl00 candidates for a question. From these
candidates, we further randomly sample 10 neg-
ative candidates from the top-100. Step2 (the
blue block): we augment the question in one of
the approaches described in §3.3 and use it as
sentencel. Each negative candidate from stepl
isused as sentence2. We feed the sentencel
and sentence?2 to the STS model and obtain
a score for the question and negative candidate
pair. Step3 (the yellow block): we train the neural
ranker using the question and positive candidate
pairs which are given in the training set and the
question and negative candidate pairs which are
given in stepl. The neural ranker is trained by
MSE loss as follows:

n

1 .
MSE = n Z (Y- *negc—)sz
c~€Neg
1
LS = pose

ctePos

where ¢~ is a negative candidate for a question ¢
and neg,- is the generated score given in step2, ¢
is a positive candidate and pos.+ is 5, y.— and y,+
are the predicted scores given by the neural ranker
for negative and positive samples respectively.

4.2 Inference Pipeline

During the inference time, for any given question,
we retrieve the top-100 candidates using BM25.
We then concatenate the question with every can-
didate and ask the neural ranker to predict a score
for each candidate. Finally, we re-rank the top-100
candidates based on the neural ranker scores and
select Top-K candidates as the final answer.

5 Experiments

5.1 Dataset

MultiReQA (Guo et al., 2020) has five different in-
domain datasets and four out-of-domain datasets.
The in-domain datasets include training and test-
ing sets, there are SearchQA (Dunn et al., 2017),
TriviaQA (Joshi et al., 2017), HotpotQA (Yang
et al., 2018), SQuAD (Rajpurkar et al., 2016), and
NaturalQuestions(NQ) (Kwiatkowski et al., 2019).
The out-domain datasets includes DuoRC (Saha

Approach Augmented Question Score
Q Beyoncé’s has a fan base that is referred to as what? 2.20
Q+A Beyoncé’s has a fan base that is referred to as what? The Bey Hive is the name given to Beyoncé’s fan base. | 3.08
Q+KA Beyoncé’s has a fan base that is referred to as what? name given fan base bey hive beyoncé 2.86
KQ+KA Fan base referred Beyoncé’s name given fan base bey hive beyoncé 2.95

Table 1: The example of augmented question, where the original question is Beyoncé’s has a fan base that is
referred to as what?, and the given answer is The Bey Hive is the name given to Beyoncé’s fan base. Each score
is generated by the STS model given each Augmented Question and sentence “The name Bey Hive derives from
the word beehive, purposely misspelled to resemble her first name, and was penned by fans after petitions on the
online social networking service Twitter and online news reports during competitions.”

et al.,, 2018), RelationExtraction (Levy et al.,
2017), TextbookQA (Kembhavi et al., 2017) and
BioASQ (Tsatsaronis et al., 2015). The datasets
come from a different domain like Wikipedia and
Science, and require different reasoning skills like
multihop reasoning and numerical reasoning. The
domains and type of questions of each dataset are
given in Appendix D. In MultiReQA, the corpus
consists of sentences from supporting documents
of the original dataset. The statistic of training and
testing data are given in Appendix C.

5.2 Baselines

BM25 Following (Guo et al., 2020), we use the
implementation of BM25 from (Rehurek and So-
jka, 2010) with the default parameters and BERT
tokenizer to create indexing for search.

Binary Classification Model (BCM) We use
RoBERTa model as the encoder, which takes input
as [CLS] question [SEP] candidate
[SEP]. Then, we feed the vector representation of
[CLS] to alinear layer with two logits as output:
one represents the probability of candidates being
irrelevant and the other represents it being relevant.
We apply binary cross entropy loss to train this
model. The training data is constructed by using
the positive samples for each question, and we
randomly selected the same amount of negative
samples from the top-100 candidates given by
BM25, where the label for the positive samples are
1, and negative samples are 0.

Regression Model (RM) This baseline is simi-
lar to the BCM baseline, but the linear layer only
outputs one logit instead of two, thus it is a regres-
sion model rather than a binary classification model.
We use MSE loss to train this model. The positive
and negative samples are the same as BCM, but
the positive samples have label 5, and the negative
samples have label 0. We also use 1 as the label for
positive samples but find that 5 yields better perfor-

mance, thus we use label 5 to train RM baselines.
Appendix F shows the results comparison between
label as 1 and 5 for three datasets.

Triplet Model (TM) This baseline has the iden-
tical model architecture as the RM baseline, but
we use the hinge loss to train the model in which
more negative candidates can be used. Specifically,
each training sample is a triplet, i.e., (¢,c*,c7),
where ¢ is a question, ¢* is a positive candidate,
and ¢~ is a negative candidate. Let S(g, ¢) denote
the score given by the model for question ¢ and can-
didate c. The model is trained such that S(g, c*)
is higher than S(q, ¢). We use the same negative
candidates as our SCONER to train the TM model.

5.3 Experiment Setup

We use Huggingface (Wolf et al., 2020) and Py-
torch (Paszke et al., 2019) implementation for train-
ing each model. We initialize each model with
pretrained RoBERTa-base parameters. To train the
STS model, we use one GTX1080 GPU with maxi-
mum length (MaxL) 128, batch size (bs) 32, learn-
ing rate (Ir) 2e-5, and 6 training epochs (epochs).
For each neural ranker (including the baseline), we
use four GTX1080 GPUs with MaxL 368, bs 16, Ir
2e-5, 5 epochs, and gradient accumulation steps 2.

5.4 Results and Analysis

In all tables, NQ, HQA, SQA, and TQA stand for
NaturalQuestions, HotpotQA, SearchQA and Trivi-
aQA, respectively. We use two metric to evaluate
each models, P@1 and MRR. The equations of cal-
culating these two metric are given in Appendix E.
In this section, we mainly compare P@1, but it is
easy to see the same trend extended to MRR.

Comparison with Existing Method and Effect
of Re-ranking In Table 2, we present two exist-
ing methods for MultiReQA. Guo et al. (2020) fine-
tune BERT dual encoder or USE-QA (Yang et al.,
2020a) on each in-domain dataset, where USE-QA

MultiReQA

Metric Model
NQ SQuAD HQA SQA TQA Avg.
Existing Approach (without re-ranking)
Guo et al. (2020) 3800 66.83 3205 31.45 3258 40.18
Baselines
BM25 2554 69.37 2833 3739 4297 40.72
BCM 46.07 83.71 76.60 6548 62.05 66.78
RM 4476 8536 70.61 69.79 6041 66.19
™ 50.33 85.65 70.00 73.03 6543 68.89
P@l SCONER (Ours)
Q 48.64 89.09 6476 68.64 6220 66.67
Q+A 49.97 89.14 7980 70.27 6473 70.78
Q+KA 50.87 8948 7171 7826 65.16 71.10
KQ+KA 52.80 8837 7628 75.64 6545 71.71
Existing Approach (without re-ranking)
Guo et al. (2020) 5227 7586 4621 50.70 4239 5349
Yang et al. (2020b) 65.90 73.70 - - - -
Baselines
BM25 37.66 7595 49.99 5562 55.19 54.88
BCM 58.03 89.72 8473 7394 7197 75.68
RM 57.02 9058 8045 7881 70.67 7551
MRR TM 60.87 9027 81.00 8222 7530 77.93
SCONER (Ours)
Q 5846 9251 70.73 76.64 68.94 73.46
Q+A 60.14 9236 8588 78.62 7248 77.90
Q+KA 60.16 92.71 80.08 84.72 7251 78.04
KQ+KA 61.50 9192 82.87 83.02 7254 78.37

Table 2: Performance comparison of SCONER with
existing models and standard baselines, evaluated in
terms of P@1 and MRR on five benchmark datasets.
Bold number means the best performance in the col-
umn of each block.

was pre-trained specifically for retrieval question
answering tasks. This method and BM25 directly
retrieve answers from the entire corpus without re-
ranking. The other models (baselines and ours)
re-rank candidates after retrieval. From the results,
we see that the re-ranking phase improves the per-
formance significantly, for example, compared to
BM25, re-ranking improve P@1 at least ~20%,
~13%, ~42%,~38%, and ~20% on NQ, SQuAD,
HotpotQA, SearchQA and TriviaQA, respectively.
Similarly, the re-ranking significantly improve the
neural retrievers compared to retrievers proposed
in Guo et al. (2020).

Comparison with Baselines Among the three
re-ranking baselines, the TM model achieves the
best performance, indicating that using more nega-
tive candidates and the ranking loss to train a model
can yield better performance than the other two.
More importantly, SCONERSs achieve the best per-
formance compared to baselines across all datasets
in a single-domain (see in Table 2). Specifically,
the largest gain SCONERSs achieved is ~13%, com-
pared to BCM on SearchQA, and the largest aver-
age gain is ~5.5%, compared to RM. When com-
pared to the best baseline (TM), SCONERs achieve
~2.5%, ~4%, ~3%, ~5% P@1 improvement on
NQ, SQuAD, HotpotQA, and SearchQA, respec-
tively, and show similar performance for TriviaQA.
This shows that while using more negative candi-
dates is important to train neural rankers, differen-

Metric Model MultiReQA

NQ SQuAD HQA SQA TQA Avg.

Baselines
BCM 46.38 86.33 77.49 70.41 61.35 68.39
RM 47.15 86.57 74.71 70.15 61.34 67.98
™ 51.64 86.67 68.57 69.37 63.64 67.98

r@l Neg-Ranker (Ours)

Q 50.44 90.06 71.54 71.26 65.22 69.70
Q+A 50.54 89.97 77.63 77.74 66.52 72.48
Q+KA 51.72 89.34 74.51 71.75 66.97 72.06
KQ+KA 53.44 89.43 77.25 75.92 66.07 72.42

Baselines
BCM 58.02 91.30 84.98 78.70 71.11 76.82
RM 58.46 91.35 83.16 78.47 71.07 76.50
™ 61.57 91.10 79.80 79.33 73.99 77.16

MRR Neg-Ranker (Ours)
Q 59.71 92.96 77.83 78.49 72.13 76.22
Q+A 60.42 92.92 84.33 84.14 74.06 79.17

Q+KA 61.21 92.45 82.00 84.38 74.09 78.83
KQ+KA 6231 92.62 83.77 82.74 73.25 78.94

Table 3: We initialize each model using the STS model.
Comparing to Table 2, the performance improve in
most cases. Green/red means improvement/decrease.

tiating the negative candidates can further improve
the models’ performance, which demonstrates the
usefulness of our proposed scoring method of neg-
ative candidates.

Effect of Question Augmentation To show the
effectiveness of the data augmentation proposed in
§3.3, we also train neural rankers with scores gen-
erated by the STS model without augmentation (i.e.
using question and negative candidate), termed as
Q model. From Table 2, we can see that training
neural rankers in such a way can not always beat
baselines, for example, on NQ, SearchQA and Triv-
iaQA, the performance of Q models is worse than
TM models in terms of P@1 score, and Q mod-
els do not beat BCM and TM on an average. On
the other hand, using augmentation methods, Q+A,
Q+KA, and KQ+KA are better than Q models and
beat all baselines on average (see Table 2). This
demonstrates that while the STS model can be used
to generate the scores of the negative candidate, it
is important to incorporate the answer to the ques-
tion in the generation process, demonstrating the
importance of our proposed augmentation method.

Looking at the three data augmentation meth-
ods, they achieve similar performance on average,
where KQ+KA achieves the best performance with
a slight margin.

Effects of STS Model The intuition of using the
STS Model to generate scores is that semantic sim-
ilarity and answer selection are related because
a model needs to understand the semantic mean-
ing of the question and candidate in the later task.
Thus, the knowledge of STS can be beneficial for

Metric Model MultiReQA (IID) MultiReQA (OOD)

NQ SQuAD HQA SQA TQA Avg. DuoRC R.E. TextbookQA BioASQ Avg.
Baselines
BCM 35.74 80.80 7399 68.61 58.02 63.43 46.00 48.93 7.20 11.78 28.48
RM 39.59 81.68 68.69 69.31 58.80 63.61 45.50 58.88 7.99 11.44 30.95
™ 55.14 91.66 73.38 7454 66.87 72.32 49.50 67.06 10.26 11.58 34.60
SCONER (Ours)
P@1 Q 45.17 87.45 69.93 7218 6379 67.70 43.00 53.96 9.86 11.78 29.65
Q+A 43.63 83.47 6724 7150 6333 65.83 41.50 60.03 9.33 11.51 30.59
Q+KA 47.43 85.75 66.72 75.01 64.10 67.80 41.50 57.72 9.33 11.71 30.06
KQ+KA 44.35 84.73 65.19 7336 62.77 66.08 37.50 59.08 9.13 11.31 29.25
Baselines
BCM 49.46 87.61 83.15 7721 69.15 73.32 55.46 67.41 15.32 22.80 40.25
RM 52.22 88.09 79.67 7755 69.37 73.38 54.18 75.34 16.82 22.59 42.23
™ 64.29 94.25 83.67 83.53 7638 80.42 59.04 81.82 20.79 23.25 46.23
SCONER (Ours)

MRR Q 55.35 91.25 7699 79.75 71.92 75.05 50.64 72.81 19.22 22.03 41.18
Q+A 54.51 88.16 7583 79.09 7127 73.77 46.89 75.39 17.76 21.26 40.32
Q+KA 57.88 90.08 7499 82.69 7231 75.59 49.34 74.70 19.18 22.03 41.31
KQ+KA 5543 89.00 72.50 80.89 70.27 73.62 45.39 75.07 17.61 21.31 39.84

Table 4: Each model is trained with five in-domain datasets and tested on five IID datasets and four OOD datasets.

the answer ranking task. To further justify this in-
tuition, instead of initializing a neural ranker with
RoBERTa, we use the STS model. We expect to see
that the STS model will be better than a RoBERTa
model. Table 3 shows the results of fine-tuning
an STS model by each training method, where the
training data is the same as those in Table 2. We use
green/red color to represent improvements/decre-
ments compared to Table 2 (deeper color means
more significant improvements/decrements). From
Table 3, we can see that the STS model is better
than the RoOBERTa model in most cases, which
justifies our intuition and to some extent explain
why the proposed score generation approach can
improve the model performance.

Multi-Domain Model and Generalization To
see how well each model learns from multi-domain
and how well they generalize to unseen data, we
train different models using all in-domain datasets.
We test the model on each in-domain data as well
as out-of-domain datasets. Table 4 shows the re-
sult. For multi-domain learning, we see that our
methods are better than two baselines, BCM and
RM, by ~ 4% in terms of P@1 score. For out-of-
domain performance, our models are better than
BCM. TM achieves the best performance in both
IID and OOD. One potential reason why TM is
better than SCONERs is that TM has more train-
ing samples. Although both SCONER and TM
use 10 negative candidates per question, in TM we
pair the positive answer with each negative answer,
i.e. if there are x number of positive candidate for
one question, TM has 10x training samples but

SCONER has 10 + x training samples. On the
other hand, because of this, the training time of
SCONER is much less than the TM model.

6 Ablation Study

Size of Negative Candidate The proposed scor-
ing function allows us to use a different number
of negative candidates for training. Here, we in-
vestigate the effect of the number of negative can-
didates per question used in training. We study
1/3/5/7/10 negative candidates per question on the
MultiReQA-SQuAD dataset. Figure 2 shows the
P@1 score associated with each method when the
number of negative candidates increases. We have
three observations: (1) compared to one negative
candidate per question, more negative candidates
are better, and this demonstrates that using more
negative candidates indeed help the model to select
the best answer; (2) when using only one nega-
tive candidate and comparing to the BCE baseline
which also uses one negative candidate, all of our
models perform better than the BCE baseline, this
demonstrates that a regression model with differen-
tiable values for negative candidates is better than
a binary classification model; and (3) compared to
the TM baseline, which uses 10 negative candidates
per question, all four models performs better than
the baseline even though using less negative candi-
dates (e.g. 3, 5, and 7) for the SQuAD dataset (see
Figure 2), this again demonstrates that using differ-
ent labels for the negative candidate is an effective
way to train a neural ranker.

90
. %

P@1 score
®
s

85 .o
— QA

—— QKA

KQ+KA

1 3 5 7 10
number of negative candidates per questions

Figure 2: P@1 score regarding to the number of nega-
tive candidates per question used in the training.

P@1 score
® o o
o N B

~
©

~
o

—— Q+A
—— Q+KA
KQ+KQ

~
>

5000 10000 15000 18000
number of training questions

Figure 3: P@1 score regarding to different training size
of questions used in the training.

Size of Training Samples We are interested in
the question: does our method helps in low re-
source scenario? To answer this question, we use
5/10/15/18K questions to train our models and the
baselines on the SQuAD dataset. For TM and our
models, each question is paired with 10 negative
candidates. Figure 3 illustrates the P@1 w.r.t dif-
ferent numbers of training questions. From Figure
3, we see that TM and our models are much bet-
ter than BCE and RM when the training data only
includes 5000 questions. In general, the improve-
ment gap is wider as the training size is reduced,
this suggests that it is useful in improving perfor-
mance to use more negative candidates. However,
it is especially important in low-resource scenarios.

Time Efficiency As mentioned before, our neu-
ral rankers belong to cross-attention model archi-
tecture. Although it has shown better performance,
since it has to compute the attention score of every
combination of input words at every layer, the in-
ference time is long. Re-ranking fewer candidates
can speed up the inference time. Here, we study
the time efficiency by comparing the inference time
of re-ranking 50/100/150/200 candidates. We use
batch size 16 in inference time, which is the largest

size that our machine allows. For each question,
the inference time of re-ranking 50/100/150/200
candidates is 0.49/0.85/1.24/1.63 seconds. We also
investigate whether re-ranking more candidates can
yield better performance than less. Surprisingly, the
performance of re-ranking 50/100/150/200 candi-
dates does not exhibit a noticeable difference. We
further find that the reason for this is that the recall
of the top-50 given by BM25 is already as good
as the top 100/150/200. This suggests that rather
than using a large size of re-ranking, the recall of
the initial retrieval module can be a good indicator
of how many candidates should be re-ranked so
that we can achieve the best trade-off between time
efficiency and performance.

7 Future Directions

Currently, our pipeline relies on BM25 to retrieve
initial candidates, in recent days, there has been
a growing interest in building a neural model as
a direct retriever (Zamani et al., 2018; Dai and
Callan, 2019; Lee et al., 2019; Chang et al., 2020).
DPR (Karpukhin et al., 2020) is one of such neu-
ral retriever which can be trained on down-stream
tasks like question answering and thus can be op-
timized in a specific domain. DPR use in-batch
negative candidates to train a neural retriever. One
future work is to apply our negative scoring ap-
proach to score negative candidates and use them
as the labels to train DPR.

8 Conclusion

While standard training methods take all negative
candidates equivalent to train a neural ranker, we
argue that different candidates should have differ-
ent negativeness scores based on their semantic
relevancy to the question. Motivated by this, we
present SCONER, a new pipeline to train neural
rankers by generating scores for negative candi-
dates which is based on the semantic meaning
between question-candidate pairs. This proposed
method gives an advantage in terms of using more
negative samples and making them differentiable.
Our experimental results show that SCONER out-
performs all standard training methods in single-
domain setting, and most methods in multi-domain
setting. Also, the ablation study demonstrates
the usefulness of SCONER in both low and high
resource scenario. Our detailed analysis demon-
strates the efficacy of SCONER.

References

Amin Ahmad, Noah Constant, Yinfei Yang, and Daniel
Cer. 2019. ReQA: An evaluation for end-to-end an-
swer retrieval models. In Proceedings of the 2nd
Workshop on Machine Reading for Question Answer-
ing, pages 137-146, Hong Kong, China. Association
for Computational Linguistics.

Matthew W Bilotti, Paul Ogilvie, Jamie Callan, and
Eric Nyberg. 2007. Structured retrieval for question
answering. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and
development in information retrieval, pages 351—

358.

Tolgahan Cakaloglu, Christian Szegedy, and Xiaowei
Xu. 2020. Text embeddings for retrieval from a large
knowledge base. In International Conference on
Research Challenges in Information Science, pages
338-351. Springer.

Wei-Cheng Chang, F. Yu, Yin-Wen Chang, Yiming
Yang, and S. Kumar. 2020. Pre-training tasks
for embedding-based large-scale retrieval. ArXiv,
abs/2002.03932.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870-
1879, Vancouver, Canada. Association for Computa-
tional Linguistics.

Tongfei Chen and Benjamin Van Durme. 2017. Dis-
criminative information retrieval for question an-
swering sentence selection. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 2,
Short Papers, pages 719-725, Valencia, Spain. As-
sociation for Computational Linguistics.

D. Cohen, Liu Yang, and W. Croft. 2018. Wikipas-
sageqa: A benchmark collection for research on non-
factoid answer passage retrieval. The 41st Interna-
tional ACM SIGIR Conference on Research & De-
velopment in Information Retrieval.

Alexis Conneau and Douwe Kiela. 2018. Senteval: An
evaluation toolkit for universal sentence representa-
tions. ArXiv, abs/1803.05449.

Zhuyun Dai and J. Callan. 2019. Context-aware sen-
tence/passage term importance estimation for first
stage retrieval. ArXiv, abs/1910.10687.

Zhuyun Dai, Chenyan Xiong, J. Callan, and Zhiyuan
Liu. 2018. Convolutional neural networks for soft-
matching n-grams in ad-hoc search. Proceedings of
the Eleventh ACM International Conference on Web
Search and Data Mining.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

M. Dunn, Levent Sagun, M. Higgins, V. U. Gliney,
Volkan Cirik, and Kyunghyun Cho. 2017. Searchqa:
A new gé&a dataset augmented with context from a
search engine. ArXiv, abs/1704.05179.

Adam Fisch, Alon Talmor, Robin Jia, Minjoon Seo, Eu-
nsol Choi, and Dangi Chen. 2019. MRQA 2019
shared task: Evaluating generalization in reading
comprehension. In Proceedings of the 2nd Work-
shop on Machine Reading for Question Answering,
pages 1-13, Hong Kong, China. Association for
Computational Linguistics.

J. Guo, Y. Fan, Qingyao Ai, and W. Croft. 2016. A
deep relevance matching model for ad-hoc retrieval.
Proceedings of the 25th ACM International on Con-
ference on Information and Knowledge Manage-
ment.

Mandy Guo, Yinfei Yang, Daniel Matthew Cer, Qinlan
Shen, and Noah Constant. 2020. Multireqa: A cross-
domain evaluation for retrieval question answering
models. ArXiv, abs/2005.02507.

Kai Hui, Andrew Yates, Klaus Berberich, and Ger-
ard de Melo. 2017. PACRR: A position-aware neu-
ral IR model for relevance matching. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1049—1058,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In ACL.

V. Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Dangqi
Chen, and Wen tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. ArXiv,
abs/2010.08191.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk,
Jonghyun Choi, Ali Farhadi, and Hannaneh Ha-
jishirzi. 2017. Are you smarter than a sixth grader?
textbook question answering for multimodal ma-
chine comprehension. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 5376-5384.

Tushar Khot, Peter Clark, Michal Guerquin, P. Jansen,
and A. Sabharwal. 2020. Qasc: A dataset for ques-
tion answering via sentence composition. In AAAIL

T. Kwiatkowski, J. Palomaki, Olivia Redfield, Michael
Collins, Ankur P. Parikh, C. Alberti, D. Epstein,
Illia Polosukhin, J. Devlin, Kenton Lee, Kristina
Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei
Chang, Andrew M. Dai, Jakob Uszkoreit, Q. Le, and
Slav Petrov. 2019. Natural questions: A benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—

466.

https://doi.org/10.18653/v1/D19-5819
https://doi.org/10.18653/v1/D19-5819
https://doi.org/10.18653/v1/D19-5819
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://www.aclweb.org/anthology/E17-2114
https://www.aclweb.org/anthology/E17-2114
https://www.aclweb.org/anthology/E17-2114
https://www.aclweb.org/anthology/E17-2114
https://www.aclweb.org/anthology/E17-2114
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D19-5801
https://doi.org/10.18653/v1/D17-1110
https://doi.org/10.18653/v1/D17-1110
https://doi.org/10.18653/v1/D17-1110
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571
https://doi.org/10.1109/CVPR.2017.571

Md Tahmid Rahman Laskar, Jimmy Xiangji Huang,
and Enamul Hoque. 2020. Contextualized embed-
dings based transformer encoder for sentence simi-
larity modeling in answer selection task. In Proceed-
ings of the 12th Language Resources and Evaluation
Conference, pages 5505-5514, Marseille, France.
European Language Resources Association.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6086—6096, Florence,
Italy. Association for Computational Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333-342, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqgi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Ji Ma, I. Korotkov, Yinfei Yang, K. Hall, and R. Mc-
Donald. 2020. Zero-shot neural passage retrieval via
domain-targeted synthetic question generation.

Sean MacAvaney, Andrew Yates, Arman Cohan, and
Nazli Goharian. 2019. Cedr: Contextualized em-
beddings for document ranking. Proceedings of the
42nd International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.

Ryan McDonald, George Brokos, and Ion Androut-
sopoulos. 2018. Deep relevance ranking using en-
hanced document-query interactions. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1849-1860,
Brussels, Belgium. Association for Computational
Linguistics.

Sewon Min, Danqgi Chen, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2019. Knowledge guided text re-
trieval and reading for open domain question answer-
ing. ArXiv, abs/1911.03868.

Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage
re-ranking with bert. ArXiv, abs/1901.04085.

Ibrahim Burak Ozyurt, Anita Bandrowski, and Jef-
frey S Grethe. 2020. Bio-answerfinder: a system
to find answers to questions from biomedical texts.
Database, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,

10

Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024—8035. Curran Asso-
ciates, Inc.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
contrastive estimation for answer selection with
deep neural networks. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management, pages 1913-1916.

Jinfeng Rao, Linging Liu, Yi Tay, Wei Yang, Peng
Shi, and Jimmy Lin. 2019. Bridging the gap be-
tween relevance matching and semantic matching
for short text similarity modeling. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5370-5381, Hong Kong,
China. Association for Computational Linguistics.

Radim Rehurek and P. Sojka. 2010. Software frame-
work for topic modelling with large corpora.

S. Robertson and H. Zaragoza. 2009. The probabilis-
tic relevance framework: Bm25 and beyond. Found.
Trends Inf. Retr., 3:333-389.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1-20.

Amrita Saha, Rahul Aralikatte, Mitesh M. Khapra, and
Karthik Sankaranarayanan. 2018. DuoRC: Towards
complex language understanding with paraphrased
reading comprehension. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1683-1693, Melbourne, Australia. Association for
Computational Linguistics.

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-
scale biomedical semantic indexing and question an-
swering competition. BMC bioinformatics, 16(1):1-
28.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

https://www.aclweb.org/anthology/2020.lrec-1.676
https://www.aclweb.org/anthology/2020.lrec-1.676
https://www.aclweb.org/anthology/2020.lrec-1.676
https://www.aclweb.org/anthology/2020.lrec-1.676
https://www.aclweb.org/anthology/2020.lrec-1.676
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/P19-1612
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/D18-1211
https://doi.org/10.18653/v1/D18-1211
https://doi.org/10.18653/v1/D18-1211
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/D19-1540
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156
https://doi.org/10.18653/v1/P18-1156

Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Chenyan Xiong, Zhuyun Dai, J. Callan, Zhiyuan Liu,
and R. Power. 2017. End-to-end neural ad-hoc rank-
ing with kernel pooling. Proceedings of the 40th
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
WikiQA: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013-2018, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung,
Brian Strope, and Ray Kurzweil. 2020a. Multi-
lingual universal sentence encoder for semantic re-
trieval. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 87-94, Online. Asso-
ciation for Computational Linguistics.

Yinfei Yang, Ning Jin, Kuo Lin, Mandy Guo, and
Daniel Cer. 2020b. Neural retrieval for question
answering with cross-attention supervised data aug-
mentation. arXiv preprint arXiv:2009.13815.

Z. Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William W. Cohen, R. Salakhutdinov, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for di-
verse, explainable multi-hop question answering. In
EMNLP.

Zeynep Akkalyoncu Yilmaz, S. Wang, W. Yang, Hao-
tian Zhang, and Jimmy Lin. 2019. Applying bert to
document retrieval with birch. In EMNLP/IJCNLP.

Hamed Zamani, M. Dehghani, W. Croft, E. Learned-
Miller, and J. Kamps. 2018. From neural re-ranking
to neural ranking: Learning a sparse representa-
tion for inverted indexing. Proceedings of the 27th
ACM International Conference on Information and
Knowledge Management.

11

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/D15-1237
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12

A Examples of STS-B

Table 5 shows two pairs of sentences with score 0
and 5 from the STS-B dataset. Score 5 means two
sentences are semantically equivalent and score 0
means semantically irrelevant. In STS-B dataset,
the scores are range from [0, 5].

Score
5.0
0.0

Sentence 1
A man plays the guitar.
A woman is peeling a prawn.

Sentence 1
A man is playing a guitar.
A young man is playing the piano.

Table 5: Two examples from the STS-benchmark, the
first pair of sentences have highest score since they are
highly similar, while the second pair have lowest score
because they have totally different meaning.

B Figure of STS-Model

Figure 4 shows the architecture of the models used
in all experiments, except for binary classification
model where the output of MLP is two logits. Our
model consists of two parts. A RoBERTa model
takes the concatenation of two sentences as input
and output the contextual representation of [CLS]
token. An MLP layer takes this representation as
input and output a score.

TITTTTPitT
LIV LLLTL]

Sentence1, Sentence2

Figure 4: The structure of the STS-model, where S; are
tokens from Sentencel, and C; are tokens from Sen-
tence2.

C Data Processing and Statistic

The dataset includes two parts, question-answer
pairs and a corpus. The question-answer pairs are
from MRQA (Fisch et al., 2019). MRQA is a col-
lection of extractive QA task where the goal is
to extract an answer span given a question and a
context. The corpus is given by MultiReQA. Par-
ticularly, to convert extractive QA task to ReQA

12

task, where the context is not given, Guo et al.
(2020) divide the context into single sentences and
combine all sentence to construct a corpus. The
goal is to retrieve the answer to a question from
the corpus. We refer reader to see the details of
processing of the corpus in Guo et al. (2020). We
remove all questions that do not have any answer in
the corpus in both training and testing sets. Table
6 shows the number of questions, the number of
candidates (the size of the corpus) and the average
number of answers per questions of each dataset.
The average number of answers for SearchQA and
TriviaQA are more than others.

D Questions Domain and Reasoning
Type

Table 7 shows the domains and reasoning type of
each dataset. We see that the MultiReQA include
datasets from different domains and different types
of reasoning skill required to answer the question.

E Evaluation Metrics
We present two evaluation metrics as follows.

Precision@K P@K reveals the proportion of
top-K retrieved candidates that are relevant. R@K
reveals the proportion of relevant documents are in
the top-K retrieved candidates. In Eq 1, IV is the
number of questions, Ay are the top-K retrieved
answer, A* is correct answers.
1 X Ak N A
POK = — Z — (1)
Mean Average Precision P@K does not take
the position of relevant candidates into account,
which means a system that ranks the relevant an-
swer higher than another system can not be identi-
fied as better. MAP address this issue, computed as

follows, where in Eq 2, Rel@j is 1 if the it" answer
is correct, O otherwise.

=K
1
AvePQK = vy Z PQ@i x Rel@i, (2)
=1
1 X
MAPQK = N AvePQK (q) 3)
qg=1

MRR The MRR score is computed as follows,
N

2.

1
M = —
RR N

1

rank;’

where rank; is the rank of the first relevant answer.

Train Test
Dataset
Ques. Cand. Avg. ans. per ques. Ques. Cand. Avg. ans. per ques.
SearchQA 24793 Cand. 6.00 16883 454836 6.66
TriviaQA 61688 1893674 6.00 7776 238339 6.0
HotpotQA 72519 508879 1.50 5860 52191 1.74
SQuAD 18768 95659 1.04 2063 10642 3.44
NQ 102577 71147 1.21 3892 22118 1.31
DuoRC - - - 200 5525 3.47
R.E. - - - 3301 2945 1.00
TextbookQA - - - 1501 71147 3.32
BioASQ - - - 1503 14158 291
Table 6: Statistic of MultiReQA datasets

Dataset Domain Type

NQ Wikipedia single-hop

SQuUAD Wikipedia single-hop

HQA Wikipedia multi-hop

TQA Trivia and quiz-league single-hop

websites

SQA Jeopardy! TV show single-hop

DuoRC wikipedia numerical reasoning

RE Wikiread

TbQA Lessons from middle single-hop

school Life Science,
Earth Science, and Phys-
ical Science textbooks
BioASQ Science (PubMed) arti- single-hop
cles

Table 7: The domain and reasoning type of each
dataset.

F Regression Model Baseline

Here, we explore two labels for regression models,
0 and 5 on three datasets. We train each model by
initializing it with RoOBERTa. Table 8 shows the
results, and we found that label 5 is better than 0 in
three cases.

Label Dataset

SQuAD HotpotQA NQ
1 64.84 43.50 70.00
5 85.36 44.76 70.61

Table §8: Comparison of two regression models with
label 1 and 5 in terms of P@1.

13

