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Abstract

Retrieval-based Question Answering (ReQA)001
requires a system to find candidates (e.g., sen-002
tences or short passages) containing the an-003
swer to a given question from a large corpus.004
A promising way to solve this task is a two-005
stage pipeline, where the first stage retrieves a006
set of candidates, and the second stage uses a007
neural network to rank the retrieved candidates.008
There are three standard methods to train neu-009
ral rankers, Binary Cross Entropy loss, Mean010
Square Error loss, and Hinge loss. While all011
these training strategies assign the same la-012
bel for all the negative candidates, we argue013
that negativeness is not binary but exists as a014
spectrum, i.e., some candidates may be more015
negative than the others, and thus should be016
treated differently. We present SCONER—017
scoring negative candidates before training018
neural ranker—a model trained to differentiate019
negative candidates. Our approach includes020
1) semantic textual similarity-based scoring to-021
gether with data augmentation for score gener-022
ation of negative candidates; and 2) a neural023
ranker trained on data using generated scores024
as labels. Together, we systematically com-025
pare three standard training methods and our026
proposed method on a range of ReQA datasets027
under multiple settings (i.e., single-domain028
and multi-domain). Our finding suggests that029
using more negative candidates to train neural030
rankers are better than less in both single- and031
multi-domain settings, where SCONER is the032
best in the single-domain settings and Hinge033
loss is the best in multi-domain settings.034

1 Introduction035

Retrieval Based Question Answering (ReQA) has036

gained increasing interest and attention in re-037

cent years, and many benchmarks have been pro-038

posed (Cohen et al., 2018; Khot et al., 2020; Ah-039

mad et al., 2019; Guo et al., 2020). The target of040

such a task is to retrieve candidates (e.g., sentences041

or snippets) containing the answer to a question042

from a large corpus. ReQA is different from “read- 043

ing comprehension” which aims to extract answer 044

span(s) from a given passage. ReQA is closer to 045

real-world applications where the relevant passage 046

to a question is usually unknown and needs to be 047

retrieved from a large corpus. 048

A promising approach for solving ReQA in- 049

volves two stages (coarse-to-fine): first, retrieve 050

a small set of candidates from a large corpus and 051

second re-rank these candidates. The re-ranking 052

stage usually involves neural models to capture the 053

interactive contextual information (Yilmaz et al., 054

2019; Nogueira and Cho, 2019) which can signif- 055

icantly improve the initial retrieval performance 056

(Ozyurt et al., 2020), and thus it is crucial for any 057

retrieval system (Ma et al., 2020). The focus of this 058

work is to study and improve the neural ranker. 059

A common strategy to train a neural ranker is 060

to treat it as a binary classification (or regression) 061

model which is trained on balanced positive exam- 062

ples (i.e. question and relevant candidate) and neg- 063

ative examples (i.e. question and irrelevant candi- 064

date). The positive examples are human-annotated 065

answers, and negative examples are usually ran- 066

domly selected from the corpus. However, this 067

strategy results in three issues that potentially lead 068

a model to underperform. Issue 1: Some semantic 069

relevant candidates which are not annotated as an- 070

swers might be selected as negative samples, which 071

injects noise into the training data. Issue 2: Many 072

negative samples are unused to keep a balanced 073

training set due to a small set of positive samples. 074

This issue is amplified in the low resource scenario 075

since the size of the training data is not enough to 076

train a neural model. Issue 3: All negative exam- 077

ples are equally treated, even though they are not 078

semantically equivalent to a question. 079

Apart from binary classification (or regression), 080

another training strategy is to use Hing Loss (ex- 081

plained in §5.2) so that more negative candidates 082

can be utilized. This strategy can resolve Issue 2, 083
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however, issue1 and issue3 remain. These issues084

originate the question, “Do we need to differenti-085

ate negative candidates before training a neural086

ranker?”. Driven by this question, we propose087

a scoring approach for negative candidates (§3),088

which has two stages. First, we train a model on Se-089

mantic Textual Similarity (STS) benchmark (Con-090

neau and Kiela, 2018). This model generates a091

high score for a two-sentences pair if they are se-092

mantically similar; otherwise, a low score. Second,093

we use this STS model to generate a score for a094

question-negative candidate pair. Instead of using095

straightforward questions and negative candidates096

as input, we explore different data augmentation097

approaches to ensure that the more information the098

negative candidate has to answer the question, the099

higher score the STS model generates for this pair.100

This scoring approach allows: 1) a good candidate101

that is not annotated as an answer to have a high102

score–addresses Issue 1; 2) more negative samples103

can be used to train a neural ranker–addresses Is-104

sue 2, and 3) each negative candidate to receive a105

“negativeness” score which can be helpful in differ-106

entiating candidates–addresses Issue 3.107

Figure 1(a) shows the pipeline of utilizing the108

scoring approach to train a neural ranker. First, a set109

of negative candidates are retrieved by BM25. Sec-110

ond, the score generation module produces scores111

for the question and negative candidate pairs. Last,112

a neural ranker is trained on both negative samples113

and positive samples. Figure 1(b) shows the infer-114

ence pipeline: given a question, BM25 retrieves a115

set of candidates, then, the neural ranker predicts116

a score for each candidate, and finally, the top-k1117

candidates are considered as the final prediction.118

We compare three standard training strategies119

and our proposed method on MultiReQA (Guo120

et al., 2020) benchmark, which includes 5 in-121

domain datasets and 4 out-of-domain datasets. We122

observe that 1) using more negative candidates to123

train a neural ranker is better in both single- and124

multi-domains settings; 2) such advantage is more125

obvious in low resource training data; 3) our pro-126

posed score generation approach improves the per-127

formance compared to three standard methods in128

the single-domain and two in multi-domain setting;129

4) the proposed data augmentation methods are130

effective in generating better negativeness scores;131

and 5) the knowledge of an STS model can be trans-132

ferred to an answer selection model in two ways,133

1k value depends on evaluation methods or tasks.

generating negativeness scores and initializing a 134

neural ranker with the STS model. 135

In summary, our contributions are in three folds. 136

First, we systematically study three standard train- 137

ing strategies of neural rankers. Second, we pro- 138

pose a scoring approach to differentiate negative 139

candidates to train a neural ranker. We refer to our 140

approach as SCONER, scoring negative candidates 141

before training neural ranker. Third, our exper- 142

iments conclude that differentiating the negative 143

candidate is helpful in the single-domain setting 144

but not in the multi-domain setting. To the best of 145

our knowledge, this is the first study that seeks to 146

incorporate the “negativeness” of negative samples 147

to train a neural ranker for ReQA tasks. 148

2 Related Work 149

Retrieval Based Question Answering ReQA is 150

to identify sentences from large corpus that con- 151

tain the answer to a question (Yang et al., 2015; 152

Cakaloglu et al., 2020; Ahmad et al., 2019; Guo 153

et al., 2020). It has practical applications such as s 154

Googles Talk to Books2. ReQA is similar to Open 155

Domain Question Answering (ODQA) but differ- 156

ent in the following aspect, ReQA aims to build an 157

efficient retrieval system, and the answer is a sen- 158

tence or a short passage (Ahmad et al., 2019); while 159

ODQA requires a retrieval system to find relevant 160

documents at a large scale and a machine read- 161

ing comprehension model to predict short answer 162

span from documents (Bilotti et al., 2007; Chen 163

and Van Durme, 2017; Chen et al., 2017; Min et al., 164

2019; Karpukhin et al., 2020). In this paper, we 165

focus on the ReQA task and believe that building 166

an efficient system for ReQA is also beneficial for 167

the ODQA task. For example, QASC (Khot et al., 168

2020) requires retrieving sentences from a large 169

corpus and composing them to answer a multiple- 170

choice question, and a good ReQA system can be 171

used to retrieve sentences in the first stage. 172

Neural Ranker Bag-of-words ranking models 173

like BM25 (Robertson and Zaragoza, 2009) have 174

been widely used for information retrieval for a 175

long time. Although efficient, such methods de- 176

pend on handcrafted features and can not be op- 177

timized on a specific task such as question an- 178

swering, therefore, neural networks have been ap- 179

plied as re-rankers (Guo et al., 2016; Hui et al., 180

2017; Xiong et al., 2017; Dai et al., 2018; Mc- 181

2https://books.google.com/talktobooks/
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Figure 1: (a) Training Pipeline: Step1–retrieve negative candidates using BM25; Step2–use STS model to generate
negativeness scores together with data augmentation; and Step3–train a neural ranker with the generated scores as
labels. (b) Inference Pipeline: retrieve the top-200 candidates using BM25 and re-rank them using neural ranker.
Q’ and A’ means modified questions and answers, S’ means predicted scores of neural ranker.

Donald et al., 2018), also called as answer se-182

lection model in some work (Rao et al., 2016,183

2019; Laskar et al., 2020). Recently, transformer-184

based models like BERT (Devlin et al., 2019) and185

RoBERTa (Liu et al., 2019) are widely used as re-186

rankers (Nogueira and Cho, 2019; Yilmaz et al.,187

2019; MacAvaney et al., 2019). Such re-rankers188

belong to the cross-attention architecture, which189

allows the rich interaction between the question190

and the candidate. Our work belongs to this style191

but has major difference with previous work, where192

neural rankers are trained using the same label (or193

score) for all negative candidates previously, in our194

work, we train a model using different scores for195

negative candidates.196

3 Negative Candidate Scoring Approach197

In this section, we review the concept of Semantic198

Textual Similarity (STS). Then, we describe the199

two stages of our scoring approach: (1) training an200

STS model, and (2) using it to generate negative-201

ness scores for question-negative candidate pairs.202

3.1 Review: Semantic Textual Similarity203

STS determines how close two sentences are in204

terms of semantic meaning (Conneau and Kiela,205

2018). Specifically, given two sentences, a high206

STS score indicates that they present a similar207

meaning, while a low score implies that they have208

different meaning. The score is a float number209

range in [0, 5]. Examples from STS-benchmark210

are given in Appendix A.211

3.2 Training an STS-model 212

The goal of the first stage is to build a model that 213

can generate a high score for a question-candidate 214

pair if the candidate has similar information with 215

the question; otherwise a low score. Furthermore, 216

the model should understand the semantic meaning 217

of the input rather than simply applying the word 218

matching technique (e.g. BM25). 219

To achieve this goal, we train a regression model 220

on the STS-benchmark, consisting of a RoBERTa 221

model (Liu et al., 2019) and a Multi-Layer Per- 222

ceptron (MLP) layer. In particular, the input 223

to the RoBERTa model is [CLS] sentence1 224

[SEP] sentence2 [SEP]. Then we feed the 225

representation of the [CLS] token to the MLP 226

which predicts a score. We apply the Mean Squared 227

Error (MSE) loss as the training objective to mini- 228

mize the gap between the predicted score with the 229

ground truth STS score. The figure of the model’s 230

input and output is given in Appendix B. 231

3.3 Negativeness Score Generation via Data 232

Augmentation 233

In the second stage, we use the STS model to gen- 234

erate scores, where the sentence1 is an aug- 235

mented question and sentence2 is a negative 236

candidate. The intuition behind using augmented 237

questions rather than the original question is that 238

there is a difference between identifying semantic 239

similarity and answer ranking. The former focuses 240

on detecting meaning equivalence and the latter 241

emphasizes keyword matching and semantic under- 242
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standing. Thus, even though a candidate is relevant243

to a question, the STS model might not produce a244

high score due to the semantic meaning gaps be-245

tween the candidate and the question. To illustrate246

this, consider a question “Beyonce has a fan base247

that is referred to as what?” and a good candidate248

“The name Bey Hive derives from the word beehive,249

purposely misspelt to resemble her first name, and250

was penned by fans after petitions on the online251

social networking service Twitter and online news252

reports during competitions,” (the answer is Bey253

Hive), the STS model generate a low score for this254

pair as shown in the first row (Q) of Table 1.255

To overcome this issue, we propose three ways256

to augment a question by using its answer. If any257

candidate has information semantically similar to258

the answer, the STS model is expected to generate259

a higher score for this candidate than other candi-260

dates which do not have any match (or less match)261

with the answer. Next, we present each augmenta-262

tion approach and Table 1 shows examples of each263

approach and the corresponding generated score.264

Question + Answer (Q+A) The first approach is265

to concatenate the answer to the original question.266

Question + Keywords of Answer (Q+KA) The267

second approach is to extract the keywords from268

the answer and concatenate the keywords to the269

original question. We used Rapid Automatic Key-270

word Extraction (RAKE) (Rose et al., 2010) to ex-271

tract the keywords. The intuition is that the answer272

might include irrelevant information. By extract-273

ing keywords, some irrelevant information can be274

removed, and we hypothesized that neglecting this275

distracting information can help the STS model276

generate a more reasonable negative score.277

Keywords of Question and Answer (KQ+KA)278

This method extracts the keywords not only for the279

answer but also the question. Then we concatenate280

the keywords sequentially. The intuition is the281

same as the second approach and extends to the282

question as well.283

4 Neural Ranker284

Our neural ranker has the identical model archi-285

tecture as the STS model (§3.2) but with different286

inputs i.e., the inputs of the STS model are a pair287

of sentences from the STS-benchmark, while the288

inputs of the neural ranker are question-candidate289

pairs. Next, we describe the training and inference290

pipelines of a neural-ranker.291

4.1 Training Pipeline 292

The pipeline to train a neural ranker consists of 293

three steps (the left part in Figure 1). Step1 294

(the green block): we use BM25 to retrieve the 295

top100 candidates for a question. From these 296

candidates, we further randomly sample 10 neg- 297

ative candidates from the top-100. Step2 (the 298

blue block): we augment the question in one of 299

the approaches described in §3.3 and use it as 300

sentence1. Each negative candidate from step1 301

is used as sentence2. We feed the sentence1 302

and sentence2 to the STS model and obtain 303

a score for the question and negative candidate 304

pair. Step3 (the yellow block): we train the neural 305

ranker using the question and positive candidate 306

pairs which are given in the training set and the 307

question and negative candidate pairs which are 308

given in step1. The neural ranker is trained by 309

MSE loss as follows: 310

MSE =
1

n

n∑
c−∈Neg

( ˆyc− − negc−)
2+

1

m

∑
c+∈Pos

( ˆyc+ − posc+)
2,

311

where c− is a negative candidate for a question q 312

and negc− is the generated score given in step2, c+ 313

is a positive candidate and posc+ is 5, ˆyc− and ˆyc+ 314

are the predicted scores given by the neural ranker 315

for negative and positive samples respectively. 316

4.2 Inference Pipeline 317

During the inference time, for any given question, 318

we retrieve the top-100 candidates using BM25. 319

We then concatenate the question with every can- 320

didate and ask the neural ranker to predict a score 321

for each candidate. Finally, we re-rank the top-100 322

candidates based on the neural ranker scores and 323

select Top-K candidates as the final answer. 324

5 Experiments 325

5.1 Dataset 326

MultiReQA (Guo et al., 2020) has five different in- 327

domain datasets and four out-of-domain datasets. 328

The in-domain datasets include training and test- 329

ing sets, there are SearchQA (Dunn et al., 2017), 330

TriviaQA (Joshi et al., 2017), HotpotQA (Yang 331

et al., 2018), SQuAD (Rajpurkar et al., 2016), and 332

NaturalQuestions(NQ) (Kwiatkowski et al., 2019). 333

The out-domain datasets includes DuoRC (Saha 334
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Approach Augmented Question Score
Q Beyoncé’s has a fan base that is referred to as what? 2.20
Q+A Beyoncé’s has a fan base that is referred to as what? The Bey Hive is the name given to Beyoncé’s fan base. 3.08
Q+KA Beyoncé’s has a fan base that is referred to as what? name given fan base bey hive beyoncé 2.86
KQ+KA Fan base referred Beyoncé’s name given fan base bey hive beyoncé 2.95

Table 1: The example of augmented question, where the original question is Beyoncé’s has a fan base that is
referred to as what?, and the given answer is The Bey Hive is the name given to Beyoncé’s fan base. Each score
is generated by the STS model given each Augmented Question and sentence “The name Bey Hive derives from
the word beehive, purposely misspelled to resemble her first name, and was penned by fans after petitions on the
online social networking service Twitter and online news reports during competitions.”

et al., 2018), RelationExtraction (Levy et al.,335

2017), TextbookQA (Kembhavi et al., 2017) and336

BioASQ (Tsatsaronis et al., 2015). The datasets337

come from a different domain like Wikipedia and338

Science, and require different reasoning skills like339

multihop reasoning and numerical reasoning. The340

domains and type of questions of each dataset are341

given in Appendix D. In MultiReQA, the corpus342

consists of sentences from supporting documents343

of the original dataset. The statistic of training and344

testing data are given in Appendix C.345

5.2 Baselines346

BM25 Following (Guo et al., 2020), we use the347

implementation of BM25 from (Rehurek and So-348

jka, 2010) with the default parameters and BERT349

tokenizer to create indexing for search.350

Binary Classification Model (BCM) We use351

RoBERTa model as the encoder, which takes input352

as [CLS] question [SEP] candidate353

[SEP]. Then, we feed the vector representation of354

[CLS] to a linear layer with two logits as output:355

one represents the probability of candidates being356

irrelevant and the other represents it being relevant.357

We apply binary cross entropy loss to train this358

model. The training data is constructed by using359

the positive samples for each question, and we360

randomly selected the same amount of negative361

samples from the top-100 candidates given by362

BM25, where the label for the positive samples are363

1, and negative samples are 0.364

Regression Model (RM) This baseline is simi-365

lar to the BCM baseline, but the linear layer only366

outputs one logit instead of two, thus it is a regres-367

sion model rather than a binary classification model.368

We use MSE loss to train this model. The positive369

and negative samples are the same as BCM, but370

the positive samples have label 5, and the negative371

samples have label 0. We also use 1 as the label for372

positive samples but find that 5 yields better perfor-373

mance, thus we use label 5 to train RM baselines. 374

Appendix F shows the results comparison between 375

label as 1 and 5 for three datasets. 376

Triplet Model (TM) This baseline has the iden- 377

tical model architecture as the RM baseline, but 378

we use the hinge loss to train the model in which 379

more negative candidates can be used. Specifically, 380

each training sample is a triplet, i.e., 〈q, c+, c−〉, 381

where q is a question, c+ is a positive candidate, 382

and c− is a negative candidate. Let S(q, c) denote 383

the score given by the model for question q and can- 384

didate c. The model is trained such that S(q, c+) 385

is higher than S(q, c−). We use the same negative 386

candidates as our SCONER to train the TM model. 387

5.3 Experiment Setup 388

We use Huggingface (Wolf et al., 2020) and Py- 389

torch (Paszke et al., 2019) implementation for train- 390

ing each model. We initialize each model with 391

pretrained RoBERTa-base parameters. To train the 392

STS model, we use one GTX1080 GPU with maxi- 393

mum length (MaxL) 128, batch size (bs) 32, learn- 394

ing rate (lr) 2e-5, and 6 training epochs (epochs). 395

For each neural ranker (including the baseline), we 396

use four GTX1080 GPUs with MaxL 368, bs 16, lr 397

2e-5, 5 epochs, and gradient accumulation steps 2. 398

5.4 Results and Analysis 399

In all tables, NQ, HQA, SQA, and TQA stand for 400

NaturalQuestions, HotpotQA, SearchQA and Trivi- 401

aQA, respectively. We use two metric to evaluate 402

each models, P@1 and MRR. The equations of cal- 403

culating these two metric are given in Appendix E. 404

In this section, we mainly compare P@1, but it is 405

easy to see the same trend extended to MRR. 406

Comparison with Existing Method and Effect 407

of Re-ranking In Table 2, we present two exist- 408

ing methods for MultiReQA. Guo et al. (2020) fine- 409

tune BERT dual encoder or USE-QA (Yang et al., 410

2020a) on each in-domain dataset, where USE-QA 411
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Metric Model MultiReQA

NQ SQuAD HQA SQA TQA Avg.

Existing Approach (without re-ranking)

P@1

Guo et al. (2020) 38.00 66.83 32.05 31.45 32.58 40.18
Baselines

BM25 25.54 69.37 28.33 37.39 42.97 40.72
BCM 46.07 83.71 76.60 65.48 62.05 66.78
RM 44.76 85.36 70.61 69.79 60.41 66.19
TM 50.33 85.65 70.00 73.03 65.43 68.89

SCONER (Ours)
Q 48.64 89.09 64.76 68.64 62.20 66.67
Q+A 49.97 89.14 79.80 70.27 64.73 70.78
Q+KA 50.87 89.48 71.71 78.26 65.16 71.10
KQ+KA 52.80 88.37 76.28 75.64 65.45 71.71

Existing Approach (without re-ranking)

MRR

Guo et al. (2020) 52.27 75.86 46.21 50.70 42.39 53.49
Yang et al. (2020b) 65.90 73.70 - - - -

Baselines
BM25 37.66 75.95 49.99 55.62 55.19 54.88
BCM 58.03 89.72 84.73 73.94 71.97 75.68
RM 57.02 90.58 80.45 78.81 70.67 75.51
TM 60.87 90.27 81.00 82.22 75.30 77.93

SCONER (Ours)
Q 58.46 92.51 70.73 76.64 68.94 73.46
Q+A 60.14 92.36 85.88 78.62 72.48 77.90
Q+KA 60.16 92.71 80.08 84.72 72.51 78.04
KQ+KA 61.50 91.92 82.87 83.02 72.54 78.37

Table 2: Performance comparison of SCONER with
existing models and standard baselines, evaluated in
terms of P@1 and MRR on five benchmark datasets.
Bold number means the best performance in the col-
umn of each block.

was pre-trained specifically for retrieval question412

answering tasks. This method and BM25 directly413

retrieve answers from the entire corpus without re-414

ranking. The other models (baselines and ours)415

re-rank candidates after retrieval. From the results,416

we see that the re-ranking phase improves the per-417

formance significantly, for example, compared to418

BM25, re-ranking improve P@1 at least ∼20%,419

∼13%, ∼42%,∼38%, and ∼20% on NQ, SQuAD,420

HotpotQA, SearchQA and TriviaQA, respectively.421

Similarly, the re-ranking significantly improve the422

neural retrievers compared to retrievers proposed423

in Guo et al. (2020).424

Comparison with Baselines Among the three425

re-ranking baselines, the TM model achieves the426

best performance, indicating that using more nega-427

tive candidates and the ranking loss to train a model428

can yield better performance than the other two.429

More importantly, SCONERs achieve the best per-430

formance compared to baselines across all datasets431

in a single-domain (see in Table 2). Specifically,432

the largest gain SCONERs achieved is∼13%, com-433

pared to BCM on SearchQA, and the largest aver-434

age gain is ∼5.5%, compared to RM. When com-435

pared to the best baseline (TM), SCONERs achieve436

∼2.5%, ∼4%, ∼3%, ∼5% P@1 improvement on437

NQ, SQuAD, HotpotQA, and SearchQA, respec-438

tively, and show similar performance for TriviaQA.439

This shows that while using more negative candi-440

dates is important to train neural rankers, differen-441

Metric Model MultiReQA

NQ SQuAD HQA SQA TQA Avg.

Baselines

P@1

BCM 46.38 86.33 77.49 70.41 61.35 68.39
RM 47.15 86.57 74.71 70.15 61.34 67.98
TM 51.64 86.67 68.57 69.37 63.64 67.98

Neg-Ranker (Ours)
Q 50.44 90.06 71.54 71.26 65.22 69.70
Q+A 50.54 89.97 77.63 77.74 66.52 72.48
Q+KA 51.72 89.34 74.51 77.75 66.97 72.06
KQ+KA 53.44 89.43 77.25 75.92 66.07 72.42

Baselines

MRR

BCM 58.02 91.30 84.98 78.70 71.11 76.82
RM 58.46 91.35 83.16 78.47 71.07 76.50
TM 61.57 91.10 79.80 79.33 73.99 77.16

Neg-Ranker (Ours)
Q 59.71 92.96 77.83 78.49 72.13 76.22
Q+A 60.42 92.92 84.33 84.14 74.06 79.17
Q+KA 61.21 92.45 82.00 84.38 74.09 78.83
KQ+KA 62.31 92.62 83.77 82.74 73.25 78.94

Table 3: We initialize each model using the STS model.
Comparing to Table 2, the performance improve in
most cases. Green/red means improvement/decrease.

tiating the negative candidates can further improve 442

the models’ performance, which demonstrates the 443

usefulness of our proposed scoring method of neg- 444

ative candidates. 445

Effect of Question Augmentation To show the 446

effectiveness of the data augmentation proposed in 447

§3.3, we also train neural rankers with scores gen- 448

erated by the STS model without augmentation (i.e. 449

using question and negative candidate), termed as 450

Q model. From Table 2, we can see that training 451

neural rankers in such a way can not always beat 452

baselines, for example, on NQ, SearchQA and Triv- 453

iaQA, the performance of Q models is worse than 454

TM models in terms of P@1 score, and Q mod- 455

els do not beat BCM and TM on an average. On 456

the other hand, using augmentation methods, Q+A, 457

Q+KA, and KQ+KA are better than Q models and 458

beat all baselines on average (see Table 2). This 459

demonstrates that while the STS model can be used 460

to generate the scores of the negative candidate, it 461

is important to incorporate the answer to the ques- 462

tion in the generation process, demonstrating the 463

importance of our proposed augmentation method. 464

Looking at the three data augmentation meth- 465

ods, they achieve similar performance on average, 466

where KQ+KA achieves the best performance with 467

a slight margin. 468

Effects of STS Model The intuition of using the 469

STS Model to generate scores is that semantic sim- 470

ilarity and answer selection are related because 471

a model needs to understand the semantic mean- 472

ing of the question and candidate in the later task. 473

Thus, the knowledge of STS can be beneficial for 474
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Metric Model MultiReQA (IID) MultiReQA (OOD)

NQ SQuAD HQA SQA TQA Avg. DuoRC R.E. TextbookQA BioASQ Avg.

Baselines

P@1

BCM 35.74 80.80 73.99 68.61 58.02 63.43 46.00 48.93 7.20 11.78 28.48
RM 39.59 81.68 68.69 69.31 58.80 63.61 45.50 58.88 7.99 11.44 30.95
TM 55.14 91.66 73.38 74.54 66.87 72.32 49.50 67.06 10.26 11.58 34.60

SCONER (Ours)
Q 45.17 87.45 69.93 72.18 63.79 67.70 43.00 53.96 9.86 11.78 29.65
Q+A 43.63 83.47 67.24 71.50 63.33 65.83 41.50 60.03 9.33 11.51 30.59
Q+KA 47.43 85.75 66.72 75.01 64.10 67.80 41.50 57.72 9.33 11.71 30.06
KQ+KA 44.35 84.73 65.19 73.36 62.77 66.08 37.50 59.08 9.13 11.31 29.25

Baselines

MRR

BCM 49.46 87.61 83.15 77.21 69.15 73.32 55.46 67.41 15.32 22.80 40.25
RM 52.22 88.09 79.67 77.55 69.37 73.38 54.18 75.34 16.82 22.59 42.23
TM 64.29 94.25 83.67 83.53 76.38 80.42 59.04 81.82 20.79 23.25 46.23

SCONER (Ours)
Q 55.35 91.25 76.99 79.75 71.92 75.05 50.64 72.81 19.22 22.03 41.18
Q+A 54.51 88.16 75.83 79.09 71.27 73.77 46.89 75.39 17.76 21.26 40.32
Q+KA 57.88 90.08 74.99 82.69 72.31 75.59 49.34 74.70 19.18 22.03 41.31
KQ+KA 55.43 89.00 72.50 80.89 70.27 73.62 45.39 75.07 17.61 21.31 39.84

Table 4: Each model is trained with five in-domain datasets and tested on five IID datasets and four OOD datasets.

the answer ranking task. To further justify this in-475

tuition, instead of initializing a neural ranker with476

RoBERTa, we use the STS model. We expect to see477

that the STS model will be better than a RoBERTa478

model. Table 3 shows the results of fine-tuning479

an STS model by each training method, where the480

training data is the same as those in Table 2. We use481

green/red color to represent improvements/decre-482

ments compared to Table 2 (deeper color means483

more significant improvements/decrements). From484

Table 3, we can see that the STS model is better485

than the RoBERTa model in most cases, which486

justifies our intuition and to some extent explain487

why the proposed score generation approach can488

improve the model performance.489

Multi-Domain Model and Generalization To490

see how well each model learns from multi-domain491

and how well they generalize to unseen data, we492

train different models using all in-domain datasets.493

We test the model on each in-domain data as well494

as out-of-domain datasets. Table 4 shows the re-495

sult. For multi-domain learning, we see that our496

methods are better than two baselines, BCM and497

RM, by ∼ 4% in terms of P@1 score. For out-of-498

domain performance, our models are better than499

BCM. TM achieves the best performance in both500

IID and OOD. One potential reason why TM is501

better than SCONERs is that TM has more train-502

ing samples. Although both SCONER and TM503

use 10 negative candidates per question, in TM we504

pair the positive answer with each negative answer,505

i.e. if there are x number of positive candidate for506

one question, TM has 10x training samples but507

SCONER has 10 + x training samples. On the 508

other hand, because of this, the training time of 509

SCONER is much less than the TM model. 510

6 Ablation Study 511

Size of Negative Candidate The proposed scor- 512

ing function allows us to use a different number 513

of negative candidates for training. Here, we in- 514

vestigate the effect of the number of negative can- 515

didates per question used in training. We study 516

1/3/5/7/10 negative candidates per question on the 517

MultiReQA-SQuAD dataset. Figure 2 shows the 518

P@1 score associated with each method when the 519

number of negative candidates increases. We have 520

three observations: (1) compared to one negative 521

candidate per question, more negative candidates 522

are better, and this demonstrates that using more 523

negative candidates indeed help the model to select 524

the best answer; (2) when using only one nega- 525

tive candidate and comparing to the BCE baseline 526

which also uses one negative candidate, all of our 527

models perform better than the BCE baseline, this 528

demonstrates that a regression model with differen- 529

tiable values for negative candidates is better than 530

a binary classification model; and (3) compared to 531

the TM baseline, which uses 10 negative candidates 532

per question, all four models performs better than 533

the baseline even though using less negative candi- 534

dates (e.g. 3, 5, and 7) for the SQuAD dataset (see 535

Figure 2), this again demonstrates that using differ- 536

ent labels for the negative candidate is an effective 537

way to train a neural ranker. 538
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Figure 2: P@1 score regarding to the number of nega-
tive candidates per question used in the training.

Figure 3: P@1 score regarding to different training size
of questions used in the training.

Size of Training Samples We are interested in539

the question: does our method helps in low re-540

source scenario? To answer this question, we use541

5/10/15/18K questions to train our models and the542

baselines on the SQuAD dataset. For TM and our543

models, each question is paired with 10 negative544

candidates. Figure 3 illustrates the P@1 w.r.t dif-545

ferent numbers of training questions. From Figure546

3, we see that TM and our models are much bet-547

ter than BCE and RM when the training data only548

includes 5000 questions. In general, the improve-549

ment gap is wider as the training size is reduced,550

this suggests that it is useful in improving perfor-551

mance to use more negative candidates. However,552

it is especially important in low-resource scenarios.553

Time Efficiency As mentioned before, our neu-554

ral rankers belong to cross-attention model archi-555

tecture. Although it has shown better performance,556

since it has to compute the attention score of every557

combination of input words at every layer, the in-558

ference time is long. Re-ranking fewer candidates559

can speed up the inference time. Here, we study560

the time efficiency by comparing the inference time561

of re-ranking 50/100/150/200 candidates. We use562

batch size 16 in inference time, which is the largest563

size that our machine allows. For each question, 564

the inference time of re-ranking 50/100/150/200 565

candidates is 0.49/0.85/1.24/1.63 seconds. We also 566

investigate whether re-ranking more candidates can 567

yield better performance than less. Surprisingly, the 568

performance of re-ranking 50/100/150/200 candi- 569

dates does not exhibit a noticeable difference. We 570

further find that the reason for this is that the recall 571

of the top-50 given by BM25 is already as good 572

as the top 100/150/200. This suggests that rather 573

than using a large size of re-ranking, the recall of 574

the initial retrieval module can be a good indicator 575

of how many candidates should be re-ranked so 576

that we can achieve the best trade-off between time 577

efficiency and performance. 578

7 Future Directions 579

Currently, our pipeline relies on BM25 to retrieve 580

initial candidates, in recent days, there has been 581

a growing interest in building a neural model as 582

a direct retriever (Zamani et al., 2018; Dai and 583

Callan, 2019; Lee et al., 2019; Chang et al., 2020). 584

DPR (Karpukhin et al., 2020) is one of such neu- 585

ral retriever which can be trained on down-stream 586

tasks like question answering and thus can be op- 587

timized in a specific domain. DPR use in-batch 588

negative candidates to train a neural retriever. One 589

future work is to apply our negative scoring ap- 590

proach to score negative candidates and use them 591

as the labels to train DPR. 592

8 Conclusion 593

While standard training methods take all negative 594

candidates equivalent to train a neural ranker, we 595

argue that different candidates should have differ- 596

ent negativeness scores based on their semantic 597

relevancy to the question. Motivated by this, we 598

present SCONER, a new pipeline to train neural 599

rankers by generating scores for negative candi- 600

dates which is based on the semantic meaning 601

between question-candidate pairs. This proposed 602

method gives an advantage in terms of using more 603

negative samples and making them differentiable. 604

Our experimental results show that SCONER out- 605

performs all standard training methods in single- 606

domain setting, and most methods in multi-domain 607

setting. Also, the ablation study demonstrates 608

the usefulness of SCONER in both low and high 609

resource scenario. Our detailed analysis demon- 610

strates the efficacy of SCONER. 611
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A Examples of STS-B878

Table 5 shows two pairs of sentences with score 0879

and 5 from the STS-B dataset. Score 5 means two880

sentences are semantically equivalent and score 0881

means semantically irrelevant. In STS-B dataset,882

the scores are range from [0, 5].

Sentence 1 Sentence 1 Score
A man is playing a guitar. A man plays the guitar. 5.0
A young man is playing the piano. A woman is peeling a prawn. 0.0

Table 5: Two examples from the STS-benchmark, the
first pair of sentences have highest score since they are
highly similar, while the second pair have lowest score
because they have totally different meaning.

883

B Figure of STS-Model884

Figure 4 shows the architecture of the models used885

in all experiments, except for binary classification886

model where the output of MLP is two logits. Our887

model consists of two parts. A RoBERTa model888

takes the concatenation of two sentences as input889

and output the contextual representation of [CLS]890

token. An MLP layer takes this representation as891

input and output a score.892

RoBERTa

CLSi s1 s2 ... sn SEP c1 c2 ... cn SEP

CLSo s1
' s2' ... sn

' SEP c1
' c2

' ... cn
' SEP

MLP

S

Sentence1, Sentence2

Figure 4: The structure of the STS-model, where Si are
tokens from Sentence1, and Ci are tokens from Sen-
tence2.

C Data Processing and Statistic893

The dataset includes two parts, question-answer894

pairs and a corpus. The question-answer pairs are895

from MRQA (Fisch et al., 2019). MRQA is a col-896

lection of extractive QA task where the goal is897

to extract an answer span given a question and a898

context. The corpus is given by MultiReQA. Par-899

ticularly, to convert extractive QA task to ReQA900

task, where the context is not given, Guo et al. 901

(2020) divide the context into single sentences and 902

combine all sentence to construct a corpus. The 903

goal is to retrieve the answer to a question from 904

the corpus. We refer reader to see the details of 905

processing of the corpus in Guo et al. (2020). We 906

remove all questions that do not have any answer in 907

the corpus in both training and testing sets. Table 908

6 shows the number of questions, the number of 909

candidates (the size of the corpus) and the average 910

number of answers per questions of each dataset. 911

The average number of answers for SearchQA and 912

TriviaQA are more than others. 913

D Questions Domain and Reasoning 914

Type 915

Table 7 shows the domains and reasoning type of 916

each dataset. We see that the MultiReQA include 917

datasets from different domains and different types 918

of reasoning skill required to answer the question. 919

E Evaluation Metrics 920

We present two evaluation metrics as follows. 921

Precision@K P@K reveals the proportion of 922

top-K retrieved candidates that are relevant. R@K 923

reveals the proportion of relevant documents are in 924

the top-K retrieved candidates. In Eq 1, N is the 925

number of questions, AK are the top-K retrieved 926

answer, A∗ is correct answers. 927

P@K =
1

N

N∑
i

|AK ∩A∗|
K

(1) 928

Mean Average Precision P@K does not take 929

the position of relevant candidates into account, 930

which means a system that ranks the relevant an- 931

swer higher than another system can not be identi- 932

fied as better. MAP address this issue, computed as 933

follows, where in Eq 2, Rel@i is 1 if the ith answer 934

is correct, 0 otherwise. 935

AveP@K =
1

|A∗|

i=K∑
i=1

P@i×Rel@i, (2) 936

MAP@K =
1

N

q=N∑
q=1

AveP@K(q) (3) 937

MRR The MRR score is computed as follows, 938

MRR =
1

N

N∑
i

1

ranki
, 939

where ranki is the rank of the first relevant answer. 940
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Dataset
Train Test

Ques. Cand. Avg. ans. per ques. Ques. Cand. Avg. ans. per ques.
SearchQA 24793 Cand. 6.00 16883 454836 6.66
TriviaQA 61688 1893674 6.00 7776 238339 6.0
HotpotQA 72519 508879 1.50 5860 52191 1.74
SQuAD 18768 95659 1.04 2063 10642 3.44
NQ 102577 71147 1.21 3892 22118 1.31
DuoRC - - - 200 5525 3.47
R.E. - - - 3301 2945 1.00
TextbookQA - - - 1501 71147 3.32
BioASQ - - - 1503 14158 2.91

Table 6: Statistic of MultiReQA datasets

Dataset Domain Type
NQ Wikipedia single-hop
SQuAD Wikipedia single-hop
HQA Wikipedia multi-hop
TQA Trivia and quiz-league

websites
single-hop

SQA Jeopardy! TV show single-hop
DuoRC wikipedia numerical reasoning
RE Wikiread
TbQA Lessons from middle

school Life Science,
Earth Science, and Phys-
ical Science textbooks

single-hop

BioASQ Science (PubMed) arti-
cles

single-hop

Table 7: The domain and reasoning type of each
dataset.

F Regression Model Baseline941

Here, we explore two labels for regression models,942

0 and 5 on three datasets. We train each model by943

initializing it with RoBERTa. Table 8 shows the944

results, and we found that label 5 is better than 0 in945

three cases.946

Label
Dataset

SQuAD HotpotQA NQ
1 64.84 43.50 70.00
5 85.36 44.76 70.61

Table 8: Comparison of two regression models with
label 1 and 5 in terms of P@1.
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