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Figure 1: Our approach is as follows: first, an embedding model is trained on procedural data generated with OpenGL code using
self-supervised learning (SSL). In this stage, unlearning and attribution is difficult, but procedural data is much less exposed to privacy/bias
risk and real-world semantics. Next, we use the embedding model on real world tasks using only a visual memory of reference image
embeddings, without extra training. When working with real instead of procedural data, there is high privacy/bias risk and real world
semantics. However, isolating all real data to only the memory makes efficient data unlearning and privacy analysis possible. The overall
system has perfect control over all real world data, while approximating the performance of standard training.

Abstract
We train representation models with procedural
data only, and apply them on visual similarity,
classification, and semantic segmentation tasks
without further training by using visual memory—
an explicit database of reference image embed-
dings. Unlike prior work on visual memory, our
approach achieves full compartmentalization with
respect to all real-world images while retaining
strong performance. Compared to a model trained
on Places, our procedural model performs within
1% on NIGHTS visual similarity, outperforms
by 8% and 15% on CUB200 and Flowers102
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Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

fine-grained classification, and is within 10% on
ImageNet-1K classification. It also demonstrates
strong zero-shot segmentation, achieving an R2

on COCO within 10% of the models trained on
real data. Finally, we analyze procedural versus
real data models, showing that parts of the same
object have dissimilar representations in procedu-
ral models, resulting in incorrect searches in mem-
ory and explaining the remaining performance
gap.

1. Introduction
Modern vision systems learn by digesting images into
weights via gradient descent. While offering strong perfor-
mance, this approach carries concerns about interpretability,
privacy, and bias. Moreover, it makes adding and removing
data difficult, since weights store knowledge in a black-box
manner. To alleviate this issue, prior work proposed the
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Figure 2: Examples of procedural data from prior work, our new Masked Shaders: Shaders KML and Shaders KML Mixup, and the real
datasets Places and ImageNet. Masked Shaders have higher diversity and consistently beat prior processes in downstream tasks.
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Figure 3: Classification with visual memory uses k-nearest neigh-
bours (KNN) w.r.t. a database of embeddings rather than a para-
metric classifier (top). This allows efficient adding and removal of
data through modification of the database (bottom).

idea of explicitly separating how knowledge is represented,
the feature embeddings, from what knowledge is stored, the
visual memory (Geirhos et al., 2024; Weston et al., 2015;
Chen et al., 2018; Iscen et al., 2022; 2024; Gui et al., 2024;
Silva et al., 2024). Depicted in Figure 3, they called this
approach “perception with visual memory”.

Unlike a traditional network which feeds the query embed-
ding through a classifier to obtain the output, perception
with visual memory works by taking the query embedding,
retrieving its k-nearest neigbhours (KNN) from the mem-
ory, and outputting the majority label. This in turn makes
adding and removing knowledge easy and efficient: while
the classifier would need to be fine-tuned or retrained, the
visual memory can simply add and drop data samples. There

remains just one problem, the feature embeddings are also
a parametric model trained on data. While adding and re-
moving training samples from the memory is easy, doing
so from the feature embeddings is not. In this work, we
propose training the embedding model with procedural data.
Unlike real world data, procedural data is non-realistic and
is generated via simple code, and thus is much less exposed
to the privacy or bias risks that motivate unlearning. Figure 2
compares examples of procedural and real images. Prior
work focused on combining procedural embeddings with
linear classifiers trained on real data (Baradad et al., 2021;
2022), and only very briefly mentioned using a neighbors
approach. In this work, we delve deeper into this ability and
explicitly make the connection to visual memory perception.

Our contributions are as follows:

1. We demonstrate that procedural embeddings with vi-
sual memory allow perfect unlearning and privacy guar-
antees w.r.t. all real data, while retaining strong perfor-
mance.

2. We introduce the new procedural data processes
Shaders KML and Shaders KML Mixup, which yield
stronger embeddings than those of prior work.

3. We show that procedural embeddings possess remark-
able zero-shot and in-context semantic segmentation
abilities, on the same order of magnitude as embed-
dings trained on real data.

2. Related work
Visual memory marries the compartmentalization and in-
terpretability of databases with the effectiveness of neural
methods. This is done by applying k-nearest neighbours al-
gorithms on trained neural embedding databases (Papernot
& McDaniel, 2018). Prior work has proposed employing
this technique for few-shot learning (Wang et al., 2019;
Yang et al., 2020; Bari et al., 2021), adversarial robustness
(Sitawarin & Wagner, 2019; Papernot & McDaniel, 2018;
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Rajani et al., 2020), medical image classification (Zhuang
et al., 2020), confidence calibration (Papernot & McDaniel,
2018), interpretability (Papernot & McDaniel, 2018; Ra-
jani et al., 2020; Wallace et al., 2018; Lee et al., 2020),
image denoising (Plötz & Roth, 2018), retrieval- augmented
learning (Khandelwal et al., 2020; Drozdov et al., 2022),
anomaly and out-of-distribution detection (Bergman et al.,
2020; Sun et al., 2022), and language models (Wu et al.,
2022; Khandelwal et al., 2020; Min et al., 2024). In our
work, we specifically build on top of (Nakata et al., 2022)
and (Geirhos et al., 2024), which showed the effectiveness
of visual memory at large scale. Different from them, we
use procedural data to train the embeddings, thus making
all real data used be under database-like control.

Procedural data approaches train networks on non-realistic
data generated via code. The benefits of this are several fold:
it makes the process more interpretable and optimizable
(Sun et al., 2021), can be used to improve the privacy-utility
tradeoff of differentially private gradient descent (SGD)
(Abadi et al., 2016; Tang et al., 2023; Choi et al., 2024),
and provides insights on the human visual system. Prior
work has explored using fractals (Kataoka et al., 2020; An-
derson & Farrell, 2022; Nakashima et al., 2022), untrained
generative networks (Baradad et al., 2021), and recently,
openGL programs (Baradad et al., 2022). We contribute two
new processes that obtain higher performance, and show the
semantic segmentation ability of procedural models.

3. Train procedural embeddings
We train an embedding model using procedural data, sim-
ilarly to (Baradad et al., 2021; 2022). Unlike typical syn-
thetic data which approximates the target distribution using
a complex generative model, procedural data is created with
simple programs. See Figure 2 for the procedural and real
datasets considered in this work. We train vision transform-
ers (ViT) (Dosovitskiy et al., 2021) using the local-to-global
similarity objective of DINO (Caron et al., 2021). On real
data, this objective teaches models to have similar represen-
tations for parts of objects existing in reality, leaking biases
and personal identities in the process. In contrast, the same
objective but with procedural data teaches to have similar
representations for parts of abstract shapes and textures,
with much less risk of biases and privacy leakage. Procedu-
ral embeddings lack knowledge of real world entities, yet
are surprisingly strong.

We evaluate the procedural networks on a Human Visual
Similarity (HVS) task using the NIGHTS dataset (Fu et al.,
2023), an analysis missing in prior work. This benchmark
consists of a Two Alternative Forced Choice (2AFC) on trios
of images: given a reference and two options, which option
has greater embedding cosine similarity with the reference?
The test measures ability to match human judgments on

Reference Option A Option B

Realistic Procedural Random init.

Reference Option A Option B

Figure 4: Examples from the NIGHTS dataset, along with human,
realistic model, and procedural model judgments.

Figure 5: Models performance on the NIGHTS-Val benchmark.
The best procedural model, trained on Shaders KML, has a high
% alignment with humans of 82.4%, within 0.9% of the Places
model, trained on realistic data without domain overlap.

not only low-level colors and textures, which are easily
captured by simple white-box metrics, but also on mid-level
similarities in layout, pose, and content, that are harder to
define. Figure 4 shows examples from the dataset with
human and model answers. Results in Figure 5 show that
procedural data metrics have performance within 1% of the
Places model, trained on real data without domain overlap.
The ImageNet model has class overlap with NIGHTS, and
thus is only for reference. White-box metrics like PSNR
and SSIM barely perform above chance.

3.1. The Shaders KML Mixup process

The prior best procedural dataset is Shaders Mixup from
(Baradad et al., 2022). They observed that models trained
on the raw Shaders dataset learned short-cut solutions with
poor generalization, but interpolating multiple samples in
pixel space with Mixup (Zhang et al., 2018) alleviated the
issue and achieved a new state-of-the-art.

In our work, we derive a stronger approach that extracts
mixing masks from the Shaders images, rather than always

Masks extracted from shaders using K-MeansMask from Mixup

Figure 6: Constant mixing mask used by mixup (left) vs data
driven mixing masks obtained using KMeans (right). Using the
latter leads to much greater diversity.
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Compute mixtureSample shaders Extract mask

Figure 7: Diagram of the Shaders KML process. First, three
shaders s1, s2, and s3 are sampled. Next, s1 is used to obtain a
mask m using KMeans in RGB space. Finally, we mix s2 and s3
using m to obtain the Shaders KML sample.

using a constant mixing mask like in Mixup. As seen in Fig-
ure 6 this has the effect of increasing dataset diversity, found
in (Baradad et al., 2021) to be one of the biggest drivers
of performance for non-realistic data. We call this process,
shown visually in Figure 7, Shaders K-Means Leaves (S.
KML). Shaders KML obtains comparable performance to
Shaders Mixup. Applying Mixup on Shaders KML to su-
press short-cut solutions yields the Shaders KML Mixup
process, obtaining a new state-of-the-art as seen in Table 1.

4. Classification and segmentation with visual
memory

We apply the procedural models on classification and seg-
mentation tasks without further training using visual mem-
ory. We compare procedural data with training on Places,
a dataset of natural images different to the evaluation dis-
tribution, which acts as an upper bound to procedural data.
Results for training on ImageNet, which is either the target
dataset or has high overlap, is included only for reference.

Classification is qualitatively more challenging than the
similarity task from Section 3: going from mid-level con-
cepts in a small three image set, to higher-level seman-
tics in a large and diverse look-up pool of up to O(1M)
images. However, procedural models still obtain strong
performance. Table 1 shows KNN classification accuracy
on various fine-grained datasets and ImageNet-1K (Rus-
sakovsky et al., 2015). Remarkably, the best procedural
model actually beats the model trained on Places (Zhou
et al., 2018) on the fine-grained classification datasets, by
15%, 8%, and 1% on Flowers102 (Nilsback & Zisserman,
2008), CUB200 (Wah et al., 2011), and Food101 (Bossard
et al., 2014) respectively. We posit that this is due to the
little or no semantic overlap between Places and the three
fine-grained datasets, which means the Places model spends
capacity on semantic associations that are not useful. In
contrast, the procedural models learn foundational skills
from abstract shapes and textures that may better generalize.
As a sanity check, all procedural models are worse than the
ImageNet model which has semantic overlap with all three
fine-grained datasets. On ImageNet-1K classification, the
best procedural model is within <10% of the Places model.
Figure 8 shows a query image and its nearest neighbors
(NNs) for three datasets, visually showing the abilities of
procedural models.
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Figure 8: Visual comparison of query images from various
datasets and their neareast neighbours according to each of the
models. Procedural models can effectively search for perceptually
similar images on a wide variety of datasets, despite not seeing
real-world data during training.

Data type Dataset Fine-grained General
Flowers CUB Food ImageNet-1K

Target ImageNet 83.43 55.20 64.45 68.89

Realistic Places 59.51 19.09 47.78 47.30

Procedural

S. KML Mixup 75.20 27.08 48.70 37.88
S. KML 71.86 24.02 46.00 35.38
S. Mixup 73.33 19.85 47.78 35.45
Shaders 66.18 15.59 38.05 30.69
Stylegan 41.86 8.61 22.73 13.73

White-box Random init. 11.18 1.93 5.32 1.84
SIFT - - - 3.08

Table 1: Performance on KNN classification with visual memory.
The best procedural model, trained on Shaders KML Mixup, beats
the realistic Places model on Flowers, CUB, and Food fine-grained
classification, and has a gap of only 10% on ImageNet-1K.
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Figure 9: Zero-shot segmentation on COCO (Lin et al., 2015) using principal component analysis (PCA) features. Procedural models
clearly separate the bike and zebra from the background. However, visually distinct parts of the bike, such as the center and spokes of the
wheel, have similar and dissimilar representations in real and procedural models respectively. This is due to procedural models not having
seen bikes before, while real models learn they are parts of the same object.

Image Ground Truth ImageNet S. KML Shaders StyleganPlaces Random

In
-c

on
te

xt
 s

eg
m

en
ta

tio
n

Prompt

Figure 10: In-context segmentation on Ade20k (Zhou et al., 2017). Procedural models can segment arbitrary classes given a single
exemplar prompt. This holds even in the second image, where there are many distractors of the same color.
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Figure 11: KNN segmentation on Pascal (Everingham et al., 2010).
Procedural models are limited at segmenting with KNN. Due to
not seeing real-world objects during training, representations of
individual parts can be very dissimilar. This leads to spurious simi-
larities with object parts of other classes, harming performance.

Segmentation: Procedural models have remarkable seman-
tic segmentation ability. Figure 9 qualitatively shows how
procedural features clearly separate the bike and zebras from
their surroundings. Quantitatively, Table 2 shows numerical
R2 (ratio of explained variance to total variance) between
principal component analysis (PCA) features and human
labels. The best procedural model is within 10% of real data
models and highly above random and RGB features. Proce-
dural models are also capable of in-context segmentation:
given a prompt image and a prompt mask representing a
concept, they can effectively search for it in a new query
image, even in the presence of equally colored distractions
like in the second row of Figure 10. However, they struggle
at KNN semantic segmentation with a large visual memory,
as seen in Figure 11. As explained in Section 3, the DINO

Data type Dataset COCO

Realistic ImageNet 63.7

Places 62.1

Procedural

S. KML Mixup 53.7
S. KML 55.9
S. Mixup 51.4
Shaders 55.0
Stylegan 48.5

White-box Random init. 36.7
RGB 19.4

Table 2: R2 of PCA features and human label segmentations.

objective on real data teaches models to have similar rep-
resentations for parts of real world objects, even when the
parts are visually dissimilar. In contrast, procedural models,
having never seen the object during training, will have dis-
similar representations for the parts. We can observe this in
Figure 9: the center and spokes of the wheel are colored the
same in real models and differently in procedural models.
Procedural models have excessively local representations
which are vulnerable to spurious similarities with object
parts of other classes.

5



Separating Knowledge and Perception with Procedural Data

Classi�ed by procedural models
Q

ue
ry

 / 
PC

A
N

N
-1

 / 
PC

A

Not classi�ed by procedural models

Q
ue

ry
 / 

PC
A

N
N

-1
 / 

PC
A

Q
ue

ry
 / 

PC
A

N
N

-1
 / 

PC
A

Q
ue

ry
 / 

PC
A

N
N

-1
 / 

PC
A

ImageNet S. KMLPlaces RandomStylegan

ImageNet S. KMLPlaces RandomStylegan

Figure 12: Feature PCAs of images correctly (top) and incorrectly (bottom) classified by the Shaders KML Mixup model. PCAs for
correctly classified images separate distinct objects and join parts of the same object (fish, face). In the other hand, in incorrectly classified
images they fail to separate distinct objects (wall and body of the plugs) or fail to join parts of the same object (hand and face of the dial).

5. Analysis of limitations
Despite their good performance, procedural models still
lag behind models trained on real data. In this section, we
develop insights on why and how this gap occurs. Figure 12
shows feature PCAs of images and their nearest neighbor in
memory according to each model. We observe that correctly
classified images have feature PCAs close to the natural
segmentation: distinct objects are clearly separated, and
parts of the same object such as the fish and the face share
a single distinct color. In contrast, for images classified
incorrectly PCAs fail to separate distinct objects (the switch
cable and casing have very similar colors) or fail to join

parts of the same object (the hand and face of the dial have
different colors), problems which are not the case in the
feature embeddings trained on ImageNet.

Due to never having seen them during training, procedural
models do not know to identify the object that defines the
class (e.g. dial, switch) as a single entity, leading to incorrect
nearest neighbours. For example, in the balance image (first
incorrect example), the S. KML Mixup model separates the
metallic balance, dial face, and dial hand in green, yellow,
and purple respectively. The nearest neighbour correctly
has similar looking regions, but is the wrong class. We leave
finding ways of addressing these limitations to future work.
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Figure 13: Unlearning procedure in response to a legal privacy takedown request. Prior visual memory approaches can efficiently unlearn
data in the memory, but not data used to train the embedding model. Our proposal to use procedural data makes the latter case much less
likely, as procedural data has drastically lower exposure to privacy risk.

6. Efficient unlearning and privacy guarantees
Lastly, we explore how our approach can efficiently unlearn
data and compute privacy guarantees, two problems that are
expensive and difficult for prior approaches.

Data unlearning is the problem of eliminating a piece of
data from the weights of a model. This is an important issue
especially when it comes to images of humans, NSFW, or
illegal content, and has received widespread attention in
generative models. Prior work has focused on editing the
weights to suppress the concept, but current methods are
not infallible and still use the ”contaminated” weights as an
initial point, which wouldn’t satisfy a legal request. Visual
memory (Geirhos et al., 2024) offers a compelling solution:
simply remove the offending data from the memory. How-
ever, this approach fails when the offending data was used to
train the embeddings, as seen in Figure 13. Training on pro-
cedural data solves this problem elegantly by suppressing
this possibility, as it has little privacy risk.

Differential privacy characterizes anonymity of individ-
ual samples in a training set (Dwork & Roth, 2013; Dwork
et al., 2006; Dwork, 2011). For a deterministic model, the
definition is: let A be the learning algorithm, D the training
set, and A(D) the model predictions. Then A has differ-
ential privacy for x ∈ D if A(D − {x}) = A(D). This
is expensive to compute when x was used to train the em-
beddings: the latter change, so re-training is required. In
contrast, for procedural embeddings with visual memory we
can simply compare test set predictions with and without
any real image x in the memory, which takes little time to
compute. Figure 14 plots KNN classification accuracy vs
the fraction of non-private training images (those which,

Figure 14: Non-private training samples (%) versus KNN classifi-
cation accuracy on ImageNet for the procedurally trained models.
A linear relationship between accuracy and privacy is observed,
though only 0.6% of training samples are non-private.

when removed from the memory, change the prediction of
at least one test image) on ImageNet-1K. It shows a linear
trend between performance and privacy, although the mod-
els are quite private as less than 0.6% of the samples are
non-private.

Sensitive data is information that legally or ethically needs
to be handled with high standards of care and control, such
as facial identity or medical data. In this scenario, directly
training on the data is often not acceptable; procedural mod-
els with memory thus offer an elegant solution. Figure 15
shows CelebA (Liu et al., 2015) query images and nearest
neighbours according to the S. KML Mixup model. The
latter effectively matches appearance and facial expressions
despite never training on faces. Table 3 shows classification
accuracy on the MedMNIST datasets (Yang et al., 2021),
where we see that the procedural models match or exceed
the best result from the paper in 7 out of the 10 datasets
studied, and obtain good performance otherwise.
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NN in memoryQuery NN in memoryQuery NN in memoryQuery

Figure 15: Despite never training on faces, the Shaders KML Mixup model can match for appearance and facial expressions on CelebA.

Data type Dataset Path Derma OCT Pneum Breast Blood Tissue OrganA OrganC OrganS

Best from original paper 91.1 76.8 77.6 94.6 86.3 96.6 70.3 95.1 92.0 81.3

Realistic ImageNet 98.34 82.05 95.11 95.23 91.03 96.79 57.00 94.33 93.81 85.89
Places 98.21 80.96 94.52 96.18 91.03 95.85 54.83 90.09 92.56 82.26

Procedural

S. KML Mixup 98.60 81.36 92.85 96.56 93.59 95.09 55.62 83.76 81.48 74.43
S. KML 99.30 82.15 92.12 96.56 91.03 96.26 58.02 85.07 85.37 81.57
S. Mixup 98.88 81.56 89.14 96.56 92.31 96.73 53.27 81.96 82.53 74.10
Shaders 98.96 81.26 92.09 95.61 92.31 97.72 58.74 86.83 86.04 81.69
Stylegan 98.05 77.67 85.04 95.04 87.18 91.59 53.10 76.81 77.30 76.06

White-box Random init. 73.05 67.50 66.39 84.54 83.33 85.51 44.27 75.07 68.94 60.93
Table 3: KNN classification accuracy on the MedMNIST datasets. Procedural models match or exceed the best result from the original
paper (Yang et al., 2022) (a normally trained ResNet) in 7/10 datasets.

Figure 16: KNN classification accuracy on ImageNet-1K as Vi-
sion Transformer (ViT) size is scaled. Procedural models dont over-
fit as size increases; higher capacity yields higher performance.

7. Model size scaling
Figure 16 plots classification accuracy on ImageNet-1K
versus model size. We observe that models do not overfit to
procedural data as capacity increases, suggesting that with
larger models performance increases.

8. Storage, computation, and accuracy
trade-offs of memory-based versus
parametric classifier-based approaches in
practical deployments

Choosing between a memory-based approach and a paramet-
ric classifier-based parametric approach in practice involves
a number of trade-offs.

Training cost: First and foremost is the computational cost
of training. Training the linear classifier required 4 GPU-
days on an 8-V100 node, while computing the embeddings
of KNN classification required just 1.5 GPU-hours and is
doable on a single GPU. The ratio is ∼64X. If the set of
classes (the ”world”) is static, then the initial training is a
one-time cost that may be acceptable. However, the real
world is anything but static, and so re-training costs can
quickly spiral.

Inference cost: On the original research code, the inference
costs of the KNN classifier were about double of the lin-
ear classifier’s (1min52s vs 4min for the entire ImageNet
validation set of 50k). However, dedicated efficient near-
est neighbour search libraries such as faiss (Douze et al.,
2024; Johnson et al., 2019) can make search much more
efficient in a production setting i.e. with queries within a
10M database taking <0.03ms.

Memory cost: The storage requirements is where the
memory-based approach is most demanding in compari-
son with the classifier approach, as the former scales with
the number of examples while the latter with the number of
classes. On ImageNet, this ratio is about 1000X. However,
modern storage technology is incredibly cheap especially
compared to GPUs. Storing the entire ImageNet embed-
dings (384 floats x 1.3M examples) would require ∼2GiB,
and 1000GiB SSDs may be purchased online for ∼100USD.
In contrast for GPUs, a single V100 has MSRP around
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10,000USD while a single H100 has MSRP 30,000 USD,
which are needed to train the models. Essentially, storage
costs are almost negligible compared to training and infer-
ence costs.

9. Conclusion
Deep learning is an extremely powerful framework, capable
of learning with very little explicit structure by optimiz-
ing weights on data. However, representing knowledge via
weights has some important drawbacks. In particular, it is
very difficult to add, remove, and edit knowledge once its
been put into weights. As models scale, retraining or fine-
tuning becomes more and more costly, especially in a future
where data is licensed instead of bought, as most digital
goods are right now. Correcting mistakes or eliminating out-
dated data as our understanding of reality grows is also of
high interest. Privacy-wise, regulations currently limit many
AI tools in the EU. To this end, prior work proposed an
explicit separation between how knowledge is represented,
the feature embeddings, and what knowledge is stored, the
visual memory. Taking the form a database of instances,
editing knowledge in the visual memory is as simple as
adding or dropping data. However, a problem remained:
the feature embeddings themselves were generated through
weights trained on real-world data, where unlearning re-
mained difficult. In this work, we proposed training the
embeddings with procedural data. Unlike real-world data,
procedural data is non-realistic and generated via simple
code, and thus is much less exposed to the privacy or bias
risks that necessitate unlearning. Combining procedural
embeddings and visual memory results in a system where
all real world data can be flexibly added, removed, and
provably evaluated for privacy, while approximating the
performance of standard methods.
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A. Training details
We trained a vision transformers (Small ViT) (Dosovitskiy et al., 2021) for each dataset (ImageNet, Places, Shaders KML
Mixup, Shaders KML, Shaders Mixup, Shaders, and Stylegan), using the recipe and architecture of the original DINO paper
(Caron et al., 2021). In particular, we used the optimal hyperparameters for the model trained on ImageNet for all models,
rather than hyper-optimizing for performance on each specific dataset. This results in a much more rigorous evaluation,
as the optimal ImageNet hyperparameters are more likely to be bad than good for procedural non-realistic data. These
hyperparameters are: learning rate 1e-3, batch size 512, optimizer AdamW, num epochs 100, and DINO head out dim 65536.
All models are then used without any fine-tuning to obtain all the results, including Figure 5, Table 1, Figures 9 and 10, and
Tables 2 and 3.

B. Additional results
B.1. Benchmark saturation on NIGHTS

In Figure 5 it visually appears that Shaders-based procedural models are all quite close in performance to each other and
to the realistic Places model. To quantitatively test this, we performed a z-test and determined that Places, S. KML, and
Shaders are all equivalent to the 5% level. This supports the finding that procedural models have reached the level of real
models this benchmark. For the z-test, we used the average NIGHTS results and number of samples in the val dataset (1720).
We also include standard deviations of the mean for reference in Table 4.

Dataset Type Dataset NIGHTS-Val

Target ImageNet 0.8733 ± 0.0080

Realistic Places 0.8331 ± 0.0090

Procedural

S. KML Mixup 0.8105 ± 0.0095
S. KML 0.8244 ± 0.0092
S. Mixup 0.8110 ± 0.0094
Shaders 0.8169 ± 0.0093
Stylegan 0.7605 ± 0.0103

Table 4: NIGHTS-Val performance with standard deviations.

B.2. Linear decoding performance

Dataset Type Dataset KNN Linear

Target ImageNet 68.9 73.6

Realistic Places 47.3 59.6

Procedural

S. KML Mixup 37.9 47.3
S. KML 35.4 47.1
S. Mixup 35.4 44.8
Shaders 30.7 43.1
Stylegan 13.7 26.4

Table 5: Top-1 accuracy results for linear decoding on ImageNet-1K. With linear decoding, S. KML beats S. Mixup by 2.2%, despite
the KNN performances being equivalent. Moreover, the gains from adding Mixup to both Shaders and S. KML are much smaller. This
suggests that Mixup mainly reduces bad features, which can also be pruned by the decoder, while KML yields either better or a greater
amount of useful features. The two approaches are complementary, which is why Shaders KML Mixup obtains the strongest performance
overall.
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B.3. Linear decoding GradCam

ImageNet

Places

S. KML Mixup

S. KML

S. Mixup

Shaders

Stylegan

Input

Figure 17: GradCam (Selvaraju et al., 2019; Gildenblat & contributors, 2021) visualization for linear decoding on random images from
ImageNet for each of the models.

B.4. Hard-label unsupervised segmentation with K-Means
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Input Cluster 1 Cluster 2 Input Cluster 1 Cluster 2

ImageNet S. KML Mixup

Query

Query

Figure 18: Hard-level unsupervised segmentation with K-Means on COCO. The procedural S. KML Mixup model makes visually
sensible clusters, but that do not reflect real-world objects, unlike the ImageNet model. This results in incorrect class nearest neighbours,
as seen in Figure 19

Input Cluster 1 Cluster 2 Input Cluster 1 Cluster 2

ImageNet S. KML Mixup

Query

NN-1

Query

NN-1

Figure 19: Hard-level unsupervised segmentation with K-Means on ImageNet of a query image and is Nearest Neighbour (NN-1). The
procedural S. KML Mixup model makes visually sensible clusters, but that do not reflect real-world objects, unlike the ImageNet model.
The clusters of the query and NN-1 images visually resemble each other, but since the visual resemblance is not aligned with real world
objects, the choices are incorrect for classification.
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