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ABSTRACT

Assessing the quality of clustering results is a crucial and challenging task. The
B-CUBED (B3) precision and recall evaluation metric has gained popularity due
to its ability to meet four formal constraints: homogeneity, completeness, rag bag,
and size vs. quantity. However, the ’completeness’ constraint, which demands
that items of the same category be grouped in the same cluster, can pose problems
for finer clustering algorithms that identify sub-clusters within clusters. This issue
is particularly pronounced when the available labels are imprecise and coarse,
resulting in uncertain and fuzzy cluster evaluations. To address this issue, we
propose a modified evaluation metric called αMax-B3. Our approach accounts
for completeness and uncertainty in subgroup evaluation by reorganizing clusters
into super-sets based on the most prevalent label and evaluating them alongside the
original clusters using a modified weighted B3 metric. The extent of uncertainty,
given by 1− α, can be either explicitly specified or automatically estimated.

1 INTRODUCTION

The evaluation of clustering methods and their results is a complex task due to the lack of clear-cut
criteria for determining the quality of clusters (Rand, 1971). While clustering may seem simple
in theory, it is difficult to create a general framework that works for all cases (Rai & Singh, 2010;
Xu & Tian, 2015; Berkhin, 2006; Xu & Wunsch, 2005). In fact, in ”An Impossibility Theorem for
Clustering” (Kleinberg, 2002)”, an example of three simple properties was presented for which no
clustering function could satisfy all three at the same time, exposing inevitable trade-offs. Follow-up
work (Ben-David & Ackerman, 2008) proposed considering clustering quality measurements as the
object to be axiomatized rather than clustering functions, and proposed a revised set of criteria (ax-
ioms) for such measures. The authors show that the clustering-quality framework is richer and more
flexible than clustering functions because it allows the postulation of axioms that capture the features
expressed by Kleinberg’s axioms without producing a contradiction. The evaluation of clustering
methods is therefore important due to the difficulty in developing a unified clustering framework
that is independent of any underlying algorithm, objective, or model. Approaches to formalizing
such qualitative objective criteria are mainly distinguished between two categories: Intrinsic and
Extrinsic metrics. Intrinsic methods rely on inherent properties of the clustering results, while Ex-
trinsic methods use external ground truths to infer the quality and effectiveness of clustering results.
Such ground truth might be the labels of all data instances. Overall, evaluating the effectiveness of
clustering methods and their results remains a complex task.

In a work focused on extrinsic clustering evaluation metrics, the authors introduced formal con-
straints on clustering evaluation metrics with the emphasis that such metrics should be intuitive,
clarify limitations, formally provable, and discriminate metric families grouped by mathematical
foundations (Amigó et al., 2009). The authors presented and motivated four constraints on quality
measurements - homogeneity, completeness, rag bag, and size vs. quantity - and showed that only
the extrinsic B-CUBED (B3) metric (Bagga & Baldwin, 1998) out of many typically used metrics
satisfies all four constraints; the others do not. These constraints are as follows: (1) Homogeneity:
Clusters should not contain items from different categories. (2) Completeness: Items from the same
category should be placed together in the same group. (3) Rag Bag: Disorder should be less detri-

1



Under review as a conference paper at ICLR 2024

mental in a disordered cluster than in a clean cluster. (4) Cluster homogeneity: A minor error in a
large cluster should be preferred over a high number of small errors in small clusters.

Clustering involves two main components: the clustering method and the data representation. Dif-
ferent clustering algorithms identify different patterns and subgroups because they have different
concepts of neighborhoods, assumptions about data distribution, strengths and weaknesses, and use
different distance or similarity metrics. When the data representation is fixed, different clustering
algorithms will produce different results, each with its degree of success. Common clustering algo-
rithms include k-means (Ahmed et al., 2020), hierarchical clustering (Murtagh & Contreras, 2012),
DBSCAN (Schubert et al., 2017), Gaussian mixture models (Reynolds et al., 2009), and spectral
clustering (Von Luxburg, 2007). Alternatively, one can fix the clustering algorithm and train the
data representation using techniques such as deep embedding with neural networks in deep cluster-
ing (Zhou et al., 2022; Caron et al., 2018; Bo et al., 2020). In this approach, a model learns how
to optimally project and generate a data representation that is optimal for a given fixed clustering
algorithm. In the case of inexact labels in a weakly supervised context, the clustering evaluation of
the model should account for this uncertainty. Employing a sub-optimal cluster metric can result in
over-optimizing the metric without considering the true structure of the data. In the case of coarse
labels, this means without considering sub-labels. A poor metric can cause evaluation bias towards
specific clusters instead of accurately representing the true structure of the data.

The B3 algorithm is a precision and recall metric for clusters, as described by (Amigó et al., 2009).
Two items that share a category are correctly related if and only if they occur in the same cluster.
An item’s B3 precision is the fraction of objects in its cluster that share the item’s category. The
overall B3 precision is calculated as the average precision of all items in the distribution. The B3

recall is analogous. The B3 algorithm can be used to numerically assess the quality of clustering
assignments, but it does not account for imbalanced data sets. It is important to note that the B3

algorithm presupposes that the ground truth labels are exact and that there are no (relevant) sub-
clusters inside groups of equally labeled objects. For example, consider a data set with n ∗m labels
that are not visible beforehand, but instead, m groups with n item pairs are visible, and the aim is
to identify the unknown number of sub-clusters. Two clustering algorithms are given: CA, which
finds m super-sets, and CB , which finds n ∗m subsets. Although CB is preferred, the B3 algorithm
favors CA due to its higher completeness score. Consequently, the ”completeness” attribute can
be problematic in such circumstances. In other words, the constraint that ”different clusters should
contain items from different categories” (Amigó et al., 2009) can fail to select the correct model.

The key challenge in evaluating clustering quality is to construct a metric that provides a fair as-
sessment for both balanced and imbalanced data sets while adjusting for label uncertainty. This is
particularly challenging when the true structure of the data is unknown. Due to the lack of a ground-
truth comparison, the process of breaking a set of clusters into multiple newer ones is fraught with
”uncertainty.” Assuming m (possibly sub-) clusters and a deterministic aggregation function that
unifies clusters into super-sets, by grouping clusters into (fewer) super-clusters, one can move from
”uncertainty” closer to ”certainty.” This allows one to conclude: if the newly grouped clusters were
of high quality, then the super-clusters are also ”more likely” to be of high quality. Conversely, if
the superclusters are ”less likely” to have good quality, then so are the subclusters. Based on this
motivation, a new method to evaluate clustering quality can be proposed, specifically addressing the
term ”completeness” in the conventional B3 metric.

2 RELATED WORK

Weak supervision is a branch of machine learning in which the model is trained using noisy, incom-
plete, or inexact annotations instead of complete and accurate annotations (Zhou, 2018). A model
is designed to deal with noise and uncertainty in annotations and make the best possible predic-
tions based on the information given. Because producing high-quality labels is typically very costly,
weak supervision is often used to generate additional cheaper, but lower-quality labeled data. In-
accurate training data contains defects or erroneous labels. The term ”inexact” refers to training
data with imprecise labels, such as coarse categories or probabilistic labels. Inexact supervision can
result in a model with lesser prediction confidence, but also in misleading conclusions during su-
pervised evaluation of clustering results. Cluster quality evaluation with inexact labels refers to the
process of evaluating the performance of a clustering method when the ground truth labels are not
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fully known or are too generic. There exist evaluation metrics that address cluster quality evaluation
with inexact labels or uncertainty: Incomplete training data refers to data that lacks key informa-
tion or characteristics. Data clustering with partial supervision, where data is neither completely nor
accurately labeled, was also presented using a fuzzy clustering-based technique that uses available
data knowledge to supervise the clustering process (Bouchachia & Pedrycz, 2006). The adjusted
Rand Index (Rand, 1971) measures the similarity between the real and predicted (cluster) labels
while adjusting for chance; related to accuracy. ”Chance” refers to the possibility of achieving a
specific outcome by random chance in the context. This involves considering the possibility that the
agreement between the true and predicted labels might occur by coincidence, even if the clustering
method is not appropriately grouping the data points. Normalized Mutual Information (Press et al.,
2007) evaluates the mutual information between the real and predicted cluster labels, normalized by
the entropy of both; where the entropy can be regarded as a measure of uncertainty. The Fowlkes-
Mallows index (FMI) (Fowlkes & Mallows, 1983) computes the geometric mean of precision and
recall between true and generated clusters. Uncertainty in the true labels might affect the accuracy
of the clustering results because it may be difficult to accurately assign data points to their true la-
bels if the actual labels are not clearly defined or known. FMI compensates for this uncertainty by
calculating precision and recall using both the number of correct and incorrect predictions.

The B3 clustering evaluation Amigó et al. (2009) is a metric that assesses each item’s precision
and recall in a data set. Precision is the ratio of items in the same cluster that belong to the same
category as the item, while recall is the ratio of items in the item’s category that are in its cluster.
The final score is then often the harmonic mean of these individual scores. B3 has gained a lot
of attention and has received improvements and refinements to adjust to different situations. The
adapted B3 metrics (Moreno & Dias, 2015) were proposed for imbalanced data sets. The authors
argue that the original family of B3 metrics is not well adapted when data sets are imbalanced. The
Cluster-Identity-Checking Extended B3 (CICE-B3) (Rosales-Méndez & Ramı́rez-Cruz, 2013) was
proposed as a new evaluation measure for overlapping clustering algorithms consisting of a new
approach to determining precision, recall, and the F-measure, which analyzes object pairings that
co-occur in clusters and/or classes. B3 has also received criticism for overestimating performance
because the clustering gets credit for putting an element in its own cluster van Heusden et al. (2022),
which they repair by not counting the element itself.

This work emphasizes that the traditional B3 metric may not provide accurate evaluation for clus-
tering outcomes on finer subgroups or coarse labels. To address this limitation, a modified mathe-
matical formula for B3 is suggested. This modified formula incorporates a super aggregation of the
cluster groups into its scoring function, aiming to improve the quality of the evaluation process.

3 BACKGROUND

Consider a data set X consisting of elements xk with corresponding labels yk ∈ Y . Let Cj ⊂ X
be a cluster, indexed by j, such that the data clusters are mutually disjoint, i.e. ∀j,i : Ci ∩ Cj = ∅.
The set of all clusters be C. The union of all clusters is

⋃
Cj∈C Cj = X , and so all elements belong

to (exactly) one cluster. Let 1X : X ×X → {0, 1} denote the indicator function for two elements
xk, xm ∈ X . 1X returns a value of one iff both elements share the same label and belong to the
same cluster; otherwise zero:

1X(xk, xm) :=

{
1 if yk = ym ∧ ∃Cj∈C : xk, xm ∈ Cj ,

0 otherwise.
(1)

The B3 cluster score - based on precision, recall, and the Fβ-score - then is (Amigó et al., 2009):

P (X) := Exk

[
Exm|∃Cj∈C :xk,xm∈Cj

[1X(xk, xm)]
]

R(X) := Exk

[
Exm|yk=ym

[1X(xk, xm)]
]

B3(X) := Fβ(X) ≜
(1 + β2)P (X)R(X)

β2P (X) +R(X)

(2)
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4 METHODS

When attempting to identify sub-clusters within coarse ground truth categories, the assumption that
elements belonging to the same super-category should be grouped (”completeness”) can be prob-
lematic. We propose a modified evaluation metric called αMax-B3. The core concept involves
combining clusters based on their most frequently occurring label and consolidating them into label-
aggregated new cluster sets. αMax-B3 is calculated over a score weighting over the consolidated
sets and the original clusters, utilizing a trade-off parameter α for ground-truth uncertainty.

First, for a Cj , we define the most frequent label of its elements as the cluster label:

ŷj := argmax
y∈Y

|{xk ∈ Cj : yk = y}| (3)

Next, super-sets Sy are generated by merging clusters with equal max-pooled cluster labels ŷ:

Sy :=
⋃

Cj∈C

{xk ∈ Cj : ŷj = y} (4)

Thus, given |Y | labels, at most |Y |-many new super-sets Sy are generated. A corresponding super-
set for a particular label may be empty if it never reaches the majority within any cluster, in which
case it is just disregarded and ignored. In the unlikely event that argmax is not unique, the cluster
is simply not merged, left as it is, and doesn’t count as a new super-set. The final αMax-B3 scores
are then (a weighted version of) the B3 scores between the new (non-empty) super-sets Ŝ := {Sy :
Sy ̸= ∅}, and the original cluster sets C. Let P[y](Cj) denote the B3 precision score of label y on
elements in a cluster C, and R[y](Cj) respectively that of the recall. Let K be a set of cluster indices.
We denote the weighted average precision score over multiple clusters as E[

∧
k∈K P[y](Ck)] :=∑

k∈K |Ck|yP[y](Ck)/|
⋃

k∈K Ck|y; the weighted recall score is defined analogously.

Theorem 1. Let Ci, Cj be disjoint clusters. Then: E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj).

Theorem 1 (Proof A.1) shows that the precision score of the super-set is always less than or equal to
the average precision score of the individual subsets. This implies a monotonically decreasing rela-
tionship in precision, which is crucial as it yields no fluctuations in score translations. A ”decrease”
in precision scores is not concerning because the actual cluster assignments of the elements remain
unchanged; only additional super-clusters are created. The evaluation of the cluster assignments is
done on a different ”scale”; whether scores are higher or lower in comparison is not directly relevant,
but having a smooth monotonic transition is important. A stricter definition of Theorem 1 is:
Proposition 1. E[P[y](Ci) ∧ P[y](Cj)] = P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) = P[y](Cj).

This means that the average of the precision scores of two clusters for a given label y will only
be equal to that of their super-cluster iff the precisions of both sub-clusters are the same (Proof
A.2). It can be directly inferred from Theorem 1 and Proposition 1 that the translation is strictly
monotonically decreasing when P[y](Ci) ̸= P[y](Cj), as we established both a ”less equal” and an
”equality” relationship. Without equality, Theorem 1 reduces to ”strictly less” (Proof A.3).
Corollary 1. E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) ̸= P[y](Cj).

Analogously, let R[y](C) denote recall scores of label y on elements in a cluster Cj .

Theorem 2. Let Ci, Cj be two disjoint clusters. Then: E[R[y](Ci) ∧R[y](Cj)] ≤ R[y](Ci ∪ Cj).

This, again, yields a monotonic score translation, but this time, the B3 recall is higher on the super-
set (Proof A.4). A stricter definition on Theorem 2 yields:
Proposition 2. E[R[y](Ci) ∧R[y](Cj)] = R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) = 0 ∨R[y](Cj) = 0.

And similarly, Theorem 2 and Proposition 2 imply the translation is strictly monotonically increasing
whenever R[y](Ci) ̸= 0 ∧R[y](Cj) ̸= 0 (Proof A.5).

Corollary 2. E[R[y](Ci) ∧R[y](Cj)] < R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) ̸= 0 ∧R[y](Cj) ̸= 0.
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Thus, the translation of the super-set (precision and recall) scores is strictly monotonic - respectively
decreasing and increasing. However, the Fβ measure, which is a composite function involving sums
and products of both decreasing and increasing monotonic functions, does not necessarily exhibit
monotonicity. While Theorems 1 and 2 refer to pairwise clusters, this also holds for any number of
clusters, as can be proven by merging pairwise clusters inductively (Proof A.6).

Let S be the collection of all clusters. A super-set Si ⊂ S is the union of a specific list of clusters
indexed by Cj , i.e., Si :=

⋃
j∈J Cj , where J represents the set of cluster indices. Each Cj is always

assigned to exactly one Si. The set of all identified super-clusters is denoted by Ŝ. Elements in Ŝ are
mutually disjoint. The number of elements in a collection is denoted by |Si|, |Cj |, and |Si|y, |Cj |y
is the number of elements with label y in the respective collection; |y| be the total number of all
elements with label y. Naively, one may now want to assign weights to the clusters based on their
cardinality. Since each cluster index j is uniquely associated with a super-set index i, using j is
sufficient to represent the weight. Let η[j] be the weight assigned to cluster Cj , which is calculated
as the ratio of the number of elements in Cj to the total number of elements in Si. Using this naive
cluster weight, we can derive the following results.

η[j] :=
|Cj |
|Si|

=
|Cj |
|Si|

· |y||Si|y|Cj |y
|y||Si|y|Cj |y

=

|Si|y
|Si|
|Cj |y
|Cj |

/

|Si|y
|y|

|Cj |y
|y|

=
P[y](Si)

P[y](Cj)
/
R[y](Si)

R[y](Cj)
(5)

Hence, we can express the ratio η[j] of the cluster size to its super-set in terms of precision and recall.
Theorems 1, 2 imply ECj∈Si [

P[y](Cj)

P[y](Si)
] ≥ 1 ⇐⇒ P[y](Si) ≤ E[P[y](Cj)]; and R[y](Cj)

R[y](Si)
≤ 1 ⇐⇒

R[y](Cj) ≤ R[y](Si), given |Cj |y ≤ |Si|y (Proof A.9); implying E[η[j]] ≤ 1 and the equivalence:

E[η[j]] = E
[
P[y](Si)R[y](Cj)

P[y](Cj)R[y](Si)

]
= E

[
P[y](Si)

P[y](Cj)

min[R[y](Si), R[y](Cj)]

max[R[y](Si), R[y](Cj)]

]
= E

[
min[P[y](Si), P[y](Cj)]

max[P[y](Si), P[y](Cj)]

]
·
min[R[y](Si), R[y](Cj)]

max[R[y](Si), R[y](Cj)]
≤ 1

(6)

Note that E[η[j]] ≤ 1 ≠⇒ ∀j : η[j] ≤ 1; Let α ∈ [0, 1] be a cluster-specific local uncertainty
indicator. We can write a slightly modified non-monotonic α-weighted expression of Equation 6 as:

η[j]α =
min[P[y](Si), αP[y](Cj)]

max[P[y](Si), αP[y](Cj)]
·
min[αR[y](Si), R[y](Cj)]

max[αR[y](Si), R[y](Cj)]
(7)

where it holds 0 ≤ η
[j]
α ≤ 1, with limα→0 E[η[j]α ] = 0+ and limα→1 E[η[j]α ] = E[η[j]]+; both

approaching from above. Therefore, it can be either η[j]α ≤ E[η[j]] or η[j]α ≥ E[η[j]] for different α.
Thus, non-monotonic (see Proof A.8). In fact, it is min(p, αq) = max(p, αq) ⇐⇒ α = p/q.

Figure 1: Graph of η[j]
α over α.

For arbitrary but fixed precision and recall scores, the function
η
[j]
α over α has two ”inversion points”: p1 :=

P[y](Si)

P[y](Cj)
and

p2 :=
R[y](Cj)

R[y](Si)
; so ∀min(p1,p2)≤α≤α′≤max(p1,p2) : η

[j]
α = η

[j]
α′ ,

which means that given fixed scores of precision and recall,
η
[j]
α has a function maxima plateau of score uncertainty in the

interval [min(p1, p2),max(p1, p2)] (Proof A.10).

The weight function ηα over α for sample values is plotted
in Figure 1. It reaches a maximum at the value of one if:
max η

[j]
α = 1 ⇐⇒ P[y](Si)

P[y](Cj)
=

R[y](Cj)

R[y](Si)
. The local un-

certainty score η
[j]
α can be seen as the ”super-set cluster im-

portance” which weighs how important the score of the corre-
sponding super-set is over the original cluster Cj . E.g., when
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the local uncertainty is zero, then α-Max-B3 is equivalent to B3. Although α can be set manually,
we assume no prior knowledge on label uncertainty and set α := min(p1, p2) as the default choice
for extracting the highest possible η

[j]
α weight with minimal uncertainty. Let Q ∈ {C, S}, xk ∈ Cj .

We write Qk|q ≡ xk ∈ Qq and k|j ≡ j. The final αMax-B3 score is the Fβ score using:

Pα(X) ≜
1

|X|
∑
xk∈X

η[k|j]α P (Sk|i) + (1− η[k|j]α )P (Ck|j)

Rα(X) ≜
1

|X|
∑
xk∈X

η[k|j]α R(Sk|i) + (1− η[k|j]α )R(Ck|j)

(8)

4.1 EXTENSION TO IMBALANCED DATA SETS

Imbalanced class distribution is problematic during evaluation, as a simple averaging of Fβ scores
disregards label imbalance. Conventional weighted averaging, which assigns weights inverse to
frequency, may also not be appropriate because it fails to account for the diminishing value of newly
added data points as the number of items increases. This is due to the overlap in data information and
the fact that new data points are more likely to be close copies of existing ones when the volume of
samples is large; known as the effective number of samples (ENS) (Cui et al., 2019), which measures
the volume of a collection of n samples given a hyper-parameter δ ∈ [0, 1) using the derived formula
vδ(n) := (1− δn)/(1− δ) for inverse weighting. Let |yk| denote the frequency of label a yk ∈ Y in
the data set. The normalized inverse weight is wδ(xk) := vδ(|yk|)−1/

∑Y
yi
vδ(|yi|)−1; and δ is as a

hyper-parameter. (Cui et al., 2019) proposed a unified default value of δ = (|X| − 1)/|X|; which
we will be adopting. wδ(|y|) is then incorporated to define αMax-B3

δ :

P [δ]
α (X) ≜

∑
xk∈X

1

|yk|
wδ(xk)Pα(xk)

R[δ]
α (X) ≜

∑
xk∈X

1

|yk|
wδ(xk)Rα(xk)

(9)

where Pα(xk) := η
[k|j]
α P (Sk|i) + (1− η

[k|j]
α )P (Ck|j) is the precision score of an element; Rα(xk)

is defined analogously for recall. As mentioned in (Cui et al., 2019), δ = 0 corresponds to no re-
weighting, thus, δ = 0 =⇒ P

[δ]
α (X) = Pα(X) ∧ R

[δ]
α (X) = Rα(X); while δ → 1 approaches

re-weighting on inverse class frequency. Theorems 1 and 2 remain true also for the imbalanced δ-
weighted version of precision P δ

[y] and recall Rδ
[y]. The case δ = 0 is trivial, but it also holds for any

fixed δ ∈ [0, 1), i.e. P δ
[y](Ci)+P δ

[y](Cj) ≥ P δ
[y](Ci∪Cj) and Rδ

[y](Ci)+Rδ
[y](Cj) ≤ Rδ

[y](Ci∪Cj).
This becomes evident upon canceling out the weighting factor δ on respectively both sides of the
inequality (Proof A.7). Though essentially an extension of the other, the δ-weighted version has been
independently addressed for conceptual clarity. Since the η

[k|j]
α terms get canceled, this implies that

any other weighting function can be used in place of the ENS and the theorems still hold.

5 EXPERIMENTAL EVALUATION

5.1 COMPARISON OF αMAX-B3 AND TRADITIONAL B3 ON SYNTHETIC DATA

The proposed αMax-B3 method was tested on a synthetic data set with five separable classes and
compared to the traditional B3 using KMeans for multiple values of k clusters. Both methods
performed best for k = 5 and equally for k ≤ 5. However, for k > 5, the proposed method provided
a more robust and fair evaluation, assigning higher scores to sub-clusters and reasonable sub-groups
than the traditional B3.
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Figure 2: Multiple clustering assignments are evaluated using clustering scores and visual illustrations. The
optimal clustering consists of five classes, where a finer and purer sub-clustering should have better scores com-
pared than a coarser and less pure clustering. The αMax-B3 metric, a variation of the standard B3, generates
more robust and fair scores. It prioritizes correct extraction of sub-clusters over incorrect super-clusters, while
also considering non-homogeneous super-clusters only when the number of sub-clusters becomes excessive.

5.2 IMBALANCED DATA SET

We repeated the above experiment with imbalanced class labels (ratio 1:2:4:8:16) instead of bal-
anced, to assess the metric in an imbalanced data set scenario to analyze αMax-B3

δ (Figure 3).

Figure 3: The B3, αMax-B3, and αMax-B3
δ scores on an imbalanced data set with five labels. The performance

was evaluated based on different cluster counts k. On coarse clusters ( k ≤ 5), B3 and αMax-B3 perform
equally. However, αMax-B3 performs fairer on finer sub-clusters (k ≥ 5) since it gives more weight to sub-
clusters under uncertainty. αMax-B3

δ accounts for class imbalance; which results in differences in k < 5.

B3 and αMax-B3 have identical scores for k ≤ 5 as expected, but the δ-balanced variant returned a
much lower score, preferring sub-clusters in the most frequent labels and keeping clusters with few
points together. This is consistent with that there is more uncertainty in splitting smaller clusters
with few points than larger clusters with many points, because the more points there are, the more
likely it is that further sub-groups exist. δ was chosen based on the default recommendation (Cui
et al., 2019); but other values could have also been used to tweak the balancing.

5.3 EVALUATION OF AUTOMATIC UNCERTAINTY DETERMINATION

We analyzed the automatic uncertainty determination of α in our method. To empirically demon-
strate that the automatically determined values of the uncertainty parameter α relate to the actual
ground truth uncertainty, we compared our method to the standard B3 evaluation score and the
benchmark scores of the real uncertainty value α. We used artificial clustering problems with pure
and noise groups of cluster assignments, both with and without miss-assignments or outliers. Hence,
the actual number of subclusters, which is equivalent to the uncertainty, provided a ground truth
benchmark. We set k = 10 classes and evaluated the B3 score for n ∈ {1, ..., 8} subclusters per
class, requiring a data set of k × 8! instances and a total of k × n clusters. The ground truth bench-
mark was thus using the uncertainty of α = 1/n. The results are given in Table 1. As can be seen,
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the scores for the automatically determined values of α match those of the ground truth uncertainty
perfectly without any noise, and almost perfectly up to about four decimals with increasing noise.
In particular, different from those of the traditional B3.

Table 1: A comparison of scores against ground truth uncertainty.

NO NOISE / PURE CLUSTERS

N B3 α B3 1
n

B3

1 1.00 1.00000 1.00000
2 0.67 0.85714 0.85714
3 0.50 0.71429 0.71429
4 0.40 0.60870 0.60870
5 0.33 0.52941 0.52941
6 0.29 0.46809 0.46809
7 0.25 0.41935 0.41935
8 0.22 0.37975 0.37975

25% RANDOM LABELS

N B3 α B3 1
n

B3

1 0.61 0.60591 0.60591
2 0.41 0.52126 0.52126
3 0.30 0.43281 0.43280
4 0.24 0.36957 0.36955
5 0.20 0.32099 0.32098
6 0.17 0.28405 0.28403
7 0.15 0.25339 0.25338
8 0.13 0.23050 0.23048

50% RANDOM LABELS

N B3 α B3 1
n

B3

1 0.32 0.32439 0.32439
2 0.22 0.27938 0.27938
3 0.16 0.23241 0.23240
4 0.13 0.19755 0.19754
5 0.11 0.17234 0.17231
6 0.09 0.15187 0.15185
7 0.08 0.13623 0.13620
8 0.07 0.12344 0.12340

We further performed experiments on data sets exhibiting mixed subgroup uncertainty, defined as
the union of two different data sets of equal cardinality, each characterized by distinct subgroup un-
certainty. The benchmark was established as the arithmetic mean of both subgroups’ uncertainties;
we denote ∅ 1

n B3. The results are presented in Table 2. When merging data sets of equal size but
with varying numbers of subclusters, the scores of the automatic evaluation remained similar, albeit
with some notable differences. Increasing the number of samples and the number of class clusters k
only reduced the score difference slightly.

Table 2: A comparison of scores from merged data with varying levels of uncertainty (subcluster tuples) under
different degrees of noise, and number of instances and cluster classes.

NO NOISE / PURE CLUSTERS

N B3 α B3 ∅ 1
n

B3

(1,5) 0.559 0.673 0.672
(2,6) 0.356 0.512 0.481
(3,7) 0.269 0.416 0.384
(4,8) 0.219 0.353 0.323

25% RANDOM LABELS

N B3 α B3 ∅ 1
n

B3

(1,5) 0.340 0.411 0.410
(2,6) 0.217 0.312 0.295
(3,7) 0.165 0.255 0.236
(4,8) 0.135 0.217 0.200

50% RANDOM LABELS

N B3 α B3 ∅ 1
n

B3

(1,5) 0.186 0.226 0.225
(2,6) 0.120 0.173 0.164
(3,7) 0.091 0.141 0.133
(4,8) 0.075 0.121 0.113

K=50

N B3 α B3 ∅ 1
n

B3

(1,5) 0.467 0.622 0.620
(2,6) 0.290 0.440 0.422
(3,7) 0.217 0.350 0.327
(4,8) 0.176 0.294 0.273

K=150

N B3 α B3 ∅ 1
n

B3

(1,5) 0.450 0.609 0.608
(2,6) 0.279 0.427 0.410
(3,7) 0.208 0.338 0.317
(4,8) 0.168 0.283 0.264

K=300

N B3 α B3 ∅ 1
n

B3

(1,5) 0.445 0.606 0.604
(2,6) 0.276 0.423 0.407
(3,7) 0.206 0.335 0.314
(4,8) 0.166 0.281 0.261

5.4 UNCERTAINTY ESTIMATE AND EXTRAPOLATION

We extract the level of uncertainty by measuring the plateau interval and extrapolating the α val-
ues and compare the estimation with the ground truth uncertainty of the data set. We do this, by
calculating the expectation of all automatically determined alpha values (over all function Plateaus
intervals using α := min(p1, p2); see Figure 1). The results are given in Table 3; for a single and
merged data sets respectively (as in Section 5.3):

On the consistent data set, the uncertainty estimation was perfect. However, on merged data sets
with inconsistent (i.e. different) uncertainties, there were slight differences, but the estimation was
nevertheless close.
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Table 3: Estimating the data set uncertainty by extrapolating α.

CONSISTENT DATA SET

REAL α 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

EXTR. α 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

MERGED DATA SETS

REAL α 0.6 0.333 0.238 0.188

EXTR. α 0.5 0.290 0.218 0.172

6 DISCUSSION

Coarse ground-truth labels make it harder to accurately evaluate clustering results. A poor assess-
ment measure can certainly confuse the analyst and lead to incorrect interpretations and conclusions
(e.g. the choice of the right model, hyper-parameters, etc.). Being aware of the issue enables us to
counteract or avert this situation. The fundamental challenge is how to adequately evaluate cluster-
ing results using a supervised metric if the labels are coarse and not representative as ground-truths.
We approached this problem by leveraging the observation that we can determine or choose a degree
of uncertainty to either encourage or discourage sub-group identification. Even though the labels are
inexact, using a supervised measure is still required in this scenario. An unsupervised loss function
is often based on the assumption that data points within a cluster are similar to each other but dissim-
ilar to those in other clusters. This may not be appropriate since sub-groups could still be extremely
similar, but more importantly, it does not guarantee that the clusters are homogeneous, especially as
we do not want to mix instances with different labels in the same cluster. If the labels were exactly
the ground truth, or if we were not concerned with discovering sub-groups, setting the uncertainty
1− α to zero will yield the same results as B3.

The α parameter in αMax-B3 is cluster-specific, unlike δ, because it is dependent on the precision
and recall of a particular cluster. α and ηα are related, although they have distinct roles. The final
cluster uncertainty score is based on precision and recall and reflected by ηα. On the other hand,
α reflects the uncertainty between the original clusters and the merged super-clusters. ηα then uses
α for its score assessment. The values for α and δ can also be set manually. However, manual
adjustment introduces hyper-parameters, which can be time-consuming and tricky to optimize.

The automatic determination of α, selected over the function’s maxima Plateau (see Figure 1), ap-
proximates the real (unknown) uncertainty in the data very well, and about perfectly over a consistent
set of uncertainty across all clusters. However, the more noisy and uneven the cluster uncertainty
is across the clusters (i.e. different levels of uncertainties across clusters), the less accurate this
approximation becomes. Overall, this is very fortunate and provides a good automatic way of set-
ting the uncertainty. Furthermore, we can also extract the level of uncertainty by measuring the
plateau interval and extrapolating the α values to obtain an approximation or estimate of the data set
uncertainty.

7 SUMMARY & CONCLUSION

This work has identified a concern regarding the widely used B3 cluster quality metric when coarse
labels are involved, which can lead to unfair and misleading evaluations. To address this issue, a
new metric called αMax-B3 has been proposed. This solution modifies the evaluation of the stan-
dard B3 method by adapting to sub-group uncertainty in ground-truth labels and can be generalized
to accommodate imbalanced data sets. The proposed evaluation method merges clusters into larger
groups called super-sets and evaluates them using a modified B3 based metric that applies a weight-
ing factor to control the contribution of the super-sets. Unlike the standard B3 technique, αMax-B3

can produce more robust and fair results and adapt to label uncertainty. This uncertainty is controlled
by an α parameter and setting it to zero yields the same results as the standard B3 metric. Our so-
lution is easy to implement, has a solid theoretical foundation, and has many practical applications,
making it an attractive evaluation metric in the field of clustering.

REFERENCES

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

9



Under review as a conference paper at ICLR 2024
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A PROOFS

A.1 THEOREM 1

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 1 is to be proven: E[P[y](Ci) ∧
P[y](Cj)] ≥ P[y](Ci ∪ Cj), where P[y](Cj) denotes the precision scores of label y on elements in a
cluster Cj . Let |Ci|, |Cj | ∈ N denote the total number of elements in Ci, Cj and |Ci|y, |Cj |y ∈ N
respectively the number of elements in Ci, Cj with label y. We know 0 ≤ |Cj |y ≤ |Cj | ∧ 0 ≤
|Ci|y ≤ |Ci|. Therefore:

E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj)

⇐⇒ |Ci|yPy(Ci) + |Cj |yPy(Cj)

|Ci|y + |Cj |y
≥ Py(Ci ∪ Cj)

⇐⇒
|Ci|y |Ci|y

|Ci| + |Cj |y |Cj |y
|Cj |

|Ci|y + |Cj |y
≥ |Ci|y + |Cj |y

|Ci|+ |Cj |

⇐⇒
|Ci|2y
|Ci| +

|Cj |2y
|Cj |

|Ci|y + |Cj |y
− |Ci|y + |Cj |y

|Ci|+ |Cj |
≥ 0

⇐⇒
|Cj ||Ci|2y + |Ci||Cj |2y
|Ci||Cj |(|Ci|y + |Cj |y)

− |Ci|y + |Cj |y
|Ci|+ |Cj |

≥ 0

⇐⇒ (|Ci||Cj |y − |Cj ||Ci|y)2

|Ci||Cj |(|Ci|y + |Cj |y)(|Ci|+ |Cj |)
≥ 0

⇐⇒ (|Ci||Cj |y − |Cj ||Ci|y)2 ≥ 0 ⇐⇒ ⊤

(10)

A.2 PROPOSITION 1

We prove statement Proposition 1: E[P[y](Ci) ∧ P[y](Cj)] = P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) =
P[y](Cj), where P[y](Cj) is the precision scores of label y on elements in a cluster Cj . Let 0 ≤
|Cj |y ≤ |Cj | ∧ 0 ≤ |Ci|y ≤ |Ci| be defined as in Proof A.1, from which we know the inequality:
E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y(Ci ∪ Cj) ⇐⇒ (|Ci|y|Cj | − |Cj |y|Ci|)2 ≥ 0, and so:

E[P[y](Ci) ∧ P[y](Cj)] = P[y(Ci ∪ Cj)

⇐⇒ (|Ci|y|Cj | − |Cj |y|Ci|)2 = 0

⇐⇒ |Ci|y
|Ci|

=
|Ci|y
|Ci|

⇐⇒ P[y](Ci) = P[y](Cj)

(11)

A.3 COROLLARY 1

We prove Corollary 1, which states that E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) ̸=
P[y](Cj). According to Theorem 1, E[P[y](Ci)∧P[y](Cj)] ≥ P[y](Ci∪Cj) always holds. Therefore,

11
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if P[y](Ci) ̸= P[y](Cj), we apply Proposition 1 to conclude E[P[y](Ci)∧P[y](Cj)] ̸= P[y](Ci∪Cj).
Consequently, it must follow that E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj).

A.4 THEOREM 2

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 2 is to be proven: E[R[y](Ci) ∧
R[y](Cj)] ≤ R[y](Ci ∪ Cj), where R[y](Cj) denotes the B3 recall score of label y on elements
in a cluster Cj . Let |y| ∈ N denote the total number of elements with label y in all clusters, i.e. in
the entire data set, and |Ci|y, |Cj |y ∈ N respectively the number of elements in clusters Ci, Cj with
label y. Then:

E[R[y](Ci) ∧R[y](Cj)] ≤ R[y](Ci ∪ Cj)

⇐⇒
|Ci|yR[y](Ci) + |Cj |yR[y](Cj)

|Ci|y + |Cj |y
≤ R[y](Ci ∪ Cj)

⇐⇒
(|Ci|y |Ci|y

|y| ) + (|Cj |y |Cj |y
|y| )

|Ci|y + |Cj |y
≤ |Ci|y + |Cj |y

|y|

⇐⇒ 0 ≤ |Ci|y + |Cj |y
|y|

−
|Ci|2y + |Cj |2y

|y|(|Ci|y + |Cj |y)

⇐⇒ 0 ≤
(|Ci|y + |Cj |y)2 − |Ci|2y − |Cj |2y

|y|(|Ci|y + |Cj |y)

⇐⇒ 0 ≤ 2|Ci|y|Cj |y
|y|(|Ci|y + |Cj |y)

⇐⇒ 0 ≤ |Ci|y|Cj |y ⇐⇒ ⊤

(12)

A.5 PROPOSITION 2

We prove Proposition 2: E[R[y](Ci)∧R[y](Cj)] = R[y](Ci∪Cj) ⇐⇒ R[y](Ci) = 0∨R[y](Cj) =

0. R[y](Cj) is the B3 recall score of label y on elements in a cluster. Let |y|, Ci, Cj , |Ci|y, |Cj |y be
as in Proof A.1. We know E[R[y](Ci) ∧R[y](Cj)] ≤ R[y](Ci ∪ Cj) ⇐⇒ |Ci|y|Cj |y ≥ 0, thus:

E[R[y](Ci) ∧R[y](Cj)] = R[y](Ci ∪ Cj)

⇐⇒ |Ci|y|Cj |y = 0

⇐⇒ |Ci|y = 0 ∨ |Cj |y = 0

⇐⇒ R[y](Ci) = 0 ∨R[y](Cj) = 0

(13)

A.6 GENERALIZATION TO MULTIPLE CLUSTERS

Let P[y](Cj), R[y](Cj) denote the B3 precision and recall scores of label y on elements in a cluster
Cj . It was shown earlier that Theorems 1 & 2 hold for any two pairwise clusters. Assume now
having a fixed but arbitrary number of clusters C1, C2, ..., Ck, with k > 2. The following grouping
can now be iteratively applied for j > 1:

C∗
1 := C1

C∗
j := Cj ∪C∗

j−1

(14)

Notice C∗
j ≜

⋃
i<j Ci. The above definition allows us to realize that for any tuple pair (Cj ,C

∗
j−1)

Theorems 1 & 2 must also hold. Thus, in particular, it holds for the pair (Ck,C
∗
k−1), and so:

12
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E[P[y](
⋃
j≤k

Cj)] ≤ E[P[y](C
∗
k−1) ∧ P[y](Ck)]

≤ E
[
E[P[y](C

∗
k−2) ∧ P[y](Ck−1)] ∧ P[y](Ck)

]
≤ E[E[...E[P[y](C

∗
1 ) ∧ P[y](C2)]...] ∧ P[y](Ck−1) ∧ P[y](Ck)]

≤ E[P[y](C1) ∧ ... ∧ P[y](Ck−1) ∧ P[y](Ck)]

≤ E
[ ∧
j≤k

P[y](Cj)
]

(15)

Likewise, it holds that:

E[R[y](
⋃
j≤k

Cj)] ≥ E[R[y](C
∗
k−1) ∧R[y](Ck)] ≥ E

[ ∧
j≤k

R[y](Cj)
]

(16)

A.7 PROOF OF COHERENCE FOR αMAX-B3
δ

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 1 is to be proven for the weighted ver-
sion: E[P δ

[y](Ci)∧P δ
[y](Cj)] ≥ E[P δ

[y](Ci ∪Cj)], where P δ
[y](C) is the ENS-weighted B3 precision

scores of label y on elements in Cj for a δy ∈ [0, 1]; with weight wy := (1 − δ|y|)/(1 − δ). |y|
be the frequency of the class y in the entire data set. Let |Ci|, |Cj | ∈ N denote the total number of
elements in Ci, Cj and |Ci|y, |Cj |y ∈ N respectively the number of elements in clusters Ci, Cj with
label y.

E[P δ
[y](Ci) ∧ P δ

[y](Cj)] ≥ P δ
[y](Ci ∪ Cj)

⇐⇒ E
[
w−1

y P[y](Ci) ∧ w−1
y P[y](Cj)

]
≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ w−1
y

|Ci|yR[y](Ci) + |Cj |yR[y](Cj)

|Ci|y + |Cj |y
≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ w−1
y E[P[y](Ci) ∧ P[y](Cj)] ≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj)
ProofA.1⇐⇒ ⊤

(17)

Since the weight w−1
y cancels out, the proof for Proposition 1 follows immediately. Similarly, it can

be shown that Theorem 2 holds as well for E[Rδ
[y](Ci) ∧Rδ

[y](Cj)] ≤ E[Rδ
[y](Ci ∪ Cj)]:

E[Rδ
[y](Ci) ∧Rδ

[y](Cj)] ≤ Rδ
[y](Ci ∪ Cj)

⇐⇒ E
[
w−1

y R[y](Ci) + w−1
y R[y](Cj)

]
≤ w−1

y R[y](Ci ∪ Cj)

⇐⇒ w−1
y

|Ci|yR[y](Ci) + |Cj |yR[y](Cj)

|Ci|y + |Cj |y
≤ w−1

y R[y](Ci ∪ Cj)

⇐⇒ E[R[y](Ci) ∧R[y](Cj)] ≤ R[y](Ci ∪ Cj)
ProofA.4⇐⇒ ⊤

(18)

Again, since w−1
y cancels out, the respective proof for Proposition 2 follows directly.

A.8 PROOF OF NON-MONOTONICITY

Following Equations 5, 7, let E[η[j]α ] be a continuous function over the closed interval α ∈ [0, 1] such
that limα→0 E[η[j]α ] = 0+ and limα→1 E[η[j]α ] = E[η[j]]+. We show that E[η[j]α ] cannot be monotonic
while approaching its limit from above at both endpoints. Suppose, for the sake of contradiction, that
E[η[j]α ] is a monotonic function. Since limα→1 E[η[j]α ] = E[η[j]]+, there exists an α′ ∈ [0, 1] such

13
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that 0+ ≤ E[η[j]α′ ] ≤ E[η[j]]+. By the Intermediate Value Theorem, there must exist an α′′ ∈ [0, 1]

such that E[η[j]α′′ ] = E[η[j]]. However, this contradicts the assumption that E[η[j]α ] approaches its
limit from above at both endpoints. Therefore, it cannot be monotonic.

A.9 THEOREMS’ INEQUALITY IMPLICATIONS

Let Si be a set of clusters Cj ⊂ Si such that Si is the union of all the elements in the clusters,
Si :=

⋃
Cj∈Si Cj . We show that Theorems 1, 2 imply that ECj∈Si [

P[y](Cj)

P[y](Si)
] ≥ 1; and R[y](Cj)

R[y](Si)
≤ 1.

Let |Si|, |Cj | ∈ N denote the number of elements and |Si|y, |Cj |y ∈ N respectively the number of
elements with label y. |Si| ≥ |Cj | and |Si|y ≥ |Cj |y is guaranteed since Cj ⊂ Si. |y| ∈ N is the
total number of elements with label y in the entire data set.

Starting with recall, where:

R[y](Cj)

R[y](Si)
=

|Cj |y
|y|

/
|Si|y
|y|

=
|Cj |y
|Si|y

≤ 1. (19)

holds trivially per definition since |Si|y ≥ |Cj |y .

For precision, we know:

ECj∈Si
[P[y](Cj)

P[y](Si)

]
≜

1

|S|
∑

Cj∈Si

P[y](Cj)

P[y](Si)
(20)

and therefore,

ECj∈Si
[P[y](Cj)

P[y](Si)

]
≥ 1 ⇐⇒ 1

|S|
∑

Cj∈Si

P[y](Cj)

P[y](Si)
≥ 1

⇐⇒ 1

|S|
∑

Cj∈Si

P[y](Cj) ≥ P[y](Si) ⇐⇒ 1

|S|
∑

Cj∈Si

|Cj |y
|Cj |

≥ |Si|y
|Si|

(21)

We can re-write the expression |Si|y
|Si| as:

|Si|y
|Si|

=

∑
Cj∈Si |Cj |y∑
Cj∈Si |Cj |

=
∑

Cj∈Si

|Cj |y∑
Ck∈Si |Ck| (22)

and since
∑

Ck∈Si |Ck| ≥ E[|Cj |] = 1
|S|

∑
Ck∈Si |Ck|, we obtain the inequality of:

∑
Cj∈Si

|Cj |y∑
Ck∈Si |Ck|

≤
∑

Cj∈Si

|Cj |y
1
|S|

∑
Ck∈Si |Ck| (23)

and so, with 1
|S|

∑
Ck∈Si |Ck| ≥ 1

|S| |Cj | for all j, we have:

1

|S|
∑

Cj∈Si

|Cj |y
|Cj |

≥
∑

Cj∈Si

|Cj |y
1
|S|

∑
Ck∈Si |Ck|

≥ |Si|y
|Si| (24)

which proofs ECj∈Si
[ P[y](Si)

P[y](Cj)

]
≤ 1.
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A.10 PROOF OF α-PLATEAU

We prove the existence of a function plateau in Equation 7 by proving that the function:

f(α) :=
min[p, αq] min[p2, αq2]

max[p, αq] max[p2, αq2]
(25)

has a plateau f(α1) = f(α2) within min[a, a2] ≤ α1 ≤ α2 ≤ max[a, a2] for α1, α2 ∈ [0, 1]; given
ν1 = p1

q1
, ν2 = p2

q2
, and fixed p1, q1, p2, q2. First, we consider the fact that:

gp,q(α) :=
min[p, αq]

max[p, αq]
=

{
αq
p if α ≤ p

q
p
αq = (αqp )−1 otherwise

(26)

which holds since min[p, αq] = αq ⇐⇒ αq ≤ p ⇐⇒ α ≤ p
q , and max[p, αq] =

−min[−p,−αq]. W.l.o.g, assume ν1 ≤ ν2, and let α ∈ [ν1, ν2]. Since α1 ≥ ν1, it holds
gp1,q1(α) = (αq1p1

)−1. Similarly, α ≤ ν2 =⇒ gp2,q2(α) = αq2
p2

. Therefore, ν, ν2 are the two
inversion points:

f(α) = gp1,q1(α) · gp2,q2(α) =
p1
αq1

αq2
p2

=
p1q2
q1p2

= ν1ν2 (27)

which is independent of α within that interval and, thus, constant (i.e. a plateau).
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