Under review as a conference paper at ICLR 2025

FORGET BUT RECALL: INCREMENTAL LATENT RECTI-
FICATION IN CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Intrinsic capability to continuously learn a changing data stream is a desideratum
of deep neural networks (DNNs). However, current DNNs suffer from catastrophic
forgetting, which hinders remembering past knowledge. To mitigate this issue,
existing Continual Learning (CL) approaches either retain exemplars for replay,
regularize learning, or allocate dedicated capacity for new tasks. This paper
investigates an unexplored CL direction for incremental learning called Incremental
Latent Rectification or ILR. In a nutshell, ILR learns to propagate with correction
(or rectify) the representation from the current trained DNN backward to the
representation space of the old task, where performing predictive decisions is easier.
This rectification process only employs a chain of small representation mapping
networks, called rectifier units. Empirical experiments on several continual learning
benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate
the effectiveness and potential of this novel CL direction compared to existing
representative CL methods.

1 INTRODUCTION

Humans exhibit the innate capability to incrementally learn novel concepts while consolidating
acquired knowledge into long-term memories (Rasch & Born, 2007). More general Artificial
Intelligence systems in real-world applications would require similar imitation to capture the dynamic
of the changing data stream. These systems need to acquire knowledge incrementally without
retraining, which is computationally expensive and exhibits a large memory footprint (Rebuffi et al.,
2016). Nonetheless, existing learning approaches are yet to match human learning in this so-called
Continual Learning (CL) problem due to catastrophic forgetting (McCloskey & Cohenl [1989)). These
systems encounter difficulty balancing the capability of incorporating new task knowledge while
maintaining performance on learned tasks, or the plasticity-stability dilemma.

Representative CL approaches in the literature usually involve the use of memory buffer for rehearsal
(Ratcliff, [1990; |(Chaudhry et al., 2019a; Buzzega et al.l |2020; |Caccia et al.l [2022; Bhat et al.,
2023} |Arani et al. [2022)), auxiliary loss term for learning regularization (Kirkpatrick et al., 2017}
Ebrahimi et al., |2020; [Zenke et al., 2017} |[Schwarz et al., |2018), or structural changes such as
pruning or model growing (Rusu et al.| 2016 Mallya & Lazebnik, [2018; |Fernando et al., 2017} Yan
et al.; |2021). These methods share the common objective of discouraging the deviation of learned
knowledge representation. Rehearsal-based methods allow the model to revisit past exemplars to
reinforce previously learned representations. Alternatively, regularization-based methods prevent
changes in parameter spaces by formulating additional loss terms. However, both approaches present
shortcomings, including keeping a rehearsal buffer of all past tasks during the model lifetime or
infusing ad-hoc inductive bias into the regularization process. Meanwhile, structure-based methods
utilize the over-parameterization property of the model by pruning, masking, or adding parameters to
reduce new task interferences.

This paper studies a novel approach for CL named Incremental Latent Rectification (ILR), where we
allow the model to “forget” knowledge of old tasks but then “recall” or rectify such “catastrophic
forgetting” during inference using a sequence of lightweight knowledge mapping networks. These
lightweight knowledge mapping networks, called rectifiers, help significantly reduce information loss
on learned tasks by incrementally correcting the changes in the representation space. Specifically,
for each new task, we add a small, simple, and computationally inexpensive auxiliary unit that will

Under review as a conference paper at ICLR 2025

rectify the representation from the current task to the previous task. Our method differs from many
network expansion methods, where additional parameters are allocated to minimize changes to the
old parameters. Instead, we iteratively recover past task representations by backwardly propagating
current representations through a series of mapping networks. Through this mechanism, ILR allows
the optimal adaptation of a new task (plasticity) while separately mitigating catastrophic forgetting. In
addition, different from various CL approaches that heavily modify the training process, ILR imposes
minimal changes to new task learning as modifications are mainly performed after the training process
has been completed. Hence, ILR can be easily integrated into the existing CL pipelines.

Contributions. We propose a new direction for CL by sequentially correcting the representation of
the current task into the past task’s representation using a chain of lightweight rectifier units:

* We propose ILR, a novel approach to continual learning that separates catastrophic forgetting
mitigation with new task learning via a sequence of lightweight rectifier units.

* To train the rectifier unit, we rely on either data samples from task ¢ — 1 or the current task ¢;
when such data is unavailable (e.g., due to memory constraint or privacy concerns), a generative
model that synthesizes task ¢ — 1’s data can also be utilized. At inference time, for the task-
incremental setting, we construct a chain of rectifiers based on the provided task identity and
forward the latent representation and inputs to correct the representation. For the class incremental
setting, ILR forms the final prediction from an ensemble of predictions based on the reconstructed
representations.

* We empirically evaluate our approach on three widely-used continual learning benchmarks
(CIFAR10, CIFAR100, and Tiny ImageNet) to demonstrate that our approach achieves comparable
performance with the existing representative CL directions.

This paper unfolds as follows. Section [2]discusses the literature on the continual learning problems,
and Section [3]describes our Incremental Latent Rectification method. Finally, Section[d] provides the
empirical evidence for the effectiveness of our proposed solution.

2 RELATED WORK

Catastrophic forgetting is a critical concern in artificial intelligence and is arguably one of the most
prominent questions to address for DNNs. This phenomenon presents significant challenges when
deploying models in different applications. Continual learning addresses this issue by enabling
agents to learn throughout their lifespan. This aspect has gained significant attention recently (Sun
et al., 20225 Hu et al.l 2021} |[Kirichenko et al., [2021; [Balaji et al., 2020). Considering a model
well-trained on past tasks, we risk overwriting its past knowledge by adapting it for new tasks. The
problem of knowledge loss can be addressed using different methods, as explored in the literature
(Yin et al., |2020; [Farajtabar et al., [2020; Kirkpatrick et al., [2017; |Li & Hoiem) 2017} |(Chaudhry
et al.,[2019a; [Bhat et al.,|2023; |Rusu et al., [2016; |Yan et al., 2021)) . These methods aim to mitigate
knowledge loss and improve task performance through three main approaches: (1) Rehearsal-based
methods, which involve reminding the model of past knowledge by using selective exemplars; (2)
Regularization-based methods, which penalize changes in past task knowledge through regularization
techniques; (3) Parameter-isolation and Dynamic Architecture methods, which allocate sub-networks
or expand new sub-networks, respectively, for each task, minimizing task interference and enabling
the model to specialize for different tasks.

Rehearsal-based. Experience replay methods build and store a memory of the knowledge learned so
far (Rebuffi et al.,|2016; |[Lopez-Paz & Ranzato| 2017;|Shin et al., 2017 Riemer et al., 2018} |R10s
& Itti, 2018; Zhang et al 2019). As an example, Averaged Gradient Episodic Memory (A-GEM)
(Chaudhry et al.l [2019a)) builds an episodic memory of parameter gradients, while ER-Reservoir
(Chaudhry et al.,|2019) uses a reservoir sampling method to maintain the episodic memory. These
methods have shown strong performance in recent studies. However, they require a significant amount
of memory to store the examples.

Regularization-based. A popular early work using regularization is the elastic weight consolidation
(EWC) method (Kirkpatrick et al.,|2017). Other methods (Zenke et al., [2017; |Aljundi et al.| 2018}
Van et al., 2022; Nguyen et al., 2018} |/Ahn et al.l [2019) propose different criteria to measure the
“importance” of parameters. A later study showed that many regularization-based methods are

Under review as a conference paper at ICLR 2025

variations of Hessian optimization (Yin et al., 2020). These methods typically assume there are
multiple optima in the updated loss landscape in the new data distribution. One can find a good
optimum for both the new and old data distributions by constraining the deviation from the original
model weights.

Parameter Isolation. Parameter isolation methods allocate different subsets of the parameters to each
task (Rusu et al.| 2016} |Jerfel et al.,[2019;Rao et al.L|2019; |Li et al.,[2019). From the stability-plasticity
perspective, these methods implement gating mechanisms that improve stability and control plasticity
by activating different gates for each task. Masse et al.| (2018)) proposes a bio-inspired approach for a
context-dependent gating that activates a non-overlapping subset of parameters for any specific task.
Supermask in Superposition (Wortsman et al.,[2020)) is another parameter isolation method that starts
with a randomly initialized, fixed base network and, for each task, finds a sub-network (supermask)
such that the model achieves good performance.

Dynamic Architecture. Different from Parameter Isolation, which allocates subnets for tasks in a
fixed main network, this approach dynamically expands the network structure. |Yoon et al.| (2018)
proposes a method that leverages the network structure trained on previous tasks to effectively learn
new tasks, while dynamically expanding its capacity by adding or duplicating neurons as needed.
Other methods (Xu & Zhul, 2018; |Qin et al., 2021)) reformulate CL problems into reinforcement
learning (RL) problems and leverage RL methods to determine when to expand the architecture when
learning new tasks. [Yan et al.|(2021)) introduces a two-stage learning method that first expands the
previous frozen task feature representations by a new feature extractor, then re-trains the classifier
with current and buffered data.

3 PROPOSED FRAMEWORK

We consider the task-incremental and class-incremental learning scenarios, where we sequentially
observe a set of tasks ¢t € {1,..., N}. The neural network comprises a single task-agnostic feature
extractor f and a classifier w with task-specific heads w®|Y_,. The architecture of f is fixed;
however, its parameters are gradually updated as new tasks arrive. At task ¢, the system receives the
training dataset D{**" sampled from the data distribution D; and learns the updated parameters of
the feature extractor f and w. For easier discussion, the feature extractor and classifier obtained after
learning at task ¢ are denoted as f; and wy, respectively. Thus, after learning on task ¢, we obtain the
evolved feature extractor f; and classifier w; We call the latent space created by the feature extractor
trained with D*#i" as the t-domain. Catastrophic forgetting occurs as the feature extractor fy is
updated into f;, ¢’ < t, which causes the ¢'-domain to be overwritten by the ¢-domain. This domain
shift degrades the model’s performance over time.

To overcome catastrophic forgetting, we propose a new CL paradigm: learning a latent rectification
mechanism. This mechanism relies on a lightweight rectifier unit r, that learns to align the represen-
tations from the ¢-domain to the (¢ — 1)-domain. Intuitively, this module “corrects” the representation
change of a sample from the old task ¢ — 1 due to the evolution of the feature extractor f when learning
the newer task . These rectifier units will establish a chain of corrections for the representation of
any task’s input, allowing the model to predict the rectified representation better. Figure[I|provides a
visualization of the inference process on a task-¢ sample, after learning N tasks.

Learning the latent rectification mechanism is central to our proposed framework. In general, each
rectifier unit should be small compared to the size of the final model or the feature extractor f, and
its learning process should be resource-efficient. The following sections present and describe our
solution for learning this mechanism.

3.1 LEARNING THE RECTIFIER UNIT

As the training dataset D{*#" of task ¢ arrives, we first update the feature extractor f; and the classifier
head w;. The primary goal herein is to find (f;, w;) that has high classification performance for
task ¢, and the secondary goal is to choose f; that can reduce the catastrophic forgetting on previous
tasks. To combat catastrophic forgetting, we will first discuss the objective function for learning the
lightweight rectifier unit 7; and the potential alignment training data (or alignment set) S;.

Under review as a conference paper at ICLR 2025

Unavailable at inference Available at infernece

Input z € Dirain z €Dyt
1 J
1
\ 4
Feature extractor 1 fi() y In()

sesr e Ti+1 TN_1 TN
Y
Representation fi(z) i ¢ ¢ \ 4
\ e o | vt | ivate) | i@ |
. Task t Task N-2 Task N-1 Task N
Classifier repre::ntation repr:zentation repr:zentation repreassentation
Figure 1: At task ¢, the feature extractor f; and classifier head w; are optimized on the dataset Dﬁrai“.
During inference for a test sample from task ¢, we forward the input data z € D!*** through the
feature extractor and classifier head to obtain the logits. After learning all N tasks, the DNN loses
performance on task ¢ due to catastrophic forgetting. Therefore, the latent representation fx ()
is propagated through a series of rectifiers ry, . . ., 741 to perform incremental latent rectification

and obtained approximated representations fy_1, ..., f;. The logits can be obtained by passing the
recovered representation to the respective classifier head.

3.1.1 ALIGNMENT LOSS

The goal of r; is to reduce the discrepancy between task ¢’s representation f;(x;) and the previous
data representation f;_1(x;), for z; ~ D;_q; i.e., r¢(fi(x;), 2;) = fi—1(x;). One simple choice is
the I error between f;(x;) and r(f;(z;), x;). Let s be a function with parameters 0, that encodes
inputs z; into its respective past representation in domain ¢ — 1. We define the alignment loss as:

ﬁalign(es; 87Sta ftfl) =]Ea:iNSt [Hs(xl) - ft—l(xz)Hg] : (1)

In practice, we could either store the value of f;_1(x;) together with x; in memory or f;_; directly.

3.1.2 ALIGNMENT SET

The alignment set S; is used as the training data for the rectifier unit r, enabling the rectifier unit to
efficiently learn the mapping from the ¢-domain back to the ¢ — 1-domain. The design of ILR enables
several options for selecting the alignment set, including D4®, Dirain or a generative method.
Table|l|demonstrates the difference of alignment sets.

Past task ¢ — 1 data. (ILR-P) The Stri:iI:PIFSt Table 1: At task ¢, different alignment sets require
ch01ce.fc?r the alignment set S; 18 the Dy (i.e., temporarily storing different components of the
the training data from the previous task £ — 1), (raining process, which impose different trade-offs

which is sampled directly from the task t — 1°s i terms of performance, number of parameters,
distribution. With this option, each element in apd privacy.

: : 5 train ;
S; is a pair (z;, 2;), where x; € D™ is chosen

randomly and 2; = f;_1(z;) is the associated Variation t —1samples fio1 Gia

latent representation of z; under the feature ex- ILR-P (S, ¢ D{#i» v - -
tractor f;_. It is worth noting that this option ILR-C (S; = D*»*) - v
does not keep data samples from all past tasks ~ ILR-G (S¢ = D¢—1) - v

v

t € {1,..., N} like the rehearsal-based meth-
ods (Verwimp et al.| [2021]).

Current task ¢ data. (ILR-C) Another potential option for S; is task-t’s data. If we expect the tasks’
data not to be completely unrelated, using data from D™ to train r; is reasonable. As we show
in Section 4] we could achieve comparable performance to strong rehearsal-based methods while
remaining data-free when setting S; = D", Additionally, for this option, since we do not have
access to t — 1-domain data, we need to keep a copy of f;_; to approximate Z; = f;_1(x;) with
x; € Dirain,

Generated task ¢ — 1 data. (ILR-G) Generative methods provide a potential option for creating
training data for the rectifier unit ;. Instead of keeping the alignment set S; C D", we could train
a generative neural network G_1 that learns the task ¢ — 1 distribution. Unlike generative continual
learning methods, G;_1 only needs to remember the task ¢ — 1 distribution instead of all past tasks.
Thus, LRB can easily integrate with existing generative methods.

Under review as a conference paper at ICLR 2025

In addition, we could fill S; with randomly initialized samples. Nonetheless, our experiments indicate
that this approach is ineffective. Therefore, we will focus our discussion on the first three options and
leave the exploration for other choices of S; for future works.

Distiction from buffer-based methods. Rehearsal-based methods retain the data from all past tasks
t € {1,..., N} during the lifetime of the DNN. In contrast, depending on the choice of alignment set
St, ILR can be considered strictly data-free if S; = D{*®® (ILR-C) or if it uses additional generative
model (ILR-G). When S; C Dgrfli“, ILR-P can still be argued as a data-free method since task ¢ — 1
data is only retained until the end of task ¢.

3.2 INCREMENTAL LATENT ALIGNMENT

The latent alignment mechanism relies on a chain of task-specific rectifier units (r;)Y_, that aims to
correct the distortion of the representation space as the extractor f learns a new task.

3.2.1 LATENT ALIGNMENT

For an input at task ¢ — 1, its feature representation under the feature extractor f;_1 is f;—1(z).
One can heuristically define the (¢ — 1)-domain as the representation of the input under the feature
extractor f;_1. Unfortunately, the (¢ — 1)-domain is brittle under extractor update: as the subsequent
task ¢ arrives, the feature extractor is updated to f;, and the corresponding feature representation
of the same input will be shifted to f;(x). Likely, the t-domain and the (¢ — 1)-domain do not
coincide, and fi(x) # fi—1(x).

The feature rectifier unit r; aims to offset this representation shift. To do this, r; takes x, and its
t-domain representation f;(x) as input, and it outputs the rectified representation that satisfies

re(fi(x),z) = fi-1(x), ()

With this formulation, we can effectively minimize the difference between the rectified representation
r+(f+(x),) and the original representation f;_1(z). In practice, we only want to train the rectifier
unit r; and retain the learned feature extractor f;; therefore, let s(x) = r;(f(z),), we can minimize
the difference by using Laiign (6r,; 8, St, ft—1) as in Equation

3.2.2 RECTIFIER ARCHITECTURE
C]Trainable parameters Dszen parameters |

The proposed rectifier comprises two
trainable components: a weak feature

‘ /
o 1
extractor hy, and a gate function g;. o
The size of the rectifier units increases ? ld L :
linearly with respect to the number 2 | | v Tl
|
|

Ti

of tasks, similar to the classification L\‘Mzz) 2o |
heads. However, since the rectifier Lalign

unit is lightweight, this is trivial com-
pared to the size of the full model.
Figure [2] visualizes the feature recti-
fier unit. Alternative designs of the
rectifier unit that have been explored
are provided in the Appendix.

re(xi, fi(xi))

Figure 2: The rectifier unit includes a weak feature extractor
h¢, and a sigmoid autoencoder g;. The sigmoid autoencoder
acts as an element-wise gate function that filters information
from (¢ — 1)-domain knowledge in f;, while h; compensates
for the loss of information in f; due to catastrophic forgetting.

Weak feature extractor h;. The weak feature extractor h; processes the input data = to generate a
simplified representation h;(x). hy is distilled from f;_; to compress the knowledge of f;_; into
a more compact, low-capacity parameter-efficient network. For our experiment, we choose the
simplest and most naive design of a weak feature extractor composed of only two 3x3 convolution
layers and two max pooling layers. Instead of processing the full-size image, we use max-pooling to
down-sample the input to 16x16 images before feeding into h;. The weak feature extractor is a small
network compared to the main model (h;’s architecture is provided in Table[3]in the Appendix).

Gate function g,. Due to catastrophic forgetting, the original representation of f;_; (x) will deterio-
rate as f is updated. The gate function g, offsets the information loss by computing an element-wise
gating weight 0 < g4(f;(z)) < 1 of the representation f;(z) to capture only task ¢ — 1 relevant

Under review as a conference paper at ICLR 2025

information. We use the sigmoid autoencoder similar to TAMIL (Bhat et al.,|2023) comprised of a
linear encoder with ReLU activation and a linear decoder with sigmoid activation as the gate function.

The weak feature extractor h; will compensate for the remaining missing information with weight
1 — g;. Computing the element-wise weighted average of both representations, we obtain the rectified
representation r¢(x;, fi(x;)).

re(z, fi(2)) = ge(fe(2)) © fe(z) + (1 = gi(fe(2))) © he(z) 3)

Distiction from network-expansion approach. It could be argued that one can, instead, separately
train a weak feature extractor h, for each task, making it a network-expansion CL approach. However,
because h; is a small and low-capacity network, this approach is ineffective; specifically, our
experiments demonstrate that the task-incremental average accuracy across all tasks of this approach
on CIFAR100 falls below 53%. Furthermore, for network expansion approaches, the dedicated
parameters are allocated for new task learning, which fundamentally differs from ILR’s objective to
correct representation changes. The new task’s knowledge is acquired by f; and w;.

3.3 TRAINING PROCEDURE

Network training. Similar to conventional DNN training, the performance of the feature extractor f;
and the classifier head w; is measured by the standard multi-class cross-entropy loss:

M
ECE(oft,) owt 3 fta W, Dzrain) =]E(xi?yi)N’Dgr'di“ [Z Yi 1Og(g1)] 5 (4)
c=1

where M, is the number of classes of task ¢, §; is the probability-valued network output for the input
x; that depends on the feature extractor f; and the classifier w; as §; = wy o fi(x;).

Furthermore, we use the past presentation from the alignment set to enforce task ¢ — 1 representation
consistency, reduce forgetting, and enable more effective rectification by training and regularizing f;
on D**" and Sy, respectively. Let s(x) = fi(x), then we can similarly use Lajign (07, 5, St, fi—1)
in Equation (1)) with hyperparameter « :

‘Ctrain(aft 3 awf,) - £CE (eff 5 ewt; ft7 W, Dzrain) + aﬁalign(eﬁ,; S, St7 ft—l)- (5)

This is different from the rehearsal method since f only visits D;_; samples at task ¢ — 1 and task
t. After task ¢, f never see D;_; again, while for rehearsal method, f observe samples from D;_;
throughout its lifetime, risk overfitting on stored exemplars.

Rectifier training. Training the rectifier follows two main steps: train the weak feature extractor h; at
task ¢ — 1 and then the gate function g, at task ¢. The weak feature extractor h; is distilled from f;_; as
task ¢—1 training is completed using Laign (05, ; 5, D", f;—1) as in Equation (1)) with s(z) = hy(x).
Similarly, after task ¢ training is completed, we also train g; using Laiign(6y,; S, St, fi—1) as in
Equation (I) with s(x) = g:(fi(x)) © fi(z). Details of ILR’s training algorithm are provided in
Algorithm

Algorithm 1: Full training framework at task ¢ € {1,2,..., N}

Input :Training dataset D{™", hyperparameter o, alignment set S;

1 for {z;,y;} € DI*in do

9 o U oa W

| Optimize 6y, and 6,,, on D" with Liyain (0, , .,) [Equation]
for {z;,y;} € D{*" do
| Distill 6, , with Lotign (0, s, D™, f;) [Equation (I)] and s(z) = hy41 ()
if ¢ > 1 then
for {(Ei, ft,l(:ci)} € Sy do
| Optimize 6g; using Lalign (0, ; s, St, fi—1) [Equation] with s(z) = g:(f¢(2)) © fi(x)

3.4 INFERENCE PROCEDURE

We now describe how to stack multiple rectifier units r; into a chain for inference. As a new task
arrives, our model dynamically extends an additional rectifier unit, forming a sequence of rectifiers.

Under review as a conference paper at ICLR 2025

Table 2: Task-Incremental Average Accuracy across all tasks after CL training. Joint: the upper
bound accuracy when jointly training on all tasks (i.e., multi-task learning). Finetuning: the lower
bound accuracy when learning without CL techniques. |B| is the buffer of all past tasks data, while
|S¢| is the alignment training data set, which only contains data from task ¢ — 1. NP is the number of
parameters (lower is better), and AA is the average accuracy of all tasks (higher is better).

Method |B| |Se| S-CIFAR10 S-CIFAR100 S-Tinylmg

TIL NP AA \ NP AA \ NP AA
Joint)) 11.17m 98.46+0.07 11.22m 86.37+0.17 11.27v 81.86+057
Finetuning 11.17m 64.16+240 | 11.22m 24.01+214 | 11.27m 13.79+023
0-EWC) . 11.17m 69.60+522 11.22m 36.61+382 11.27m 15.67+0.67
LwF.mc 11.17m 60.96+1.48 11.22m 41.00+1.01 11.27v 23.24+071
AGEM 11.17m 90.37+1.05 11.22m 63.35+147 11.27v 37.14+032
ER 11.17m 94.24+024 11.22m 67.41+070 11.27m 46.07+0.16
DER++ 500 . 11.17» 92.49+055 11.22m 68.52+091 11.27v 50.84+0.12
ER-ACE 11.17m 94.5240.13 11.22m 67.26+050 11.27m 47.72+042
TAMIL 22.68M 94.89+o0.16 2277 76.39+029 | 23.20m 64.24+0.69
CLS-ER 33.52m 95.35+034 | 33.66M 77.03+031 33.81m 54.69+037
ILR-P | - | 500 | 12.00m 8627280 | 12.05M 76.23x0s3 | 13.13m 61.89x0.15
AGEM 11.17v 91.68+1.48 11.22m 67.43+137 1127 46.94+001
ER 11.17m 95.25+0.07 11.22m 69.69+1.49 11.27m 54.54+040
DER++ 1000) 11.17m 93.76+023 11.22m 72.27+1.13 11.27m 58.67+028
ER-ACE 11.17m 94.69+0.25 11.22m 72.46+058 11.27m 57.37+049
TAMIL 22.68Mm 95.22+0.42 22.77m 78.72+0.31 23.20m 70.89+0.04
CLS-ER 33.52m 96.05+0.11 33.66M 79.36+020 33.81m 65.00+0.02
ILR-P | - | 1000 | 12.00m 90.66+o97 | 12.05m 78.14x01z | 13.13m 66.83:+055
ILR-P \ - \ 5000 \ 12.00m 92.77+025 \ 12.05m 81.50+0.13 \ 13.13m 72.144043

Alternative alignment sets
ILR-C ‘ - ‘ S = Dy ‘ - 89.08+0.96 ‘ - 79.25+0.30 ‘ - 66.65+0.71
ILR-G | - | Si~G: | - - | - 81.37+046 | -

Task-Incremental. We consider a task-incremental learning setting where a test sample x; is coupled
with a task identifier ¢; € {1,..., N}. To classify x;, we can recover fti () by forwarding the
current latent variable fy(x) through a chain of N — ¢; rectifiers. We then pass this recovered latent
variable through classifier head w;, to make a prediction. The output 3; is computed as

Ui = wti(fti(mi)) where ftl(-rz) = Tti+1(ft+i(-r)7x) with t; < N, fN = fn

Class-Incremental. ILR relies on the task identity to reconstruct the appropriate sequence of rectifier
units for propagating the latent representation to the original space. However, no identity is provided
for the CL method in the class-incremental learning setting. We provided a simple method for
inference without task identity, which demonstrates the method’s extension to class-incremental
learning; however, more robust task-identity inference methods could also be incorporated.

We obtain the class-incremental probabilities by forming an ensemble that averages the class proba-
bilities over all domains. From the current task ¢’s domain, we iteratively rectified the latent back to
task t — 1, task ¢ — 2, ..., task 1’s domain. At each domain, we obtain the rectified representation
corresponding with the domain, which we forward through the respective classifier. We then average
the softmax probabilities of each domain, essentially forming an ensemble of w; (f;)[¢_;.

4 EXPERIMENTS

Our implementationmis based partially on the Mammoth (Boschini et al.| [2022; | Buzzega et al.,|2020)
repository, TAMiL (Bhat et al.| 2023) repository, and CLS-ER (Arani et al.,|2022) repository.

!'Source code will be publicly released after paper acceptance.

Under review as a conference paper at ICLR 2025

After T1 -78

After T2 -79 771

After T3 -78 71 79
After T4 7okl 7/ 82
After T5 /() 77/ 81 81

After T6 -7/ (31 /51 80 81 80

After T7 PRI VEL 78 77 79 82
After T8 —ZGENEL 7/ 7)) 77/ 81 80

ILR-P (|S|=5000) @

CLS-

ER (|B|=1000)

TAMIL (|B|=1000)
100

74 38
71751

After T9 {FASNEIVENEW/78 80FF]
After T10 (SRR 1) mam 7I8E8I3

ILR-P (|S|=1000)

e

ER-ACE (|B|=1000)

After T1 78 DER-++ (|B|=1000)
After T2 -78 7]
After T3 -7/ /2 78
After T4 —7ab) /5 82
After T5 ~ste1) /1 81 81
After T6 <ol A0) // 80 80
INSReB 62 59 6674 74 40!
ISR 59 55 64 70 71 74 7))
ISRER 56 52 61 66 69 70 73 [/ 75
PR 55 52 58 64 68 69 72 82

-78

-78

55 49 57|65 59 61 63 [:l!
52 47 56 61 57 55 58 64 74
53 48 57 60 57 53 56 59 61 f:p

—
[

o~
[

m
[

<
-

1
[

©
=

~
[

o o
F

—
[

o~
[

m
[

<
-

0
[

©
[

~
[

©
-

o
-

—
[

o
[

m

<
|_

-

n
-

©
s

~
[

0
-

- ~
Figure 3: The performance of various CL methods at each task training (lighter color is better).
The horizontal axis represents the task on which the model has been trained. The vertical axis
represents the task accuracy. ILR-P demonstrates a forgetting rate comparable to or better than other
rehearsal-based methods without revisiting past task samples. ILR-P with 1000 sample examples
exhibits less forgetting than DER++ and ER-ACE. ILR-P with 5000 sample examples exhibits similar

forgetting to CLS-ER and TAMiL.

4.1 EVALUATION PROTOCOL

Datasets. We select three standard continual learning benchmarks for our experiments: Sequential
CIFARI10 (S-CIFAR10), Sequential CIFAR100 (S-CIFAR100), and Sequential Tiny ImageNet (S-
TinyImg). Specifically, we divide S-CIFAR10 into five binary classification tasks, S-CIFAR100 into
five tasks with 20 classes each, and S-Tinylmg into 20 tasks with 20 classes each.

Baselines. We evaluate ILR against representa-
tive continual learning methods, including EWC

(online) [2018), and LwF (multi-
class) (Li & Hoiem| 2017), ER (Chaudhry

Table 3: Class-Incremental Average Accuracy
across all tasks after CL training. The settings
are similar to Table 2

et al] [20195), AGEM (Chaudhry eral} 2019), ~ Mepot B1 19 BCIFARIR
DER++ (Buzzega et al | 2020). ER-ACE (Cac] ——

cia et al [2022), CLS-ER (Arani et al),[2022), Joint o 122m 7107027
TAMIL (Bhat et al, 2023). We further provide Finetuning 1122 17.50+009
an upper and lower bound for all methods by DER++ 11.22m 46.96+0.17
joint training on all tasks’ data and fine-tuning ER-ACE | 000) 11.22m 47.09+1.16
without catastrophic forgetting mitigation. We TAMIL 22.77m 51.83+041
employ ResNet18 2016) as the feature _ CLS-ER 33.66m S1.13+o012
extractor for all benchmarks. The classifier com- ILR-P R 1000 12.25m 44.45+048
prises a fixed number of separate linear heads ILR.P B 5000 1225w 47.9620%

for each task.

Further details on datasets, implementation, and hyperparameters are provided in the Appendix.

4.2 RESULTS

Task-incremental. Table [2] shows the performance of ILR-P and other CL methods, including
rehearsal-based and regularization-based methods, on multiple sequential datasets, including S-
CIFAR10, S-CIFAR100, and S-TinyImg. For ILR-P, we create an alignment set from 500, 100, and
5000 samples of D%, As can be observed from the table, ILR-P achieves comparable results on

Under review as a conference paper at ICLR 2025

S-CIFAR10, compared to the baselines. On S-CIFAR100 and S-TinyImg, ILR-P is equivalent to or
outperforms all the baselines, including strong rehearsal-based methods such as TAMiL and CLS-ER,
given a sufficient alignment set, indicating its ability to rectify representation changes incrementally.

Alignment set choices. Table 2| also demonstrates the results of different alignment set choices. As
can be observed, training with data from D" (ILR-P) expectedly achieves the best performance
since the data is sampled directly from the data distribution D; of the previous task; increasing the
number of samples from D" yields better performance results. The generative network (ILR-G)
also yields comparable results due to its ability to synthesize data from D;. Furthermore, training
with Dirain (ILR-C) is an attractive choice for its competitive performance and the fact that we do

not need to keep a copy of the previous task’s data.

Class-incremental. Table [3| demonstrates the extension of ILR to class-incremental settings. As
the class-incremental probabilities are obtained through averaging, we can still achieve comparable
performance to other rehearsal-based methods given a sufficient alignment set.

Long rectification chain. Continual learning methods, including rehearsal-based approaches, often
experience performance degradation over long task sequences. In Figure [3] we demonstrate that ILR
exhibit less forgetting than several continual learning methods across the ten tasks of S-TinyImg.

4.3 PARAMETER GROWTH COMPARISON

This section studies the network-size footprint of Typle 4: Number of parameters (in millions) of
our framework. The base ResNet-18 has 11.17 mil- djfferent methods after N tasks measured on

lion parameters. We report the network sizes after the S-Tinylmg. The ResNet-18 network with
5, 10, and 20 tasks for ILR and the two baselines, g classifier head is 11.17 million parameters

CSL-ER and TAMIL, in Table d As we can ob-
serve, ILR exhibits a linear memory growth and

Methods 5Stasks 10 tasks 20 tasks

has the smallest memory footprint among the three ResNet-18 11.27» 1127w 11.27m
baselines. Further analysis reveals that the gate TAMIL 2287w 2320m 23.85m
function accounts for 0.06 million parameters while CLS-ER 338Im 3381M 33.8Im
the weak feature extractor account contributes 0.14 ILR-P 1230 13.13m 15.41m

million parameters per task.

5 LIMITATIONS

We have shown the potential and high utility of ILR’s continual learning mechanism in this paper.
Nevertheless, ILR also has some limitations. One limitation is that ILR still maintains additional
parameters, i.e., the rectifier, which incurs an additional overhead as the number of tasks increases.
Inference cost for a long chain would be costly, which can be further explored with modified chaining
methods such as skipping (i.e., building a rectifier every two tasks). Additionally, the best performance
is achieved with access to task ¢ — 1’s data. Ideally, we would want to remove this requirement;
thus, future research should focus on creating the alignment training data. We have attempted to
demonstrate that generative methods are a viable option. Furthermore, since ILR relies on the
task identity to reconstruct the rectifier sequence, application to class-incremental learning settings
requires either inferring task identity or forming an ensemble of predictions. The proposed ensemble
solution might suffer from over-confident or under-confident classifiers. Class-incremental learning
is still an open research, where more effective adaptations of our framework can be discovered.

6 CONCLUSION

This work proposes a new CL paradigm, ILR, for task incremental learning. ILR tackles catastrophic
forgetting through its novel backward-recall mechanism that learns to align the newly learned
presentation of past data to their correct representations. Unlike existing CL methods, it requires
neither a replay buffer nor intricate training modifications. Our experiments validate that the proposed
ILR achieves comparable results to the performance of existing CL baselines for task-incremental
and class-incremental learning.

Under review as a conference paper at ICLR 2025

REFERENCES

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual
learning with adaptive regularization. In Advances in Neural Information Processing Systems, pp.
43944404, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139-154, 2018.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. In International Conference on
Learning Representations, 2022.

Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott, and Ang Li. The effectiveness of memory
replay in large scale continual learning. arXiv preprint arXiv:2010.02418, 2020.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from
common representation space in lifelong learning. In The Eleventh International Conference on
Learning Representations, 2023.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15920-15930. Curran Associates, Inc., 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In International
Conference on Learning Representations, 2022.

Arslan Chaudhry, Marc’ Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-Task
and Lifelong Reinforcement Learning, 2019b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’ Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided
continual learning with bayesian neural networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=Hk1UCCVKDB.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762-3773.
PMLR, 2020.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016.

Huiyi Hu, Ang Li, Daniele Calandriello, and Dilan Gorur. One pass imagenet. In NeurlPS 2021
Workshop on ImageNet: Past, Present, and Future, 2021. URL https://openreview.net/
forum?id=mEgL92HSW6S.

10

https://openreview.net/forum?id=HklUCCVKDB
https://openreview.net/forum?id=mEgL92HSW6S
https://openreview.net/forum?id=mEgL92HSW6S

Under review as a conference paper at ICLR 2025

Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, and Katherine A. Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. In NeurIPS, 2019.

Minguk Kang and Jaesik Park. ContraGAN: Contrastive Learning for Conditional Image Generation.
2020.

Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting ACGAN: Auxiliary
Classifier GANs with Stable Training. 2021.

MinGuk Kang, Joonghyuk Shin, and Jaesik Park. StudioGAN: A Taxonomy and Benchmark of
GANSs for Image Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2023.

Polina Kirichenko, Mehrdad Farajtabar, Dushyant Rao, Balaji Lakshminarayanan, Nir Levine, Ang
Li, Huiyi Hu, Andrew Gordon Wilson, and Razvan Pascanu. Task-agnostic continual learning
with hybrid probabilistic models. 2021. URL https://openreview.net/forum?id=
ZbSeZKdgNkm.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521-3526, 2017.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. arXiv preprint arXiv:1606.09282, 2017.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467-6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
77657773, 2018.

Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting using
context-dependent gating and synaptic stabilization. Proceedings of the National Academy of
Sciences, 115(44):10467-10475, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109-165.
Elsevier, 1989.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations, 2018.

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. Bns: Building network structures
dynamically for continual learning. Advances in Neural Information Processing Systems, 34:
20608-20620, 2021.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7645-7655, 2019.

Bjorn Rasch and Jan Born. Maintaining memories by reactivation. Current Opinion in Neurobiology,
17(6):698-703, 2007.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. Psychology Review, 97(2):285-308, April 1990.

Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533-5542, 2016.

11

https://openreview.net/forum?id=ZbSeZKdqNkm
https://openreview.net/forum?id=ZbSeZKdqNkm

Under review as a conference paper at ICLR 2025

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Amanda Rios and Laurent Itti. Closed-loop GAN for continual learning. arXiv preprint
arXiv:1811.01146, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International Conference on Machine Learning, pp. 4528-4537. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaechong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990-2999, 2017.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic
online memory selection for continual learning. In International Conference on Learning Repre-
sentations (ICLR), 2022.

Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and Weilong Yang. Regularing generative
adversarial networks under limited data. In CVPR, 2021.

Linh Ngo Van, Nam Le Hai, Hoang Pham, and Khoat Than. Auxiliary local variables for improving
regularization/prior approach in continual learning. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 16-28. Springer, 2022.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and merits of
revisiting samples in continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9385-9394, 2021.

Mitchell Wortsman, V. Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
J. Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint arXiv:2006.14769, 2020.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information Processing
Systems, 31, 2018.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3014-3023, 2021.

Dong Yin, Mehrdad Farajtabar, and Ang Li. SOLA: Continual learning with second-order loss
approximation. arXiv preprint arXiv:2006.10974, 2020.

Jaehong Yoon, Eunho Yang, Jungtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In Sixth International Conference on Learning Representations. ICLR, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987-3995. PMLR, 2017.

Mengmi Zhang, Tao Wang, Joo Hwee Lim, and Jiashi Feng. Prototype reminding for continual
learning. arXiv preprint arXiv:1905.09447, 2019.

12

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENTAL SETUP

A.1 BASELINES

As detailed in Section we evaluate ILR against EWC (online version), LWF (multi-class) version,
ER, AGEM, DER++, ER-ACE, CLS-ER, and TAMiL.

For extensive comparison, we provide rehearsal-based methods with a buffer with a max capacity
of 500 and 1,000 samples, respectively. Since our method does not rely on a buffer of all task data
but only an alignment set of task ¢ — 1 data, the forgetting can be more significant, which is not a
fair comparison of ILR against other rehearsal-based methods. Therefore, we provide ILR with an
alignment set of 500, 1,000, and 5,000 samples.

We replicate training settings: For ER, DER++, ER-ACE, TAMIL, and CLS-ER, we employ the
reservoir sampling strategy to remove the reliance on task boundaries as in the original implementation.
On the other hand, ILR, AGEM, and TAMIL rely on the task boundary to learn the rectifier, modify
the buffer, and add a new task-attention module, respectively. For TAMiL, we use the best-reported
task-attention architecture. For CLS-ER, we perform inference using the stable model per the original
formulation.

A.2 DATASETS

To demonstrate the effectiveness of our method, we perform empirical evaluations on three stan-
dard continual learning benchmarks: Sequential CIFAR10 (S-CIFAR10), Sequential CIFAR100
(S-CIFAR100), and Sequential Tiny ImageNet (S-Tinylmg). The datasets are split into 5, 5, and 10
tasks containing 2, 20, and 20 classes, respectively. The dataset of S-CIFAR10 and S-CIFAR100
each includes 60000 32 x 32 images splitter into 50000 training images and 10000 test images, with
each task occupying 10000 training images and 2000 testing images. The dataset S-Tinylmg contains
1100000 64 x 64 images with 100000 training images and 10000 test images divided into ten tasks
with 10000 training images and 1000 test images each. We augment random horizontal flips and
random image cropping for each training and buffered image.

A.3 RECTIFIER DESIGNS

Weak feature extractor. We provide the architecture of the weak feature extractor h; in Table[5] We
chose a simple design of two 3x3 convolution layers and two max pooling layers.

Table 5: Architecture of the weak feature extractor h;. We use ReLLU activation after each convolution
layer. For each task, a weak feature extractor h; is distilled from the current feature extractor f;.

Layer Channel Kernel Stride Padding Output size

Input 3 16 x 16
Conv 1 64 3x3 2 1 8 x 8
MaxPool 2 4 x 4
Conv 2 128 3x3 2 1 2% 2
MaxPool 2 1x1

Linear 512

Rectifier. We have explored several options for the rectifier unit design and arrived at a gated rectifier
unit, which is the current design, and a compress-combine rectifier unit as in Figure |4} Both designs
demonstrate similar performance as shown in Table[6] However, the gated rectifier unit was selected
because it is more parameter-efficient than the compress-combine rectifier unit.

The compress-combine design includes a linear layer a; to reduce f(t)’s representation to a lower
dimension, essentially forming a bottleneck to filter task ¢ — 1 information and a linear layer b; to
combine both h;(x) representation and reduced a;(f;(x)) representation.

r¢(fi(x), x) = by(concatenate(a;(fi(x)), ht)) 6)

13

Under review as a conference paper at ICLR 2025

[Trainable parameters [~ |Frozen parameters | z €8
! l
1

. = 5

\
|

+ ‘ combine; |
B 1™
T I
|

f:(z‘) (@i,

Figure 4: Compress-combine rectifier unit design. The Compress layer forms a bottleneck to select
the remaining (¢ — 1)-domain knowledge in f;, while h; extracts compensation information for the
loss information in f;. The Combine layer aggregates and transforms the information from both h;
and f; to form the rectified representation.

[nlign

Table 6: Average accuracy of ILR-P with |S;| = 1000 using different rectifier design.
Rectifier design S-CIFAR10 S-CIFARI00 S-Tinylmg

Gated 90.66+0.97 78.14+0.18 66.83+0.55
Compress-Combine 91.02+1.76 78.53+025 66.79-+0.64

A.4 TRAINING

Settings. The training set of each task is divided into 90%-10% for training and validation. All
methods are optimized by the Adam optimizer available in PyTorch with a learning rate of 5 x 10~
As the validation loss plateau for three epochs, we reduce the learning rate by 0.1. Each task is trained
for 40 epochs. For ILR, we train h; and r; using the same formulation with Adam optimizer at a
learning rate of 5 x 10~ for 40 epochs.

GAN training. We use the StudioGan repository’s default implementation |[Kang et al.| (2023} 2021);
Kang & Park! (2020) of the BigGAN LeCam [Tseng et al.|(2021) to train the network on each task of
S-CIFAR100. The FID score for each task is between 17 and 23. The BigGAN network has nearly
95 million parameters. During ILR training, we sampled directly from the BigGAN network.

A.5 HYPERPARAMETER SEARCH

For all methods, experiments, and datasets, we perform a grid search over the following hyper-
parameters using a validation set. Some hyperparameters are obtained directly from their original
implementation to narrow the search range.

* Joint, Finetuning, LwF.mc, ER, AGEM, ER-ACE: No hyperparameters
* 0-EWC:
- X €{10,20,50,100}
- v€{09,1}
* DER++:
- «€{0.1,0.2,0.5,1}
- 5 €{0.1,0.2,0.5,1}
CLS-ER:
- rp, € {0.5,0.9}
- rs € {0.1,0.5}
- ap € {0.999}
- a; € {0.999}
e TAMIL:
- «€{0.2,0.5,1}
- p€{0.1,0.2,1}
- 60e{0.1}
e ILR:
- a€{1,2,3}

14

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters for method in Table 2]

Method |B| |Se| S-CIFAR10 S-CIFAR100 S-Tinylmg
o0-EWC)) A =100,7v=0.9 A=50,7v=0.1 A=20,v=0.9
DER++ a=0.53=0.1 a=0.2,=0.1 a=0.5,8=0.1
TAMIL a=1.0,=1.0 a=10,8=1.0 a=1.0,8=0.5
CLS-ER rp =0.5,rs =0.1 rp =0.9,7s =0.1 rp =0.5,rs =0.1
ILR-P - 500 a= a=3 a=3
DER++ a=1.0,=0.1 a=028=0.1 a=1.0,8=0.1
TAMiL a=1.0,8=1.0 a=10,8=1.0 a=1.0,8=0.5
CLS-ER rp =0.5,7s =0.1 rp =0.5,7s =0.1 rp, =097, =0.1
ILR-P - 1000 a=3 a=3 a=3
ILR-P - 5000 a=3 a=3 a=3

B VERSATILITY OF ILR FRAMEWORK

In ILR, as the tasks arrive, conventional fine-tuning or training on the new task happens without
any CL’s intervention. ILR only augments or adds to this process with a separate training of the
backward-recall mechanism. The attractiveness of this framework is twofold. First, ILR allows the
best adaptation on the new task to possibly achieve maximum plasticity while the backward-recall
mechanism mitigates catastrophic forgetting. Second, unlike previous CL approaches that heavily
modify the sequential training process, ILR minimally changes the fine-tuning process, allowing the
users to more flexibly incorporate this framework into their existing machine learning pipelines.

Relationship to Memory Linking. ILR’s process of mapping newly learned knowledge repre-
sentation resembles the popular humans’ mnemonic memory-linking technique, which establishes
associations of fragments of information to enhance memory retention or recall. E| As the model
learns a new task, the feature rectifier unit establishes a mnemonic link from the new representation

of the sample from the past task to its past task’s correct representation.

https://en.wikipedia.org/wiki/Mnemonic_link_system

15

https://en.wikipedia.org/wiki/Mnemonic_link_system

	Introduction
	Related Work
	Proposed Framework
	Learning the Rectifier Unit
	Alignment Loss
	Alignment Set

	Incremental Latent Alignment
	Latent Alignment
	Rectifier Architecture

	Training Procedure
	Inference Procedure

	Experiments
	Evaluation Protocol
	Results
	Parameter Growth Comparison

	Limitations
	Conclusion
	Detailed Experimental Setup
	Baselines
	Datasets
	Rectifier designs
	Training
	Hyperparameter search

	Versatility of ILR Framework

