
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FORGET BUT RECALL: INCREMENTAL LATENT RECTI-
FICATION IN CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Intrinsic capability to continuously learn a changing data stream is a desideratum
of deep neural networks (DNNs). However, current DNNs suffer from catastrophic
forgetting, which hinders remembering past knowledge. To mitigate this issue,
existing Continual Learning (CL) approaches either retain exemplars for replay,
regularize learning, or allocate dedicated capacity for new tasks. This paper
investigates an unexplored CL direction for incremental learning called Incremental
Latent Rectification or ILR. In a nutshell, ILR learns to propagate with correction
(or rectify) the representation from the current trained DNN backward to the
representation space of the old task, where performing predictive decisions is easier.
This rectification process only employs a chain of small representation mapping
networks, called rectifier units. Empirical experiments on several continual learning
benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate
the effectiveness and potential of this novel CL direction compared to existing
representative CL methods.

1 INTRODUCTION

Humans exhibit the innate capability to incrementally learn novel concepts while consolidating
acquired knowledge into long-term memories (Rasch & Born, 2007). More general Artificial
Intelligence systems in real-world applications would require similar imitation to capture the dynamic
of the changing data stream. These systems need to acquire knowledge incrementally without
retraining, which is computationally expensive and exhibits a large memory footprint (Rebuffi et al.,
2016). Nonetheless, existing learning approaches are yet to match human learning in this so-called
Continual Learning (CL) problem due to catastrophic forgetting (McCloskey & Cohen, 1989). These
systems encounter difficulty balancing the capability of incorporating new task knowledge while
maintaining performance on learned tasks, or the plasticity-stability dilemma.

Representative CL approaches in the literature usually involve the use of memory buffer for rehearsal
(Ratcliff, 1990; Chaudhry et al., 2019a; Buzzega et al., 2020; Caccia et al., 2022; Bhat et al.,
2023; Arani et al., 2022), auxiliary loss term for learning regularization (Kirkpatrick et al., 2017;
Ebrahimi et al., 2020; Zenke et al., 2017; Schwarz et al., 2018), or structural changes such as
pruning or model growing (Rusu et al., 2016; Mallya & Lazebnik, 2018; Fernando et al., 2017; Yan
et al., 2021). These methods share the common objective of discouraging the deviation of learned
knowledge representation. Rehearsal-based methods allow the model to revisit past exemplars to
reinforce previously learned representations. Alternatively, regularization-based methods prevent
changes in parameter spaces by formulating additional loss terms. However, both approaches present
shortcomings, including keeping a rehearsal buffer of all past tasks during the model lifetime or
infusing ad-hoc inductive bias into the regularization process. Meanwhile, structure-based methods
utilize the over-parameterization property of the model by pruning, masking, or adding parameters to
reduce new task interferences.

This paper studies a novel approach for CL named Incremental Latent Rectification (ILR), where we
allow the model to “forget” knowledge of old tasks but then “recall” or rectify such “catastrophic
forgetting” during inference using a sequence of lightweight knowledge mapping networks. These
lightweight knowledge mapping networks, called rectifiers, help significantly reduce information loss
on learned tasks by incrementally correcting the changes in the representation space. Specifically,
for each new task, we add a small, simple, and computationally inexpensive auxiliary unit that will

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

rectify the representation from the current task to the previous task. Our method differs from many
network expansion methods, where additional parameters are allocated to minimize changes to the
old parameters. Instead, we iteratively recover past task representations by backwardly propagating
current representations through a series of mapping networks. Through this mechanism, ILR allows
the optimal adaptation of a new task (plasticity) while separately mitigating catastrophic forgetting. In
addition, different from various CL approaches that heavily modify the training process, ILR imposes
minimal changes to new task learning as modifications are mainly performed after the training process
has been completed. Hence, ILR can be easily integrated into the existing CL pipelines.

Contributions. We propose a new direction for CL by sequentially correcting the representation of
the current task into the past task’s representation using a chain of lightweight rectifier units:

• We propose ILR, a novel approach to continual learning that separates catastrophic forgetting
mitigation with new task learning via a sequence of lightweight rectifier units.

• To train the rectifier unit, we rely on either data samples from task t − 1 or the current task t;
when such data is unavailable (e.g., due to memory constraint or privacy concerns), a generative
model that synthesizes task t − 1’s data can also be utilized. At inference time, for the task-
incremental setting, we construct a chain of rectifiers based on the provided task identity and
forward the latent representation and inputs to correct the representation. For the class incremental
setting, ILR forms the final prediction from an ensemble of predictions based on the reconstructed
representations.

• We empirically evaluate our approach on three widely-used continual learning benchmarks
(CIFAR10, CIFAR100, and Tiny ImageNet) to demonstrate that our approach achieves comparable
performance with the existing representative CL directions.

This paper unfolds as follows. Section 2 discusses the literature on the continual learning problems,
and Section 3 describes our Incremental Latent Rectification method. Finally, Section 4 provides the
empirical evidence for the effectiveness of our proposed solution.

2 RELATED WORK

Catastrophic forgetting is a critical concern in artificial intelligence and is arguably one of the most
prominent questions to address for DNNs. This phenomenon presents significant challenges when
deploying models in different applications. Continual learning addresses this issue by enabling
agents to learn throughout their lifespan. This aspect has gained significant attention recently (Sun
et al., 2022; Hu et al., 2021; Kirichenko et al., 2021; Balaji et al., 2020). Considering a model
well-trained on past tasks, we risk overwriting its past knowledge by adapting it for new tasks. The
problem of knowledge loss can be addressed using different methods, as explored in the literature
(Yin et al., 2020; Farajtabar et al., 2020; Kirkpatrick et al., 2017; Li & Hoiem, 2017; Chaudhry
et al., 2019a; Bhat et al., 2023; Rusu et al., 2016; Yan et al., 2021) . These methods aim to mitigate
knowledge loss and improve task performance through three main approaches: (1) Rehearsal-based
methods, which involve reminding the model of past knowledge by using selective exemplars; (2)
Regularization-based methods, which penalize changes in past task knowledge through regularization
techniques; (3) Parameter-isolation and Dynamic Architecture methods, which allocate sub-networks
or expand new sub-networks, respectively, for each task, minimizing task interference and enabling
the model to specialize for different tasks.

Rehearsal-based. Experience replay methods build and store a memory of the knowledge learned so
far (Rebuffi et al., 2016; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Riemer et al., 2018; Rios
& Itti, 2018; Zhang et al., 2019). As an example, Averaged Gradient Episodic Memory (A-GEM)
(Chaudhry et al., 2019a) builds an episodic memory of parameter gradients, while ER-Reservoir
(Chaudhry et al., 2019) uses a reservoir sampling method to maintain the episodic memory. These
methods have shown strong performance in recent studies. However, they require a significant amount
of memory to store the examples.

Regularization-based. A popular early work using regularization is the elastic weight consolidation
(EWC) method (Kirkpatrick et al., 2017). Other methods (Zenke et al., 2017; Aljundi et al., 2018;
Van et al., 2022; Nguyen et al., 2018; Ahn et al., 2019) propose different criteria to measure the
“importance” of parameters. A later study showed that many regularization-based methods are

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

variations of Hessian optimization (Yin et al., 2020). These methods typically assume there are
multiple optima in the updated loss landscape in the new data distribution. One can find a good
optimum for both the new and old data distributions by constraining the deviation from the original
model weights.

Parameter Isolation. Parameter isolation methods allocate different subsets of the parameters to each
task (Rusu et al., 2016; Jerfel et al., 2019; Rao et al., 2019; Li et al., 2019). From the stability-plasticity
perspective, these methods implement gating mechanisms that improve stability and control plasticity
by activating different gates for each task. Masse et al. (2018) proposes a bio-inspired approach for a
context-dependent gating that activates a non-overlapping subset of parameters for any specific task.
Supermask in Superposition (Wortsman et al., 2020) is another parameter isolation method that starts
with a randomly initialized, fixed base network and, for each task, finds a sub-network (supermask)
such that the model achieves good performance.

Dynamic Architecture. Different from Parameter Isolation, which allocates subnets for tasks in a
fixed main network, this approach dynamically expands the network structure. Yoon et al. (2018)
proposes a method that leverages the network structure trained on previous tasks to effectively learn
new tasks, while dynamically expanding its capacity by adding or duplicating neurons as needed.
Other methods (Xu & Zhu, 2018; Qin et al., 2021) reformulate CL problems into reinforcement
learning (RL) problems and leverage RL methods to determine when to expand the architecture when
learning new tasks. Yan et al. (2021) introduces a two-stage learning method that first expands the
previous frozen task feature representations by a new feature extractor, then re-trains the classifier
with current and buffered data.

3 PROPOSED FRAMEWORK

We consider the task-incremental and class-incremental learning scenarios, where we sequentially
observe a set of tasks t ∈ {1, . . . , N}. The neural network comprises a single task-agnostic feature
extractor f and a classifier w with task-specific heads w(t)|Nt=1. The architecture of f is fixed;
however, its parameters are gradually updated as new tasks arrive. At task t, the system receives the
training dataset Dtrain

t sampled from the data distribution Dt and learns the updated parameters of
the feature extractor f and w. For easier discussion, the feature extractor and classifier obtained after
learning at task t are denoted as ft and wt, respectively. Thus, after learning on task t, we obtain the
evolved feature extractor ft and classifier wt We call the latent space created by the feature extractor
trained with Dtrain

t as the t-domain. Catastrophic forgetting occurs as the feature extractor ft′ is
updated into ft, t′ < t, which causes the t′-domain to be overwritten by the t-domain. This domain
shift degrades the model’s performance over time.

To overcome catastrophic forgetting, we propose a new CL paradigm: learning a latent rectification
mechanism. This mechanism relies on a lightweight rectifier unit rt that learns to align the represen-
tations from the t-domain to the (t− 1)-domain. Intuitively, this module “corrects” the representation
change of a sample from the old task t−1 due to the evolution of the feature extractor f when learning
the newer task t. These rectifier units will establish a chain of corrections for the representation of
any task’s input, allowing the model to predict the rectified representation better. Figure 1 provides a
visualization of the inference process on a task-t sample, after learning N tasks.

Learning the latent rectification mechanism is central to our proposed framework. In general, each
rectifier unit should be small compared to the size of the final model or the feature extractor f , and
its learning process should be resource-efficient. The following sections present and describe our
solution for learning this mechanism.

3.1 LEARNING THE RECTIFIER UNIT

As the training dataset Dtrain
t of task t arrives, we first update the feature extractor ft and the classifier

head wt. The primary goal herein is to find (ft, wt) that has high classification performance for
task t, and the secondary goal is to choose ft that can reduce the catastrophic forgetting on previous
tasks. To combat catastrophic forgetting, we will first discuss the objective function for learning the
lightweight rectifier unit rt and the potential alignment training data (or alignment set) St.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Task N-1
representation

Task N-2
representation

Task t
representation

Feature extractor

Input

Representation

Classifier

...

Task N
representation

Unavailable at inference Available at infernece

Approximated

Figure 1: At task t, the feature extractor ft and classifier head wt are optimized on the dataset Dtrain
t .

During inference for a test sample from task t, we forward the input data x ∈ Dtest
t through the

feature extractor and classifier head to obtain the logits. After learning all N tasks, the DNN loses
performance on task t due to catastrophic forgetting. Therefore, the latent representation fN (x)
is propagated through a series of rectifiers rN , . . . , rt+1 to perform incremental latent rectification
and obtained approximated representations f̂N−1, . . . , f̂t. The logits can be obtained by passing the
recovered representation to the respective classifier head.

3.1.1 ALIGNMENT LOSS

The goal of rt is to reduce the discrepancy between task t’s representation ft(xi) and the previous
data representation ft−1(xi), for xi ∼ Dt−1; i.e., rt(ft(xi), xi) ≈ ft−1(xi). One simple choice is
the l2 error between ft(xi) and rt(ft(xi), xi). Let s be a function with parameters θs that encodes
inputs xi into its respective past representation in domain t− 1. We define the alignment loss as:

Lalign(θs; s,St, ft−1) = Exi∼St

[
∥s(xi)− ft−1(xi)∥22

]
. (1)

In practice, we could either store the value of ft−1(xi) together with xi in memory or ft−1 directly.

3.1.2 ALIGNMENT SET

The alignment set St is used as the training data for the rectifier unit rt, enabling the rectifier unit to
efficiently learn the mapping from the t-domain back to the t− 1-domain. The design of ILR enables
several options for selecting the alignment set, including Dtrain

t−1 , Dtrain
t , or a generative method.

Table 1 demonstrates the difference of alignment sets.

Table 1: At task t, different alignment sets require
temporarily storing different components of the
training process, which impose different trade-offs
in terms of performance, number of parameters,
and privacy.

Variation t− 1 samples ft−1 Gt−1

ILR-P (St ⊂ Dtrain
t−1 ) ✓ - -

ILR-C (St = Dtrain
t ) - ✓ -

ILR-G (St ≈ Dt−1) - ✓ ✓

Past task t − 1 data. (ILR-P) The simplest
choice for the alignment set St is the Dtrain

t−1 (i.e.,
the training data from the previous task t− 1),
which is sampled directly from the task t− 1’s
distribution. With this option, each element in
St is a pair (xi, ẑi), where xi ∈ Dtrain

t−1 is chosen
randomly and ẑi = ft−1(xi) is the associated
latent representation of xi under the feature ex-
tractor ft−1. It is worth noting that this option
does not keep data samples from all past tasks
t ∈ {1, . . . , N} like the rehearsal-based meth-
ods (Verwimp et al., 2021).

Current task t data. (ILR-C) Another potential option for St is task-t’s data. If we expect the tasks’
data not to be completely unrelated, using data from Dtrain

t to train rt is reasonable. As we show
in Section 4, we could achieve comparable performance to strong rehearsal-based methods while
remaining data-free when setting St = Dtrain

t . Additionally, for this option, since we do not have
access to t − 1-domain data, we need to keep a copy of ft−1 to approximate ẑi = ft−1(xi) with
xi ∈ Dtrain

t .

Generated task t − 1 data. (ILR-G) Generative methods provide a potential option for creating
training data for the rectifier unit rt. Instead of keeping the alignment set St ⊆ Dtrain

t−1 , we could train
a generative neural network Gt−1 that learns the task t− 1 distribution. Unlike generative continual
learning methods, Gt−1 only needs to remember the task t− 1 distribution instead of all past tasks.
Thus, LRB can easily integrate with existing generative methods.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

In addition, we could fill St with randomly initialized samples. Nonetheless, our experiments indicate
that this approach is ineffective. Therefore, we will focus our discussion on the first three options and
leave the exploration for other choices of St for future works.

Distiction from buffer-based methods. Rehearsal-based methods retain the data from all past tasks
t ∈ {1, . . . , N} during the lifetime of the DNN. In contrast, depending on the choice of alignment set
St, ILR can be considered strictly data-free if St = Dtrain

t (ILR-C) or if it uses additional generative
model (ILR-G). When St ⊆ Dtrain

t−1 , ILR-P can still be argued as a data-free method since task t− 1
data is only retained until the end of task t.

3.2 INCREMENTAL LATENT ALIGNMENT

The latent alignment mechanism relies on a chain of task-specific rectifier units (rt)Nt=2 that aims to
correct the distortion of the representation space as the extractor f learns a new task.

3.2.1 LATENT ALIGNMENT

For an input x at task t − 1, its feature representation under the feature extractor ft−1 is ft−1(x).
One can heuristically define the (t− 1)-domain as the representation of the input under the feature
extractor ft−1. Unfortunately, the (t− 1)-domain is brittle under extractor update: as the subsequent
task t arrives, the feature extractor is updated to ft, and the corresponding feature representation
of the same input x will be shifted to ft(x). Likely, the t-domain and the (t − 1)-domain do not
coincide, and ft(x) ̸= ft−1(x).

The feature rectifier unit rt aims to offset this representation shift. To do this, rt takes x, and its
t-domain representation ft(x) as input, and it outputs the rectified representation that satisfies

rt(ft(x), x) ≈ ft−1(x), (2)

With this formulation, we can effectively minimize the difference between the rectified representation
rt(ft(x), x) and the original representation ft−1(x). In practice, we only want to train the rectifier
unit rt and retain the learned feature extractor ft; therefore, let s(x) = rt(ft(x), x), we can minimize
the difference by using Lalign(θrt ; s,St, ft−1) as in Equation (1).

3.2.2 RECTIFIER ARCHITECTURE
Frozen parametersTrainable parameters

Figure 2: The rectifier unit includes a weak feature extractor
ht, and a sigmoid autoencoder gt. The sigmoid autoencoder
acts as an element-wise gate function that filters information
from (t− 1)-domain knowledge in ft, while ht compensates
for the loss of information in ft due to catastrophic forgetting.

The proposed rectifier comprises two
trainable components: a weak feature
extractor ht, and a gate function gt.
The size of the rectifier units increases
linearly with respect to the number
of tasks, similar to the classification
heads. However, since the rectifier
unit is lightweight, this is trivial com-
pared to the size of the full model.
Figure 2 visualizes the feature recti-
fier unit. Alternative designs of the
rectifier unit that have been explored
are provided in the Appendix.

Weak feature extractor ht. The weak feature extractor ht processes the input data x to generate a
simplified representation ht(x). ht is distilled from ft−1 to compress the knowledge of ft−1 into
a more compact, low-capacity parameter-efficient network. For our experiment, we choose the
simplest and most naive design of a weak feature extractor composed of only two 3x3 convolution
layers and two max pooling layers. Instead of processing the full-size image, we use max-pooling to
down-sample the input to 16x16 images before feeding into ht. The weak feature extractor is a small
network compared to the main model (ht’s architecture is provided in Table 5 in the Appendix).

Gate function gt. Due to catastrophic forgetting, the original representation of ft−1(x) will deterio-
rate as f is updated. The gate function gt offsets the information loss by computing an element-wise
gating weight 0 ≤ gt(ft(x)) ≤ 1 of the representation ft(x) to capture only task t − 1 relevant

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

information. We use the sigmoid autoencoder similar to TAMiL (Bhat et al., 2023) comprised of a
linear encoder with ReLU activation and a linear decoder with sigmoid activation as the gate function.

The weak feature extractor ht will compensate for the remaining missing information with weight
1− gt. Computing the element-wise weighted average of both representations, we obtain the rectified
representation rt(xi, ft(xi)).

rt(x, ft(x)) = gt(ft(x))⊙ ft(x) + (1− gt(ft(x)))⊙ ht(x) (3)

Distiction from network-expansion approach. It could be argued that one can, instead, separately
train a weak feature extractor ht for each task, making it a network-expansion CL approach. However,
because ht is a small and low-capacity network, this approach is ineffective; specifically, our
experiments demonstrate that the task-incremental average accuracy across all tasks of this approach
on CIFAR100 falls below 53%. Furthermore, for network expansion approaches, the dedicated
parameters are allocated for new task learning, which fundamentally differs from ILR’s objective to
correct representation changes. The new task’s knowledge is acquired by ft and wt.

3.3 TRAINING PROCEDURE

Network training. Similar to conventional DNN training, the performance of the feature extractor ft
and the classifier head wt is measured by the standard multi-class cross-entropy loss:

LCE(θft , θwt
; ft, wt,Dtrain

t ) = E(xi,yi)∼Dtrain
t

[
−

Mt∑
c=1

yi log(ŷi)

]
, (4)

where Mt is the number of classes of task t, ŷi is the probability-valued network output for the input
xi that depends on the feature extractor ft and the classifier wt as ŷi = wt ◦ ft(xi).

Furthermore, we use the past presentation from the alignment set to enforce task t− 1 representation
consistency, reduce forgetting, and enable more effective rectification by training and regularizing ft
on Dtrain

t and St, respectively. Let s(x) = ft(x), then we can similarly use Lalign(θft ; s,St, ft−1)
in Equation (1) with hyperparameter α :

Ltrain(θft , θwt
) = LCE(θft , θwt

; ft, wt,Dtrain
t ) + αLalign(θft ; s,St, ft−1). (5)

This is different from the rehearsal method since f only visits Dt−1 samples at task t− 1 and task
t. After task t, f never see Dt−1 again, while for rehearsal method, f observe samples from Dt−1

throughout its lifetime, risk overfitting on stored exemplars.

Rectifier training. Training the rectifier follows two main steps: train the weak feature extractor ht at
task t−1 and then the gate function gt at task t. The weak feature extractor ht is distilled from ft−1 as
task t−1 training is completed using Lalign(θht ; s,Dtrain

t−1 , ft−1) as in Equation (1) with s(x) = ht(x).
Similarly, after task t training is completed, we also train gt using Lalign(θgt ; s,St, ft−1) as in
Equation (1) with s(x) = gt(ft(x)) ⊙ ft(x). Details of ILR’s training algorithm are provided in
Algorithm 1.

Algorithm 1: Full training framework at task t ∈ {1, 2, ..., N}
Input :Training dataset Dtrain

t , hyperparameter α, alignment set St

1 for {xi, yi} ∈ Dtrain
t do

2 Optimize θft and θwt
on Dtrain

t with Ltrain(θft , θwt
) [Equation (5)]

3 for {xi, yi} ∈ Dtrain
t do

4 Distill θht+1 with Lalign(θht+1 ; s,Dtrain
t , ft) [Equation (1)] and s(x) = ht+1(x)

5 if t > 1 then
6 for {xi, ft−1(xi)} ∈ St do
7 Optimize θgt using Lalign(θgt ; s,St, ft−1) [Equation (1)] with s(x) = gt(ft(x))⊙ ft(x)

3.4 INFERENCE PROCEDURE

We now describe how to stack multiple rectifier units rt into a chain for inference. As a new task
arrives, our model dynamically extends an additional rectifier unit, forming a sequence of rectifiers.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Task-Incremental Average Accuracy across all tasks after CL training. Joint: the upper
bound accuracy when jointly training on all tasks (i.e., multi-task learning). Finetuning: the lower
bound accuracy when learning without CL techniques. |B| is the buffer of all past tasks data, while
|St| is the alignment training data set, which only contains data from task t− 1. NP is the number of
parameters (lower is better), and AA is the average accuracy of all tasks (higher is better).

Method |B| |St| S-CIFAR10 S-CIFAR100 S-TinyImg
TIL NP AA NP AA NP AA

Joint - - 11.17M 98.46±0.07 11.22M 86.37±0.17 11.27M 81.86±0.57

Finetuning 11.17M 64.16±2.40 11.22M 24.01±2.14 11.27M 13.79±0.23

o-EWC - - 11.17M 69.60±5.22 11.22M 36.61±3.82 11.27M 15.67±0.67

LwF.mc 11.17M 60.96±1.48 11.22M 41.00±1.01 11.27M 23.24±0.71

AGEM

500 -

11.17M 90.37±1.05 11.22M 63.35±1.47 11.27M 37.14±0.32

ER 11.17M 94.24±0.24 11.22M 67.41±0.70 11.27M 46.07±0.16

DER++ 11.17M 92.49±0.55 11.22M 68.52±0.91 11.27M 50.84±0.12

ER-ACE 11.17M 94.52±0.13 11.22M 67.26±0.50 11.27M 47.72±0.42

TAMiL 22.68M 94.89±0.16 22.77M 76.39±0.29 23.20M 64.24±0.69

CLS-ER 33.52M 95.35±0.34 33.66M 77.03±0.81 33.81M 54.69±0.37

ILR-P - 500 12.00M 86.27±2.89 12.05M 76.23±0.53 13.13M 61.89±0.15

AGEM

1000 -

11.17M 91.68±1.48 11.22M 67.43±1.37 11.27M 46.94±0.91

ER 11.17M 95.25±0.07 11.22M 69.69±1.49 11.27M 54.54±0.40

DER++ 11.17M 93.76±0.23 11.22M 72.27±1.13 11.27M 58.67±0.28

ER-ACE 11.17M 94.69±0.25 11.22M 72.46±0.58 11.27M 57.37±0.49

TAMiL 22.68M 95.22±0.42 22.77M 78.72±0.31 23.20M 70.89±0.04

CLS-ER 33.52M 96.05±0.11 33.66M 79.36±0.20 33.81M 65.00±0.02

ILR-P - 1000 12.00M 90.66±0.97 12.05M 78.14±0.18 13.13M 66.83±0.55

ILR-P - 5000 12.00M 92.77±0.25 12.05M 81.50±0.13 13.13M 72.14±0.43

Alternative alignment sets

ILR-C - St = Dt - 89.08±0.96 - 79.25±0.30 - 66.65±0.71

ILR-G - St ∼ Gt - - - 81.37±0.46 -

Task-Incremental. We consider a task-incremental learning setting where a test sample xi is coupled
with a task identifier ti ∈ {1, . . . , N}. To classify xi, we can recover f̂ti(x) by forwarding the
current latent variable fN (x) through a chain of N − ti rectifiers. We then pass this recovered latent
variable through classifier head wti to make a prediction. The output ŷi is computed as

ŷi = wti(f̂ti(xi)) where f̂ti(xi) = rti+1(f̂t+i(x), x) with ti < N, f̂N = fN

Class-Incremental. ILR relies on the task identity to reconstruct the appropriate sequence of rectifier
units for propagating the latent representation to the original space. However, no identity is provided
for the CL method in the class-incremental learning setting. We provided a simple method for
inference without task identity, which demonstrates the method’s extension to class-incremental
learning; however, more robust task-identity inference methods could also be incorporated.

We obtain the class-incremental probabilities by forming an ensemble that averages the class proba-
bilities over all domains. From the current task t’s domain, we iteratively rectified the latent back to
task t − 1, task t − 2, ..., task 1’s domain. At each domain, we obtain the rectified representation
corresponding with the domain, which we forward through the respective classifier. We then average
the softmax probabilities of each domain, essentially forming an ensemble of wi(fi)|ti=1.

4 EXPERIMENTS

Our implementation 1 is based partially on the Mammoth (Boschini et al., 2022; Buzzega et al., 2020)
repository, TAMiL (Bhat et al., 2023) repository, and CLS-ER (Arani et al., 2022) repository.

1Source code will be publicly released after paper acceptance.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

After T1
After T2
After T3
After T4
After T5
After T6
After T7
After T8
After T9

After T10

78
79 72
78 72 79
76 71 77 82
75 69 77 81 81
73 66 75 80 81 80
72 65 73 78 77 79 82
70 63 71 76 76 77 81 80
67 61 69 73 73 74 78 80 75
65 61 68 72 71 73 77 78 75 83

ILR-P (|S|=5000) 78
78 69
77 71 76
75 69 78 78
74 67 74 78 76
71 64 72 75 75 72
68 61 69 72 71 72 70
68 59 68 69 69 69 73 71
65 58 66 68 67 67 68 71 64
64 57 63 66 66 66 65 66 65 73

CLS-ER (|B|=1000) 79
75 73
74 66 79
74 65 72 81
72 65 72 74 82
71 63 73 73 76 80
70 63 71 73 72 74 81
69 62 71 72 73 71 75 80
70 63 69 72 71 72 73 75 75
70 62 69 72 71 70 73 72 68 82

TAMiL (|B|=1000)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

After T1
After T2
After T3
After T4
After T5
After T6
After T7
After T8
After T9

After T10

78
78 72
74 72 78
71 68 76 82
68 64 73 81 81
66 63 70 77 80 80
62 59 66 74 74 78 81
59 55 64 70 71 74 79 80
56 52 61 66 69 70 73 78 75
55 52 58 64 68 69 72 74 73 82

ILR-P (|S|=1000)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

78
70 73
63 59 80
64 58 70 83
57 49 64 72 81
59 53 63 70 69 80
55 50 59 65 64 67 80
55 49 57 65 59 61 63 80
52 47 56 61 57 55 58 64 74
53 48 57 60 57 53 56 59 61 82

DER++ (|B|=1000)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

78
70 72
67 59 79
63 56 66 82
62 53 64 72 79
59 51 61 70 68 79
57 49 58 66 63 68 81
54 46 55 61 60 62 66 80
52 45 53 58 58 57 57 65 75
52 45 55 58 55 54 54 59 60 81

ER-ACE (|B|=1000)

0

20

40

60

80

100

Figure 3: The performance of various CL methods at each task training (lighter color is better).
The horizontal axis represents the task on which the model has been trained. The vertical axis
represents the task accuracy. ILR-P demonstrates a forgetting rate comparable to or better than other
rehearsal-based methods without revisiting past task samples. ILR-P with 1000 sample examples
exhibits less forgetting than DER++ and ER-ACE. ILR-P with 5000 sample examples exhibits similar
forgetting to CLS-ER and TAMiL.

4.1 EVALUATION PROTOCOL

Datasets. We select three standard continual learning benchmarks for our experiments: Sequential
CIFAR10 (S-CIFAR10), Sequential CIFAR100 (S-CIFAR100), and Sequential Tiny ImageNet (S-
TinyImg). Specifically, we divide S-CIFAR10 into five binary classification tasks, S-CIFAR100 into
five tasks with 20 classes each, and S-TinyImg into 20 tasks with 20 classes each.

Table 3: Class-Incremental Average Accuracy
across all tasks after CL training. The settings
are similar to Table 2.

Method |B| |St| S-CIFAR100
CIL NP AA

Joint - - 11.22M 71.07±0.27

Finetuning 11.22M 17.50±0.09

DER++

1000 -

11.22M 46.96±0.17

ER-ACE 11.22M 47.09±1.16

TAMiL 22.77M 51.83±0.41

CLS-ER 33.66M 51.13±0.12

ILR-P - 1000 12.25M 44.45±0.48

ILR-P - 5000 12.25M 47.96±0.50

Baselines. We evaluate ILR against representa-
tive continual learning methods, including EWC
(online) (Schwarz et al., 2018), and LwF (multi-
class) (Li & Hoiem, 2017), ER (Chaudhry
et al., 2019b), AGEM (Chaudhry et al., 2019a),
DER++ (Buzzega et al., 2020), ER-ACE (Cac-
cia et al., 2022), CLS-ER (Arani et al., 2022),
TAMiL (Bhat et al., 2023). We further provide
an upper and lower bound for all methods by
joint training on all tasks’ data and fine-tuning
without catastrophic forgetting mitigation. We
employ ResNet18 (He et al., 2016) as the feature
extractor for all benchmarks. The classifier com-
prises a fixed number of separate linear heads
for each task.

Further details on datasets, implementation, and hyperparameters are provided in the Appendix.

4.2 RESULTS

Task-incremental. Table 2 shows the performance of ILR-P and other CL methods, including
rehearsal-based and regularization-based methods, on multiple sequential datasets, including S-
CIFAR10, S-CIFAR100, and S-TinyImg. For ILR-P, we create an alignment set from 500, 100, and
5000 samples of Dtrain

t−1 . As can be observed from the table, ILR-P achieves comparable results on

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

S-CIFAR10, compared to the baselines. On S-CIFAR100 and S-TinyImg, ILR-P is equivalent to or
outperforms all the baselines, including strong rehearsal-based methods such as TAMiL and CLS-ER,
given a sufficient alignment set, indicating its ability to rectify representation changes incrementally.

Alignment set choices. Table 2 also demonstrates the results of different alignment set choices. As
can be observed, training with data from Dtrain

t−1 (ILR-P) expectedly achieves the best performance
since the data is sampled directly from the data distribution Dt of the previous task; increasing the
number of samples from Dtrain

t−1 yields better performance results. The generative network (ILR-G)
also yields comparable results due to its ability to synthesize data from Dt. Furthermore, training
with Dtrain

t (ILR-C) is an attractive choice for its competitive performance and the fact that we do
not need to keep a copy of the previous task’s data.

Class-incremental. Table 3 demonstrates the extension of ILR to class-incremental settings. As
the class-incremental probabilities are obtained through averaging, we can still achieve comparable
performance to other rehearsal-based methods given a sufficient alignment set.

Long rectification chain. Continual learning methods, including rehearsal-based approaches, often
experience performance degradation over long task sequences. In Figure 3, we demonstrate that ILR
exhibit less forgetting than several continual learning methods across the ten tasks of S-TinyImg.

4.3 PARAMETER GROWTH COMPARISON

Table 4: Number of parameters (in millions) of
different methods after N tasks measured on
the S-TinyImg. The ResNet-18 network with
no classifier head is 11.17 million parameters

Methods 5 tasks 10 tasks 20 tasks

ResNet-18 11.27M 11.27M 11.27M

TAMiL 22.87M 23.20M 23.85M

CLS-ER 33.81M 33.81M 33.81M

ILR-P 12.30M 13.13M 15.41M

This section studies the network-size footprint of
our framework. The base ResNet-18 has 11.17 mil-
lion parameters. We report the network sizes after
5, 10, and 20 tasks for ILR and the two baselines,
CSL-ER and TAMIL, in Table 4. As we can ob-
serve, ILR exhibits a linear memory growth and
has the smallest memory footprint among the three
baselines. Further analysis reveals that the gate
function accounts for 0.06 million parameters while
the weak feature extractor account contributes 0.14
million parameters per task.

5 LIMITATIONS

We have shown the potential and high utility of ILR’s continual learning mechanism in this paper.
Nevertheless, ILR also has some limitations. One limitation is that ILR still maintains additional
parameters, i.e., the rectifier, which incurs an additional overhead as the number of tasks increases.
Inference cost for a long chain would be costly, which can be further explored with modified chaining
methods such as skipping (i.e., building a rectifier every two tasks). Additionally, the best performance
is achieved with access to task t − 1’s data. Ideally, we would want to remove this requirement;
thus, future research should focus on creating the alignment training data. We have attempted to
demonstrate that generative methods are a viable option. Furthermore, since ILR relies on the
task identity to reconstruct the rectifier sequence, application to class-incremental learning settings
requires either inferring task identity or forming an ensemble of predictions. The proposed ensemble
solution might suffer from over-confident or under-confident classifiers. Class-incremental learning
is still an open research, where more effective adaptations of our framework can be discovered.

6 CONCLUSION

This work proposes a new CL paradigm, ILR, for task incremental learning. ILR tackles catastrophic
forgetting through its novel backward-recall mechanism that learns to align the newly learned
presentation of past data to their correct representations. Unlike existing CL methods, it requires
neither a replay buffer nor intricate training modifications. Our experiments validate that the proposed
ILR achieves comparable results to the performance of existing CL baselines for task-incremental
and class-incremental learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual
learning with adaptive regularization. In Advances in Neural Information Processing Systems, pp.
4394–4404, 2019.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European conference
on computer vision (ECCV), pp. 139–154, 2018.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. Learning fast, learning slow: A general continual
learning method based on complementary learning system. In International Conference on
Learning Representations, 2022.

Yogesh Balaji, Mehrdad Farajtabar, Dong Yin, Alex Mott, and Ang Li. The effectiveness of memory
replay in large scale continual learning. arXiv preprint arXiv:2010.02418, 2020.

Prashant Shivaram Bhat, Bahram Zonooz, and Elahe Arani. Task-aware information routing from
common representation space in lifelong learning. In The Eleventh International Conference on
Learning Representations, 2023.

Matteo Boschini, Lorenzo Bonicelli, Pietro Buzzega, Angelo Porrello, and Simone Calderara. Class-
incremental continual learning into the extended der-verse. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15920–15930. Curran Associates, Inc., 2020.

Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuytelaars, Joelle Pineau, and Eugene Belilovsky.
New insights on reducing abrupt representation change in online continual learning. In International
Conference on Learning Representations, 2022.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with A-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, P Dokania,
P Torr, and M Ranzato. Continual learning with tiny episodic memories. In Workshop on Multi-Task
and Lifelong Reinforcement Learning, 2019b.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided
continual learning with bayesian neural networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HklUCCVKDB.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for continual
learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773.
PMLR, 2020.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Huiyi Hu, Ang Li, Daniele Calandriello, and Dilan Gorur. One pass imagenet. In NeurIPS 2021
Workshop on ImageNet: Past, Present, and Future, 2021. URL https://openreview.net/
forum?id=mEgL92HSW6S.

10

https://openreview.net/forum?id=HklUCCVKDB
https://openreview.net/forum?id=mEgL92HSW6S
https://openreview.net/forum?id=mEgL92HSW6S


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ghassen Jerfel, Erin Grant, Thomas L. Griffiths, and Katherine A. Heller. Reconciling meta-learning
and continual learning with online mixtures of tasks. In NeurIPS, 2019.

Minguk Kang and Jaesik Park. ContraGAN: Contrastive Learning for Conditional Image Generation.
2020.

Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting ACGAN: Auxiliary
Classifier GANs with Stable Training. 2021.

MinGuk Kang, Joonghyuk Shin, and Jaesik Park. StudioGAN: A Taxonomy and Benchmark of
GANs for Image Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 2023.

Polina Kirichenko, Mehrdad Farajtabar, Dushyant Rao, Balaji Lakshminarayanan, Nir Levine, Ang
Li, Huiyi Hu, Andrew Gordon Wilson, and Razvan Pascanu. Task-agnostic continual learning
with hybrid probabilistic models. 2021. URL https://openreview.net/forum?id=
ZbSeZKdqNkm.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, 114
(13):3521–3526, 2017.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. arXiv preprint
arXiv:1904.00310, 2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. arXiv preprint arXiv:1606.09282, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, pp. 6467–6476, 2017.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
7765–7773, 2018.

Nicolas Y Masse, Gregory D Grant, and David J Freedman. Alleviating catastrophic forgetting using
context-dependent gating and synaptic stabilization. Proceedings of the National Academy of
Sciences, 115(44):10467–10475, 2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learning.
In International Conference on Learning Representations, 2018.

Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. Bns: Building network structures
dynamically for continual learning. Advances in Neural Information Processing Systems, 34:
20608–20620, 2021.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7645–7655, 2019.

Björn Rasch and Jan Born. Maintaining memories by reactivation. Current Opinion in Neurobiology,
17(6):698–703, 2007.

Roger Ratcliff. Connectionist models of recognition memory: Constraints imposed by learning and
forgetting functions. Psychology Review, 97(2):285–308, April 1990.

Sylvestre-Alvise Rebuffi, Alexander I Kolesnikov, Georg Sperl, and Christoph H. Lampert. iCaRL:
Incremental classifier and representation learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533–5542, 2016.

11

https://openreview.net/forum?id=ZbSeZKdqNkm
https://openreview.net/forum?id=ZbSeZKdqNkm


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald Tesauro.
Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv
preprint arXiv:1810.11910, 2018.

Amanda Rios and Laurent Itti. Closed-loop GAN for continual learning. arXiv preprint
arXiv:1811.01146, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework for continual
learning. In International Conference on Machine Learning, pp. 4528–4537. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Shengyang Sun, Daniele Calandriello, Huiyi Hu, Ang Li, and Michalis Titsias. Information-theoretic
online memory selection for continual learning. In International Conference on Learning Repre-
sentations (ICLR), 2022.

Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and Weilong Yang. Regularing generative
adversarial networks under limited data. In CVPR, 2021.

Linh Ngo Van, Nam Le Hai, Hoang Pham, and Khoat Than. Auxiliary local variables for improving
regularization/prior approach in continual learning. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 16–28. Springer, 2022.

Eli Verwimp, Matthias De Lange, and Tinne Tuytelaars. Rehearsal revealed: The limits and merits of
revisiting samples in continual learning. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9385–9394, 2021.

Mitchell Wortsman, V. Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
J. Yosinski, and Ali Farhadi. Supermasks in superposition. arXiv preprint arXiv:2006.14769, 2020.

Ju Xu and Zhanxing Zhu. Reinforced continual learning. Advances in Neural Information Processing
Systems, 31, 2018.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3014–3023, 2021.

Dong Yin, Mehrdad Farajtabar, and Ang Li. SOLA: Continual learning with second-order loss
approximation. arXiv preprint arXiv:2006.10974, 2020.

Jaehong Yoon, Eunho Yang, Jungtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. In Sixth International Conference on Learning Representations. ICLR, 2018.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pp. 3987–3995. PMLR, 2017.

Mengmi Zhang, Tao Wang, Joo Hwee Lim, and Jiashi Feng. Prototype reminding for continual
learning. arXiv preprint arXiv:1905.09447, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENTAL SETUP

A.1 BASELINES

As detailed in Section 4.1, we evaluate ILR against EWC (online version), LwF (multi-class) version,
ER, AGEM, DER++, ER-ACE, CLS-ER, and TAMiL.

For extensive comparison, we provide rehearsal-based methods with a buffer with a max capacity
of 500 and 1,000 samples, respectively. Since our method does not rely on a buffer of all task data
but only an alignment set of task t− 1 data, the forgetting can be more significant, which is not a
fair comparison of ILR against other rehearsal-based methods. Therefore, we provide ILR with an
alignment set of 500, 1,000, and 5,000 samples.

We replicate training settings: For ER, DER++, ER-ACE, TAMiL, and CLS-ER, we employ the
reservoir sampling strategy to remove the reliance on task boundaries as in the original implementation.
On the other hand, ILR, AGEM, and TAMiL rely on the task boundary to learn the rectifier, modify
the buffer, and add a new task-attention module, respectively. For TAMiL, we use the best-reported
task-attention architecture. For CLS-ER, we perform inference using the stable model per the original
formulation.

A.2 DATASETS

To demonstrate the effectiveness of our method, we perform empirical evaluations on three stan-
dard continual learning benchmarks: Sequential CIFAR10 (S-CIFAR10), Sequential CIFAR100
(S-CIFAR100), and Sequential Tiny ImageNet (S-TinyImg). The datasets are split into 5, 5, and 10
tasks containing 2, 20, and 20 classes, respectively. The dataset of S-CIFAR10 and S-CIFAR100
each includes 60000 32× 32 images splitter into 50000 training images and 10000 test images, with
each task occupying 10000 training images and 2000 testing images. The dataset S-TinyImg contains
1100000 64× 64 images with 100000 training images and 10000 test images divided into ten tasks
with 10000 training images and 1000 test images each. We augment random horizontal flips and
random image cropping for each training and buffered image.

A.3 RECTIFIER DESIGNS

Weak feature extractor. We provide the architecture of the weak feature extractor ht in Table 5. We
chose a simple design of two 3x3 convolution layers and two max pooling layers.

Table 5: Architecture of the weak feature extractor ht. We use ReLU activation after each convolution
layer. For each task, a weak feature extractor ht is distilled from the current feature extractor ft.

Layer Channel Kernel Stride Padding Output size

Input 3 16× 16
Conv 1 64 3× 3 2 1 8× 8

MaxPool 2 4× 4
Conv 2 128 3× 3 2 1 2× 2

MaxPool 2 1× 1
Linear 512

Rectifier. We have explored several options for the rectifier unit design and arrived at a gated rectifier
unit, which is the current design, and a compress-combine rectifier unit as in Figure 4. Both designs
demonstrate similar performance as shown in Table 6. However, the gated rectifier unit was selected
because it is more parameter-efficient than the compress-combine rectifier unit.

The compress-combine design includes a linear layer at to reduce f(t)’s representation to a lower
dimension, essentially forming a bottleneck to filter task t− 1 information and a linear layer bt to
combine both ht(x) representation and reduced at(ft(x)) representation.

rt(ft(x), x) = bt(concatenate(at(ft(x)), ht)) (6)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Frozen parametersTrainable parameters

Figure 4: Compress-combine rectifier unit design. The Compress layer forms a bottleneck to select
the remaining (t− 1)-domain knowledge in ft, while ht extracts compensation information for the
loss information in ft. The Combine layer aggregates and transforms the information from both ht

and ft to form the rectified representation.

Table 6: Average accuracy of ILR-P with |St| = 1000 using different rectifier design.

Rectifier design S-CIFAR10 S-CIFAR100 S-TinyImg

Gated 90.66±0.97 78.14±0.18 66.83±0.55

Compress-Combine 91.02±1.76 78.53±0.25 66.79±0.64

A.4 TRAINING

Settings. The training set of each task is divided into 90%-10% for training and validation. All
methods are optimized by the Adam optimizer available in PyTorch with a learning rate of 5× 10−4.
As the validation loss plateau for three epochs, we reduce the learning rate by 0.1. Each task is trained
for 40 epochs. For ILR, we train ht and rt using the same formulation with Adam optimizer at a
learning rate of 5× 10−4 for 40 epochs.

GAN training. We use the StudioGan repository’s default implementation Kang et al. (2023; 2021);
Kang & Park (2020) of the BigGAN LeCam Tseng et al. (2021) to train the network on each task of
S-CIFAR100. The FID score for each task is between 17 and 23. The BigGAN network has nearly
95 million parameters. During ILR training, we sampled directly from the BigGAN network.

A.5 HYPERPARAMETER SEARCH

For all methods, experiments, and datasets, we perform a grid search over the following hyper-
parameters using a validation set. Some hyperparameters are obtained directly from their original
implementation to narrow the search range.

• Joint, Finetuning, LwF.mc, ER, AGEM, ER-ACE: No hyperparameters
• o-EWC:

– λ ∈ {10, 20, 50, 100}
– γ ∈ {0.9, 1}

• DER++:
– α ∈ {0.1, 0.2, 0.5, 1}
– β ∈ {0.1, 0.2, 0.5, 1}

• CLS-ER:
– rp ∈ {0.5, 0.9}
– rs ∈ {0.1, 0.5}
– αp ∈ {0.999}
– αs ∈ {0.999}

• TAMiL:
– α ∈ {0.2, 0.5, 1}
– β ∈ {0.1, 0.2, 1}
– θ ∈ {0.1}

• ILR:
– α ∈ {1, 2, 3}

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Hyperparameters for method in Table 2

Method |B| |St| S-CIFAR10 S-CIFAR100 S-TinyImg

o-EWC - - λ = 100, γ = 0.9 λ = 50, γ = 0.1 λ = 20, γ = 0.9

DER++ α = 0.5, β = 0.1 α = 0.2, β = 0.1 α = 0.5, β = 0.1
TAMiL α = 1.0, β = 1.0 α = 1.0, β = 1.0 α = 1.0, β = 0.5
CLS-ER rp = 0.5, rs = 0.1 rp = 0.9, rs = 0.1 rp = 0.5, rs = 0.1

ILR-P - 500 α = 2 α = 3 α = 3

DER++ α = 1.0, β = 0.1 α = 0.2, β = 0.1 α = 1.0, β = 0.1
TAMiL α = 1.0, β = 1.0 α = 1.0, β = 1.0 α = 1.0, β = 0.5
CLS-ER rp = 0.5, rs = 0.1 rp = 0.5, rs = 0.1 rp = 0.9, rs = 0.1

ILR-P - 1000 α = 3 α = 3 α = 3

ILR-P - 5000 α = 3 α = 3 α = 3

B VERSATILITY OF ILR FRAMEWORK

In ILR, as the tasks arrive, conventional fine-tuning or training on the new task happens without
any CL’s intervention. ILR only augments or adds to this process with a separate training of the
backward-recall mechanism. The attractiveness of this framework is twofold. First, ILR allows the
best adaptation on the new task to possibly achieve maximum plasticity while the backward-recall
mechanism mitigates catastrophic forgetting. Second, unlike previous CL approaches that heavily
modify the sequential training process, ILR minimally changes the fine-tuning process, allowing the
users to more flexibly incorporate this framework into their existing machine learning pipelines.

Relationship to Memory Linking. ILR’s process of mapping newly learned knowledge repre-
sentation resembles the popular humans’ mnemonic memory-linking technique, which establishes
associations of fragments of information to enhance memory retention or recall. 2 As the model
learns a new task, the feature rectifier unit establishes a mnemonic link from the new representation
of the sample from the past task to its past task’s correct representation.

2https://en.wikipedia.org/wiki/Mnemonic_link_system

15

https://en.wikipedia.org/wiki/Mnemonic_link_system

	Introduction
	Related Work
	Proposed Framework
	Learning the Rectifier Unit
	Alignment Loss
	Alignment Set

	Incremental Latent Alignment
	Latent Alignment
	Rectifier Architecture

	Training Procedure
	Inference Procedure

	Experiments
	Evaluation Protocol
	Results
	Parameter Growth Comparison

	Limitations
	Conclusion
	Detailed Experimental Setup
	Baselines
	Datasets
	Rectifier designs
	Training
	Hyperparameter search

	Versatility of ILR Framework

