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ABSTRACT

Electronic Health Record (EHR) datasets from Intensive Care Units (ICU) contain
a diverse set of data modalities. While prior works have successfully leveraged
multiple modalities in supervised settings, we apply advanced self-supervised
multi-modal contrastive learning techniques to ICU data, specifically focusing on
clinical notes and time-series for clinically relevant online prediction tasks. We in-
troduce a loss function Multi-Modal Neighborhood Contrastive Loss (MM-NCL),
a soft neighborhood function, and showcase the excellent linear probe and zero-
shot performance of our approach.

1 INTRODUCTION

Electronic Health Record (EHR) data from Intensive Care Units (ICUs) has emerged as a valuable
resource for predicting clinically relevant quantities in recent years (Hyland et al., 2020; Hüser et al.,
2024; Yèche et al., 2022; Pace et al., 2022). However, the diverse nature of EHR data, encompassing
different modalities such as clinical notes and time series, presents a challenge for effective utiliza-
tion. The majority of models leveraging multiple modalities rely on supervised learning Husmann
et al. (2022); Jain et al. (2023); Khadanga et al. (2019), necessitating separate training for each task,
demanding substantial amounts of annotated data, and learning only task-specific modality interac-
tions. There remains a gap for an architecture, which fuses modalities in a task-agnostic manner.
To address these challenges, there is growing interest in developing self-supervised ap-
proaches (van den Oord et al., 2019; Yèche et al., 2021) that can learn task-agnostic representations,
thereby reducing or eliminating the dependency on annotated data. Encouragingly, contrastive learn-
ing has proven successful in creating such multi-modal representations for text and images without
task-specific training (Radford et al., 2021; Wang et al., 2022; Li et al., 2023). Radford et al. (2021)
even demonstrate strong zero-shot classification performance based on their multi-modal shared
latent space.
Our Contribution: Motivated by initial exploration (Radford et al., 2021; King et al., 2023), we
aim to apply multi-modal contrastive learning, specifically focusing on clinical notes and medical
time-series, while aiming to improve performance for online prediction tasks (Yèche et al., 2021).
We introduce a loss function titled Multi-Modal Neighborhood Contrastive Learning (MM-NCL)
together with a novel soft neighborhood function. We showcase the strong linear probe and zero-shot
performance of our approach on in-hospital mortality and, most importantly, decompensation tasks.
To the best of our knowledge, our decompensation results represent the best successful benchmarked
zero-shot performance on an online ICU prediction task.

2 RELATED WORK

Learning on Medical Time-Series A wide range of research has been conducted on supervised
learning applied to ICU time series (Harutyunyan et al., 2019; Kuznetsova et al., 2023; Yèche et al.,
2022; van de Water et al., 2024). Uni-modal contrastive methods (Yèche et al., 2021; Zhang et al.,
2022; Weatherhead et al., 2022), on the other hand, are more closely related to this work. They often
rely on InfoNCE (van den Oord et al., 2019) or a variant thereof to pull augmented views of the same
data closer together and push different samples apart in the representation space Liu et al. (2023b).

Multi-modal Learning Multi-modal contrastive learning was popularized by CLIP (Radford
et al., 2021) contrasting images and captions, leveraging it to train models for zero-shot classifica-
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Figure 1: Training pipeline

tion, and laying the groundwork for state-of-the-art image generators (Rombach et al., 2022). Adap-
tations of CLIP have been proposed for video input (Liu et al., 2023a), multi-lingual text (Chen
et al., 2022), and pre-trained uni-modal encoders (Li et al., 2023). In the medical domain, Med-
CLIP (Wang et al., 2022) adopts this framework and applies it to X-ray images and clinical notes.
To overcome the scarcity of paired multi-modal samples they propose a soft assignment based on
a text similarity scoring. Li & Gao (2022) used multi-modal contrastive learning to align medical
time-series and hyperbolic embeddings of ICD codes, while MedFuse (Hayat et al., 2023) does so
with images. King et al. (2023) recently explored multi-modal contrastive learning between clinical
notes and medical time-series, however, their approach differs from ours in several aspects, their
architecture is only suitable for offline tasks, and we show vastly better performance especially in
the zero-shot setting.

3 METHODS

Notation We consider a patient dataset of multiple paired time series XS and clinical note series
XT , where each pair represents a patient’s stay in the ICU. The time series contains dv hourly vital
signs of patients in the ICU, while the clinical note series is sparse across time. XS

t ∈ Rdv is step
t of XS and XS [t1 : t2] for t1, t2 ∈ N, t1 ≤ t2 denotes the sub-sequence of XS between steps t1
(inclusive) and t2 (exclusive). Let XT

i,j denote the j-th note in ICU stay i. A batch consists of K
pairs of texts XT

i,j and time series XS
i , i ∈ {1, 2, . . .K − 1}. A sub-sequence of length w (window

size) of each time-series near the creation time of the note is fed to the time-series encoder. Let
time(XT

i,j) be the creation time of note XT
i,j . Then, for each note XT

i,j , a target time τi is drawn
uniformly at random from [time(XT

i,j) − a, time(XT
i,j) + b] where a and b may depend on the type

of notes. The final time-series X̃S
i,j , i ∈ {1, . . . ,K − 1} where X̃S

i,j,τ = XS
i [τi − w : τi] are fed to

the model.

Model Architecture Our model (see Figure 1) consists of a time-series encoder fξ(X
S) =

GRUξ(X
S), a time-series projection f̃A(x) = WAx, a text encoder gθ(X

T ) =
concat(MLPθ(LM(XT )),LM(XT )) and a text projection g̃B(x) = WBx. GRUξ is the last hid-
den state of a Gated Recurrent Unit (Cho et al., 2014) with parameters ξ. MLPθ is a multi-layer
perceptron (MLP) with parameters θ and LM is a pre-trained language model (Huang et al., 2020),
which we use to compute a single representation vector per clinical note. concat concatenates two
vectors. WA,WB are trainable matrices.

Loss Based on Yèche et al. (2021) we propose a Multi-Modal Neighborhood Contrastive Loss
(MM-NCL) LMM−NCL. We also do experiments with our pipeline using the original loss from
CLIP (Radford et al., 2021) (and refer to it using MM-InfoNCE).
Let B be the set of index tuples ι = (i, j, τ) in a batch of size K, containing stay index, note
index, and target time. Let ν > 0 be a trainable temperature parameter and the following define the
normalized embeddings (norm(x) := x/ ∥x∥) of the time-series hS

ι and the texts hT
ι passed to the

contrastive objective:

hS
ι := norm

(
f̃A(fξ(X

S
i,j,τ ))

)
∈ Rc, hT

ι := norm
(
g̃B(gθ(X

T
i,j,τ ))

)
∈ Rc (1)
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MM-NCL consists of two components: (i) The neighborhood aware loss LA (Eqn. 2) and (ii) the
neighborhood discriminative loss LD (Eqn. 3). Eqn. 4 and 5 define a novel soft neighborhood
function relating neighboring clinical notes and time-series windows w.r.t. their distance in time:

LA :=
∑
l∈B

∑
m∈B

−Nl,m

2K

(
log

exp (hS
l · hT

m/ν)∑B
n ̸=l exp (h

S
l · hT

n/ν)
+ log

exp (hT
l · hS

m/ν)∑B
n ̸=l exp (h

T
l · hS

n/ν)

)
(2)

LD :=
∑
l∈B

− 1

2K

(
log

exp(hS
l · hT

l /ν)∑B
m 1

N
l,m exp(hS

l · hT
m/ν)

+ log
exp(hT

l · hS
l /ν)∑B

m 1
N
l,m exp(hT

l · hS
m/ν)

)
(3)

where

Nl,m :=
Ñ(l,m)∑

n∈B Ñ(l,m)
, 1

N
l,m :=

{
1, if Nl,m ̸= 0

0, if Nl,m = 0
(4)

Ñ(l,m) :=

{
β

β+|τm−τl| , if il = im ∧ |jl − jm| ≤ 1

0, otherwise
(5)

β ∈ R≥1 is a hyperparameter (defining the soft neighborhood decay w.r.t. temporal distance) and
the final loss function is a linear combination with trade-off hyperparameter α:

LMM−NCL := αLA + (1− α)LD, α ∈ (0, 1] (6)

While Yèche et al. (2021) have proposed the separation of a contrastive loss into neighborhood
aware and distriminative components, we have expanded their definition to the multi-modal setting
and introduce a soft neighborhood function, where they have only considered the binary case.
4 RESULTS AND DISCUSSION

Experimental Setup We use the time-series features, cohort selection, splits, and label definitions
from MIMIC-III Benchmark (Harutyunyan et al., 2019) and extracted the clinical notes from the
MIMIC-III dataset (Johnson et al., 2016). We benchmark in-hospital mortality and decompensation
as defined by Harutyunyan et al. (2019). In-hospital mortality is an offline binary classification of
predicting patient mortality after the first 48 hours of stay in the ICU. Decompensation is an hourly
online binary classification task to predict the onset of death in the next 24 hours. More details in
Appendix A and B.

Evaluation Note that for all results, while the contrastive pretraining considers multiple modali-
ties, for inference only time-series data is passed to the model. This is different from some super-
vised baselines (Husmann et al., 2022; Khadanga et al., 2019) and is more suitable for an online
deployment scenario, where measurements and lab results are naturally stored in databases, but
clinical notes require a physician to analyse the respective data streams and write the note, before
they would become visible to the system. We evaluate linear probes (Alain & Bengio, 2017) on the
output of the frozen base time-series encoder fξ(XS). Further, we consider zero-shot classification
by scoring the alignment of an embedded time-series window with class-specific text prompts (Rad-
ford et al., 2021). Time-series windows are classified by their similarity with positive (e.g. ”patient
died”) and negative prompt ensembles (e.g. ”patient survived”, more examples in App. C). Let PT

+

and PT
− be the set of positive and negative text prompts. Then the zero-shot probabilities ŷzs for a

time-series window XS , encoded to hS as in Eqn. 1, are (Eqn. 7):

ŷzs = softmax(hS · pT
+, h

S · pT
−) where pT

+/− :=
1

|PT
+/−|

∑
p∈PT

+/−

norm
(
gB(gθ(p))

)
(7)

Results Table 1 shows comparisons to a supervised time-series baseline (Harutyunyan et al., 2019)
and supervised multi-modal baselines (Khadanga et al., 2019; Husmann et al., 2022). Further, we
compare to self-supervised results for online predictions (Yèche et al., 2021) and self-supervised
multi-modal results (King et al., 2023). We strongly outperform prior work by King et al. (2023) in
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Table 1: Model Performance Comparison. All values are in % and denoted as mean ± std. Bold
marks the best result in each section. MM-Train. and -Infer. mark if multiple modalities are used for
training and inference. Missing values are not provided by the respective references.

Method MM MM Mortality Decompensation

Train. Infer. AuPRC AuROC AuPRC AuROC

Supervised

Harutyunyan et al. (2019) ✗ ✗ 50.1 ± 1.3 86.1 ± 0.3 34.1 ± 0.5 90.7±0.2
Khadanga et al. (2019) ✓ ✓ 52.5±1.3 86.5±0.4 34.5±0.7 90.7±0.7
Husmann et al. (2022) ✓ ✓ 52.7±1.0 87.1±0.6 39.7±0.6 92.2±0.2

Self-Supervised Linear Probes

Yèche et al. (2021) ✗ ✗ - - 31.2 ± 0.5 88.9 ± 0.3
King et al. (2023) ✓ ✗ 40.2 ± 5.3 82.8 ± 2.0 - -
MM-NCL (ours) ✓ ✗ 52.1 ± 0.5 85.9 ± 0.2 32.6 ± 1.2 90.2 ± 0.4

Self-Supervised Zero-Shot

King et al. (2023) ✓ ✗ 21.4 ± nan 70.9 ± nan - -
MM-InfoNCE (ours) ✓ ✗ 48.3 ± 1.4 83.2 ± 0.63 26.9 ± 2.2 87.8 ± 0.2
MM-NCL (ours) ✓ ✗ 45.1 ± 2.8 80.0 ± 2.4 30.9 ± 0.7 87.4 ± 0.7

both the probed and the zero-shot setting. Our probed results on mortality can even compete with a
strong supervised multi-modal baseline by Husmann et al. (2022), while on decompensation we can
slightly improve upon the results by Yèche et al. (2021).
In the zero-shot setting, we present the first results on an online patient prediction task (decom-
pensation). Our loss function for multi-modal neighborhood contrastive learning in online settings
achieves a zero-shot performance getting close to probed results. Additionally, we vastly outperform
the only available prior result on multi-modal contrastive learning for time-series and clinical notes
on mortality by King et al. (2023). The difference in performance on mortality for MM-InfoNCE
and MM-NCL can be attributed to the nature of our proposed loss function focusing on more local,
clinically relevant (Yèche et al., 2021), online patient state changes, while on the offline mortality
prediction global alignment is favored.
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Figure 2: AuPRC when training with re-
duced labels, x-axis shows the percentage of
of labels used from the full training set. All
results were obtained using the same time-
series architecture. We mark the percentage,
where supervised outperforms zero-shot.

Scarce label setting Figure 2 compares super-
vised, linear probe and zero-shot results on training
sets with reduced labels. It clearly shows the su-
periority of zero-shot predictions in the scarce label
regime.

Ablation on Note Types For each task, we opti-
mized the set of note types used during training by
greedily removing note types from the training data.
In each run, we early-stopped based on the valida-
tion AuPRC of the task we optimized for. In Fig-
ure 3, we observe a strong effect of note type se-
lection on model performance. Notable differences
between the tasks are that Physician notes seem
to be a lot more important for decompensation and
that Nursing notes seem to be more important for
mortality. To be expected was that the last remaining
categories are Radiology and Nursing/other
notes, as they make up 65% of all considered notes.
Also expected was that discharge summaries are more helpful for mortality as they highlight in-
formation relevant over the entire patient stay and tend to mention patient outcomes. Note that
differences in the two plots for pre-training on Nursing/other only stem from optimizing the
selection (including early stopping of the pre-training) for different tasks.
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Figure 3: Zero-shot AuPRC for mortality (blue) and decompensation (orange) for different sets
of note types for MM-NCL. We greedily remove note types from the left to the right based on
mortality (Fig. 3a) and decompensation (Fig. 3b) AuPRC. Removing the last remaining category
(Nursing/other in both cases) leaves no training data for the text modality, so there is no result
in the rightmost columns.

5 CONCLUSION

We proposed a new multi-modal contrastive loss function for clinical notes and time-series. Lever-
aging a soft neighborhood function we can train a multi-modal shared latent space, which exhibits
strong performance under linear probing and facilitates unseen zero-shot classification performance
in this application domain. Further research remains to validate our findings on other datasets and
experiment with the inclusion of additional data modalities.
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A DATA

A.1 TASKS

We benchmark two mortality-related tasks defined by Harutyunyan et al. (2019) on the MIMIC-
III dataset (Johnson et al., 2016). Harutyunyan et al. (2019) provide cohort selection and patient
splits for training. Mortality information is directly extracted by Harutyunyan et al. (2019) from the
MIMIC-III patient metadata.
In-Hospital Mortality Given an ICU stay and its time-series XS the binary classification task is to
predict, whether the patient died in the ICU or was discharged alive based on the first 48 hours of
stay (XS [0 : 48]).
Decompensation Given an ICU stay the online binary classification task is to predict the onset of
death at every hour of the patient’s stay until death or discharged alive.

A.2 TIME-SERIES

We prepare time-series data from MIMIC-III (Johnson et al., 2016) as published by Harutyunyan
et al. (2019). Missing values are forwarded imputed if prior measurements are available. Data is
standard-scaled and the remaining missing values after forward imputation are zero-imputed, which
corresponds to a population mean imputation.

A.3 CLINICAL NOTES

We consider the same set of notes as Jain et al. (2023) and provide their description and details on
the clinical notes published in the MIMIC-III (Johnson et al., 2016) dataset in the NOTEEVENTS
table.
In total, there are about 2 million individual text notes of 10 categories (Discharge
summary, ECG, Echo, General, Nursing, Nursing/other, Nutrition, Physician,
Radiology and Respiratory). The median length of such a note is 1090 characters and we
observe a median of about 14 individual notes per patient (with 7 at the first quartile and 30 at the
third quartile).
Each note is associated with a specific timestamp (CHARTDATE and CHARTTIME) during a single
admission (HADM ID) of a given patient (SUBJECT ID). However, for a given patient admission we
do not observe a note at every single time point on our resampled grid used during training. Some
time points might have no clinical note associated with them, whereas others might have multiple,
and they thus build an irregularly sampled time series of textual descriptions of the patient state.

B TRAINING DETAILS

B.1 HYPERPARAMETERS

Table 2: Hyperparameter ranges, chosen ones are in bold

Parameter Name Values
GRU hidden dimension [128, 256]
GRU depth [1,2,3]
GRU dropout [0.1, 0.2, 0.3]
Text Encoder number of hidden dimensions [1]
Text Encoder MLP hidden dimension [4096]
Loss parameter α [0.1, 0.3, 0.5, 0.8, 0.95, 1.0]
Loss parameter β [2, 4, 8, 16, 24, 48, 96]
Window size [ 8, 16, 24, 48 ]
Batch size 512 Patient Stays
Learning Rate Adam (Kingma & Ba, 2017) 5e−4

We tuned the hyperparameters on the validation performances in several grid searches, refining
iteratively over time. Table 2 shows an overview. We use PyTorch (Paszke et al., 2019) for train-
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Table 3: Zero-shot performance for different window sizes w on the MIMIC-III Benchmark tasks.
All values are in % and denoted as mean ± std. All hyperparameters except for window size are
kept fixed.

Window Size Mortality Decompensation

hours AuPRC AuROC AuPRC AuROC

8 42.3 ± 1.3 80.6 ± 1.1 27.2 ± 0.5 87.1 ± 1.0
16 45.0 ± 3.2 81.2 ± 0.7 29.5 ± 0.5 87.5 ± 0.8
24 43.6 ± 2.8 79.0 ± 2.7 28.8 ± 2.1 88.1 ± 0.6
48 42.3 ± 0.2 80.1 ± 0.5 21.9 ± 3.9 86.8 ± 1.2

Table 4: Zero-shot performance for different window sizes w on the MIMIC-III Benchmark tasks.
All values are in % and denoted as mean± std.

Class Mortality Decompensation

Po
si

tiv
e

Pr
om

pt
s

patient deceased
passed away
patient died

died
deceased
expired

condition: expired
care withdrawn

Discharge Condition: Expired
Expired

died
dnr

N
eg

at
iv

e
Pr

om
pt

s

survived
stable

discharged

stable
stable condition
discharged today

ing the models. We trained all models with a single NVIDIA RTX2080Ti and an Intel Xeon
E5-2630v4 CPU.
For the target time selection hyperparameters we chose b = 3 and a = 10 for discharge summaries,
a = 30 for radiology notes, and a = 3 for everything else. Those are set in time-steps, which
translates to hours on the MIMIC-III Benchmark (Harutyunyan et al., 2019).

B.2 MODEL SELECTION

We pretrain the model with MM-NCL for 30 epochs, which has been tuned for best aggregated
zero-shot task performance on the validation set. Future work should look into incorporating more
efficient early-stopping methods such as LiDAR (Thilak et al., 2023), which enables early stopping
online in a more efficient way.

C EVALUATION

Ablation on window sizes Table 3 shows the zero-shot performance of our model with different
window sizes w.
Model Prompts
We present a collection of prompts used in the zero-shot classification prompt ensembles in Ta-
ble 4. The prompts have been selected based on an inspection of the notes found in the MIMIC-III
dataset (Johnson et al., 2016) conditioned on the class labels.
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