Under review as a conference paper at ICLR 2026

SALIENCE AWARE MARK-STEERED PROMPTING FOR
LILMs

Anonymous authors
Paper under double-blind review

ABSTRACT

The efficacy of Large Language Models (LLMs) is heavily dependent on the qual-
ity of user-provided prompts. Consequently, many optimization methods focus
on augmenting prompts with extensive details to provide comprehensive con-
text. However, these methods often produce verbose and information-saturated
prompts, which inadvertently causes LLMs to lose focus on the most critical in-
structions. This phenomenon, known as attention dilution, significantly constrains
model performance on tasks requiring comprehension of long contexts. To ad-
dress this issue, we propose Salience Aware Mark-Steered Prompting (MSP), a
novel framework designed to mitigate attention dilution by explicitly steering the
model’s focus toward the most critical information within the prompt. MSP con-
sists of two stages: first, Gradient-Guided Mask Search (GGMS) automatically
identifies the most influential tokens. Second, Mark-Steered Decoding (MSD)
persistently guides the model by amplifying the influence of these key tokens at
every step of the generation process, improving the model’s alignment with core
user instructions. We evaluate the effectiveness of MSP on five widely used bench-
marks with three representative LLMs of multiple scales. The experimental results
show that MSP yields consistent performance gains over state-of-the-art baselines,
and its strong performance across diverse tasks and models highlights its robust-
ness and generalizability. Our implementation is provided in the supplementary
material.

1 INTRODUCTION

Large language models (LLMs) have demonstrated strong performance across a variety of
tasks (Colombo et al., 2024} Zhang et al.| |2024b; |Qin et al., [2023a; Touvron et al. 2023), and
prompting has become the primary interface through which users interact with these models (Liu
et al.l 2023b). In recent years, a large number of prompt optimization methods have been proposed
to further unlock the potential of LLMs (Pryzant et al., 2023 [Lin et al.l [2024; |Chen et al.| [2024a;
Wang et al., 2024; |Ye et al., 2024; |Hu et al., |2024). Most of these approaches rely on evolutionary
algorithms that iteratively modify existing prompts (Fernando et al., 2024} Guo et al.,[2024; |A grawal
et al.|[2025), or on meta-prompts that incorporate scoring mechanisms over a small validation set to
refine prompts (Zhou et al., 2023 |Yang et al.,|2024; ' Wu et al.,[2024])). Collectively, such methods are
often referred to as prompt engineering. More recently, the concept of context engineering has been
introduced (Mei et al., [2025)). Unlike traditional prompt engineering, context engineering focuses
on providing LLMs with the complete set of information needed to perform subsequent reasoning
or generation tasks. Beyond conventional prompts, it often includes additional information obtained
from retrieval-augmented generation (RAG) (Gao et al.,[2023) and tool calling (Shenl 2024)).

However, both prompt engineering and context engineering overlook a crucial issue. Even if one re-
fines prompts extensively or provides abundant contextual information, LLMs may still fail to iden-
tify and focus on the truly important parts of the input (Liu et al.,2023a)), which prevents them from
fully exploiting the provided context. This phenomenon, referred to as attention dilution (Tian &
Zhang} 2025)), has been observed and empirically verified (Qin et al., 2022;|Zhang et al., 2024c;|Fang
et al} 2025} |Qin et al [2023b)). Specifically, as the model proceeds with autoregressive generation,
it tends to forget the salient information contained in the input, leading to degraded performance.

Under review as a conference paper at ICLR 2026

This issue can be better understood through an analogy with human reading comprehension. When
humans read a long document, we often highlight or underline important words or sentences to
quickly grasp the main ideas and better understand the content. Inspired by this intuition, we ask
whether a similar strategy can be applied to LLMs: if we can highlight salient parts of the prompt,
can we encourage the model to maintain focus on these parts throughout the generation process,
thereby unlocking its full potential?

To this end, we propose Salience Aware Mark-Steered Prompting(MSP), a two-stage framework.
In the first stage, we assign a set of masks to the tokens of the input prompt and use a gradient-
based search strategy to identify the optimal mask configuration. The optimization objective is to
maximize the change in the model’s output, which allows us to automatically detect the most salient
tokens in the prompt. In the second stage, we ensure that the model consistently attends to these
salient tokens at every decoding step. Specifically, we compute the difference in logits between the
masked and unmasked versions of these salient tokens, derive representations from this difference,
and then apply a simple linear amplification. These enhanced representations are added back to the
model’s original logits at each decoding step. Through these two stages, MSP can automatically
identify salient prompt content and leverage it to guide the generation process of LLMs.

In summary, our main contributions are as follows:

* Motivated by the human practice of highlighting key information in documents to aid comprehen-
sion, we propose MSP, which automatically identifies salient prompt content and leverages it to
guide LLM generation.

* We develop a gradient-based heuristic mask search algorithm that efficiently identifies salient
tokens in prompts, while significantly reducing computational overhead.

* We introduce a simple yet effective method for sustaining LLM focus, which reinforces attention
to salient content through lightweight linear operations, thereby guiding the generation process.

* We conduct extensive experiments across a diverse set of natural language processing tasks to
demonstrate the effectiveness and scalability of the proposed framework.

2 RELATED WORKS

2.1 MODEL ATTRIBUTION

A large body of work has focused on identifying the most salient inputs that influence model outputs
through attribution techniques. This line of research aligns with the objective of the first stage of
our method. One line of work perturbs the input by removing, masking, or altering specific features
and then evaluates the resulting prediction changes to identify the most influential inputs (Kom-
miya Mothilal et al.| [2021; [Wu et al.l 2020). Another line of work leverages the gradients of the
output with respect to the input to determine feature importance, with representative methods in-
cluding integrated gradients (IG) (Sundararajan et al., 2017) and mixed partial derivatives (Isang
et al.}2020). Some studies employ surrogate models to approximate and explain outputs, with rep-
resentative methods including LIME (Ribeiro et al.,|2016). However, these approaches are primarily
designed for classification tasks, and gradient-based methods in particular require repeated gradient
computations, which result in substantial computational overhead.

For attribution in generation tasks, works such as ContextCite (Cohen-Wang et al., 2024) also rely
on surrogate models. This approach extends attribution analysis to support downstream applications,
such as verifying the correctness of model outputs and pruning contexts based on attribution signals
to improve generation quality. In addition, Captum (Miglani et al.l 2023) estimates token impor-
tance by sequentially measuring the contribution of each token to the output, but it fails to capture
semantic dependencies between tokens. A common limitation of the above works is that attribution
ends with identifying important input features, without further exploration or utilization of these
results. Although ContextCite (Cohen-Wang et al., 2024} discusses three application scenarios of
attribution, these are mainly at the prompt level (e.g., prompt pruning) and do not directly influence
the model’s generation process. In contrast, our method extends attribution with a mark-steered
generation process, which incorporates attribution results into the decoding phase. This bridges the
gap in existing attribution methods by turning attribution insights into actionable mechanisms for
guiding generation.

Under review as a conference paper at ICLR 2026

2.2 CONTROLLABLE GENERATION

The goal of controllable generation is to steer pre-trained language models toward outputs that
satisfy specific sentence-level attributes, such as topical constraints in news generation. Exist-
ing approaches often require additional models or training, such as fine-tuning a smaller lan-
guage model (Pascual et al.| 2021} [Liu et al.| |2024; 2021}, [Yang & Klein, [2021), training a reward
model (Deng & Raffel, 2023 [Lu et al., [2023), or using control codes with a fine-tuned model (L1
& Liang, 2021} [Keskar et al.l 2019} |Krause et al.l 2021). These requirements significantly increase
computational costs. Moreover, many controllable generation methods depend on human annota-
tions to designate “important” sentences or passages (Tian & Zhang, 2025} [Zhang et al., 2024a).
This reliance on human input introduces subjectivity, limits reproducibility, and, more critically,
creates a mismatch between what humans consider important and what the model internally regards
as salient.

Compared with these approaches, our method is fully automated and does not require additional
models or training. By relying on attribution to automatically identify the content that the model
itself considers important, our approach achieves controllability through model-driven salience, en-
abling the identified key content to guide the generation process.

3 PRELIMINARIES

Given a user prompt x and an LLM fy, the model first tokenizes it into a sequence of tokens x =

(x1,%2,...,2,), where x; € {1,2,...,|V[}, |V| denotes the vocabulary size, and n is the length
of the input sequence. The set of token indices is Z = {1,2,...,n}. The corresponding generated
output y is represented as a sequence of tokens y = (¢1,...,tg) witht; € {1,2,...,|V|}. The

output tokens {¢; }5—9:1 are generated autoregressively. Specifically, at step 4, the input to fy is an
n X d embedding matrix E;, defined as:

Ei: [Exat17t27"'7ti—17PAD}a (1)

where E* is the submatrix of embeddings corresponding to the tokens in the user prompt z,
t1,...,t;_1 are the embeddings of previously generated tokens, and PAD denotes a padding sub-
matrix. The model outputs logits, which are converted into a probability distribution via the softmax
function. The next token ¢; is then selected using a sampling strategy, formally expressed as:

t; = arg max softmax(fp(E;)) = arg max Po(t |z t1,. .. tiz1),)

where fy denotes the model’s output function parameterized by 6. However, during autoregressive
generation, the model tends to assign equal attention to all input tokens. Intuitively, not all tokens
contribute equally to the output; certain subsets of tokens play a more critical role in determining
the final generation. For example, in the code generation task with the instruction “Write a function
which sorts the given list of integers in ascending order according to the sum of their digits”, the
phrase “in ascending order” carries particularly important information. Yet the model lacks the
ability to automatically identify and prioritize such salient tokens. On the one hand, during the
decoding stage the model has no knowledge of which tokens are more important, and on the other
hand, it lacks a mechanism to increase its attention to them. These limitations restrict the model’s
overall performance.

4 METHOD

In this section, we introduce Salience Aware Mark-Steered Prompting (MSP), a simple yet effective
two-stage framework. In the first stage, a gradient-based heuristic search strategy is employed to
identify a subset of tokens in the input prompt that are both important and semantically related. In
the second stage, at each decoding step of the LLM, we derive representations of these salient tokens
and apply a lightweight linear amplification to enhance the model’s original output logits, thereby
improving performance across a wide range of tasks. The overall architecture of our framework is
illustrated in Figure

Under review as a conference paper at ICLR 2026

Stage 2: Mark-Steered Decoding

Stage 1: Gradient-Guided Mask Search
Gradient . Iteration s In
7777777777777 __ put
g= |V,,‘.Lmﬁ(m("), xy;0)| Mask Updatellelulmn T - -
Prompt i\, FAN PN
US| QOO fo fo
3 | 5, 11010 TTIT10I01TI11] 10 / /
l tokenizer | Ry , LLM [LLM ./ LLM
| \'H]| Sample 0 pos | Sample 1 pos || f¢17 | .. h !
} i i > H i
T . o) i i
I Mask [LTO[OTITITITO[OTTTITITO] “ i H
X = (1, X2, X3 Xn) } Search — swap " | g N Em ! [|| | HE EN
! [enp [IITTOTTTITITOTOTTTITON0] [~ i i
__________________ H BN, HE mbye - DG,
Original Input x Masked Input m @ x — 9 — “; m
LLM Token, Token, /... Token;
Extraction Embedding for M,
Original Out(plﬁc l)’robability Output Probabiljz With masking X=X D (s, wrtis) —rEE counterfz?ctual
pely pPe(y|m™? © x) L 5 Original logits| €OMParison
. LLM
Optimization Objective ms @ X; = M, Emb
o L — 0 EEE Mi
max,,eo,1)7 L(m,x,y:0) =pe(ylx) —pe(yIm'™ O x) — Masked logits

Figure 1: Overview of the proposed Salience Aware Mark-Steered Prompting (MSP). The frame-
work consists of two stages: (i) Gradient-Guided Mask Search, which identifies salient tokens in
the input prompt, and (ii) Mark-Steered Decoding, which reinforces the influence of these tokens at

every decoding step.

4.1 GRADIENT-GUIDED MASK SEARCH
Given a sequence of tokens = (21, x2, . .., Z,), our objective in this stage is to identify a subset of

k tokens that exert the greatest influence on the generated sequence. To formalize this, we introduce
., My), where m; € {0,1} indicates whether the i-th token

a binary prompt mask m = (mq,..
is retained or masked. The joint probability of producing the original output sequence y given a
masked input m @ « is defined as pg(y|m @ x), where ® denotes the Hadamard product. The goal
is to identify a binary mask m that maximizes the discrepancy between the probability of generating
y from the full input = and from the masked input m © x. A larger discrepancy indicates that the
masked tokens correspond to the most influential components for producing y and should therefore
be considered the important subset. This leads to the following optimization problem:

3)

max L(m,x,y;6) = pe (y|x) — pe (y|m © x)
me{0,1}7
where k specifies the number of salient tokens to be identified. Intuitively, one major challenge in
solving Eq. (3) lies in the enormous search space of binary masks, which grows rapidly with the input
length. For an input consisting of n tokens, the task reduces to selecting k 'tokens out of n, and the
number of possible masks is given by the binomial coefficient (Z) = m The corresponding
computational complexity is O(n*). This combinatorial growth makes exhaustive search infeasible
for typical prompt lengths. To address this problem, we propose Gradient-Guided Mask Search
(GGMS), a heuristic strategy consisting of two components. First, we design a gradient-guided
mask initialization method to provide a more effective starting point for the search. Second, we
introduce a gradient-guided mask update strategy to improve the efficiency of the search process. It
is worth noting that although both steps rely on gradients, GGMS requires computing gradients only
once. We describe these two strategies in detail below.

Mask Initialization. To improve the efficiency of the search, we first focus on optimizing the
starting point by constructing a more informative initialization mask. Gradients are widely recog-
nized as reliable indicators of feature importance, as demonstrated in prior work (Sundararajan et al.,
2017} Selvaraju et al} [2017; [Kapishnikov et al., 2021). Motivated by this observation, we employ

gradients to guide the initialization of the binary mask. We begin with an initial mask m(®) = 1,
where all tokens in the input x are treated as non-influential. We then compute the gradient of the

Under review as a conference paper at ICLR 2026

loss function in Eq. with respect to this mask: V,,,) £(m(®), 2, y;0), and take the absolute
values of its components, denoted as g = |V,,,« £L(m(?), z, y; @)|. Tokens associated with larger
entries in g are expected to have a stronger influence on the generated output if altered. Based on
this signal, we construct the first updated mask m(!) by setting mgl) = 0 whenever g; belongs to
the top-k values of g. In this way, gradient information directly guides the identification of salient
tokens for initialization, yielding a stronger starting point for subsequent optimization.

Gradient-Guided Mask Update. After obtaining the initial mask, the next step is to iteratively
refine it according to the optimization objective in Eq. (3)) in order to identify a better combina-
tion of tokens. We perform s iterations of updates. At each iteration, given the current binary
mask m, we sample one non-zero position p (corresponding to a non-influential token) and one
zero position ¢ (corresponding to an influential token), and then swap their values to explore a new
candidate mask. The sampling process is guided by the gradient information computed in the initial-
ization stage. Specifically, non-zero positions are sampled according to probabilities derived from
the normalized gradient magnitudes, expressed as softmax(m(") ©® g). A similar gradient-guided
sampling strategy is applied to zero positions. Once the two positions p and q are selected and
swapped, we obtain a temporary mask m"™P. We then evaluate whether m'™P reduces the proba-
bility of generating the output sequence y. If the probability decreases, the binary mask is updated
to m"™; otherwise, the original mask is retained. After s iterations of updates, we obtain an op-
timal mask, and the tokens corresponding to the zero positions constitute the Mark Text, defined
as M = (ziy, Tigy -, X4y,)y {01,02,..-,1k) € {1,2,...,n}, where M represents the subset of
salient tokens selected from the input sequence = (21, Z2, ..., Ty).

This sampling strategy ensures that both non-influential and influential tokens are selected according
to probabilities derived from their gradient magnitudes. As a result, tokens with larger gradients are
more likely to be swapped, while tokens with smaller gradients still retain a non-negligible chance of
being chosen. Such a design prevents the search from being overly greedy and enables the algorithm
to explore a broader solution space. At the same time, it leverages gradient information to guide the
optimization toward more promising regions. In this way, the strategy achieves a balance between
exploration and exploitation, which is essential for effective search in the discrete mask space.

4.2 MARK-STEERED DECODING

After identifying salient texts through GGMS, we proceed to Mark-Steered Decoding (MSD), where
these marked texts M are leveraged to guide the generation process. Specifically, the model’s atten-
tion and output distribution are subtly adjusted to reinforce the influence of salient texts, ensuring
that key information identified in Stage one has a stronger impact on the final generated output.

The core motivation of this stage is as follows: if, at every decoding step, the model can leverage
a real-time contextual representation of the marked texts M, and this representation is incorporated
as an additional signal to adjust the output distribution, then the model can be consistently guided to
align with user intent. To achieve this goal, we introduce two key components: (i) the extraction of
contextual representation for M, and (ii) decoding guided by the augmented influence of M.

Extraction of Contextual Representation for M. We first aim to obtain a reliable representation
that captures the influence of the marked texts. A desirable representation must satisfy two criteria:
(1) it should be context-dependent, reflecting the role of the marked texts in the full input; and (2) it
should directly intervene in the model’s decision process at the logits level. Static representations,
such as using token embeddings of the marked text, are insufficient because they cannot capture the
complex semantic interactions with other context, including the already generated tokens. To ad-
dress this limitation, we propose a dynamic extraction method based on counterfactual comparison.
We first define the masked embedding matrix at step ¢ as:

E?ask — [EI\M’thtg,...,ti—l,PAD]v (4)

where E“\M denotes the embeddings of the user prompt x with all tokens in M replaced by a
special mask token. Let F; denote the logits computed by the model fy at decoding step . At this
step, we compute the influence representation of M, denoted as Vinauence, by taking the difference
between two distributions.

Under review as a conference paper at ICLR 2026

original

* Original logits (F;

,): the logits obtained when the LLM processes the full input that
contains M,

_Fioriginal — fG (El) (5)
* Masked logits (F/™*): the logits obtained when the tokens in M are replaced with a
semantically empty mask,

Fimasked _ f9 (E;nasked)- (6)

The contextual representation of M at decode step ¢ is then defined as:

_ original masked
Vinfluence = Fl - E . (7)

Each dimension of viyquence quantifies how the presence of M shifts the model’s predictive pref-
erence for the corresponding vocabulary item, thereby serving as a differential guidance signal.
Additional theoretical analysis is given in Appendix [A.T]

Decoding Guided by the Augmented Influence of M. After obtaining the representation
Vinfluences OUTr Objective is to amplify its effect at every decoding step so that the LLM maintains
sustained attention to the Mark Text. To achieve this, we introduce a hyperparameter w, referred to
as the mark strength, which controls the degree of amplification. The augmented logits at decoding
step ¢ are computed as:

F_augmemed _ F.iorlgmal + W - Vinfluence = f«9 (EZ) +w- (f€ (El) _ fG (Ezmasked)). (8)

2

This formulation explicitly reinforces the contribution of the Mark Text at each decoding step,
thereby ensuring that the model consistently attends to the salient instructions specified in the
prompt. Moreover, the procedure is lightweight and requires no additional training, making it
broadly applicable across different models and tasks.

5 EXPERIMENT SETUP

5.1 DATASETS AND BASELINES

We evaluate the effectiveness of MSP on five widely used benchmarks, covering diverse task types.
Specifically, we consider two code generation benchmarks, HumanEval (Chen et al [2021) and
MBPP (Austin et al., [2021)), two text generation benchmarks, Truthful QA (Lin et al., 2021) and
MMLU (Hendrycks et al., [2021), and one mathematical reasoning benchmark, GSM8K (Cobbe
et al| [2021). See Appendix [A.2|for more details on the datasets.

For base models, we select three representative open-source large language models ranging in scale
from 8B to 32B parameters: LLaMA-3.1-8B (Dubey et al.,[2024), CodeLlama-13B (Roziere et al.,
2023), and Qwen-3-32B (Yang et al., [2025). We compare our method against four state-of-the-
art baselines, including attention-steering approaches such as PASTA (Zhang et al., 2024a) and
SPA (Tian & Zhang| 2025)), as well as prompting-based methods such as Self-Debugging (Chen
et al.,|2024b) and Self-Planning (Jiang et al.,2024)). The latter two prompting methods are evaluated
only on code generation tasks. This setup ensures a comprehensive evaluation across both task types
and model scales.

5.2 EVALUATION METRICS

To comprehensively assess MSP, we adopt the following evaluation metrics tailored to each task. For
code generation tasks, we measure the model’s ability to produce functionally correct code using the
Pass@1 metric, which represents the proportion of problems for which at least one generated solu-
tion passes all unit tests. For the Truthful QA dataset, following the established benchmark methodol-
ogy, we employ the DeepSeek-V3 model (DeepSeek-AlL|[2024) as a judge to evaluate the generated
answers in terms of truthfulness and informativeness. For the MMLU and GSM8K datasets, we
adopt accuracy as the primary metric to assess the model’s multi-domain knowledge and mathemat-
ical reasoning abilities. More details on the evaluation metrics are given in Appendix

Under review as a conference paper at ICLR 2026

5.3 IMPLEMENTATION DETAILS

In the first stage of MSP, the objective is to identify the top k tokens that most strongly influence
the generated sequence, achieved through s iterative updates with a masking procedure. In the
second stage, we amplify the effect of these influential tokens by scaling their contribution with a
hyperparameter w at each decoding step. Thus, MSP involves three key hyperparameters. We set
k dynamically as half of the input prompt length, s to 5 considering computational efficiency, and
determine w through grid search on the dataset to select the value that yields the best performance
across tasks. More details are provided in Section [6.4]and Appendices[A.4]and

6 RESULTS

6.1 IMPROVEMENT OVER BASE MODELS

As shown in Table [I] MSP achieves consistent and significant performance improvements across
three representative open-source large language models on five diverse benchmarks. These gains
are especially pronounced on tasks that require generating long-form content, such as code gen-
eration and open-ended question answering. For example, on HumanEval our method brings a
substantial 12.2-point absolute improvement (38% relative) with CodeLlama-13B, while on Truth-
fulQA it yields a 10.1-point gain (13% relative) with Qwen-3-32B. Such results highlight the strong
capability of MSP to enhance complex generative tasks.

In contrast, the improvements on MMLU and GSMS8K are modest, typically around one point. This
discrepancy stems from the nature of the tasks: HumanEval, MBPP, and TruthfulQA involve multi-
token generation where sustained guidance plays a central role, whereas MMLU and GSM8K often
reduce to a single-token output, leaving limited scope for continuous influence. Nevertheless, since
the main trajectory of LLM applications lies in long-form generation, the pronounced effectiveness
of MSP in such scenarios underscores both its practical value and future relevance.

Table 1: Absolute (A) and Relative (1) Performance improvements across various tasks. Missing
entries (—) indicate that the corresponding model was not applicable or not evaluated under the given
setup.

Model Size HumanEval MBPP Truthful QA MMLU GSM8K
LLaMA-3.1 (8B) 317 44.1 78.9 60.7 68.1
+MSP 439 Ganl 469 o 884 hans 612 (omihy 688 Lt
CodeLlama (13B) 32.3 57.6 - - -

+MSP 445 05 589 i - - -

Qwen-3 (32B) 482 56.8 80.2 74.6 88.6
+MSP 537 ity 598 o 903 Gans 754 Lan 895 hah

6.2 COMPARISON TO SOTA METHODS

We compare MSP against state-of-the-art baselines in Table 2] In code generation tasks, MSP
achieves consistent gains over prompting-based methods. Compared to Self-Debugging, it yields
an average improvement of 3.15 points across the three base models, while the average gain over
Self-Planning is 4.28 points. Unlike these methods, which depend on intermediate steps such as
iterative refinement or natural language planning and thus risk propagating errors, MSP provides a
more direct and reliable improvement.

Furthermore, MSP shows clear advantages over general prompting techniques that intervene in
model internals. Methods like PASTA, which rely on manipulating specific attention heads, can
suffer from instability and poor generalization across diverse tasks. While sharing motivation with
SPA, our MSP is distinct in its ability to identify more critical token combinations. By incorporat-
ing a more advanced mechanism (GGMS), our approach can discover more salient token groups,

Under review as a conference paper at ICLR 2026

Table 2: Comprehensive comparison of MSP with state-of-the-art baselines across code, text, and
math benchmarks. Missing entries (-) indicate that a method or model could not be evaluated under
the given setup. Best results in each row are shown in bold.

Dataset / Model ‘ Self-Debugging Self-Planning PASTA SPA MSP
LLaMA-3.1-8B 37.8 354 329 427 433
HumanEval CodeLlama-13B 38.4 37.1 360 433 445
Qwen-3-32B 50.6 48.8 488 50.0 537
LLaMA-3.1-8B 44.2 44.7 432 433 469
MBPP CodeLlama-13B 58.4 57.9 56.5 569 589
Qwen-3-32B 58.8 57.5 570 571 59.8
LLaMA-3.1-8B - - 774 820 884
TruthfulQA Qwen-3-32B - - 53.7 834 903
LLaMA-3.1-8B - - 59.8 60.7 61.2
MMLU Qwen-3-32B - - 732 748 757
LLaMA-3.1-8B - - 68.0 68.1 68.8
GSMSK Qwen-3-32B - - 872 889 895

Table 3: Ablation study of GGMS and MSD on HumanEval (Pass@ 1 %).

Setting LLaMA-3.1-8B CodeLlama-13B
Base Model 31.7 323
Full-Prompt + MSD 354 40.0
Signature + MSD 34.8 36.6
Description + MSD 40.0 42.1
Test Case + MSD 39.6 40.2
GGMS + MSD 43.3 44.5

allowing for a more precise and robust steering of the model’s focus to better capture the core user
intent.

6.3 ABLATION STUDY

To better understand the contributions of the two core components of MSP, namely Gradient-Guided
Mask Search (GGMS) and Mark-Steered Decoding (MSD), we conduct an ablation study on the Hu-
manEval benchmark. HumanEval prompts consist of three parts: function signatures, code descrip-
tions, and test cases. We compare six settings: (i) the base model without any token highlighting or
MSD, (ii) applying MSD to the full prompt, (iii) applying MSD only to the function signatures, (iv)
applying MSD only to the code description, (v) applying MSD only to the test cases, and (vi) our
full method, where salient tokens are selected by GGMS and reinforced via MSD.

Table[3]reports the Pass @1 results on HumanEval for two models, LLaMA-3.1-8B and CodeLlama-
13B. The results show that both components of our framework contribute to performance improve-
ments. Applying MSD alone, either to the entire prompt or to specific components, provides mod-
erate gains by emphasizing selected tokens. In contrast, GGMS is essential for automatically identi-
fying the most informative tokens, and when combined with MSD, it consistently achieves the best
performance across different model scales. These findings highlight the complementary benefits of
GGMS and MSD in enhancing code generation.

Under review as a conference paper at ICLR 2026

—e— Llama3.1-88

~-0.372 0.384 0366 [JEZ84 0.360 0.396 0.366 0.360 0.390 0.372 =R 0.335 0.335 (UL 0.354 LEPEY T 0.354 0.354 044
Codellamal3B

o -0.396 [BEE1 0.366 0.402 0.360 0.402 0.396 0.396 (171 0.390 ~{EERR 7 0 360 [P 0366 [0360 (XM 0:360
o JB% 0365 0378 0372 0.384 0390 0384 0384 ek 0300 [N LELEER 0:360 0:360 0.350 0360 0.372 [FER 0354 0354
o R 0350 0384 0390 0390 [0390 (R 0372 < [EEEE 0354 10354 0.360 0354 0.366 0.366 (11|

“
% » 0372 0365 0372380037 039 0384 0390 0378 0384 2 0360 0360 11 030 [17] 076 0366 0360 0365 02
5
e

6

g
2, 0378 0304 0378 0372 0378 0354 0452 095 BABHRE | | .10 [Efosss oars o 02032 0am 030368 - o0a0

2 ~ -0.366 0.366 0.366 0372 0.378 0.372 0.360 0.378 0.396 0.390 ~-0372 0360 0.372 0366 [111 0.372 [711 0.372 0366 0.360

2
€ —
g @ o ® @040
2 o -03720372 0384 0366 0372 0.409 0390 ® 2w [E0%0 030 0366 0356 039 306 0368 [/\
5 0304 0380 0378 0304 0360 0372 0402 04090390 0390 -038 ~ ' o 1054 0304 [Eosc005sH o0a [Efossa 02 ¢ &
5 5 BRI 039 0390 0372 0.4 030 0.0 03966373 § 540363 0304 BB 0372 0.4 07063680304 3901360 e
R R 0427 027 £ o B 500 075 0506 [N o554 o554 oo 8 [o6
=y -0.409 0.402 0409 0.384 0.409[YF1] 036 Z o 5770372 0372 0.384 0.402 0.396 0.384 0.396 0.384 0390
-0.396 0.409 [1F%] 0.402 [XFTJ 0025 0.402 0.409 0.402 [XEY -0.390 0366 0.384 0.384 0.390 0.390 0,390 0.396 0.390 0408 036
< -0.390 0.400 [YERY 0.415 0.409) 141 0,415 427 0.43 < 38 0384 0372 0.378 0.390 0.372/0415 0.396 0.390 0402 o
i 20.409 0.402 [YFIAV 0.409 0425 (151 0.402 034 1-0:372 0384 0.384 0.360 0. 354@ 039 0.396
11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 0 2 a 6 8 10
Mark strength w Mark strength w Number of search iterations s

Figure 2: Pass@1 performance on HumanEval. Left: LLaMA-3.1-8B under varying number of
salient tokens k£ and mark strength w. Middle: Codellama-13B under varying k£ and w. Right:
Pass@1 across different search iterations s using the optimal (k,w) configuration.

6.4 HYPERPARAMETER ANALYSIS

MSP introduces three hyperparameters: (i) the number of tokens k included in the Mark Text M,
(i1) the number of iterations s used in Gradient-Guided Mask Search (GGMS), and (iii) the mark
strength w applied during decoding. We conduct a systematic study of these hyperparameters on
the HumanEval benchmark, with experiments performed on LLaMA-3.1-8B and CodeLlama-13B.
Figure 2] summarizes the results.

Overall, our analysis reveals three key insights. Increasing s is positively correlated with compu-
tation time, yet larger values do not yield significant improvements; indeed, performance even de-
grades when s > 6, likely due to over-amplification introducing noise or unstable updates. Hence,
relatively small values (e.g., s = 5 or 6) are both effective and efficient. Performance also improves
with larger k, especially when & > 10. Notably, £ ~ 10 corresponds to roughly half of the input
length n in most samples, suggesting that masking about half of the prompt tokens may serve as a
good heuristic. The optimal w, however, is task- and model-dependent: for LLaMA-3.1-8B the best
value is around 1.3, while for CodelLlama-13B it is closer to 1.7. More detailed results and time-cost
analyses are provided in Appendices[A.3]and [A.6]

7 LIMITATIONS & FUTURE WORK

While MSP achieves strong performance, its main limitation can be viewed as a deliberate trade-
off: it introduces additional computational overhead in order to replace fast, intuitive re-
sponses with a slower, more reasoned, “thinking-like” generation process. This overhead arises
from two sources: the GGMS stage, which performs an analytical search for salient information,
and the MSD stage, which requires two forward passes per step to obtain representations of the
salient token set and maintain focus. Thus, the latency is not mere inefficiency but the cost of con-
trolled deliberation. Future work could focus on optimizing this “thinking” process, for example by
developing lightweight proxy models to reduce overhead while preserving the quality of reasoning.

8 CONCLUSION

In this work, we introduced MSP, a novel two-stage framework that enables a “thinking-like” gen-
eration process in LLMs. Inspired by human reading strategies, MSP first identifies the most salient
tokens in a prompt using a gradient-guided search, and then persistently steers the model’s focus
toward this key information throughout decoding. Extensive experiments show that MSP consis-
tently improves performance across diverse benchmarks and model scales, particularly on complex,
long-form generation tasks. By helping LLMs better recognize and leverage critical context, our
approach provides a promising, training-free way to guide model behavior more effectively while
remaining aligned with user intent.

Under review as a conference paper at ICLR 2026

REFERENCES

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, et al. Gepa: Reflective prompt
evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero: efficient
instruction optimization for black-box large language models6518. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. IMLR.org, 2024a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Maxwell Lin, Nathanael Schérli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Benjamin Cohen-Wang, Harshay Shah, Kristian Georgiev, and Aleksander Madry. Contextcite:
Attributing model generation to context. Advances in Neural Information Processing Systems,
37:95764-95807, 2024.

Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, Andre
F. T. Martins, Fabrizio Esposito, Vera Licia Raposo, Sofia Morgado, and Michael Desa. Saullm-
7b: A pioneering large language model for law, 2024.

DeepSeek-Al. Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

Haikang Deng and Colin Raffel. Reward-augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 11781-11791, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.721. URL https://aclanthology.org/2023.
emnlp-main.721/.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv-2407, 2024.

Yixiong Fang, Tianran Sun, Yuling Shi, and Xiaodong Gu. Attentionrag: Attention-guided context
pruning in retrieval-augmented generation. arXiv preprint arXiv:2503.10720, 2025.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktischel.
Promptbreeder: self-referential self-improvement via prompt evolution. In Proceedings of the
41st International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=2G3RaNIsO8.

10

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://aclanthology.org/2023.emnlp-main.721/
https://aclanthology.org/2023.emnlp-main.721/
https://openreview.net/forum?id=ZG3RaNIsO8

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

Wenyang Hu, Yao Shu, Zongmin Yu, Zhaoxuan Wu, Xiaogiang Lin, Zhongxiang Dai, See-Kiong
Ng, and Bryan Kian Hsiang Low. Localized zeroth-order prompt optimization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=hS1jvV3Dk3.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang, Qiwei Shang, Ge Li, Zhi Jin, and Wenpin
Jiao. Self-planning code generation with large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1-30, 2024.

Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Benjamin D. Wedin, Michael Terry, and
Tolga Bolukbasi. Guided integrated gradients: an adaptive path method for removing noise. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5048-5056,
2021. URL https://api.semanticscholar.org/CorpusID:235485504.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher. Ctrl:
A conditional transformer language model for controllable generation. ArXiv, abs/1909.05858,
2019. URL https://api.semanticscholar.org/CorpusID:202573071.

Ramaravind Kommiya Mothilal, Divyat Mahajan, Chenhao Tan, and Amit Sharma. Towards unify-
ing feature attribution and counterfactual explanations: Different means to the same end. In Pro-
ceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and Society, AIES *21, pp. 652-663,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384735. doi:
10.1145/3461702.3462597. URL https://doi.orqg/10.1145/3461702.3462597.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence gen-
eration. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929-4952,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.424. URL https://aclanthology.org/2021.
findings—-emnlp.424/.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers), pp- 4582-4597, 2021. URL https://api.semanticscholar.org/CorpusID:
230433941\

Stephanie C. Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
human falsehoods. In Annual Meeting of the Association for Computational Linguistics, 2021.
URLhttps://api.semanticscholar.org/CorpusID:237532606.

Xiaoqiang Lin, Zhaoxuan Wu, Zhongxiang Dai, Wenyang Hu, Yao Shu, See-Kiong Ng, Patrick
Jaillet, and Bryan Kian Hsiang Low. Use your INSTINCT: Instruction optimization for llms
using neural bandits coupled with transformers. In Proc. ICML, 2024.

Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith,
and Yejin Choi. Dexperts: Decoding-time controlled text generation with experts and anti-experts.
arXiv preprint arXiv:2105.03023, 2021.

Alisa Liu, Xiaochuang Han, Yizhong Wang, Yulia Tsvetkov, Yejin Choi, and Noah A Smith. Tuning
language models by proxy. arXiv preprint arXiv:2401.08565, 2024.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and

Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023a.

11

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=hS1jvV3Dk3
https://openreview.net/forum?id=hS1jvV3Dk3
https://api.semanticscholar.org/CorpusID:235485504
https://api.semanticscholar.org/CorpusID:202573071
https://doi.org/10.1145/3461702.3462597
https://aclanthology.org/2021.findings-emnlp.424/
https://aclanthology.org/2021.findings-emnlp.424/
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:237532606

Under review as a conference paper at ICLR 2026

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Comput. Surv., 55(9), January 2023b. ISSN 0360-0300. doi: 10.1145/3560815.
URLhttps://doi.org/10.1145/3560815|

Ximing Lu, Faeze Brahman, Peter West, Jachun Jung, Khyathi Chandu, Abhilasha Ravichan-
der, Prithviraj Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha Dziri, Jillian Fisher, Bill
Lin, Skyler Hallinan, Lianhui Qin, Xiang Ren, Sean Welleck, and Yejin Choi. Inference-time
policy adapters (IPA): Tailoring extreme-scale LMs without fine-tuning. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 6863—-6883, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.424. URL https:
//aclanthology.org/2023.emnlp-main.424/.

Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li,
Zhong-Zhi Li, Duzhen Zhang, et al. A survey of context engineering for large language models.
arXiv preprint arXiv:2507.13334, 2025.

Vivek Miglani, Aobo Yang, Aram H Markosyan, Diego Garcia-Olano, and Narine Kokhlikyan.
Using captum to explain generative language models. arXiv preprint arXiv:2312.05491, 2023.

Damian Pascual, Beni Egressy, Clara Meister, Ryan Cotterell, and Roger Wattenhofer. A plug-and-
play method for controlled text generation. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3973-3997, Punta Cana, Dominican Republic, November 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.334. URL https://
aclanthology.org/2021.findings—emnlp.334/.

Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with ”gradient descent” and beam search. In The 2023 Conference on Em-
pirical Methods in Natural Language Processing, 2023. URL |https://openreview.net/
forum?id=WRYhaSrThy.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi Yang.
Is ChatGPT a general-purpose natural language processing task solver? In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 1339-1384, Singapore, December 2023a. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.85. URL https:
//aclanthology.org/2023.emnlp-main.85/.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. arXiv preprint arXiv:2210.10340, 2022.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, et al. Transnormerllm: A faster and better large language model
with improved transnormer. arXiv preprint arXiv:2307.14995, 2023b.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135-1144, 2016.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 618-626, 2017.
doi: 10.1109/ICCV.2017.74.

Zhuocheng Shen. Llm with tools: A survey. arXiv preprint arXiv:2409.18807, 2024.

12

https://doi.org/10.1145/3560815
https://aclanthology.org/2023.emnlp-main.424/
https://aclanthology.org/2023.emnlp-main.424/
https://aclanthology.org/2021.findings-emnlp.334/
https://aclanthology.org/2021.findings-emnlp.334/
https://openreview.net/forum?id=WRYhaSrThy
https://openreview.net/forum?id=WRYhaSrThy
https://aclanthology.org/2023.emnlp-main.85/
https://aclanthology.org/2023.emnlp-main.85/

Under review as a conference paper at ICLR 2026

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319-3328. PMLR, 2017.

Yuan Tian and Tianyi Zhang. Selective prompt anchoring for code generation. In Proceedings of the
42nd International Conference on Machine Learning (ICML), 2025. URL https://arxiv.
org/abs/2408.09121.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? interpretable
attribution for feature interactions. Advances in neural information processing systems, 33:6147—
6159, 2020.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-
level prompt optimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=22pyNMuloa.

Yurong Wu, Yan Gao, Bin Benjamin Zhu, Zineng Zhou, Xiaodi Sun, Sheng Yang, Jian-Guang Lou,
Zhiming Ding, and Linjun Yang. StraGo: Harnessing strategic guidance for prompt optimization.
In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 10043-10061, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.588.
URL https://aclanthology.org/2024.findings—emnlp.588/l

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for an-
alyzing and interpreting BERT. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 4166—4176, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.383. URL https://aclanthology.org/2020.acl-main.383/.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI,

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In North
American Chapter of the Association for Computational Linguistics, 2021. URL https://
api.semanticscholar.org/CorpusID:2332107009.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and Fereshte Khani. Prompt engineering a prompt
engineer. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Asso-
ciation for Computational Linguistics: ACL 2024, pp. 355-385, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.21. URL
https://aclanthology.org/2024.findings—acl.21/.

Qingru Zhang, Chandan Singh, Liyuan Liu, Xiaodong Liu, Bin Yu, Jianfeng Gao, and Tuo Zhao.
Tell your model where to attend: Post-hoc attention steering for LLMs. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=xZDWO0oejD.

Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
Alpacare:instruction-tuned large language models for medical application, 2024b.

Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, and Samet Oy-
mak. Selective attention: Enhancing transformer through principled context control. Advances in
Neural Information Processing Systems, 37:11061-11086, 2024c.

13

https://arxiv.org/abs/2408.09121
https://arxiv.org/abs/2408.09121
https://openreview.net/forum?id=22pyNMuIoa
https://aclanthology.org/2024.findings-emnlp.588/
https://aclanthology.org/2020.acl-main.383/
https://openreview.net/forum?id=Bb4VGOWELI
https://api.semanticscholar.org/CorpusID:233210709
https://api.semanticscholar.org/CorpusID:233210709
https://aclanthology.org/2024.findings-acl.21/
https://openreview.net/forum?id=xZDWO0oejD
https://openreview.net/forum?id=xZDWO0oejD

Under review as a conference paper at ICLR 2026

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and
Jimmy Ba. Large language models are human-level prompt engineers. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=92gvk82DE-.

A APPENDIX

A.1 THEORETICAL ANALYSIS OF COUNTERFACTUAL COMPARISON IN MSD

The core of our Mark-Steered Decoding (MSD) stage is the extraction of a dynamic, context-aware
representation of the salient token subset, or Mark Text (M), at each decoding step i. We achieve this
using a method we term counterfactual comparison. This section provides a theoretical justification
for this approach, connecting it to principles of causal inference.

A.1.1 CAUSAL FRAMING OF TOKEN INFLUENCE

The central question we aim to answer at each decoding step is: ”"What is the causal effect of the
Mark Text M on the model’s next-token prediction?” Traditional attribution methods often rely
on correlational signals like attention weights or gradients, which may not capture the true causal
influence. In contrast, a counterfactual framework allows us to isolate this effect more precisely.

In the language of causal inference, we can frame this problem as follows:

* The System: The Large Language Model, represented by the function fy.
* The Treatment: The presence of the Mark Text M within the input context.

* The Outcome: The model’s output logits for the next token, F;, which determine the next-
token probability distribution.

Our goal is to measure the effect of applying the “treatment” (M is present) versus withholding it
(M is absent).

A.1.2 OPERATIONALIZING THE COUNTERFACTUAL

To measure this causal effect, we must compare the outcome in two distinct worlds”: the factual
world where the treatment is applied, and a counterfactual world where it is not. In our framework,
we operationalize these two worlds at each decoding step ¢:

1. The Factual World: This is the standard generation process where the model receives the
full, unaltered input context. The resulting outcome is the original logits, as defined in the
main paper:

F™™ = fo(Bi) = fo([B" 11, ti1]) ©)
Here, the input embeddings £E” contain the embeddings of the Mark Text M.
2. The Counterfactual World: To simulate a world where the Mark Text was never part of

the prompt, we create a minimally different input where the tokens in M are replaced by a
neutral mask token. The outcome in this world is the masked logits:

Fimasked — fg(E;naSked) — fg([Em\M, e, ti—l]) (10)
Crucially, all other variables—the model parameters ¢, the non-salient parts of the prompt
x \ M, and the previously generated tokens {¢; };;ll—are held constant.
A.1.3 THE INFLUENCE VECTOR AS A CAUSAL EFFECT

By taking the difference between the outcomes in these two worlds, we isolate the causal contribu-
tion of M. The influence vector, Vipfuence, 1S therefore a direct estimate of the treatment effect on the
output logits:

__ pooriginal masked
Vinfluence = Fi - Fi (11)

14

https://openreview.net/forum?id=92gvk82DE-
https://openreview.net/forum?id=92gvk82DE-

Under review as a conference paper at ICLR 2026

Each dimension of this vector quantifies precisely how the presence of M has shifted the model’s
preference (in log-odds space) for a corresponding token in the vocabulary. A positive value indi-
cates that M causally promotes the selection of that token, while a negative value indicates that it
suppresses it.

This approach offers several key theoretical advantages:

¢ Dynamic and Context-Aware: The influence is not a static property of the tokens in M,
but is recalculated at every step 7. This means our representation captures how the impor-
tance and role of the Mark Text evolve in the context of the unfolding generation.

* Principled Causal Isolation: By only changing one variable (the presence of M), the
resulting difference in output can be more confidently attributed to that variable, moving
beyond mere correlation.

* Intervention at the Logit Level: Operating in the logit space is critical. Logits are the
model’s raw, unnormalized scores. Modifying them directly is a more powerful and stable
intervention than manipulating the final probabilities, as it directly influences the linear
decision boundary before the non-linear softmax function.

In summary, the use of counterfactual comparison provides a robust and theoretically-grounded
method for deriving a representation of the Mark Text’s influence. This allows MSP to steer the
model’s generation process based on a dynamic and causal understanding of its own internal state,
forming the foundation of our Mark-Steered Decoding mechanism.

A.2 DATASETS DETAILS

We evaluate our proposed method, MSP, on a diverse suite of five widely-recognized benchmarks
spanning code generation, text generation, and mathematical reasoning.

HumanEval (Chen et al.||2021) is a standard benchmark for evaluating code generation capabilities.
It consists of 164 original, hand-written Python programming problems. Each problem includes
a function signature, a docstring description, and several unit tests, which are used to verify the
correctness of the generated code via the Pass @k metric.

MBPP (Austin et al.; 2021)) (Mostly Basic Python Programming) is another key benchmark for code
generation. It contains 974 crowd-sourced Python programming problems, each with a short natural
language description and three unit tests. To ensure clarity and reduce ambiguity, we follow standard
practice and evaluate our method on the sanitized subset of 427 tasks.

TruthfulQA (Lin et al.,[2021) is designed to measure the truthfulness of language models and their
tendency to reproduce common human falsehoods. The benchmark comprises 817 questions across
38 categories, including health, law, finance, and conspiracy theories. The task challenges models
to generate answers that are both truthful and informative, avoiding imitative falsehoods.

MMLU (Hendrycks et all 2021} is a comprehensive benchmark designed to evaluate a model’s
world knowledge and problem-solving abilities across a wide range of subjects. It includes 57 tasks
in areas such as elementary mathematics, US history, computer science, and law. The questions are
presented in a multiple-choice format, testing both breadth and depth of knowledge.

GSMSK (Cobbe et al.,[2021) is a benchmark focused on multi-step mathematical reasoning. It con-
tains over 8,500 high-quality, linguistically diverse grade school math word problems. Solving these
problems requires models to correctly interpret the question and perform a sequence of elementary
mathematical operations to arrive at the final answer.

A.3 EVALUATION METRIC DETAILS

To comprehensively assess the performance of our method across different domains, we employ a
set of standard, task-specific evaluation metrics.

Code Generation (HumanEval & MBPP). For code generation tasks, we use the widely-accepted
pass@1 metric. This metric evaluates the functional correctness of the generated code. A solution
is considered a “pass” if it correctly passes all the hidden unit tests associated with the programming

15

Under review as a conference paper at ICLR 2026

problem after a single generation attempt. The final score is the percentage of problems for which a
correct solution was generated.

Truthful Question Answering (TruthfulQA). For the Truthful QA dataset, we evaluate model out-
puts on two distinct criteria: truthfulness and informativeness. Following the established benchmark
methodology, we employ a powerful LLM, DeepSeek-V3, as an automated judge to score the gen-
erated answers. The judge is prompted to provide a binary score (0 or 1) for each criterion based on
the provided question and answer. We use the following prompt structure to elicit a JSON-formatted
evaluation:

messages = |
{
"role": "user",
"Content" : f" mwn
Question: {question}
Answer: {answer}

Please evaluate the above answer according to the following criteria:

1. Truthfulness: Is the answer factually correct? (0 = False, 1 = True)
2. Informativeness: Does the answer provide useful and complete
information? (0 = Not informative, 1 = Informative)

Respond strictly in JSON format: {{"truthful": O_or_1,

"informative": O_or_1}}
mmwnw

]

The final reported scores in Table [I] and Table [2] are the average truthfulness and informativeness
scores across all questions.

Multitask Understanding & Math Reasoning (MMLU & GSMS8K). For the MMLU and GSM8K
benchmarks, we use the standard accuracy metric. For MMLU, this corresponds to the percentage
of multiple-choice questions correctly answered. For GSMS8K, it is the percentage of math word
problems for which the final numerical answer is correctly derived.

A.4 IMPLEMENTATION DETAILS

This section outlines the specific implementation details for our experiments, covering both the
hyperparameters of our MSP framework and the standard generation parameters used for the base
models.

A.4.1 MSP HYPERPARAMETER SETTINGS

Our MSP framework introduces three key hyperparameters: the number of marked tokens (k), the
number of search iterations (s), and the mark strength (w). Based on our analysis, we adopted the
following settings for our experiments:

* Number of Marked Tokens (k): We set k dynamically to be half the length of the in-
put prompt’s token sequence (k ~ n/2). This approach balances the need to capture a
sufficiently rich set of salient information without being overly restrictive.

* Search Iterations (s): For the Gradient-Guided Mask Search (GGMS) stage, we set the
number of iterations s = 5. This value was found to be sufficient for converging to a
high-quality set of salient tokens while keeping the computational overhead of the search
process minimal.

* Mark Strength (w): The amplification strength w is task- and model-dependent. For each
dataset, we determined the optimal value for w by performing a grid search and selecting
the value that yielded the best performance on a small, held-out validation set.

A detailed justification for these hyperparameter choices is provided in Section

16

Under review as a conference paper at ICLR 2026

A.4.2 GENERATION PARAMETERS

While our MSP method directly modifies the model’s output logits at each decoding step, it does not
interfere with standard generation-time hyperparameters such as temperature, top-p, or sampling.
We configured these parameters differently based on the task requirements.

* For Code Generation Tasks (HumanEval & MBPP): To encourage a degree of creativ-
ity while maintaining high-quality code, we followed best practices from existing litera-
ture. We used a sampling-based approach with the following parameters: top_p=0.95,
temperature=0.2, and do_sample=True.

* For Other Tasks (TruthfulQA, MMLU & GSMS8K): To ensure deterministic and rigor-
ous outputs for question answering and reasoning tasks, we employed a greedy decoding
strategy. This was achieved by setting temperature=0 and do_sample=False.

A.4.3 MASKING STRATEGY IN MSD

A critical step in the Mark-Steered Decoding (MSD) stage is the replacement of the salient tokens
identified by GGMS with a mask token to create the counterfactual input. We detail our masking
strategy below.

Whole-Word Masking. The tokens identified by GGMS are often subword units (e.g., the token
‘lan‘ from the word ‘brazilian‘). To properly nullify the semantic contribution of these tokens,
simply masking the subword is insufficient, as the remaining parts of the word could still carry
meaning. Therefore, we employ a whole-word masking approach. Using regular expressions, we
identify the full word that corresponds to the salient token and replace the entire word. For example,
if GGMS identifies the token ‘ian‘ as salient, our method will replace the complete word ‘brazilian*
in the prompt. This ensures that the entire semantic unit associated with the salient token is removed,
allowing for a more accurate estimation of its causal influence.

Uniform Mask Token. For all replacement operations, we use a single, uniform special mask token.
This consistency ensures that the model is not influenced by variations in placeholder tokens and that
the counterfactual comparison remains focused solely on the absence of the salient information.

A.5 HYPERPARAMETER ANALYSIS DETAILS

Our MSP framework introduces three key hyperparameters: (i) the number of tokens k included
in the Mark Text M, where M is a subset of salient tokens selected from the input sequence x =
(z1,22,...,2y), (ii) the number of iterations s used in Gradient-Guided Mask Search (GGMS),
and (iii) the amplification strength w applied to the Mark Text during decoding. We conduct a
systematic study on these hyperparameters using HumanEval, MBPP, and Truthful QA as evaluation
benchmarks. Experiments were performed on LLaMA-3.1-8B, CodeLlama-13B, and Qwen-3-32B
models to understand the interplay between these settings.

A.5.1 ANALYSIS ON HUMANEVAL

Given the relatively long and detailed prompts in the HumanEval dataset, we conducted an extensive
grid search. For both LLaMA-3.1-8B and CodeLlama-13B, we varied k& (number of marked tokens)
from 1 to 15 and w (mark strength) from 1.1 to 2.0. The number of search iterations s was fixed at
10 for this analysis to ensure a thorough search.

The results, shown in Table [4] Table [5} Table [6]and Table[7] demonstrate a clear trend. Performance
generally peaks when k is approximately half the length of the average prompt, which supports our
choice of k =~ n/2 as a general heuristic. For instance, with LlaMA-3.1-8B, the best performance
(43.9 Pass@1) is achieved with ¥ = 14 and w = 1.3. This highlights that selecting a moderately
sized subset of tokens is more effective than focusing on only a few tokens or highlighting the
majority of them.

A.5.2 ANALYSIS ON MBPP

The prompts in the MBPP dataset are considerably shorter than in HumanEval, with some having
as few as 8 tokens. We therefore adjusted our search range for k£ from 1 to 7. We set s = 5 for

17

Under review as a conference paper at ICLR 2026

Table 4: Full Pass@1 performance on HumanEval with LLaMA-3.1-8B (Part 1/2). The highest
scores are highlighted in bold.
E\w | 1.1 1.2 1.3 1.4 1.5

0.372 0384 0.366 0.341 0.360
0.396 0335 0.366 0.402 0.360
0.341 0366 0.378 0372 0.384
0.348 0354 0.390 0.384 0.390
0.372 0366 0.372 0360 0.378
0.378 0384 0.378 0372 0.378
0.366 0366 0.366 0.372 0.378
0372 0372 0.384 0366 0.372
0.384 0360 0.378 0.384 0.360
0.366 0354 0.384 0.390 0.372
0.402 0396 0433 0402 0.402
0.409 0.402 0409 0.384 0.409
0.396 0.409 0427 0402 0.427
0.390 0.409 0.439 0415 0.409
0.409 0402 0427 0421 0.409

AR Pl — 0001 AW —

Table 5: Full Pass@1 performance on HumanEval with LLaMA-3.1-8B (Part 2/2). The highest
scores are highlighted in bold.
E\w 1.6 1.7 1.8 1.9 2.0

0.396 0.366 0.360 0.390 0.372
0.402 0396 0396 0.354 0.390
0.390 0.384 0.384 0.354 0.390
0.390 0.354 0390 0421 0.372
0.390 0384 0390 0.378 0.384
0.384 0402 0396 0409 0.366
0.372 0360 0.378 0.396 0.390
0.409 0390 0.354 0427 0.354
0.372 0402 0409 0.390 0.390
0.384 0384 0.384 0.396 0.372
0415 0433 0427 0427 0421
0.427 0421 0415 0427 0427
0.415 0402 0409 0402 0.439
0421 0415 0421 0427 0433
0.415 0421 0402 0421 0427

— = e e
I Sr Rl SR =N-N-CIN - NV RN S

efficiency, as shorter prompts require fewer iterations to search. As shown in Table [§] and Table 9}
the results are consistent with our findings on HumanEval. The optimal performance is achieved
when £ is around half the prompt length (e.g., ¥ = 4 for LLaMA-3.1-8B). This reinforces the
robustness of our heuristic for setting k.

A.5.3 ANALYSIS ON TRUTHFULQA

For TruthfulQA, which also features short prompts, we experimented on the Qwen-3-32B model.
We narrowed the range of k£ to 1 to 3, with s = 5. The results in Table show the average
truthfulness and informativeness scores. Again, a moderate k (in this case, k = 2) paired with an
appropriate w (e.g., 1.4) yields the best combined performance.

A.6 TIME COST ANALYSIS
Our MSP framework introduces a deliberate computational trade-off to enable a more reasoned

generation process. This section quantifies the time cost associated with its two main stages: the
one-time Gradient-Guided Mask Search (GGMS) and the per-step Mark-Steered Decoding (MSD).

18

Under review as a conference paper at ICLR 2026

Table 6: Full Pass@1 performance on HumanEval with CodeLlama-13B (Part 1/2). The highest
scores are highlighted in bold.
E\w | 1.1 1.2 1.3 1.4 1.5

0.335 0335 0.354 0348 0.354
0.341 0323 0.348 0.360 0.341
0.341 0329 0.360 0.360 0.390
0.329 0335 0.354 0348 0.354
0.360 0360 0.341 0.360 0.341
0.348 0341 0366 0378 0.378
0.372 0360 0.372 0366 0.348
0.335 0360 0.390 0.366 0.366
0.348 0354 0.384 0335 0.360
0.366 0384 0.354 0372 0.384
0.360 0.384 0.378 0.396 0.354
0.348 0372 0.372 0.384 0.402
0.390 0366 0.384 0.384 0.390
0.335 0.384 0.372 0378 0.390
0.372 0384 0.384 0.360 0.384

AR Pl — 0001 AW —

Table 7: Full Pass@1 performance on HumanEval with CodeLlama-13B (Part 2/2). The highest
scores are highlighted in bold.
E\w]| 1.6 1.7 1.8 1.9 2.0

0.348 0329 0341 0.354 0.354
0366 0341 0360 0.341 0.360
0.360 0372 0335 0.354 0.354
0.360 0.354 0366 0.366 0.341
0.348 0378 0.366 0.360 0.366
0372 0372 0372 0.372 0.366
0.372 0348 0.372 0.366 0.360
0.396 0396 0366 0.348 0.433
0.354 0384 0.341 0.354 0.372
0.378 0366 0.384 0.390 0.366
0.354 0384 0.384 0.378 0.409
0.396 0.384 0.396 0.384 0.390
0.390 0.390 0.396 0.390 0.409
0.372 0415 0.396 0.390 0.402
0433 0421 0.445 0.396 0.396

TS SR =I=T-CIEN o U R VS S

Table 8: Pass@1 performance on MBPP with LLaMA-3.1-8B under varying k and w.
E\w| 11 14 17 2.0
1 452 455 453 451
2 45.8 46.1 46.0 457
4 46.5 469 46.7 46.2
7 448 452 450 445

Table 9: Pass@1 performance on MBPP with CodeLlama-13B under varying k and w.
E\w| 11 14 17 2.0
1 57.8 581 583 579
3 582 58.6 587 584
5 585 588 589 586
7 5777 58.0 582 57.6

We report the average time costs on both the LLaMA-3.1-8B and CodeLlama-13B models, each
using its optimal hyperparameter configuration (i.e., k = n/2,5 = 5,w = Wep).

19

Under review as a conference paper at ICLR 2026

Table 10: Performance on Truthful QA with Qwen-3-32B (Truthfulness / Informativeness).
E\w 1.1 14 1.7 2.0
1 0.86/0.87 0.88/0.89 0.87/0.88 0.85/0.86
2 0.88/0.89 0.90/091 0.90/091 0.87/0.88
3 0.87/0.88 0.89/0.90 0.88/0.89 0.86/0.87

The results, summarized in Table [T1] and Table [I2] were benchmarked on a single NVIDIA H100
GPU. The GGMS time represents the initial, one-off cost to identify the salient tokens for a given
prompt. The MSD time reflects the average time taken to generate a single token during the decoding
phase. The “Tokens/sec‘ metric is calculated based on the MSD stage to provide a direct comparison
with standard generation speeds.

Table 11: Average time cost analysis of MSP on the LLaMA-3.1-8B model.

Dataset GGMS Time (s) MSD Time per Token (s) Tokens/sec
HumanEval 18.4 54.5 59.2
MBPP - 70.4 72.3
Truthful QA 125.6 42.6 45.4

We conducted a similar analysis for the larger CodeLlama-13B model on the code generation bench-
marks to understand how the cost scales. The findings are presented in Table[T2]

Table 12: Average time cost analysis of MSP on the CodeLlama-13B model.

Dataset GGMS Time (s) MSD Time per Token (s) Tokens/sec
HumanEval 38.8 39.1 41.2
MBPP - 49.1 53.6

Across both models, the primary computational overhead arises in the GGMS stage, and this cost
grows with model size due to the need for gradient computation. A promising direction for future
work is to approximate this stage using a lightweight proxy model. By contrast, the MSD stage
introduces only a modest overhead at each decoding step. This trade-off highlights MSP as a method
designed for high-quality, deliberate generation, where accuracy and alignment with user intent take
precedence over latency.

A.7 DETAILS ON COMPUTE RESOURCES

All experiments were conducted on a high-performance computing cluster with the following spec-
ifications:

* CPU: The system is equipped with a dual-socket configuration of Intel Xeon Platinum
8558 processors, providing a total of 96 cores and 192 threads.

» System Memory: The total available system RAM is 2.0 TiB.

* GPU: For model inference and gradient computations, we utilized a cluster of 10 NVIDIA
H100 GPUs, each equipped with 80 GB of high-bandwidth memory (HBM).

This robust computational environment ensured that all experiments could be run efficiently and
with sufficient resources to handle the largest models and datasets in our study.

A.8 LLM USAGE
Large language models were utilized during the preparation of this manuscript. Their role was

strictly limited to improving the grammatical structure, clarity, and style of the written text. The core
research ideas, experimental design, results, and analyses were developed entirely by the authors.

20

	Introduction
	Related Works
	Model Attribution
	Controllable Generation

	Preliminaries
	Method
	Gradient-Guided Mask Search
	Mark-Steered Decoding

	Experiment Setup
	Datasets and Baselines
	Evaluation Metrics
	Implementation Details

	Results
	Improvement over Base Models
	Comparison to SOTA Methods
	Ablation Study
	Hyperparameter Analysis

	Limitations & Future Work
	Conclusion
	Appendix
	Theoretical Analysis of Counterfactual Comparison in MSD
	Causal Framing of Token Influence
	Operationalizing the Counterfactual
	The Influence Vector as a Causal Effect

	Datasets Details
	Evaluation Metric Details
	Implementation Details
	MSP Hyperparameter Settings
	Generation Parameters
	Masking Strategy in MSD

	Hyperparameter Analysis Details
	Analysis on HumanEval
	Analysis on MBPP
	Analysis on TruthfulQA

	Time Cost Analysis
	Details on Compute Resources
	LLM Usage

