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Abstract

Regularization in modern machine learning is crucial, and it can take various forms
in algorithmic design: training set, model family, error function, regularization
terms, and optimizations. In particular, the learning rate, which can be interpreted
as a temperature-like parameter within the statistical mechanics of learning, plays
a crucial role in neural network training. Indeed, many widely adopted training
strategies basically just define the decay of the learning rate over time. This process
can be interpreted as decreasing a temperature, using either a global learning
rate (for the entire model) or a learning rate that varies for each parameter. This
paper proposes TempBalance, a straightforward yet effective layer-wise learning
rate method. TempBalance is based on Heavy-Tailed Self-Regularization (HT-SR)
Theory, an approach which characterizes the implicit self-regularization of different
layers in trained models. We demonstrate the efficacy of using HT-SR-motivated
metrics to guide the scheduling and balancing of temperature across all network
layers during model training, resulting in improved performance during testing. We
implement TempBalance on CIFAR10, CIFAR100, SVHN, and TinyImageNet
datasets using ResNets, VGGs and WideResNets with various depths and widths.
Our results show that TempBalance significantly outperforms ordinary SGD and
carefully-tuned spectral norm regularization. We also show that TempBalance
outperforms a number of state-of-the-art optimizers and learning rate schedulers.

1 Introduction

Having a learning rate schedule that gradually decreases over time is crucial for the convergence and
performance of state-of-the-art machine learning algorithms. Indeed, many optimization algorithms
essentially boil down to designing a progression of parameter updates, as realized by different learning
rate schedules [1–4]. Common schedules assign a global learning rate per epoch, where the same
learning rate is used for all layers in the model. This includes the family of cyclical learning rates [3],
and parameter-wise learning rate schedules like Adam [2] and its variants [5, 6]. However, such
a global learning rate schedule does not take into account the structural characteristics of neural
networks (NNs). At the same time, parameter-wise learning rate schedules are sometimes used,
but they have long been conjectured to have worse generalization performance than carefully tuned
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stochastic gradient descent (SGD) optimizers [7], and storing both first and second-order moments
for each parameter can lead to substantially increased memory consumption [8]. As mentioned
in [9], storing the whole Megatron-Turing NLG requires 10 terabytes of aggregate memory, and the
Adam optimizer’s first and second-order moments [2] consume 40% of the memory. Nonetheless,
improving parameter-wise learning rate schedules is an active field of study [4, 5, 10, 11].

A largely under-explored idea to reconcile the two extremes of setting a single global learning rate or
assigning fine-grained parameter-level learning rates is to assign layer-wise learning rates. Such a
learning rate assignment method does not require much storage cost, and it can assign very different
training speeds to different layers. However, existing layer-wise schemes are often introduced as
an additional part of hyperparameter sweeping, thus substantially increasing computational cost;
and most lack a strong (or any) theoretical foundation. For instance, layer-wise learning rates can
increase test accuracy in transfer learning [12] and domain adaptation [13], but these learning rates
are often empirically tuned. More recently, motivated by the intuition that lower-level layers should
be domain-specific and higher-level layers should be task-specific, [14] automates the search for an
optimal set of learning rates. However, the authors find the nested, bi-level optimization scheme to
be too computationally expensive in practice [15]. AutoLR also automatically tunes its layer-wise
learning rates according to the “role” of each layer [16]. The method is validated almost entirely by
empirical results, further explained by layer-wise weight variations. While the authors attempt to
assign a different initial learning rate to each layer, the learning rate for each layer continues to stay
largely constant throughout training. LARS [17, 18] is another method to assign layer-wise learning
rate. It is based on the “trust ratio,” defined as the ratio of weight norm to gradient update norm of
each layer, and it is specifically used in large batch training to avoid gradient divergence.

In this paper, we propose TempBalance, a simple yet effective layer-wise learning rate assignment
(and regularization) method, grounded in Heavy-Tail Self Regularization (HT-SR) Theory [19–24].
Our approach leverages HT-SR Theory to assess the quality of each network layer. This is achieved
through an analysis of the heavy-tail (HT) structure present in the Empirical Spectral Density
(ESD) of NN weight matrices. Given this information, TempBalance meticulously adjusts the
temperature-like parameter to control each layer’s quality, with the objective of ensuring consistently
high quality across all layers of the network. From the statistical physics viewpoint on learning and
optimization [24–28], a temperature-like parameter refers to some quantity related to the empirical
noise/stochasticity of the learning process. This is the noise scale described by [29, 30], and it
can be written as a function of learning rate, batch size, and momentum. Prior research [19, 31]
has shown that temperature-like parameters significantly influence HT structure in the ESD.
Our approach, TempBalance, focuses on the strategic adjustment of the learning rate as the
temperature-like parameter, thereby facilitating accurate control of the quality across each network
layer, as characterized by its HT ESD structure. The following paragraph will delve deeper into
the importance of HT-SR, highlighting its connection to the concept of layer-wise temperature.

HT-SR Theory. HT-SR Theory [19–24] relies on the empirical fact that very well-trained models
tend to exhibit strong correlations, resulting in HT structure in the ESD of each layer. To obtain
this ESD, we take a NN with L layers and the corresponding weight matrices W1,W2, · · · ,WL

with shape n×m (where n ≤ m). For the i-th layer, we calculate the eigenvalues of its correlation
matrix Xi = WT

i Wi, and then we plot the ESD for that layer. Upon training, the ESD will typically
gradually change to have an HT structure [19, 22]. We can then fit a power law (PL) distribution to
the HT part of the ESD, and extract its exponent as, namely, PL_Alpha. The fitted PL will have the
following formula:

p(λ) ∝ λ−α, λmin < λ < λmax. (1)

The PL_Alpha metric measures the PL exponent of the weight matrices’ ESD. Its underlying motiva-
tion stems from random matrix theory and statistical physics, as well as the empirical observation
that HT ESDs are ubiquitous in well trained NN models [20, 22].

The PL_Alpha metric has been shown to predict the trends in the test accuracy of state-of-the-art
models in computer vision (CV) and natural language processing (NLP), without even the need for
access to training or testing data [22, 32]. According to [22], one can aggregate PL_Alpha’s for
different layers either by simple averaging or weighted averaging, and each can predict test accuracy
in different cases [22, 32]. Furthermore, the layer-wise nature of PL_Alpha makes it a fine-grained
metric that can be used to assess the quality of individual layers of the network. Thus, in this paper,
we extend and apply HT-SR Theory (originally designed as a predictive diagnostic for analyzing
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Figure 1: Examples of PL fitting. Blue histograms depict the ESDs. Vertical black lines indicate
the lower threshold λmin used to truncate the full ESDs and extract the tail portion. Solid red curves
represent the tail part of the ESDs truncated by λmin, while dashed red curves represent the fitted HT
distributions. The left shows a more HT ESD, which requires a relatively lower learning rate. The
right one shows a less HT ESD, which requires a relatively higher learning rate. Unlike prior work,
we do not aim to find the “optimal” PL exponent. (Thus, we are less interested in obtaining a precise
estimate than in obtaining a robust estimate.) Instead, we use the PL exponent to rank ESDs to find
layers that need higher/lower learning rates. These two ESDs correspond to two layers of a ResNet18
model trained on TinyImageNet.

pre-trained NN models) to NN training, and we exploit the layer-wise information provided by
PL_Alpha to determine the layer-wise learning rates for better test accuracy.

We note that, while it provides perhaps the most principled approach, the PL_Alpha metric is not the
only way to try to measure the HT structure in NN models. Several recent papers [33–35] use different
HT metrics to try to measure the spectral properties of other matrices (such as input/output covariance
matrices, Fisher Information Matrices, and the Hessian). We show in Appendix A that these HT
phenomena, measured in different ways on different matrices, are closely related to each other. On
the other hand, this also means that (for the problems considered in this paper) the absolute numerical
value of PL_Alpha is less important, as optimal PL exponents estimated by different algorithms
can be different [22, 33]. What matters the most, as we show in this paper, is the layer-wise quality
ranked by the PL exponent: layers with a smaller PL_Alpha tend to be relatively more “overtrained,”
and layers with a larger PL_Alpha tend to be relatively more “undertrained.” (We emphasize that
this is true for the training problem we consider in this paper—for prior HT-SR work, the actual
numerical value of PL_Alpha mattered a lot.)

This observation leads to a simple and efficient way to balance layer-wise learning rates: assign a
lower learning rate to more overtrained layers and a larger learning rate to more undertrained layers,
using PL_Alpha (see Figure 1). In implementing this learning rate balancing approach, we use a
scale-free method to map the PL_Alpha value of each layer to a predefined learning rate range. This
range is established in relation to a global learning rate. Rather than depending on the absolute
numerical values of PL_Alpha for each layer, this method emphasizes the importance of their relative
differences and quality ranking. As a result, the learning rates assigned to individual layers remain
stable and unaffected by arbitrary linear scaling of PL_Alpha estimates, whether they arise from
the choice of the estimator or the presence of noisy measurements. On top of this, we can perform
a grid search on the global learning rate. This is standard practice, and it is more efficient than
grid-searching the layer-wise learning rates. We use this combination of assigning layer-wise learning
rates using PL_Alpha and grid-searching the base global learning rate to avoid having to decide the
“optimal” PL exponent, as this can be tricky due to different ways of measuring HT properties. Indeed,
there are different ways to measure PL_Alpha [19], and we use the Hill estimator [36]. While not
necessarily the best estimate (see [19, 22]), it shows stable performance in our experiments. We
refer to our version of the PL_Alpha metric as the PL_Alpha_Hill metric, and we use it for the
remainder of the paper.

Another popular way to change the ESD of weights is to constrain the spectral norm (i.e., the
largest eigenvalue) using spectral norm regularization (SNR) [37, 38]. SNR provides a different
form of regularization, compared to HT-SR, because it regulates the largest eigenvalue instead of
the ESD slope (i.e., the PL_Alpha_Hill metric). It has been demonstrated that the spectral norm

3



and PL_Alpha_Hill serve distinct roles in evaluating model quality, and their combined form
yields optimal predictions for test accuracy trends [19, 22, 23, 32]. To complement this, our results
demonstrate that TempBalance outperforms SNR in training deep NNs in most cases. Moreover,
when these two regularization methods are combined during training, they result in optimal test
accuracy, thereby confirming their complementary roles. As described in [23, 32], the spectral norm
and PL_Alpha_Hill measure the scale and the shape of a ESD, respectively; and regulating both the
scale and shape is crucial for achieving better ESD regularization. We provide ablation studies on
several layer-wise metrics for assigning layer-wise learning rates, including spectral norm, and we
show that PL_Alpha_Hill performs the best among them.

Our main contributions. The following summarizes our main contributions.2

• We propose a simple yet effective layer-wise learning rate schedule, TempBalance, which is
motivated by HT-SR Theory. Based on our empirical results, we obtain two main high-level
insights. First, the mapping from PL_Alpha_Hill to learning rates should be scale-free, meaning
that arbitrary linear scaling on the estimated PL exponent should not change the learning rate
assignment. Second, searching for the minimum eigenvalue λmin, a standard practice in PL
fitting [19, 39, 40], leads to unstable training. To improve stability, we instead fix λmin as the
median of the ESD.

• We compare TempBalance to ordinary SGD and SNR on various training tasks. This includes (1)
different network architectures, such as ResNet, VGG, WideResNet, (2) different datasets, such
as CIFAR10, CIFAR100, SVHN, TinyImageNet, and (3) ablation studies, such as varying widths,
depths, initial learning rates, HT-SR layer-wise metrics, and PL fitting methods. Compared to
ordinary SGD, TempBalance achieves higher test accuracy by setting layer-wise learning rates.
Compared to SNR, TempBalance performs better by providing a more fine-grained regularization
on shape/slope instead of norm. We also show that combining TempBalance and SNR leads to
further improved accuracy, verifying their complementary roles in informing deep learning training.

• We compare TempBalance to a range of state-of-the-art optimizers and learning rate schedulers,
including SGDR [10], SGDP [41], Lookahead [42] and LARS [17, 18] on ResNet18 and ResNet34
trained on CIFAR100. We show that TempBalance achieves the highest test accuracy. We do
careful hyperparameter tuning for all baselines. All results are obtained from five random seeds.

• We use ablation studies to show that PL_Alpha_Hill provides the best test accuracy among several
layer-wise metrics considered by HT-SR [22, 32]. We also show that TempBalance maintains
stable performance over SGD baselines when the model size changes. Furthermore, we show
visualization results in Appendix B, verifying that TempBalance controls ESDs during training.

2 Related Work
Here, we give an overview of the statistical mechanics of learning and recent progress in theoretical
and empirical studies on generalization metrics and their applications.

Statistical mechanics of learning and HT-SR. Our paper is motivated by statistical mechanics
of learning [43–45], and especially by works that connect load-like [43, 46, 47] and temperature-
like parameters [25, 48] to NNs. According to prior works in this area [24, 49], a temperature-like
parameter represents the amount of noise/variance in an iteration of SGD, such as learning rate, weight
decay parameters, and batch size. A load-like parameter represents the quantity and/or quality of data
relative to the size of the learning model. To measure the quality of publicly-available pre-trained NNs,
Martin and Mahoney [19] introduce HT-SR Theory, showing that the weight matrices of deep NNs
exhibit HT ESDs, and they show that a decay coefficient of ESD, PL_Alpha, effectively gauges model
quality. Subsequently, [31, 50–54] provide rigorous bounds for HT phenomenon and generalization,
further adding support to HT-SR Theory. HT-SR has also been applied to predicting trends in test
accuracy of large-scale NNs, in both CV and NLP [22, 23, 32], but it has yet to be systematically
incorporated to novel training algorithms. Recently, more papers realize the important connections
between deep NNs and statistical mechanics of learning [24]. To name a few, Yang et al. [49] use
load and temperature parameters to study a wide range of loss landscapes, providing a taxonomy
from the perspective of global structure of a loss landscape. On the theory side, Baity-Jesi et al. [55]
investigates the glassy behavior of NNs, and Barbier et al. [56] derives the optimal generalization
error of generalized linear systems. More recently, Sorscher et al. [57] studies easy versus hard
samples used in training and design a “data-pruning” method; and Zhou et al. [58] establishes a

2Our code is open-sourced: https://github.com/YefanZhou/TempBalance.
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(b) Layerwise Learning Rate Assignment
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Figure 2: The pipeline diagram of TempBalance. In each epoch, TempBalance undergoes two
steps: (a) Performing ESD analysis on all layers and employing PL fitting to derive the layer-wise
PL_Alpha_Hill, and (b) Using the layer-wise PL_Alpha_Hill to assign learning rates to each layer
using an assignment function.

“three-regime model” in network pruning, unifying multiple practical hyperparameter tuning methods
in a principled way.

Generalization measures. The search for effective and robust generalization metrics (which,
importantly, can be very different than model quality metrics [32]) has been the focus of several recent
theoretical and empirical works [22, 32, 49, 59–61]. Several recent papers apply metric-informed
training and architecture search, such as those based on the Hessian [4, 62–64], spectral norm [37, 38],
stable rank [65], and the spectrum of the neural tangent kernel [66]. However, most generalization
metrics, such as those based on the PAC-Bayes bounds [67–70], do not straightforwardly transfer
to layer-wise quality metrics, because such generalization metrics often study the whole NN as an
architecture-free function, and they lack the fine granularity to unveil the quality of each layer. Also, it
has been mentioned in the literature [59] that (1) directly regularizing generalization metrics can lead
to difficulty in training, (2) evaluating these regularization methods may be hard due to the existence
of implicit regularization in SGD, and (3) these metrics, especially norm-based metrics, cannot be
expected to correlate with test accuracy causally [60], making the link between these generalization
metrics and practical training methods nuanced. It will be clear in the next section that we do not
regularize ESD metrics directly. Instead, we change learning rates to modify ESDs.

3 The TempBalance Algorithm
In this section, we introduce our simple yet effective method TempBalance, based on the
PL_Alpha_Hill metric from HT-SR Theory. For a NN, different layers tend to have different
values for PL_Alpha_Hill, [19, 24]: a layer with a larger PL_Alpha_Hill indicates that layer is
relatively undertrained, while a layer with a smaller PL_Alpha_Hill indicates that layer is relatively
overtrained. A natural idea is to adjust the degree of learning among different layers to get a balance:
for a layer whose PL_Alpha_Hill is too large, we could assign a larger learning rate to accelerate
its learning, and vice versa. The intuition of our method is transferring one layer’s learning rate to
another and hence, TempBalance. The pipeline is in Figure 2.

5



Algorithm 1: TempBalance
Input: M : Deep NN, T : Total training epoch, t: Current epoch, αi

t: ith layer’s
PL_Alpha_Hill at epoch t, ηt: Baseline global learning rate at epoch t,
s1, s2: Minimum and maximum scaling ratio, ft: Learning rate schedule function

1 Initialize model M ;
2 for t← 0 to T do
3 Compute αi

t for all layers using the Hill estimator;
4 Leverage all αi

t and adopt ft in (2) to assign per-layer learning rate ft(i) between s1ηt and
s2ηt for the next epoch;

5 Update the optimizer for the next epoch;
6 end

We provide the details of TempBalance in Algorithm 1. Based on PL_Alpha_Hill in different
layers, we use the learning rate schedule function ft to map the i-th layer to a particular learning rate
ft(i) in epoch t. We adopt ft as a linear map between the layer-wise PL_Alpha_Hill and the final
layer-wise learning rate, which has the following formula:

ft(i) = ηt ·
[

αi
t − αmin

t

αmax
t − αmin

t

(s2 − s1) + s1

]
, (2)

where ηt means the base global learning rate in epoch t, (s1, s2) are the minimum and maximum
learning rate scaling ratio relative to ηt, αi

t represents the layer i’s PL_Alpha_Hill at the beginning
of epoch t, and (αmin

t , αmax
t ) denote the minimum and maximum PL_Alpha_Hill across all the

layers in epoch t. Using (2), we ensure that the new learning rate ft(i) is a scaled version of the
original base learning rate ηt and is always inside the interval [s1ηt, s2ηt]. Note that (s1, s2) serves
as tunable hyperparameters in our method. We conducted ablation studies on it, which are detailed in
Appendix C. The hyperparameter values used across all experiments can be found in Appendix D.
Our studies reveal that the optimal results are usually achieved around (0.5, 1.5).

To fit the PL distribution p(λ) defined in (1), we use the Hill estimator [36, 71]. (It is not the best
estimator for fine-scale diagnostics based on HT-SR Theory [19, 22], but it is robust, and it suffices
for our purposes.) For the i-th layer, suppose the weight matrix is Wi and the correlation matrix
W⊤

i Wi has ascending eigenvalues {λi}ni=1. Then, the Hill estimator calculates PL_Alpha_Hill
using the following:

PL_Alpha_Hill = 1 +
k

(
∑k

i=1 ln
λn−i+1

λn−k
)
, (3)

where k is the adjustable parameter. We adopt k = n
2 in our experiments. Note that changing k

essentially changes the lower eigenvalue threshold λmin for (truncated) PL estimation, as shown by
the vertical black line in Figure 1. Choosing k = n

2 means using the largest half of the eigenvalues to
estimate the slope. We empirically find that fixing k for all layers leads to more stable performance
than searching k for different layers (e.g., optimizing k using the Kolmogorov–Smirnov test [40], as
is needed for other applications of HT-SR Theory [19, 22]).

One advantage of mapping PL_Alpha_Hill to learning rates using (2) is that the scale of
PL_Alpha_Hill is unimportant, i.e., linearly scaling PL_Alpha_Hill arbitrarily does not change
the learning rate assignment because the linear scaling cancels each other in (2). This can maximally
reduce the artifact of estimating the ESD PL exponent/slope due to estimation noise, which has been
found to be a tricky issue in practice [19, 23].

4 Empirical results

In this section, we give full details of the experimental setup (Section 4.1) and compare our method
TempBalance to a few baselines (Section 4.2), and then (Section 4.3) we perform ablation studies
on varied initial learning rates, model widths, HT-SR layer-wise metrics, and PL fitting methods.
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

(e) ResNet18, TIN (f) ResNet34, TIN (g) WRN16-8, TIN (h) WRN28-6, TIN

(i) ResNet18, CIFAR10 (j) VGG16, CIFAR10 (k) ResNet18, SVHN (l) VGG16, SVHN

Figure 3: (Main result). Comparing our method TempBalance (TB) to CAL and SNR. Our method
TempBalance outperforms CAL and SNR in almost all the settings except for VGG19 and ResNet
34 on CIFAR 100. For all experiments, combining TempBalance and SNR (TB+SNR) yields the best
performance. All baselines are carefully tuned. All results are obtained by running five random seeds.
See Appendix D for the details in all hyperparameters.

4.1 Experimental setup

Datasets. We consider CIFAR100, CIFAR10, SVHN and Tiny ImageNet (TIN) [72–75]. CIFAR100
consists of 50K pictures for training and 10K pictures for testing with 100 categories. CIFAR10
consists of 50K pictures for training and 10K pictures for testing with 10 categories. SVHN consists
of around 73K pictures for training and around 26K pictures for testing with 10 categories. Tiny
ImageNet consists of 10K pictures for training and 10K images for testing with 200 classes.

Models. We mainly consider three types of NNs: VGG, ResNet, and WideResNet (WRN) [76–78].
For each network, we consider two different size options. For VGG, we consider VGG16 and VGG19.
For ResNet, we consider ResNet18 and ResNet34. For WideResNet, we consider WRN16-8 and
WRN28-6. Also, for ResNet and VGG, we consider three different widths for ablation studies.

Hyperparameters. One baseline is ordinary SGD training with a cosine annealing learning rate
schedule (CAL), which follows the formula: ηt = η0

2

(
1 + cos

(
t·π
T

))
, where t is the current epoch, T

represents the total training epochs, and η0 is the initial learning rate. We grid search the optimal
initial (base) learning rate η0 for the CAL baseline, using the grid {0.05, 0.1, 0.15} for ResNet and
{0.025, 0.05, 0.1} for VGG. The momentum and weight decay are 0.9 and 5× 10−4, respectively,
which are both standard choices.

Another baseline is spectral norm regularization (SNR). Prior work [37] uses the SNR objective:

min
Θ

1

n

n∑
i=1

l (fΘ (xi) ,yi) +
λsr

2

L∑
l=1

σ (Wl)
2
, (4)

where λsr is the SNR coefficient, σ(Wl) is the largest eigenvalue, i.e., spectral norm of weight matrix
Wl, and L is the number of layers. We use the power iteration method to calculate σ(Wl) in our
experiments. For SNR, we grid search the optimal regularization coefficient λsr, and we again adopt
the CAL schedule for SNR, similar to the CAL baseline.

To make our results fully reproducible, we report in Appendix D all hyperparameters, random seeds,
and all numerical values of experimental results shown in the figures.

4.2 Comparing TempBalance and multiple baseline methods.

First, we compare TempBalance to two baseline training methods. See results in Figure 3. In
the figure, CAL means SGD training with a CAL learning rate schedule, and SNR means SGD trained
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100

Figure 4: (More baseline optimizers). Comparing our method TempBalance (TB) to cosine anneal-
ing (CAL) baseline and other state-of-the-art optimizers and learning rate schedulers for ResNet18 and
ResNet34 trained on CIFAR100. Crosses for the same method represent different hyperparameter
settings. Each cross represents the mean test accuracy of five random seeds. The best performing
model thus far is TB combined with SGDP.

with spectral norm regularization. TB means our method TempBalance, and TB + SNR means
TempBalance combined with SNR. All error bars are obtained from five random seeds. From
Figure 3, we see that TempBalance outperforms the CAL baseline in all settings. In almost all cases,
it performs better than SNR baseline. When TempBalance does not outperform SNR, combining SNR
with TempBalance leads to better test accuracy.

Second, we compare our method to a number of optimizers and learning rate schedulers that are
not necessarily related to ESD of weights. These include SGDR [10], SGDP [41], Lookahead [42]
and LARS [17, 18], and we compare these baselines with TempBalance for ResNet18 and ResNet34
trained on CIFAR100. SGDR is stochastic gradient descent with warm restarts. SGDP modifies the
ordinary SGD to compensate for the effect of increasing weight norm. Lookahead [42] modifies SGD
by letting each gradient update approximate the future trajectory of multiple updates. LARS assigns
layer-wise learning rates based on the so-called “trust-ratio” and is the closest to our method. Results
in Figure 4 show that TempBalance outperforms these baselines, and TempBalance combined with
SGDP is the best-performing method. The crosses on each column represent training runs with
different hyperparameters. Note that there are several other methods based on modifying the Adam
optimizer [2], such as AdamW [11], AdamP [41] and LAMB [79]. However, we do not find them to
provide better results than the SGD baseline with cosine annealing (CAL in Figure 4). The results are
detailed in Appendix E.

4.3 Corroborating results and ablation studies.

In addition to the main results (Figures 3 and 4), we provide corroborating results and ablation studies.

Experiment one: tuning initial learning rate η0. We train models from scratch using TempBalance
versus CAL with various initial learning rates, comparing TempBalance and the CAL baseline when
both methods are allowed to search for the optimal hyperparameters. We again use ResNet18,
ResNet34, VGG16 and VGG19 as our architectures and show results on CIFAR100. Results in
Figure 5 show that TempBalance achieves a higher test accuracy than CAL for both ResNet and VGG.

Experiment two: varying channel width. We view the fraction of model width in Experiment one
as “100%,” and we experiment with models with varied widths in [50%, 100%, 150%]. We again
used ResNet18, ResNet34, VGG16 and VGG19, and trained on CIFAR100, and we grid search for
the optimal learning rate for each width to get the best accuracy. Results in Figure 6 show we find
that TempBalance outperforms the baseline for all widths.

Experiment three: varying HT-SR metric. We use different HT-SR metrics to assign layer-wise
learning rates. That is, we replace the layer-wise PL_Alpha_Hill in (2) with other HT-SR metrics
including SpectralNorm and AlphaWeighted [22]. Results in Figure 7 show that PL_Alpha_Hill
achieves the optimal test accuracy.
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 5: (Tuning initial learning rate). Comparing the test accuracy of TempBalance (red) and
CAL baseline (blue) for varying initial learning rate. Our method TempBalance outperforms CAL for
both ResNet and VGG trained on CIFAR100. All results are obtained by running five random seeds.

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 6: (Different widths). Comparing TempBalance and the CAL baseline for different network
widths. Our method TempBalance consistently outperforms the CAL baseline across various network
widths for both ResNet and VGG trained on CIFAR100. All results are obtained by running five
random seeds.

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 7: (Different HT-SR metrics). Comparing PL_Alpha_Hill with multiple HT-SR metrics.
PL_Alpha_Hill achieves the best test accuracy among these metrics. All results are obtained by
running five random seeds.

Experiment four: varying PL fitting methods. The HT-SR metric PL_Alpha_Hill is derived
through PL fitting, which is influenced by the choice of hyperparameter λmin. More specifically,
this involves determining the adjustable parameter k as per Equation 3. Past research has employed
various methods to select λmin based on the task, such as performance prediction. For instance, Martin
et al. [22], Clauset et al. [39] choose λmin that aligns with the best fit according to the Kolmogorov-
Smirnov statistic [40], a method termed Goodness-of-fit. Meanwhile, Yang et al. [32] adopted
the Fix-finger approach, which identifies λmin at the peak of the ESD. In our study, we designate
λmin as the median of all eigenvalues present in the ESD for TempBalance. As depicted in Figure 8,
our fitting method, termed Median, not only ensures optimal test accuracy but also notably decreases
computation time. This shows that this PL fitting method is suited for the design of learning rate
schedulers that demand low computation overhead.

Empirical analysis results. We conduct an empirical analysis of TempBalance to discuss why it
provides improvement. Our first analysis involves visualization to demonstrate how TempBalance
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 8: (Varying PL fitting method to determine the λmin). Results of using different PL fitting
methods. The blue bar plot and the left y-axis label denote the test accuracy (higher the better),
and the red line plots and the right y-axis label denote the time in seconds of using TempBalance
once (lower the better). Our design (Median) used in the proposed method achieves higher test
accuracy and takes lower computation times compared to Goodness-of-fit and Fix-finger. The
test accuracy is averaged over five random seeds and computation time is averaged over ten times.

effectively regularizes ESDs by scheduling the learning rate (see Appendix B). The second analysis
strengthens the connections between TempBalance and HT structure, illustrating that the observed
improvements are not due to indirectly addressing other training issues, such as gradient excur-
sions [80] (see Appendix F).

Corroborating results on other tasks. We extend our evaluation of TempBalance to two
additional tasks: object detection and language modeling, the details of which can be found in
Appendix G. Across these tasks, TempBalance consistently outperforms the baseline CAL in terms
of generalization.

5 Conclusion

Our extensive empirical evaluations demonstrate that TempBalance offers a straightforward yet effec-
tive layer-wise learning rate schedule. Our approach for balancing layer-wise temperature confirms
the following: (i) HT-SR-motivated metric PL_Alpha_Hill helps layers achieve temperature balance
during training, exhibits strong correlations with model quality, and yields improved performance
during testing; (ii) temperature balancing is a novel and essential aspect of NN training, and HT-SR
Theory provides a strong theoretical support for balancing temperatures; and (iii) layer-wise learning
rate schedules are cheap and effective to apply, and it is useful to study these layer-wise learning
rate schedules further. Our method provides insights into the study of layer-wise tuning approaches
and load-temperature balancing in deep NN training, as it serves both as a layer-wise learning rate
schedule and an effective regularization technique based on HT-SR Theory.

Future directions, limitations, and societal impacts. Our paper leaves many future directions to
explore, of which we mention just a few.

• Can HT-SR metrics be extended to parameter-wise learning rate schedules, global learning rate
schedules, or other hyperparameters? It would be of interest to observe how HT-SR can assist in
acquiring a comprehensive set of hyperparameter tuning tools.

• Is it possible to accelerate the computation of ESDs and PL_Alpha_Hill to achieve a more
adaptive learning rate scheduler? Currently, we calculate layer-wise PL_Alpha_Hill once per
epoch, resulting in a minimal increase in computational cost. Consider the example of training
ResNet18 for 200 epochs on CIFAR100. Calculating layer-wise PL_Alpha_Hill takes 1.14
seconds for each epoch, leading to 3.8 minutes in total. Training CIFAR100 on 1 Quadro RTX 6000
takes 59 minutes, and thus using TB increases 6% of training time. However, if we can significantly
decrease the expense of computing ESDs, it might enable an optimizer that adjusts the learning
rate every few gradient updates. A study on computation overhead is detailed in Appendix H.

Our research centers around developing a generic algorithm for optimizing NNs. Although
TempBalance could be applied to learning models with adverse applications, we do not see any
immediate negative societal impacts stemming from the algorithm itself. Indeed, we see a lot of
societal value in using a practical, predictive, and quantitative theory, such as HT-SR Theory, as
opposed to developing a method that relies on a theory that provides vacuous upper bounds and then
relies on extremely expensive hyperparameter tuning to obtain good results.
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Appendix

A Heavy-tail phenomena in different DNN matrices are closely related

Recently, several papers have separately studied HT structures in different types of matrices, including
the Hessian, the Fisher Information Matrix (FIM), and input/output covariance matrices [35, 81, 82].
The results confirm that when NNs are well-trained, various matrices have HT properties. Among
these works, there are two major ways to characterize the HT spectrum, namely the HT-shaped ESDs
(such as PL_Alpha_Hill), or HT-shaped decaying eigenvalues [33–35]. Our paper mainly uses the
first way of characterizing the HT structure. On the other hand, the second way is to sort eigenvalues
from largest to smallest and study the PL phenomena between the ordered eigenvalues and their index.
Our experiments show fruitful connections between the PL phenomena manifested in different DNN
matrices; if one matrix shows a PL spectrum, the other matrices often show something similar [35].
Thus, it is meaningful to ask why and how the PL phenomena in different prior works correlate.

This section first establishes the connections between input/output covariance matrices, the FIM and
the Hessian in subsection A.1. We find that if one of these matrices shows the PL phenomenon, the
other two matrices have a high chance to exhibit a similar PL phenomenon. Then, in subsection A.2,
we derive the connection between our metric PL_Alpha_Hill and the PL exponent on decaying
eigenvalues, showing a simple reciprocal relationship between these two.

A.1 Connections between different matrices

Consider a NN fθ : Rd → RC , where θ ∈ RP is the vectorized weights, d is the input dimension,
and C is the output dimension. When the NN is used for a classifying task, C is also the number of
classes. We denote the input data as {(xi, yi)}ni=1, where xi ∈ Rd, and the number of samples is n.
We denote the loss function as L(θ) = 1

n

∑n
i=1 l(yi, fθ(xi)).

Covariance matrices. We denote the output covariance matrix as E[fθ(x)f⊤
θ (x)], where the expec-

tation is taken over the input distribution. We tend to consider the following empirical covariance
matrix:

C(θ) :=
1

n

n∑
i=1

fθ(xi)f
⊤
θ (xi) ∈ RC×C . (5)

Fisher Information Matrices. We denote the (output) FIM as

E[∇θfθ(x)∇θfθ(x)
⊤] =

C∑
k=1

E[∇θf
(k)
θ (x)∇θf

(k)
θ (x)⊤], (6)

where f (k)
θ (x) is the k-th entry of the vector function f(x). We also consider the empirical version of

the FIM:

F (θ) :=

C∑
k=1

1

n

n∑
i=1

∇θf
(k)
θ (xi)∇θf

(k)
θ (xi)

⊤ ∈ RP×P . (7)

Note that (7) can be equally written as

F (θ) :=
1

n
∇θf̃θ(x)∇θf̃θ(x)

⊤, (8)

where∇θf̃θ(x) has the following form:
∂f

(1)
θ (x1)

∂θ1
· · · ∂f

(1)
θ (xn)

∂θ1
· · · ∂f

(C)
θ (x1)

∂θ1
· · · ∂f

(C)
θ (xn)

∂θ1
...

. . .
...

∂f
(1)
θ (x1)

∂θP
· · · ∂f

(1)
θ (xn)

∂θP
· · · ∂f

(C)
θ (x1)

∂θP
· · · ∂f

(C)
θ (xn)

∂θP

 ∈ RP×Cn.
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Hessian Matrices. We denote the Hessian as E
[
∂2l(y,fθ(x))

∂θ2

]
, and we tend to consider the empirical

Hessian Matrices:

H(θ) :=
∂2L(θ)

∂θ2
∈ RP×P , (9)

where L(θ) is the empirical loss function L(θ) = 1
n

∑n
i=1 l(yi, fθ(xi)).

Hessian and FIM are equivalent under certain conditions. FIM can be defined in alternative ways
different from (6). For instance, from classic statistical knowledge, we have the standard FIM (sFIM)
in the following form:

sFIM := E[∇θ logP (y|x; θ)∇θ logP (y|x; θ)T ], (10)

where P (y|x; θ) represents the likelihood. After simple derivations, one can show that sFIM also has
the following form [83, 84]:

sFIM = −E
[
∂2 logP (y|x; θ)

∂θ2

]
. (11)

Therefore, when the loss function is defined as the negative log-likelihood, the sFIM in (11) is
equivalent to Hessian defined in (9).

Why is the FIM defined in (6) equivalent to (10). Back to deep learning, the FIM is often defined
as (6). It is thus meaningful to derive the equivalence between these two forms. Suppose P (y|x; θ)
here means the conditional probability distribution of output y given input data x. If P (y|x; θ) is
assumed to take the following form:

P (y|x; θ) = 1√
2π

exp

(
−1

2
∥y − fθ(x)∥2

)
, (12)

then the MSE estimator minθ 1
2∥y − fθ(x)∥2 is equivalent to the maximum likelihood estimation of

P (y|x; θ). Then, plugging (12) into (10), we have:

sFIMmse = E[∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)
T ]. (13)

We now expand sFIMmse by the definition of expectation, and we have the following [81]:

sFIMmse =

∫
R

∫
R
∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)

T p(x, y; θ)dydx (14)

=

∫
R

∫
R
∥y − fθ(x)∥2∇θfθ(x)∇θfθ(x)

TP (y|x; θ)q(x)dydx (15)

=

∫
R

[∫
R

1√
2π
∥y − fθ(x)∥2 exp

(
−1

2
∥y − fθ(x)∥2

)
dy

]
∇θfθ(x)∇θfθ(x)

T q(x)dx

(16)

=

∫
R
∇θfθ(x)∇θfθ(x)

T q(x)dx (17)

= E[∇θfθ(x)∇θfθ(x)
T ], (18)

where (14) follows from the definition of expectation, q(x) is input distribution, and (17) holds
because the integral of y in the brackets [] equals 1 due to the property of Gamma function Γ(·).
Therefore, from (18), we find that sFIMmse is just equal to FIM , defined in (6). Also, plugging (12)
into E

[
∂2logP (y|x;θ)

∂θ2

]
and taking the loss function L(θ) as the mean-square loss, we will again find

that E
[
∂2logP (y|x;θ)

∂θ2

]
is equal to H(θ). Therefore, jointly considering (11), we can see that FIM is

equal to the Hessian H(θ).

PL in the covariance matrix and PL in Hessian are tightly correlated. Next, we consider the
relationship between the covariance matrix and the Hessian. Suppose the NN function fθ is a Lipchitz
function [85]. Then, it can be seen that the covariance matrix (5) may be controlled and estimated by
FIM defined in (6), which is equivalent to being controlled by Hessian.
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Figure 9: We train a MLP for 50 epochs and fit PL exponent s for both the output covariance and the
Hessian. For models trained with epochs {1, 10, 20, 30, 40, 50}, we see their PL exponents s show a
strong correlation.

Although deriving an exact equivalent between these two can be hard, we numerically show that
the PL in one matrix informs the PL in the other. To visualize their relationship in the presence of
PL, we train a simple MLP on MNIST [86] with one hidden layer and 2000 neurons for 50 epochs.
We leverage the spectral regularization from Nassar et al. [34] to make the output covariance matrix
exhibit a PL spectrum. Meanwhile, we calculate the top eigenvalues of the covariance and the
Hessian [87], fit the PL exponent s for each matrix, and compare the PL exponents against each other.
More specifically, we take trained NNs from epochs {1, 10, 20, 30, 40, 50} and plot the Hessian
PL exponent s versus the output covariance PL exponent s. From the results shown in Figure 9, we
can see that their PL exponent s shows a strong correlation, which supports our claim that the PL
phenomena in one matrix can inform the other.

Connections to the NTK matrix. Interestingly, if we ignore the constant in (8) and switch the two
matrices multiplied together, we obtain∇θf̃θ(x)

T∇θf̃θ(x). This matrix is equal to Neural Tangent
Kernel(NTK) [88], which is a kernel used to approximate the deep NN when NN’s width is infinite.
We thus conjecture that NTK should show PL when the NN is well trained [89]. Indeed, Karakida
et al. [81] and Karakida et al. [82] study the eigenvalues of NTK, showing a PL trend. Some other
work on stochastic gradient [90] claim that the so-called “stochastic gradient matrix” (which is similar
to the NTK matrix) shows a PL spectrum as well, which matches our expectations. Also, Lewkowycz
et al. [91], Dyer and Gur-Ari [92] show that the eigenvalues of NTK are similar to those in the
Hessian, which again meets our expectation because the Hessian tends to be PL when NNs are
well-trained [35].

In summary, this section investigates different “important matrices” and shows that they are tightly
correlated to each other in terms of the PL trends: if one matrix shows a PL spectrum, there is a high
chance that the other ones show something similar.

A.2 Connections between PL in ESD and PL in decaying eigenvalues

Next, we derive the connection between our PL_Alpha_Hill metric and the exponent of PL distribu-
tion on decaying eigenvalues. Take the covariance matrix (5) as an instance. According to Nassar
et al. [34], the HT phenomenon in the output covariance matrix is similar to the layer-wise covariance
matrices. Thus, without the loss of generality, we can consider the case when there is only one
layer in the NN. We assume the weight matrix L is in RN×Q. According to prior works, when L is
well-trained, the ESD follows a PL distribution:

p(λ) =
1

H
λ−α, λmin < λ < λmax. (19)

Here, H is a normalizing constant, and α is the PL exponent.

Another way to characterize the PL phenomenon is to consider eigenvalues directly following a PL
series. For example, Xie et al. [35] show that the decaying eigenvalues follows the following PL
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Figure 10: We show the connection between PL_Alpha_Hill and the PL exponent of the decaying
eigenvalues (denoted as s) satisfy s = 1

PL_Alpha_Hill−1 . Results are shown for different matrix size Q.
In particular, we see that PL_Alpha_Hill = 2 [19] is equivalent to s = 1 [33] in the linear case.

series:
λk = λ1k

−s, k = 1, 2, · · · , Q, (20)
where λ1 is the same as λmax used in the main paper.

Now, we will analytically and empirically show that these two ways of characterizing PL are strongly
related. Furthermore, the two PL coefficients satisfy s = 1

α−1 .

An analytical way to show that s = 1
α−1 . The derivation is actually quite simple. Consider the

case that λk = λ1k
−s (i.e., (20) holds), and suppose Λ is a random variable distributed according to

the empirical distribution from these eigenvalues λk = λ1k
−s. Now, from (20), we can see that the

distribution function takes the following form:

P(Λ > λ1k
−s) =

k

Q
. (21)

By changing variables λ1k
−s = λ, we get the cumulative distribution function of Λ:

P(Λ > λ) ∼ λ− 1
s . (22)

After that, we take the derivative with respect to λ, and we get the ESD:

p(λ) ∼ λ−( 1
s+1). (23)

In other words, we have λ−( 1
s+1) = λ−α, which means s = 1

α−1 .

An empirical way to show that s = 1
α−1 . We consider matrices of size Q×Q, where we choose

Q in {16, 32, 64, 128, 256, 512, 768, 1024}, and we assign the parameters such that the decaying
eigenvalues obey the formula λ1k

−s, for s in {0.2, 0.3, 0.4, · · · , 3.2 }. Then, we fit the ESD and get
our estimate PL_Alpha_Hill. We plot the relationship between PL_Alpha_Hill and s in Figure10.
From Figure 10, we find that the connection between PL_Alpha_Hill and s shows a good fit with
the formula s = 1

α−1 . With increasing matrix size Q, the fitting becomes increasingly accurate.

When s = 1
α−1 , s = 1 corresponds to α = 2. Some prior works Nassar et al. [34], Xie et al.

[35], Bartlett et al. [93] measure the HT phenomena from the perspective of decaying eigenvalues
with PL exponent s, and they show either theoretically or empirically that s = 1 is the optimal
exponent. Now that we have s = 1

α−1 in the linear case, and from the theory of NTK[88], the
infinite wide NN is approximated as a linear model, we tend to believe that α = 2 satisfies a similar
property. Indeed, one of the main contributions of Martin and Mahoney [19] is to establish different
HT families of ESDs, and α = 2 is believed to be the boundary between “moderately HT” and “very
HT,” corresponding to the best models. Martin and Mahoney [19] further argue that the optimal
exponent for PL_Alpha is in the range [2,4]. Combining the perspective from Nassar et al. [34], Xie
et al. [35], Bartlett et al. [93] and those from Martin and Mahoney [19], it is reasonable to believe that
the optimal exponent for PL_Alpha is around 2. When PL_Alpha is much higher or lower than 2,
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the NN probably has some issue in training. Although we argued in the main paper that the absolute
numerical value of PL_Alpha is unimportant in implementing our TempBalance algorithm, it is,
however, helpful to have an “optimal” PL_Alpha value to test if our algorithm actually works in
controlling the ESDs. We will show visualization results in Appendix B that TempBalance leads to
a better distribution of our estimated PL_Alpha_Hill.

In summary, this section explores two distinct methods for determining PL fit. We demonstrate
that, although these two methods yield numerically distinct PL exponents, they essentially capture
the same underlying phenomenon. Moreover, it is noteworthy that the “optimal” values of the PL
exponents reported in various papers are consistent with one another [19, 34, 35, 93].

B Visualization results: how does TempBalance control ESDs

We demonstrate that the proposed method, TempBalance, effectively controls the shape of ESDs,
resulting in a more favorable distribution of PL_Alpha_Hill among the layers of NNs compared
to the baseline method CAL. This observation elucidates the superior performance of TempBalance
over CAL in our main experiment, as presented in Section 4.2.

We evaluate the models reported in the main paper. For each individual NN, we compute and
aggregate PL_Alpha_Hill values across all layers, excluding the first and last layers that have
an extremely small number of eigenvalues and thus cause inaccurate PL_Alpha_Hill estimation.
We aggregate the PL_Alpha_Hill values from five models trained using different random seeds
for each method. Figure 11 shows the distribution of PL_Alpha_Hill of TempBalance and the
baseline CAL. Comparing TempBalance with CAL, we see that TempBalance consistently yields a
more concentrated distribution. Furthermore, TempBalance causes the median and mean of the
distribution to approach 2 (shown in each subplot respectively as the middle vertical line and the red
star). The value 2 represents the theoretically optimal PL_Alpha_Hill value, as we have justified in
Appendix A.

Next, in Figure 12, we group the models into different subgroups based on their architectures and/or
datasets, aggregating the PL_Alpha_Hill values and comparing the distributions of the two methods
TempBalance and CAL. Once again, we observe that TempBalance results in a more concentrated
distribution, with a larger number of samples (layers) having PL_Alpha_Hill values closer to 2.

We provide visualization to demonstrate how the learning rates are distributed over layers during the
training. In Figure 13, we report the learning rate and PL_Alpha_Hill every epoch throughout the
200-epoch training duration. The key observation includes the following.

1. How does the learning rate vary across layers? We observed a correlation between
the layer-wise learning rate and the layer-wise PL_Alpha_Hill distribution: layers with
larger PL_Alpha_Hill are allocated larger learning rates, whereas those with smaller
PL_Alpha_Hill receive smaller learning rates.

2. How does the layer-wise learning rate evolve during training? The variations in layer-
wise learning rates closely reflect shifts in the layer-wise PL_Alpha_Hill distribution.
Initially, the PL_Alpha_Hill distributes uniformly across layers but eventually converge
to a layer-wise pattern where earlier layers have smaller PL_Alpha_Hill and later layers
have larger ones.

We present visualizations of how PL_Alpha_Hill and learning rate evolve through training. In
Figure 14, we show PL_Alpha_Hill and learning rate of two layers within the same ResNet18
during the training process. The two layers are layer1. 0. conv2 (index=1) and layer4. 0. conv2
(index=15). From Figure 14b and 14d, we can see that with the baseline CAL scheduler (blue
curves), the earlier layer (index=1) achieves a smaller PL_Alpha_Hill value compared to the
larger PL_Alpha_Hill value of the later layer (index=15). In contrast, TempBalance (orange
curves) narrows this gap, indicating our approach balances the undertraining/overtraining levels (as
signified by PL_Alpha_Hill) of different layers. This balancing effect is further corroborated by
Figures 11 and 12 , where our method consistently refines the layer-wise PL_Alpha_Hill distribution.
Regarding the learning rate plots in Figure 14a and 14c, TempBalance allocates a lower learning
rate for earlier layers and a higher one for later layers than the baseline does. This leads to a more
balanced PL_Alpha_Hill distribution between layers as mentioned above. Additionally, we noted
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

(e) ResNet18, TIN (f) ResNet34, TIN (g) WRN16-8, TIN (h) WRN28-6, TIN

(i) ResNet18, CIFAR10 (j) VGG16, CIFAR10 (k) ResNet18, SVHN (l) VGG16, SVHN

Figure 11: Comparing the distribution of PL_Alpha_Hill of NNs trained by our method
TempBalance (TB) and CAL. The mean of each distribution is indicated by a red star marker. Each
distribution aggregates the PL_Alpha_Hill values from models trained using five different random
seeds. Across all experiments, our method TempBalance consistently yields a more concentrated
distribution, resulting in the mean and median approaching the theoretically optimal PL_Alpha_Hill
value of 2, as supported in Appendix A.

(a) Total (b) ResNet (c) VGG (d) WRN

(e) TIN (f) CIFAR100 (g) CIFAR10 (h) SVHN

Figure 12: Comparing our method TempBalance (TB) to CAL in terms of the distribution of
PL_Alpha_Hill of aggregating NNs into different architectures and datasets. Each distribution
aggregates the PL_Alpha_Hill of models trained with five random seeds. Across all subgroups,
our method TempBalance consistently exhibits a more concentrated distribution, accompanied by a
higher number of layers approaching a PL_Alpha_Hill value close to 2. This value of 2 corresponds
to the theoretically optimal PL_Alpha_Hill value, as justified in Appendix A.
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Figure 13: (Visualization of layer-wise learning rate (LR) and PL_Alpha_Hill (Alpha) over
training). (a-b) The layer-wise LR and PL_Alpha_Hill of ResNet18 over training. (c-d) The
layer-wise LR and PL_Alpha_Hill of ResNet34 over training.
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Figure 14: (Visualization of learning rate (LR) and PL_Alpha_Hill (Alpha) of two layers during
training) (a-b) LR and PL_Alpha_Hill of one layer with index = 1 in ResNet18. (c-d) LR and
PL_Alpha_Hill of one layer with index = 15 in ResNet18. The ResNet18 is trained on CIFAR100.

instability in the learning rate curves during early training phases, while smoother transitions emerge
in later phases.

C Ablation studies

We provide additional ablation studies on the choices of learning rate assignment function, assignment
hyperparameters.

Varying LR assignment function. For TempBalance, we selected the linear interpolation
(Equation 2) for learning rate assignment function ft, based on its superior performance in our
ablation study.

We evaluated three alternative learning rate assignment functions: Square root (Sqrt), Log2, and Step:

• Sqrt : ft(i) = ηt

√
αi

t

1
L

∑L
j=1

√
αj

t

,

• Log2: ft(i) = ηt
log(αi

t)
1
L

∑L
j=1 log(αj

t)
,

• Step: For layer i with k-th minimum PL_Alpha_Hill among all the layers,

ft(i) = ηt(s1 + (k − 1)
s2 − s1
L− 1

)

Here, ηt denotes the base global learning rate at epoch t, (s1, s2) represents the minimum and
maximum learning rate scaling ratios relative to ηt, αi

t is the PL_Alpha_Hill estimate of the layer i
at epoch t, and L is the total number of model layers. All these notations are consistently used in the
main paper.

As depicted in Figure 15, TempBalance (TB), with the current assignment function, surpasses the
other designs when tested on VGG and ResNet architectures on CIFAR100. All hyperparameters are
consistent with the main paper. Each experiment was conducted with five random seeds.
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(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 15: (Different designs for learning rate assignment function.) Results of using different
learning rate assignment functions on different architectures and CIFAR-100. Our design in the main
paper TempBalance (TB) outperforms others. Reporting mean/std over five random seeds.

Varying LR assignment function hyperparameters. We provide additional results of a
hyperparameter study on (s1, s2), in which we consider five different settings for (s1, s2):
[(0.5, 1.5), (0.6, 1.4), (0.7, 1.3), (0.8, 1.2), (0.9, 1.1)]. We run tasks on CIFAR100 with four VGG
and ResNet architectures, each with five random seeds. Our results in Figure 16 show that a larger
learning rate scaling range (0.5, 1.5) performs best. This hyperparameter setting is the default setting
used in our paper. All hyperparameters are consistent with those described in the main paper.

(a) ResNet18, CIFAR100 (b) ResNet34, CIFAR100 (c) VGG16, CIFAR100 (d) VGG19, CIFAR100

Figure 16: (Hyperparameter study on (s1, s2)). Search for hyperparameters (s1, s2) with different
architectures on CIFAR100. The current hyperparameter choice (0.5, 1.5) used in the paper performs
best among all the cases. Reporting mean/std over five random seeds.

D Hyperparameter settings for reproducing our results

We report all hyperparameters, random seeds and all numerical values of experimental results shown
in the main paper (in Section 4).

First, we report the common hyperparameters shared by all the experiments: the default optimizer is
SGD, trained with batch size 128, number of training epochs 200, weight decay 5e-4, and momentum
0.9. The default HT-SR metric used in TempBalance is PL_Alpha_Hill. For each experimental
setting, we use five random seeds, which are always 43, 37, 13, 51, 71, and we report the mean and
standard deviation of the test accuracy across these seeds.

First, Table 1 reports the details of experiments shown in Figure 3. We carefully tune the initial
learning rate η0 and λsr for the two baseline methods CAL and SNR. Then, Table 2 reports the
detailed hyperparameter settings of the experiments shown in Figure 4. We again carefully tune the
hyperparameters of various baseline optimizers and schedulers, as specified in their papers. Finally,
Table 3, Table 4, Table 5 and Tabel 6 respectively report the details of the experiments shown in
Figure 5, Figure 6, Figure 7 and Figure 8.
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Table 1: Parameter settings of the experiment reported in Section 4.2 Figure 3. The hyperparameter
in bold is the best hyperparameter selection reported in the main paper. The five random seeds for
each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 λsr

Test Acc
(best hyperparam.)

scaling ratio
(s1, s2)

0

CIFAR100

ResNet18 CAL 0.05, 0.1, 0.15 - 78.31 ± 0.05 -
1 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 78.65 ± 0.29 -
2 ResNet18 TB 0.1 - 78.97 ± 0.29 (0.5, 1.5)
3 ResNet18 TB + SNR 0.1 0.001 79.06 ± 0.32 (0.6, 1.4)
4 ResNet34 CAL 0.05, 0.1, 0.15 - 78.98 ± 0.14 -
5 ResNet34 SNR 0.1 0.001, 0.005, 0.01, 0.015 79.97 ± 0.21 -
6 ResNet34 TB 0.1 - 79.89 ± 0.15 (0.5, 1.5)
7 ResNet34 TB + SNR 0.1 0.005 80.09 ± 0.35 (0.6, 1.4)
8 VGG16 CAL 0.025, 0.05, 0.1 - 74.59 ± 0.23 -
9 VGG16 SNR 0.05 0.001, 0.005, 0.01, 0.015 74.80 ± 0.28 -
10 VGG16 TB 0.05 - 74.96 ± 0.15 (0.5, 1.5)
11 VGG16 TB + SNR 0.05 0.005 75.52 ± 0.46 (0.6, 1.4)
12 VGG19 CAL 0.025, 0.05, 0.1 - 73.26 ± 0.37 -
13 VGG19 SNR 0.05 0.001, 0.005, 0.01, 0.015 74.37 ± 0.16 -
14 VGG19 TB 0.05 - 73.77 ± 0.43 (0.5, 1.5)
15 VGG19 TB + SNR 0.05 0.01 74.74 ± 0.10 (0.5, 1.5)
16 ResNet18 CAL 0.05, 0.1, 0.15 - 66.25 ± 0.17 -
17 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 66.20 ± 0.22 -
18 ResNet18 TB 0.1 - 66.77 ± 0.25 (0.6, 1.4)
19 ResNet18 TB + SNR 0.1 0.001 66.86 ± 0.22 (0.6, 1.4)
20 ResNet34 CAL 0.05, 0.1, 0.15 - 68.19 ± 0.16 -
21 ResNet34 SNR 0.1 0.001, 0.005, 0.01, 0.015 68.69 ± 0.13 -
22 ResNet34 TB 0.1 - 69.12 ± 0.16 (0.6, 1.4)
23 ResNet34 TB + SNR 0.1 0.001 69.27 ± 0.21 (0.6, 1.4)
24 WRN16-8 CAL 0.05, 0.1, 0.15 - 63.67 ± 0.09 -
25 WRN16-8 SNR 0.1 0.00005, 0.0001, 0.001 63.98 ± 0.23 -
26 WRN16-8 TB 0.1 - 64.09 ± 0.17 (0.6, 1.4)
27 WRN16-8 TB + SNR 0.1 0.0001 64.08 ± 0.07 (0.6, 1.4)
28 WRN28-6 CAL 0.05, 0.1, 0.15 - 65.88 ± 0.20 -
29 WRN28-6 SNR 0.1 0.00005, 0.0001, 0.001 66.09 ± 0.25 -
30 WRN28-6 TB 0.1 - 66.58 ± 0.23 (0.6, 1.4)
31

TinyImageNet

WRN28-6 TB + SNR 0.1 0.0001 66.79 ± 0.25 (0.6, 1.4)
32

CIFAR10

ResNet18 CAL 0.05, 0.1, 0.15 - 95.53 ± 0.12 -
33 ResNet18 SNR 0.1 0.001, 0.005, 0.01, 0.015 95.57 ± 0.06 -
34 ResNet18 TB 0.1 - 95.63 ± 0.08 (0.5, 1.5)
35 ResNet18 TB + SNR 0.1 0.001 95.66 ± 0.09 (0.6, 1.4)
36 VGG16 CAL 0.025, 0.05, 0.1 - 93.98 ± 0.12 -
37 VGG16 SNR 0.05 0.001, 0.005, 0.01, 0.015 94.04 ± 0.07 -
38 VGG16 TB 0.05 - 94.14 ± 0.06 (0.5, 1.5)
39 VGG16 TB + SNR 0.05 0.005 94.26 ± 0.10 (0.6, 1.4)
40 ResNet18 CAL 0.05, 0.1, 0.15 - 96.59 ± 0.08 -
41 ResNet18 SNR 0.1 0.001, 0.005, 0.015, 0.01 96.65 ± 0.12 -
42 ResNet18 TB 0.1 - 96.63 ± 0.06 (0.5, 1.5)
43 ResNet18 TB + SNR 0.1 0.01 96.67 ± 0.09 (0.6, 1.4)
44 VGG16 CAL 0.025, 0.05, 0.1 - 96.28 ± 0.04 -
45 VGG16 SNR 0.05 0.001, 0.005, 0.015, 0.01 96.32 ± 0.07 -
46 VGG16 TB 0.05 - 96.33 ± 0.06 (0.5, 1.5)
47

SVHN

VGG16 TB + SNR 0.05 0.005 96.40 ± 0.08 (0.6, 1.4)

Table 2: Parameter settings of the experiment reported in Section 4.2 Figure 4. The hyperparameter
in bold is the best hyperparameter selection reported in the main paper. The five random seeds for
each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0
SGDR

(T0, Tmul)
Lookahead

k
Lookahead

α
Test Acc

(best hyperparams.)
scaling ratio

(s1, s2)
0 ResNet18 CAL 0.05, 0.1, 0.15 - - - 78.31 ± 0.05 -
1 ResNet18 SGDR 0.05, 0.1, 0.15 (100,1), (10, 2),(1, 2) - - 77.69 ± 0.20 -
2 ResNet18 LARS 26, 28, 30, 32, 34 - - - 78.44 ± 0.12 -
3 ResNet18 Lookahead 0.05, 0.1, 0.15 - 10, 5 0.8, 0.5 78.46 ± 0.18 -
4 ResNet18 SGDP 0.01, 0.05, 0.1, 0.15, 0.2 - - - 78.74 ± 0.11 -
5 ResNet18 TB 0.05, 0.1, 0.15 - - - 78.97 ± 0.29 (0.5, 1.5)
6 ResNet18 TB + SGDP 0.05, 0.1, 0.15 - - - 79.13 ± 0.15 (0.5, 1.5)
7 ResNet34 CAL 0.05, 0.1, 0.15 - - - 78.98 ± 0.14 -
8 ResNet34 SGDR 0.05, 0.1, 0.15 (100,1), (10, 2), (1, 2) - - 78.61 ± 0.20 -
9 ResNet34 LARS 26, 28, 30, 32, 34 - - - 78.94 ± 0.19 -
10 ResNet34 Lookahead 0.05, 0.1, 0.15 - 10, 5 0.8, 0.5 79.19 ± 0.12 -
11 ResNet34 SGDP 0.01, 0.05, 0.1, 0.15, 0.2 - - - 79.34 ± 0.21 -
12 ResNet34 TB 0.05, 0.1, 0.15 - - - 79.89 ± 0.15 (0.5, 1.5)
13

CIFAR100

ResNet34 TB + SGDP 0.05, 0.1, 0.15 - - - 79.94 ± 0.30 (0.5, 1.5)

25



Table 3: Parameter settings of the experiment reported in Section 4.3 Figure 5. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 CAL 0.05, 0.1, 0.15 78.08 ± 0.19, 78.31 ± 0.05, 77.72 ± 0.44 -
1 ResNet18 TB 0.05, 0.1, 0.15 78.48 ± 0.27, 78.97 ± 0.29, 78.69 ± 0.11 (0.5, 1.5)
2 ResNet34 CAL 0.05, 0.1, 0.15 78.98 ± 0.14, 78.89 ± 0.24, 78.51 ± 0.34 -
3 ResNet34 TB 0.05, 0.1, 0.15 79.36 ± 0.18, 79.89 ± 0.15, 79.09 ± 0.64 (0.5, 1.5)
4 VGG16 CAL 0.025, 0.05, 0.1 73.96 ± 0.27, 74.59 ± 0.23, 74.46 ± 0.12 -
5 VGG16 TB 0.025, 0.05, 0.1 74.40 ± 0.31, 74.96 ± 0.15, 74.94 ± 0.16 (0.5, 1.5)
6 VGG19 CAL 0.025, 0.05, 0.1 72.57 ± 0.45, 73.26 ± 0.37, 72.98 ± 0.16 -
7 VGG19 TB 0.025, 0.05, 0.1 73.47 ± 0.16, 73.77 ± 0.43, 73.40 ± 0.38 (0.5, 1.5)

Table 4: Parameter settings of the experiment reported in Section 4.3 Figure 6. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method
Initial

learning rate η0 Width Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 CAL 0.1 256, 512, 768 75.05 ± 0.26, 78.31 ± 0.05, 79.44 ± 0.26 -
1 ResNet18 TB 0.1 256, 512, 768 75.63 ± 0.12, 78.97 ± 0.29, 80.47 ± 0.18 (0.5, 1.5)
2 ResNet34 CAL 0.1 256, 512, 768 76.79 ± 0.34, 78.89 ± 0.24, 79.94 ± 0.31 -
3 ResNet34 TB 0.1 256, 512, 768 77.25 ± 0.14, 79.89 ± 0.15, 80.23 ± 0.53 (0.5, 1.5)
4 VGG16 CAL 0.05 256, 512, 768 71.04 ± 0.14, 74.59 ± 0.23, 75.53 ± 0.32 -
5 VGG16 TB 0.05 256, 512, 768 71.26 ± 0.26, 74.96 ± 0.15, 76.19 ± 0.14 (0.5, 1.5)
6 VGG19 CAL 0.05 256, 512, 768 69.58 ± 0.39, 73.26 ± 0.37, 74.39 ± 0.33 -
7 VGG19 TB 0.05 256, 512, 768 69.96 ± 0.25, 73.77 ± 0.43, 74.80 ± 0.35 (0.5, 1.5)

Table 5: Parameter settings of the experiment reported in Section 4.3 Figure 7. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds are reported.

Index Dataset Model Method HT-SR Metric
Initial

learning rate η0 Test Acc
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 TB SpectralNorm 0.05, 0.1, 0.15 77.83 ± 0.21, 78.30 ± 0.32, 78.27 ± 0.25 (0.5, 1.5)
1 ResNet18 TB AlphaWeighted 0.05, 0.1, 0.15 78.18 ± 0.27, 78.67 ± 0.17, 78.48 ± 0.24 (0.5, 1.5)
1 ResNet18 TB PL_Alpha_Hill 0.05, 0.1, 0.15 78.48 ± 0.27, 78.97 ± 0.29, 78.69 ± 0.11 (0.5, 1.5)
2 ResNet34 TB SpectralNorm 0.05, 0.1, 0.15 78.25 ± 0.16, 78.71 ± 0.15, 78.92 ± 0.28 (0.5, 1.5)
3 ResNet34 TB AlphaWeighted 0.05, 0.1, 0.15 78.36 ± 0.39, 78.87 ± 0.34, 78.83 ± 0.23 (0.5, 1.5)
3 ResNet34 TB PL_Alpha_Hill 0.05, 0.1, 0.15 79.36 ± 0.18, 79.89 ± 0.15, 79.09 ± 0.64 (0.5, 1.5)
4 VGG16 TB SpectralNorm 0.025, 0.05, 0.1 73.58 ± 0.19, 74.29 ± 0.16, 74.17 ± 0.28 (0.5, 1.5)
5 VGG16 TB AlphaWeighted 0.025, 0.05, 0.1 73.97 ± 0.22, 74.19 ± 0.11, 74.42 ± 0.31 (0.5, 1.5)
5 VGG16 TB PL_Alpha_Hill 0.025, 0.05, 0.1 74.40 ± 0.31, 74.96 ± 0.15, 74.94 ± 0.16 (0.5, 1.5)
6 VGG19 TB SpectralNorm 0.025, 0.05, 0.1 72.34 ± 0.26, 72.91 ± 0.35, 73.04 ± 0.39 (0.5, 1.5)
7 VGG19 TB AlphaWeighted 0.025, 0.05, 0.1 72.85 ± 0.16, 73.41 ± 0.17, 73.33 ± 0.21 (0.5, 1.5)
7 VGG19 TB PL_Alpha_Hill 0.025, 0.05, 0.1 73.47 ± 0.16, 73.77 ± 0.43, 73.40 ± 0.38 (0.5, 1.5)

Table 6: Parameter settings of the experiment reported in Section 4.3 Figure 8. The five random seeds
for each setting are {43, 37, 13, 51, 71}, and the means and standard deviations of the test accuracy
among the five seeds, the means and standard deviations of the computation time of using TB among
the 10 times are reported.

Index Dataset Model Method PL fitting method
Initial

learning rate η0 Test Acc Computation Time (sec)
scaling ratio

(s1, s2)
0

CIFAR100

ResNet18 TB Goodness-of-fit 0.1 78.59 ± 0.21 8.20 ± 0.53 (0.5, 1.5)
1 ResNet18 TB Fix-finger 0.1 79.06 ± 0.22 7.24 ± 0.74 (0.5, 1.5)
1 ResNet18 TB Median 0.1 78.97 ± 0.29 1.14 ± 0.04 (0.5, 1.5)
2 ResNet34 TB Goodness-of-fit 0.1 79.13 ± 0.21 16.45 ± 0.48 (0.5, 1.5)
3 ResNet34 TB Fix-finger 0.1 79.64 ± 0.22 15.13 ± 1.05 (0.5, 1.5)
3 ResNet34 TB Median 0.1 79.89 ± 0.15 2.27 ± 0.06 (0.5, 1.5)
4 VGG16 TB Goodness-of-fit 0.05 74.46 ± 0.24 8.54 ± 0.10 (0.5, 1.5)
5 VGG16 TB Fix-finger 0.05 74.48 ± 0.20 8.45 ± 0.59 (0.5, 1.5)
5 VGG16 TB Median 0.05 74.96 ± 0.15 1.37 ± 0.05 (0.5, 1.5)
6 VGG19 TB Goodness-of-fit 0.05 73.36 ± 0.16 11.48 ± 0.15 (0.5, 1.5)
7 VGG19 TB Fix-finger 0.05 73.52 ± 0.16 11.15 ± 0.79 (0.5, 1.5)
7 VGG19 TB Median 0.05 73.77 ± 0.43 1.85 ± 0.05 (0.5, 1.5)
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E Comparison with more baselines

In Figure 17, we provide additional results by comparing TempBalance with LAMB and Adam. We
found that our method outperforms both baseline methods. Furthermore, we also found that the
Adam-based methods do not provide better results than the SGD baseline with cosine annealing
(CAL) in our experiment setting, which was mentioned in Section 4.2. For Adam, we searched the
initial learning rate over {0.00005, 0.0001, 0.001, 0.01, 0.1}, and we used ϵ = 10−8. For LAMB, we
searched the initial learning rate over {0.005, 0.01, 0.02}, and we used ϵ = 10−6. Both methods used
weight decay 5.0× 10−4, β1 = 0.9, β2 = 0.999, learning rate decay with cosine annealing. Each
experiment was conducted with five random seeds.

We also discuss the difference between TempBalance and these two types of learning rate scheduling.

• Compared to layer-wise learning rate scheduling (e.g., LARS): TempBalance uses a
more precise model quality metric, PL_Alpha_Hill from HT-SR Theory, to enhance the
performance of deep models during training. This “shape-based” metric estimates the
shape of the eigenspectrum of weight matrices. In contrast, LARS uses a “norm-based”
metric, such as the layer-wise gradient norm. A recent study in HT-SR [22] has shown
that the shape-based metrics surpasses norm-based ones in assessing model quality and
performance. Figure 3 confirms that our method outperforms the layer-wise scheduler LARS
in test accuracy.

• Compared to parameter-wise learning rate scheduling (e.g., Adam): Similarly, our
method employs the “shape-based” metric PL_Alpha_Hill to improve the generalization,
an approach not incorporated in traditional parameter-wise methods.
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Figure 17: (Comparison with additional baselines). Comparing our method, TempBalance
(TB), with other baselines such as parameter-wise learning rate schedulers Adam and LAMB,
using ResNet18/34 trained on CIFAR100. Each cross represents the mean test accuracy of five
random seeds.
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Figure 18: (Layerwise gradient norm during training). From left to right: maximum, minimum,
and mean of the layerwise gradient norm at every 30 iterations for the first 10 epochs. ResNet18
on CIFAR-100.

F Does addressing other training issues lead to TempBalance’s improvement?

We discuss whether the improvement from the proposed method, TempBalance, is due to indirectly
addressing another fundamental training issue that could distort the ESD, specifically the gradient
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Figure 19: (Histogram of gradient norm distribution during first epoch). ResNet18 on CIFAR-
100.
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Figure 20: (Impact of large rank-1 updates on ESD). Large rank-1 updates result in the spikes of
ESD, observed exclusively during the first epoch. From the second epoch onward, the ESD exhibits a
heavy-tailed distribution. ResNet18 on CIFAR-100.
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Figure 21: (Varying the starting epoch of applying TempBalance (TB)). Postponing the usage of
TempBalance to Epochs 2, 5, and 10 doesn’t affect the performance of TempBalance (originally
starting from Epoch 1).

magnitude excursions [80] (explosion/vanishing). This discussion further strengthens the connection
between our method and the HT structure, as discussed in the Sections 1, A, and B.

We first summarize the questions and the corresponding primary findings, with subsequent detailing
of our experiment and supporting results.

• Does gradient excursion exist? We discovered that gradient explosion does exist, but it is
confined to the first epoch out of a total of 200 training epochs, leading us to believe it does
not significantly impact the test accuracy. We observed no gradient vanishing.

• Does the observed gradient explosion impact the estimation of PL_Alpha_Hill? We
discovered that the large rank-1 updates resulting from the gradient explosion do indeed
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affect the ESD as well as the PL_Alpha_Hill estimation. However, this effect is again
restricted to the first epoch.

• Does TempBalance boil down to addressing gradient explosion? We found that postpon-
ing the use of TempBalance until the epoch when neither the gradient explosion nor the
PL_Alpha_Hill estimation is affected does not compromise the test accuracy.

To support the above answers, we conducted three experiments. We discuss the setup of these
experiments first and then analyze the results.

• (Figures 18, 19) We aim to detect gradient excursion by tracking the gradient norm across
layers during training. We examine the model every 30 iterations over the first 10 epochs,
calculating the L2 norm of each gradient update across layers using the training batches of
size 128. This produces an empirical gradient norm distribution with a total sample size of
update numbers × layer numbers. Figure 18 presents the maximum/minimum/mean of the
distribution, while Figure 19 visualizes these distributions for several iterations of Epoch 1.

• (Figure 20) We aim to assess the impact of gradient explosion on PL_Alpha_Hill estimation
by monitoring the ESD. Figure 20 examines the change of the ESD of a single weight matrix
over several iterations, tracked in the experiment depicted in Figures 18 and 19.

• (Figure 21) We aim to see if TempBalance enhances generalization by implicitly addressing
gradient explosion. Since the gradient explosion and its effect on PL_Alpha_Hill estima-
tion only transpire in the first epoch, we postpone the starting epoch of TempBalance to
Epochs 2, 5, and 10 and see if it affects the test accuracy.

Our answers to the above questions are supported by the results obtained from the three experiments:

• First question (Figure 18 and 19): We observed that the notable exploding gradients only
occur in the initial 200 iterations of the first epoch. In Figure 18, we pinpoint a singular peak
of maximum gradient norm within the first epoch. This aligns with the abnormal distribution
with a large gradient norm in the subfigure of Figure 19 titled “Epoch 1, iteration 30.”

• Second question (Figure 20): Note that large rank-one updates have been studied in random
matrix theory, which manifests as a “bulk+spike” pattern. This has been analyzed in, e.g.,
Theorem 2.13 of [94]. Figure 20 shows this “bulk+spike” pattern, but only in the first epoch.
The ESD exhibits a heavy-tail distribution in subsequent epochs, suggesting the influence of
rank-one updates is limited.

• Third question (Figure 21): Delaying the application of TempBalance until after the
first epoch does not adversely affect the test accuracy. Figure 21 illustrates that applying
TempBalance from Epochs 2, 5, and 10 results in test performance comparable to when
TempBalance is applied from Epoch 1. Since the gradient explosion only occurs in the first
epoch and its effect on PL_Alpha_Hill estimation diminishes after this, the effectiveness
of TempBalance does not rely on addressing gradient explosion or biased PL_Alpha_Hill
estimation from large rank-one updates.

• Third question: We compare TempBalance with the baseline method LARS, which uses gra-
dient norms to determine layer-wise learning rates in combating gradient vanishing/explosion
issues. As illustrated in Figure 4, TempBalance outperforms LARS in terms of generalization
performance.

G Corroborating results on other tasks

We provide corroborating results of applying TempBalance to two different tasks: object detection
(OD) and language modeling (LM). In both tasks, TempBalance consistently improves generaliza-
tion, outperforming the baseline scheduler cosine annealing (CAL) when both are combined with
Adam/AdamW optimizers.

For OD, we studied the PASCAL VOC2007 [95] dataset with YOLO series [96] pre-trained model.
We compared TempBalance with the baseline scheduler CAL with both applied to Adam/AdamW
optimizer. For both scheduler methods, we trained for 200 epochs with batch size 64, and we set
the same hyperparameter for the optimizers: β1 = 0.9, β2 = 0.999, ϵ = 10−8, weight decay =
5.0 × 10−4. We searched the initial learning rate for all methods among {7.5 × 10−6, 1 × 10−5,
2.5× 10−5}. For metrics we use the COCO [97] version mean Average Precision (mAP, higher is
better), which is calculated for 10 IOUs varying in a range of 0.5 to 0.95 with steps of 0.05. We
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report the mean of mAP over five random seeds on the test set. We set the scaling factors (s1, s2) of
TempBalance to be (0.6, 1.4).

Here are the experimental settings for LM. We studied the Penn Treebank (PTB) dataset [98] using
a three-layer “tensorized transformer core-1” [99]. We compared TempBalance with the baseline
scheduler CAL with both applied to Adam optimizer. For both scheduler methods, we trained the
models for 40K iterations with a batch size of 120, and a dropout rate of 0.3. We searched the initial
learning rate for baseline methods among {1.25×10−4, 2.5×10−4, 5×10−4, 1×10−3, 1.25×10−3,
2.5× 10−3, 5× 10−3} for baseline CAL. The hyperparameters for Adam are β1 = 0.9, β2 = 0.999,
ϵ = 10−8. The mean of perplexity (PPL, lower is better) across five random seeds on the test set
is reported. We observed improved performance of TempBalance in this task when extending our
hyperparameter search to include the scaling factors (s1, s2) ∈ {(0.5, 1.5), (1.0, 2.0)}, the power-law
fitting hyperparameter λmin index k ∈ {n2 ,

n
1.25}, and the TempBalance update interval over {10, 25,

50} iterations.

Table 7: (a) Object Detection (OD): mean Average Precision (mAP) on PASCAL VOC 2007 using
model Yolov8n. (b) Language Modeling (LM): test perplexity (PPL) on Penn TreeBank (PTB) using
the tensorized transformer. TempBalance (TB) consistently outperforms the CAL in different tasks.
CAL + Adam TB + Adam CAL + AdamW TB + AdamW

59.59 60.03 (+0.44) 59.68 59.96 (+0.28)

(a) OD, VOC2007, mAP (↑)

CAL + Adam TB + Adam
49.94 47.30 (-2.64)

(b) LM, PTB, PPL (↓)

We present additional results in Figure 22, showing the application of our method TempBalance
to ResNet 101 on CIFAR-100, and we compare it with the baseline (CAL). We searched the initial
learning rate among {0.05, 0.1, 0.15} for both the baseline and our method. The results report the
mean and standard deviation across five seeds. We found that TempBalance offers improvements
for the larger ResNet101 model comparable to those observed for ResNet18/34, demonstrating its
potential for larger models.

Figure 22: (Applying the TempBalance (TB) to different sizes of ResNets). TempBalance
consistently outperforms the baseline CAL method in the larger model ResNet101. The dataset is
CIFAR100. Reporting mean/std over five random seeds.

H Analysis of computation overhead

We conducted a study on the computational overhead of TempBalance, demonstrating that our
method is both applicable and scalable for large models. To do so, we conducted a scaling experiment
to demonstrate that the computational cost remains low for different sizes of models. We recorded
the duration of a single training epoch and the time taken to apply our method once. From this, we
calculated the percentage increase in time when using TempBalance once per epoch, using this as an
indicator of computational overhead. The experiment setup is based on ResNet-series on CIFAR100.
We studied models of depth in {18, 34, 50, 101} and ResNet18 models of width in {512, 768, 1024,
2048}. We report the mean and the standard deviation of the results over 10 runs. The test platform
was one Quadro RTX 6000 GPU with Intel Xeon Gold 6248 CPU. The results are presented in
Figure 23. Our findings reveal that the computational overhead remains low (less than 9%) even
when applied to exceptionally wide or deep models (ResNet18 with width 2048 or ResNet101). The
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Figure 23: (Computation overhead of TempBalance (TB) in scaling the model depth/width).
(a)(c) Time duration (second) of one training epoch (blue) and using TempBalance once (red).
(b)(d) Time increment of using TempBalance once per epoch. The dataset is CIFAR100, reporting
mean/std over 10 epochs. The computational overhead of using TempBalance remains low (less
than 9%) even when applied to exceptionally wide or deep models.

Figure 24: (Varying the TempBalance (TB) update interval). Reducing the update interval from
390 iters (used in the paper) brings mild improvement in test accuracy. Both use ResNet18 on
CIFAR100. Reporting mean/std over five random seeds.

computation overhead is not large because: 1) we select the efficient PL fitting method to obtain
PL_Alpha_Hill, which is demonstrated in Figure 8; and 2) the most computation-intensive part of
our method is SVD decomposition, which we have optimized using GPU implementation and batch
processing.

We conducted an experiment on reducing the update interval of the learning rate schedule to see
if it affects the test accuracy of TempBalance. Figure 24 shows the experiments conducted with
ResNet18 on CIFAR-100. We reduce the update interval from 390 iterations used in our paper
(equivalent to one epoch) to 300, 200, 100, and 50. We observed that there indeed exists a trade-off
between the computation time and test accuracy, but reducing the update interval only brings mild
improvement.
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