
On Generating Abstract Explanations via Knowledge Forgetting

Abstract

In this paper, we investigate the problem of generating expla-
nations from the context of Human-aware AI Planning. Par-
ticularly, we focus on an explanatory setting for tasks encoded
in a logical formalism, where given an agent model (encoding
the task), an explanandum entailed by the agent, and a user
vocabulary specifying terms in the task, the goal is to find
an explanation that is at an appropriate abstraction level with
respect to the user’s vocabulary. We propose a logic-based
framework aimed at generating such explanations by lever-
aging a method called knowledge forgetting, and present an
algorithmic approach for computing them. Our experimental
evaluation shows the promise of our framework.

1 Introduction
Human-aware AI Planning (HAIP) has been established as
a paramount area of research due to its ability to help hu-
man users interface with AI agents in complex (sequen-
tial) decision-making tasks (Kambhampati 2019). A typ-
ical HAIP scenario involves an agent Ma explaining an
explanandum ϕ that is inexplicable to a human user Mh,
where Ma and Mh encode the agent’s and the human’s ver-
sion of a planning task (e.g., in a PDDL format). This ap-
proach is referred to as the Model Reconciliation Problem
(MRP) (Chakraborti et al. 2017), and its predominant goal
is to provide users with succinct explanations, e.g., expla-
nations of minimal cardinality. However, a common thread
around MRP approaches is the assumption that the users
understand the task at the same level of abstraction as the
agent (Sreedharan, Chakraborti, and Kambhampati 2018;
Vasileiou, Previti, and Yeoh 2021). Interestingly, Sreedha-
ran, Srivastava, and Kambhampati (2021) have made some
effort toward computing explanations for users at different
abstraction levels. Nevertheless, their approach focuses ex-
clusively on state abstractions for specific planning tasks.

In this paper, we center our attention on utilizing the
notion of abstract explanations for decision-making tasks
that can be encoded using a logical formalism. Particularly,
we present a logic-based framework, where given an agent
knowledge base KBa, an explanandum ϕ entailed by KBa,
and a user vocabulary Vh consisting of user specified terms,

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the goal is to generate an explanation that is at an appro-
priate abstraction level with respect to Vh. To generate the
explanations, we leverage a method called knowledge for-
getting (Delgrande 2017) and use it to define the notion of
abstract explanations. We present a simple algorithmic ap-
proach for computing abstract explanations, and evaluate its
efficacy on a set of SAT-based benchmarks. While the oper-
ation of knowledge forgetting has been extensively studied
in various settings (Zhang and Zhou 2009; Lutz and Wolter
2011; Wang et al. 2014), its applicability in the context of
HAIP has not been explored, to the best of our knowledge.

The motivational drive of this work is rooted in the under-
standing of Relevance Theory (Wilson and Sperber 2002),
which suggests that the relevance of an utterance depends on
maximizing the recipient’s cognitive effect and minimizing
their cognitive effort. In our context, this can be translated
as an explanation of minimal cardinality (minimize effort)
abstracted enough for a given user vocabulary (maximize
effect). This will be the primary objective for generating ab-
stract explanations in this paper.

2 Logical Preliminaries
We assume a propositional language L consisting of a finite
set of propositional letters Γ. The simplest formulae in L
are literals, which are letters or their negations, while more
complex formulae can be recursively built up from letters
and the classical logical connectives. A knowledge baseKB
is a set of formulae. The set of letters used in the formulae of
KB is called the vocabulary of KB, denoted by VKB . An
interpretation is a function I : Γ → {true, false}, and if
there exists an interpretation that satisfies a KB we say that
KB is satisfiable, otherwise KB is unsatisfiable, denoted
byKB |= ⊥. AKB entails a formula ϕ, denoted byKB |=
ϕ, if and only if KB ∪ {¬ϕ} |= ⊥.

Unless stated otherwise, in what follows we assume that a
KB is satisfiable and it is expressed in conjunctive normal
form (CNF), that is, a conjunction of clauses, each of which
is a disjunction of literals.
Definition 1 (Explanation). Given KB |= ϕ, an explana-
tion for ϕ from KB is a subset ε ⊆ KB s.t. ε |= ϕ and
∀ε′ ⊂ ε we have ε′ 6|= ϕ.
Definition 2 (Minimal Unsatisfiable Set (MUS)). Given
KB |= ⊥, a subset U ⊆ KB is an MUS if U |= ⊥ and

∀U ′ ⊂ U , U ′ is satisfiable.

MUSes and explanations are related by the following:
Proposition 1. Given KB |= ϕ, ε ⊆ KB is an explanation
of ϕ (ε |= ϕ) iff ε ∪ {¬ϕ} is an MUS of KB ∪ {¬ϕ}.

Our framework presented here is closely tied to the foun-
dations laid in Vasileiou, Previti, and Yeoh (2021), namely
the logic-based version of the model reconciliation problem
(L-MRP).1 In L-MRP, one is given two knowledge bases
KBa and KBh of the agent providing an explanation and
the human receiving the explanation, respectively, such that
KBa |= ϕ and KBh 6|= ϕ, and the goal is to find an expla-
nation ε = 〈ε+, ε−〉, where ε+ ⊆ KBa and ε− ⊆ KBh, s.t.
(KBh ∪ ε+) \ ε− |= ϕ.

Note that an important assumption of L-MRP is thatKBh
is known to the agent a priori. Nevertheless, as we will see
in Section 4, instead of a full-fledged KBh, we will only re-
quire that a user-defined vocabulary Vh is provided. As this
assumption is significantly more reasonable and realistic, we
anticipate that our work is a move in the right direction to-
wards practicality.

3 Abstractions via Knowledge Forgetting
The notion of knowledge forgetting, henceforth forgetting,
is taken to be an operation that decreases the language of
an agent, insofar as the vocabulary of the agent’s language
is reduced. Specifically, assume a knowledge base KB over
a vocabulary VKB . The operation of forgetting λ ⊆ VKB
from KB is the logical consequences of KB expressible
over VKB \ λ. Forgetting is applied in the contents of an
agent’s knowledge base and is independent of the underlying
formalism.

Delgrande (2017) presents a succinct mechanism for com-
puting forgetting for various logics, however, in this paper
we focus on its propositional logic treatment.
Definition 3. Let KB be a knowledge base and λ ∈ VKB
a letter in its vocabulary. Define KB↓λ = {ϕ ∈ KB | λ 6∈
Vϕ}.

That is, KB↓λ is simply those formulae of KB that do
not mention λ. In the next definition, Res(KB,λ) is the set
of formulae obtained from KB by carrying out all possible
resolutions with respect to letter λ.
Definition 4. Let KB be a knowledge base and λ ∈
VKB a letter in its vocabulary. Define Res(KB,λ) =
{ϕ | ∃ϕ1, ϕ2 ∈ KB s.t. λ ∈ ϕ1,¬λ ∈ ϕ2, and ϕ =
(ϕ1 \ {λ}) ∪ (ϕ2 \ {¬λ})}

Now, Definitions 3 and 4 can be combined to compute
forgetting, resulting in the following definition:
Definition 5. Let KB be a knowledge base and λ ∈ VKB
a letter in its vocabulary. Then, forgetting λ from KB is
defined as F(KB,λ) = KB↓λ ∪Res(KB,λ).

Definition 5 can be interpreted as follows: Perform all
possible resolutions with respect to the letter to be forgotten,

1The MRP problem was originally developed by Chakraborti
et al. (2017) for (classical) planning tasks.

Figure 1: A level-3 abstraction lattice for KB = {a, b,¬a∨
c,¬b ∨ ¬c ∨ d}. At the root is level-0 of the lattice, i.e.,
the initial F(KB, {∅}) = KB. The child nodes of the root
form level-1 of the lattice and represent (from left to right):
F(KB, {a}) = {b, c,¬b∨¬c∨d},F(KB, {b}) = {a,¬a∨
c,¬c ∨ d}, and F(KB, {c}) = {a, b,¬a ∨ ¬b ∨ d}. Simi-
larly, the subsequent nodes form level-2, and so on. As one
can see, the level of the lattice is specified by the number of
letters we are forgetting.

and add these resolvents to those formulae inKB that do not
mention that letter.2 While the resulting KB will be weaker
than before, one of the key advantages of this mechanism is
that the resulting KB entails the same set of formulae that
are irrelevant to what was forgotten. We formalize this in the
following corollary:
Corollary 1. Let KB be a knowledge base and VKB its
vocabulary. IfKB |= ϕ, then ∀λ ∈ VKB\Vϕ,F(KB,λ) |=
ϕ.
Example 1. Let KB = {a, b,¬a ∨ c,¬b ∨ ¬c ∨ d} and
VKB = {a, b, c, d}, where KB |= d, and assume we want
to forget a. First, we computeKB↓a = {b,¬b∨¬c∨d} and
Res(KB, a) = {c}. Then,F(KB, a) = {b, c,¬b∨¬c∨d}.
Notice that F(KB, a) |= d.

For a more thorough analysis of forgetting and its various
theoretical properties, we refer the interested reader to the
work by Delgrande (2017).

Importantly now, in this paper we want to utilize the for-
getting operation as an abstraction method for a set of for-
mulae. In essence, such an abstraction method will simply
be a simplification of the formulae by forgetting a set of let-
ters from their vocabulary. Formally,
Definition 6 (Abstraction). Let KB be a knowledge base
and VKB its vocabulary. Then, F(KB,λ) is an abstraction
of KB, where λ ⊆ VKB .

What is interesting here is that, through the operation of
forgetting, we can define an abstraction lattice specifying

2Note that computing forgetting for a set of letters can be done
iteratively, i.e., F(KB,λ1 ∪ λ2) = F(F(KB,λ1), λ2).

the abstraction levels that can be achieved on a knowledge
base given a set of letters. Figure 1 shows an abstraction
lattice based on Example 1.

In the next section, we will take Definition 6 and use it to
define the notion of abstract explanations with respect to a
user-defined vocabulary.

4 Explanation Generation Framework
Similar to the concept of MRP, our explanation generation
setting concerns an agent explaining an explanandum to a
human user. In particular, we assume the following:

• An agent knowledge base KBa encoding a task
(e.g., planning) in a logical language. The agent’s knowl-
edge base KBa is logically closed, insofar as the agent
is “logically omniscient” about the problem.3

• The user provides the following information to the agent:
(i) The explanandum ϕ, where KBa |= ϕ; and (ii) a vo-
cabulary Vh such that Vh ⊆ Va, where Va is the agent’s
vocabulary.

As mentioned in the introduction, our motivation for gen-
erating abstract explanations is tied to Relevance Theory,
where we are interested in finding an explanation ε from
KBa for ϕ that is: (i) cardinality minimal; and (ii) com-
prises the most letters in Vh. This can be used as an objec-
tive function in our explanation generation scheme. To be
more specific, (i) suggests minimizing |ε|, whereas (ii) can
be formalized as maximizing |Vε ∩ Vh|. As such, the objec-
tive function becomes O(ε,Vh) = 1

|ε| + |Vε ∩ Vh|.4 An ex-
planation that yields the maximum O(ε,Vh) will be referred
to as the most-relevant explanation.
Definition 7 (Most-Relevant Explanation). Given KBa |=
ϕ, and Vh ⊆ VKB , ε ⊆ KBa is a most-relevant explanation
iff ε |= ϕ and @ε′ ⊆ KBa s.t. ε′ |= ϕ and O(ε′,Vh) >
O(ε,Vh), where O(ε,Vh) = 1

|ε| + |Vε ∩ Vh| is the objective
function.

Now, given a most-relevant explanation ε and a user vo-
cabulary Vh, we can compute an abstraction of εwith respect
to Vh using Definition 7, thus yielding the notion of an ab-
stract explanation. More formally,
Definition 8 (Abstract Explanation). Given KBa |= ϕ and
Vh ⊆ VKB , ε̃ = F(ε,Vε \ Vh) is an abstract explanation iff
ε is a most-relevant explanation.

In other words, given a most-relevant explanation ε, we
construct an abstract explanation ε̃ by forgetting the letters
that are not contained in the user’s vocabulary Vh. Note that
we also do not forget the letters in the explanandum ϕ so as
to preserve the property that ε̃ |= ϕ (see Corollary 1).

3Albeit a strong assumption, in this paper we suppose that the
user is trying to learn from the agent, and as such, the agent encodes
the correct information about a specific problem. We plan to relax
this in the future work.

4Note that one can incorporate weights in the objective func-
tion, i.e., O(ε,Vh) = w1 ∗ 1

|ε| + w2 ∗ |Vε ∩ Vh|. This may be of
use when one wants to trade-off explanation cardinality and known
letters from Vh (and vice versa).

Algorithm 1: Abstract Explanation Generation
Input: Agent knowledge base KBa, explanandum

ϕ, and user vocabulary Vh
Result: An abstract explanation ε̃ w.r.t. Vh

1 KB ← {∅}
2 for c ∈ KBa do
3 w = |Vc ∩ Vh|
4 KB ← KB ∪ {(c, w)}
5 end
6 while true do
7 ε← weightedMUS(KBsoft ∪ {¬ϕhard})
8 if ε |= ϕ then
9 ε̃← F(ε,Vε \ Vh)

10 return ε̃
11 end
12 end

Example 2. Let KBa = {a, b,¬a ∨ ¬b ∨ c, d,¬d ∨ b}
and Vh = {a, d, c}, and let ε1 = {a, b,¬a ∨ ¬b ∨ c} and
ε2 = {a, d,¬d ∨ b,¬a ∨ ¬b ∨ c} be two explanations for c
fromKBa. Further, notice that ε2 is the most-relevant expla-
nation, as O(ε2,Vh) = 1

4 + 3 > O(ε1,Vh) = 1
3 + 2. Then,

given ε2 and Vh, we get ε̃ = F(ε2,Vε2 \ Vh) = {a, d,¬d ∨
¬a ∨ c}.

One of the most important effects of Definition 8 is that,
through the machinery of forgetting, we can forge explana-
tions that were not previously contained in KBa. This gives
us the opportunity to explore the construction of more per-
sonalized and intelligible explanations for human users.

Computing Abstract Explanations
We now present a simple algorithm for computing abstract
explanations. At a high level, the algorithm finds the most-
relevant explanation (Definition 7) with respect to the user’s
vocabulary, and then computes the appropriate abstraction
level for that explanation using the forgetting operation. The
objective function described in the previous section is incor-
porated through a weighted MUS procedure that computes
the most-relevant explanation by prioritizing the formulae
that consist of the most letters with respect to the user vo-
cabulary.

Algorithm 1 presents the pseudocode. The algorithm first
weights the formulae in KBa according to the number of
intersections of their letters with those in Vh and inserts
them into the knowledge base KB (Lines 1-4). The main
loop starts at Line 5. At Line 6, the algorithm computes a
weighted MUS ε on KB ∪ {¬ϕ} by treating the formu-
lae in KB as soft and the formula ϕ as hard. We remind
the reader that the soft formulae are those formulae that will
be removed by the minimizing procedure of weightedMUS,
while hard formulae will not. If ε |= ϕ, then ε is a most-
relevant explanation, and as such, an abstraction of ε is com-
puted (Definition 7) and returned (Lines 7-9). Otherwise, the
algorithm continues by computing a new MUS, where al-
ready computed MUSes are blocked in order to avoid infi-
nite loops. Finally, the completeness and correctness of Al-
gorithm 1 rests on Proposition 1, as we sketch below.

Theorem 1. Algorithm 1 is complete and correct.

Proof. (Completeness) First, Algorithm 1 always returns a
solution, i.e., an explanation from KBa for ϕ. Notice that
since KBa |= ϕ, then KBa ∪ {¬ϕ} |= ⊥, and thus, there
exist a set of MUSes U from KBa ∪ {¬ϕ}. From Proposi-
tion 1, ∃ε ∈ U such that ε \ {¬ϕ} |= ϕ is an explanation for
ϕ (Definition 1). Since Algorithm 1 computes MUSes from
KBa ∪ {¬ϕ} (Line 6), it will eventually find and return an
explanation.

(Correctness) Algorithm 1 is guaranteed to return an ab-
stract explanation given KBa |= ϕ and Vh ⊆ Va. This
is due to the fact that it uses a weightedMUS function
for computing explanations. Firstly, the algorithm creates
a weighted knowledge base KB (Lines 2-4), where the
weights of the formulae in KB denote how many of their
letters are in Vh. The weightedMUS function on Line 6
uses an implicit hitting set process (see the work by Ignatiev
et al. (2015) for more) by iteratively building up MUSes
from KB ∪ {¬ϕ}, where its optimization function maxi-
mizes the weights and minimizes the cardinality of the com-
puted MUSes. In other words, the optimization function of
weightedMUS is akin to our objective function presented
in Section 4. This means that the algorithm evaluates candi-
date explanations ε by prioritizing those according to our ob-
jective function. Therefore, if ε |= ϕ evaluates to true, then
ε is a most-relevant explanation according to Definition 7,
and consequently, an abstract explanation (Definition 8) is
guaranteed to be returned (Lines 8-9).

5 Experimental Evaluation
We now present an experimental evaluation of Algortithm 1
on some instances from the SAT competition.5 We ran the
experiments on a Windows machine comprising an AMD
Ryzen 7 4.20 GHz processor with 32GB of memory. The
time limit was set to 500s. Algorithm 1 was implemented
in Python and integrates calls to a weighted MUS or-
acle through the PySAT toolkit (Ignatiev, Morgado, and
Marques-Silva 2018). We used our own implementation for
the knowledge forgetting operation. The code will be made
publicly available after the peer-review process.

In our experiments, we used the SAT instances as the
agent’s knowledge base KBa. The explanandum ϕ we used
for each instance was a conjunction of backbone literals
(e.g., a set of literals entailed by KBa), which we pre-
computed using the minibones algorithm (Janota, Lynce,
and Marques-Silva 2015). For the user vocabularies Vh, we
created four scenarios, in which Vh was a random selection
of 10%, 30%, 60%, and 80% of the letters in the agent’s vo-
cabulary Va (Scenarios 1 to 4, respectively).

Table 1 tabulates the results, where we report the cardi-
nality of Vh, the cardinality of the abstract explanation |ε|
returned, and the runtimes of Algorithm 1, referred to as
ALG1. We observe that ALG1 performed relatively well and
managed to find an abstract explanation in short amount of
time. As expected, observe that the size of the explanation

5www.satcompetition.org

Prob. Scenario 1 Scenario 2 Scenario 3 Scenario 4
|Vh| |ε| ALG1 |Vh| |ε| ALG1 |Vh| |ε| ALG1 |Vh| |ε| ALG1

B
N

1 79 7 0.05s 222 11 0.06s 435 15 0.07s 578 22 0.07s
2 77 2 0.05s 214 13 0.5s 400 22 1.5s 500 30 1.0s
3 94 14 0.4s 246 30 0.8s 471 44 2.0s 624 75 1.0s

S
A

T
G

R
ID

1 48 11 2.0s 132 18 2.0s 256 727 2.5s 341 7,049 8.0s
2 78 2 0.05s 222 4 0.05s 434 8 0.05s 578 18 1.0s
3 98 2 90.0s 284 41 89.0s 563 5,040 112.0s 749 8,640 115.0s

C
O

M
M 1 1,415 31 3.0s 4,189 42 3.5s 8,347 50 3.5s 11,116 51 3.0s

2 1,599 52 4.0s 4,703 54 4.0s 9,357 60 4.5s 12,469 72 4.0s
3 1,427 48 4.5s 3,897 66 5.0s 9,001 57 6.0s 12,431 94 7.0s

L
O

G
I-

S
T

IC
S 1 35 7 0.2s 99 18 0.3s 196 26 0.4s 261 24 0.4s

2 35 4 0.2s 99 9 0.4s 196 21 0.5s 261 29 0.55s
3 23 6 0.1s 62 15 0.05s 121 29 0.1s 160 35 0.1s

R
O

V
E

R 1 60 7 0.3s 172 12 0.25s 339 16 0.4s 452 16 0.45s
2 50 12 0.45s 136 20 0.6s 267 36 0.5s 354 48 0.5s
3 65 16 0.5s 177 27 0.6s 343 28 1.0s 453 37 1.5s

B
M

C 1 1,414 32 3.0s 4,185 37 3.0s 8,432 49 3.0s 11,120 57 3.5s
2 1,600 51 4.0s 4,709 58 3.5s 9,364 61 4.0s 12,414 72 4.5s
3 1,502 40 6.0s 3,832 53 8.0s 8,331 65 6.0s 11,370 90 6.0s

A
C

E 1 399 5 1.0s 1,194 14 2.0s 2,387 24 2.5s 3,184 28 2.0s
2 594 11 3.0s 1,771 22 4.0s 3,535 39 5.5s 4,711 43 6.0s
3 1,200 77 2.5s 3,450 77 3.0s 6,824 77 4.0s 9,075 77 4.0s

Table 1: Evaluation of ALG1 on SAT Instances.

returned depends on the size of the user vocabulary, i.e.,
the more letters we forget the more abstract the explanation
will be. In general, we notice a small trend that suggests that
the runtimes of ALG1 increase as the size of the (encoded)
knowledge bases and |ε| increase. On the other hand, prob-
lem instance 3 of SAT GRID induced the highest runtimes,
even for an explanation of cardinality 2 (Scenario 1). This is
due to the inherent hardness of finding MUSes, for example,
extracting an MUS is in FPΣ2

P (Liberatore 2005). Indeed,
part of the performance advantage in ALG1 lies in the effec-
tiveness of the underlying SAT and MUS solvers. This also
implies that any advancement in those solvers will automat-
ically reflect in performance gains in our algorithm.

6 Discussion and Conclusion
In this paper, we developed a simple framework that is able
to generate abstract explanations with respect to a user de-
fined vocabulary. According to Relevance Theory, these ex-
planations can be thought of as a step towards creating more
personalized and intelligible explanations for human users,
that is, explanations that minimize the user’s cognitive effort
and maximize their cognitive effect. Importantly, we view
this work as a necessary step towards realizing an interac-
tive, multi-shot explanation generation scheme, where hu-
man users will be able to interact with an agent in a dia-
logical fashion. For example, the abstract explanations pre-
sented here can serve as the information that instigates the
dialogue between the user and the agent. Specifically, we
can conceptualize a framework consisting of an agent model
Ma = 〈KBa,KBah〉, where KBah is an approximation of
the user’s knowledge (initially empty or filled with domain-
specific common knowledge) that is aimed to be updated
through the following interactions: Upon receiving the ini-
tial abstract explanation from the agent, the user would be
able to request further clarification on the explanation by
asking for more information, in which case the agent will
increase the explanation’s granularity, or for less informa-
tion, in which case the agent will decrease the granular-
ity. This can be achieved by our framework by traversing the
abstraction lattice either upwards or downwards (e.g., see
Figure 1). Nevertheless, an important consideration here is

what information to reveal or abstract for the user, i.e., what
nodes to expand in the lattice. We aim to investigate this en-
deavor in future work. Now, once the user is satisfied with
the explanation, the agent will update the user’s approximate
knowledge base KBah with this explanation, and as such a
more accurate representation of the user’s knowledge can be
learned, leading to the practical inception of MRP.

To conclude, we proposed a simple logic-based frame-
work that given an agent knowledge base, an explanandum,
and a user vocabulary, it generates abstract explanation with
respect to the vocabulary. Due to its logic-based nature, our
approach has the additional advantage of being able to deal
with tasks coming from different settings, so long as the task
can be encoded into a logical formalism. In this paper, we
showed its utility on propositional encodings.

References
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAI, 156–
163.
Delgrande, J. P. 2017. A knowledge level account of forget-
ting. Journal of Artificial Intelligence Research, 60: 1165–
1213.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Ignatiev, A.; Previti, A.; Liffiton, M. H.; and Marques-Silva,
J. 2015. Smallest MUS Extraction with Minimal Hitting Set
Dualization. In CP, 173–182.
Janota, M.; Lynce, I.; and Marques-Silva, J. 2015. Algo-
rithms for computing backbones of propositional formulae.
AI Communications, 28(2): 161–177.
Kambhampati, S. 2019. Synthesizing Explainable Behavior
for Human-AI Collaboration. In Proceedings of AAMAS,
1–2.
Liberatore, P. 2005. Redundancy in logic I: CNF proposi-
tional formulae. Artificial Intelligence, 163(2): 203–232.
Lutz, C.; and Wolter, F. 2011. Foundations for uniform inter-
polation and forgetting in expressive description logics. In
Twenty-Second International Joint Conference on Artificial
Intelligence.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2018.
Handling Model Uncertainty and Multiplicity in Explana-
tions via Model Reconciliation. In ICAPS, 518–526.
Sreedharan, S.; Srivastava, S.; and Kambhampati, S. 2021.
Using state abstractions to compute personalized contrastive
explanations for AI agent behavior. Artificial Intelligence.
Vasileiou, S. L.; Previti, A.; and Yeoh, W. 2021. On Exploit-
ing Hitting Sets for Model Reconciliation. In AAAI.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowl-
edge forgetting in answer set programming. Journal of Arti-
ficial Intelligence Research.
Wilson, D.; and Sperber, D. 2002. Relevance theory.
Zhang, Y.; and Zhou, Y. 2009. Knowledge forgetting: Prop-
erties and applications. Artificial Intelligence.

