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1 Abstract

Understanding people’s social interactions in complex real-world scenarios often relies on intricate
mental reasoning. To truly understand how and why people interact with one another, we must
infer the underlying mental states that give rise to the social interactions, i.e., Theory of Mind
reasoning in multi-agent interactions. Additionally, social interactions are often multi-modal – we
can watch people’s actions, hear their conversations, and/or read about their past behaviors. For
AI systems to successfully and safely interact with people in real-world environments, they also
need to understand people’s mental states as well as their inferences about each other’s mental states
based on multi-modal information about their interactions. For this, we introduce MuMA-ToM,
a Multi-modal Multi-Agent Theory of Mind benchmark. MuMA-ToM is the first multi-modal
Theory of Mind benchmark that evaluates mental reasoning in embodied multi-agent interactions. In
MuMA-ToM, we provide video and text descriptions of people’s multi-modal behavior in realistic
household environments. Based on the context, we then ask questions about people’s goals, beliefs,
and beliefs about others’ goals. We validated MuMA-ToM in a human experiment and provided a
human baseline. We also proposed a novel multi-modal, multi-agent ToM model, LIMP (Language
model-based Inverse Multi-agent Planning). Our experimental results show that LIMP significantly
outperforms state-of-the-art methods, including large multi-modal models (e.g., GPT-4o, Gemini-1.5
Pro) and a recent multi-modal ToM model, BIP-ALM.

2 Introduction

Humans live in a social world; we not only engage in social interactions ourselves but can also
understand other people’s social interactions. Studies in Developmental Psychology have indicated
that the ability to understand different kinds of social interactions develops early and is one of the
bases for more sophisticated social skills developed later in life (Denham et al., 2003; Wellman
et al., 2001; Hamlin et al., 2007). Crucially, understanding social interactions goes beyond action
recognition. We often need to reason about why people interact with one another in a certain manner.
We can achieve this by inferring people’s mental states as well as how they reason about one another’s
mental states, i.e., multi-agent Theory of Mind (ToM) reasoning. The multi-agent Theory of Mind
abilities are not only crucial for humans but also for AI systems. Without a robust understanding
of people’s mental states in social interactions, AI systems may cause detrimental errors in their
interactions with people.

To address the challenges of multi-agent Theory of Mind reasoning, we introduce a new Theory of
Mind benchmark, MuMA-ToM (Multi-modal Multi-Agent Theory of Mind benchmark). MuMA-
ToM includes a large set of question-answering trials. As summarized in Figure 1, questions in
MuMA-ToM are organized into three categories: (1) belief inference, (2) social goal inference, and
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It’s in the
cabinet in the

bedroom

Question: If Mary has been trying to hinder John
from achieving his goal, when giving information,
where does she LEAST likely believe the beer was
located?
A) Coffee table in the living room
B) Kitchen cabinet
C) Fridge

Question: If Jessica knows what is inside the
cabinet in the bedroom, which of the following is
MOST likely?
A) Jessica is trying to help Kevin
B) Jessica is trying to hinder Kevin
C) Jessica is indifferent towards Kevin’s goals 

Question: Which of the following statements is MOST likely?
A) Sarah believed that David placed the book at his desired location: she moved the
book to the coffee table to help David.
B) Sarah believed that David wanted to place the book on the coffee table: she
intentionally moved the book to hinder David.
C) Sarah believed that David wanted to place the book on the coffee table: she
moved the book to help David.

Belief Inference
I saw it on the
coffee table in
the living room

Do you know
where the beer

is?

A

Have you seen
the magazine?

B

C D

A B

C D

Sarah walks to the living
room

Sarah places the book on the
coffee tableA B C D

Kevin walks towards the cabinet

Social Goal Inference

...

Belief of Goal Inference

John walks to the living room

John sees the beer on the coffee
table

John grabs the beer on the
coffee table

The events in the text occur first, followed by the video.
Text: David walked to a book and grabbed it. He then walked to the living room,
headed to the bedroom, and finally reached the desk there, placing the book on the
desk.

Kevin opens the cabinet
Kevin closes cabinet without 
grabbing anything

Sarah walks to the desk Sarah picks up the book

Figure 1: Example questions for each question type. We provide keyframes for the video in each
example. The conversations in the chat bubbles are provided as subtitles and shown as part of the
multi-modal inputs when viewing the video. Note that the captions on the bottom of the frames are
for illustrative purposes only and are not shown in the videos.

(3) belief of goal inference. In each trial, there is a multi-agent event in a household environment
depicted by video and text. As shown in Figure 1, in some trials, text may show a conversation
between two agents; in other trials, text may describe a part of an event that is not depicted in the
video. We evaluated both humans and state-of-the-art multi-modal models on MuMA-ToM. While
humans can achieve near-perfect performance, baselines all fail to robustly infer the mental states. To
bridge the gap between human ToM and machine ToM, we propose a novel multi-modal multi-agent
Theory of Mind method – LIMP (Language model-based Inverse Multi-modal Planning). Inspired
by a recent method, BIP-ALM, proposed by (Jin et al., 2024), LIMP incorporates language models
as components for inverse planning. Unlike BIP-ALM, LIMP (1) introduces multi-agent planning
with two-level reasoning, (2) eliminates the need for manually defined symbolic representations for
a better generality, and (3) can leverage any pretrained LLMs whereas BIP-ALM requires LLMs
finetuned on symbolic representations. Experimental results demonstrate that LIMP significantly
outperforms baselines.

In sum, our contribution includes (1) the first benchmark on multi-modal multi-agent Theory of
Mind reasoning, (2) a human experiment validating the benchmark and providing a human baseline,
(3) a systematic evaluation of state-of-the-art large multi-modal models (LMMs), and (4) a novel
multi-modal multi-agent ToM method combining inverse multi-agent planning and language models.

3 MuMA-ToM Benchmark

General Structure The benchmark consists of 225 multi-modal social interactions between two
agents. There are 900 multi-choice questions based on these social interactions. Each question
depicts a social interaction in video and text jointly. As shown in Figure 1, the text may show a
conversation between the agents or a part of the event, and the video shows the complementary part
of the event. Given the multi-modal inputs, the questions are designed to assess the understanding of
agents’ mental states during these interactions, probing three main concepts: (1) beliefs, (2) social
goals, and (3) beliefs of others’ goals. Each concept has 300 questions. We also created a training set
consisting of 1,030 videos annotated with the agents’ actions and goals. The training set does not
provide example questions. It is intended for a model to learn about typical multi-agent household
activities.

Question Types As identified in prior works in cognitive science (Ullman et al., 2009; Shu et al.,
2020) and multi-agent planning (Gmytrasiewicz and Doshi, 2005; Tejwani et al., 2021), there are
three mental variables that are crucial to ToM reasoning in multi-agent interactions: an agent’s belief
of the physical state, its social goal, and its belief of other agents’ goals. Therefore, we design three
types of questions in our benchmark corresponding to the three mental variables: belief inference,
social goal inference, and belief of goal inference. Each type of question asks about the corresponding
mental variable of one of the agents. Among the three options, we make sure that there is always one
option that is clearly the most likely to be correct.
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[...] Sarah takes the milk from
the kitchen counter and

moves it to the fridge [...]

Question
Which of the following is MOST likely?
A) Sarah is trying to help Kevin
B) Sarah is trying to hinder Kevin
C) Sarah is indifferent towards Kevin’s goals

Mental Variable Hypotheses
             Hypothesis A: ..., help, ...
             Hypothesis B: ..., hinder, ...
             Hypothesis C: ..., indifferent, ...

A) 0.7
B) 0.1
C) 0.2

VLM

LLM

LLM

Kevin Sarah

...
Grabs milk from
kitchen counter

Walks to the
kitchen

Puts milk in fridge

“Where is the
milk?”

“The milk is in the
fridge”Actions &

Utterances

Actions &
Utterances

LLM

RGB Video

Text Parsing

Hypothesis Parsing

Action
Detection

Multimodal
Fusion

Fused Information

Inverse 
Multi-Agent 

Planning

Initial state: 
The milk is on the kitchen counter

Action and Utterance Sequence

Text

Prob. of
Options

Figure 2: Overview of LIMP. LIMP has three components: (1) the multi-modal information fusion
module extracts and fuses information from vision and text; (2) the hypothesis parsing module gener-
ates hypothetical values for the three mental variables given the question and the fused information;
and (3) the inverse multi-agent planning module assesses the probabilities of each option given the
hypothetical mental variables and the multi-modal agent behavior described in the fused information.

One of the challenges in designing these three types of questions is that given an interaction, multiple
combinations of these mental variables could be equally possible. For instance, if we see that Alice’s
actions prevent Bob from reaching his goal, it could be because Alice is hindering Bob, knowing
Bob’s true intent; or she may try to help Bob but has a false belief of Bob’s goal and ends up
accidentally hindering Bob. To address the challenge of large hypothesis space, we always ask a
question about a mental variable conditioned on explicitly provided assumptions about the other two
mental variables. More details can be found in section 8 of the appendix.

Multi-modal Information Unlike MMToM-QA, the only prior multi-modal ToM QA benchmark,
our benchmark has completely separate information in different modalities. As illustrated in Figure 1,
there are two main ways in which multi-modal information must be integrated. First, if there are
conversations between two agents, the model must understand the exchanged information and how it
impacts each person’s mental state, including any changes in their beliefs about each other. The model
must also observe actions and outcomes, connecting them to the conversation to reason further about
mental states. Note that conversations can occur at any point in the video. Second, for interactions
without verbal communication, we provide part of the event in text and the remaining part in video.
Specifically, we either describe the first half in text and show the second part in video or show the
first part in video and describe the second half in text. These two designs are randomly sampled to
describe interactions jointly in video and text.

Procedural Generation We use a multi-agent household simulator, VirtualHome (Puig et al., 2018a,
2020), to synthesize social interactions between two agents. For each interaction, we sample an
environment and goals for the agents. We consider three general social scenarios: an agent is trying to
help another agent, an agent is trying to hinder another agent, and two agents are acting independently.
Agents only have partial observations and do not know each others’ goals. They can optionally talk
to each other. We leverage a recent method proposed by (Ying et al., 2024b)—Goal-Oriented Mental
Alignment (GOMA)—-to generate action plans as well as verbal communication. GOMA combines
hierarchical planning, goal inference, and large language models (LLMs) to generate multi-modal
interactions between embodied agents. Prior work (Puig et al., 2020) has demonstrated that activities
synthesized in VirtualHome indeed resemble real-world human activities. We provide more details in
section 11 of the appendix.

4 Our Model

Previous works on Inverse Multi-agent Planning (IMP) (Ullman et al., 2009; Netanyahu et al., 2021)
have demonstrated that IMP can robustly infer agents’ mental states in social interactions. However,
these methods rely on manually crafted planners and are limited to simple visual scenarios, such as
2D grid worlds. (Jin et al., 2024) introduced the BIP-ALM model, which leverages language models
for inverse planning to achieve single-agent Theory of Mind reasoning in complex, realistic settings.
Inspired by BIP-ALM, we propose a novel method, Language model-based Inverse Multi-agent
Planning (LIMP), to combine IMP and language models for robust multi-agent Theory of Mind
reasoning based on multi-modal inputs.
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As illustrated in Figure 2, LIMP consists of three key components: multi-modal information fusion,
hypothesis parsing, and inverse multi-agent planning. Compared to BIP-ALM, our approach offers
several improvements. First, LIMP identifies three mental variables crucial to understanding multi-
agent interactions—belief, social goal, and belief of goal. Second, LIMP uses natural language
to represent states, actions, and utterances, eliminating the need for finetuning and enhancing
generalizability across domains. Finally, LIMP’s multi-modal information fusion module can fill in
missing information from visual perception using contextual cues from text or action sequences,

4.1 Multi-modal Information Fusion

We use a vision-language model (VLM) to extract the actions and utterances of each person depicted
in the video. Given text, we use an LLM to extract the actions and utterances of each person. We
then fuse the extracted information to form the initial state and the complete sequences of actions and
utterances using an LLM as follows.

Unlike MMToM-QA, our benchmark does not provide a text description of the full state, as such
descriptions are rarely provided in real-world applications. As objects may be occluded or too small
to detect even for humans, inferring the state directly from the RGB videos could be difficult. Instead,
we prompt an LLM with the inferred actions and utterances of both agents to infer the part of the
initial state relevant to the activity. Using this method, the reconstructed initial state will only consider
objects relevant to human actions and utterances. This simplifies the context and can consequently
improve the accuracy of the inference. Given the initial state and the action sequences, we can infer
the state at each step.

There is often missing information in the visual perception results. Sometimes the VLM may fail
to recognize the object a person has picked up, resulting in an ambiguous description like "grabs
some object." This is also a challenge for human observers, as the object picked up by the person is
often occluded. However, humans can still infer the most likely object based on the context provided
in the text. To emulate such ability, we leverage an LLM to fuse information extracted from video
and text, which infers the information missing from visual perception based on the complementary
information described in the text. An example of this is shown in figure 3 in the appendix.

In this work, we use Gemini 1.5 Pro for the VLM and GPT-4o for the LLM as they produce the best
results.

4.2 Hypothesis Parsing

To answer the question about a person’s mental state in a social interaction, LIMP will parse relevant
hypotheses of all mental variables of that person (agent i) – belief of state b(s), social goal gi, and
belief of other agent’s goal b(gj). For this, we prompt GPT-4o with the initial state and question text to
generate a reasonable hypothesis of the three mental variables for each option, H = ⟨b(s), gi, b(gj)⟩.

4.3 Inverse Multi-Agent Planning

Given the fused information from multi-modal inputs and the parsed hypotheses, inverse multi-agent
planning conducts Bayesian inference over a person’s mental state by evaluating the likelihood of
actions and utterances given each hypothesis. Following the I-POMDP formulation, we define this
probabilistic inference as follows:

P (H | a0:Ti , u0:T
i , a0:Tj , u0:T

j , s0)

∝P (H)

T∏
t=1

π(ati | a0:t−1
i , u0:t−1

i , a0:t−1
j , u0:t−1

j , s0, H)

·
T∏

t=1

π(ut
i | a0:t−1

i , u0:t−1
i , a0:t−1

j , u0:t−1
j , s0, H), (1)

where the action policy and the utterance policy can be estimated by the log probabilities of the prompt
completion by a language model for each time step t. Note that in the standard policy definitions
in I-POMDP, we need agent i’s belief of agent j’s belief of the state at each step. This, however,
is difficult to explicitly estimate. Instead, in this work, we consider past actions and utterances of
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Method Belief Social Goal Belief of Goal All
Human 98.9 94.4 87.1 93.5
Gemini 1.5 Flash 53.9 33.0 41.4 42.7
Gemini 1.5 Pro 78.9 43.9 46.9 56.4
Llava 1.6 13B 70.2 43.2 17.9 43.7
Llava 1.6 34B 93.6 37.2 27.5 52.8
GPT-4o 67.9 39.6 44.4 50.6
InternVL 2 8B 62.2 44.6 45.1 50.6
InternVL 2 26B 59.3 44.9 35.5 46.6
VideoLlama 2 7B 70.1 45.6 37.7 51.1
BIP-ALM 41.2 34.1 30.6 33.9
LIMP 93.4 67.7 68.7 76.6

Table 1: Human and model performance for different question types as well as for all questions.

all agents as part of the condition of the policies to avoid the explicit belief of belief inference. We
prompt an LLM with the hypothesis, the initial state, and the previous actions and utterances of both
agents to estimate the action and utterance policies. We find that GPT-4o can accurately estimate the
action and utterance policies based on the given condition.

5 Experiments

Human Experiment We recruited 18 participants (mean age = 36.0; 10 female) from Prolific to
answer 90 questions randomly sampled from the benchmark. Each question received responses from
3 participants. The experiment was approved by an institutional review board.

Baselines We evaluated our benchmark on state-of-the-art LMMs. For models capable of processing
video input, the entire video was provided. For models without video input capabilities, we uniformly
sample one frame every 20 frames from the video episode as input. We evaluated GPT-4o (OpenAI,
2023), Llava 1.6 (Liu et al., 2023), Gemini 1.5 (Reid et al., 2024), InternVL2 (Chen et al., 2023)
and VideoLlama 2 (Cheng et al., 2024). We evaluated the latest version of each LMM at the time of
submission. For LIMP, we use Gemini 1.5 Pro as the VLM and GPT-4o as the LLM. Finally, we
evaluated BIP-ALM with finetuned Llama 2 (Jin et al., 2024), the best-performing model on a prior
multi-modal ToM benchmark, MMToM-QA.

Results We report the human and model performance in Table 2. Human participants achieved
almost perfect accuracy across all questions, with 98.9% of the correct answers having majority
agreement. The overall performance averaged across individual participants is 93.5%. The slightly
lower performance on social goal inference (94.4%) and belief of goal inference (87.1%) indicates
these questions are more challenging and require greater focus.

All LMM baselines performed poorly on MuMA-ToM, indicating a substantial gap between machine
and human ToM. The best-performing LMM baseline is Gemini 1.5 Pro, but its overall accuracy is
only 56.4%. Among the three question types, belief inference is the easiest for LMMs. In particular,
Llava 34B achieved the highest accuracy for belief inference. However, all LMMs struggle with the
more challenging social goal inference and belief of goal inference questions. Notably, BIP-ALM had
an accuracy of 33.9%, indicating its inability to understand multi-agent interactions. Our LIMP model
significantly outperforms all state-of-the-art models on our benchmark, with an overall accuracy of
76.6%. There is still a gap between the best model performance and human performance, highlighting
the need for further studies.

6 Conclusion
We present the first multi-modal Theory of Mind benchmark for multi-agent interactions in complex
embodied settings. We have systematically evaluated humans and state-of-the-art LMMs on our
benchmark. We have also proposed a novel multi-modal ToM model that outperforms all baselines
while maintaining generality. In future work, we intend to incorporate more complex real-world
scenarios beyond household environments and introduce multi-modal social interactions involving
more than two agents. We also plan to create a test set with real-world videos for ToM evaluation in
real-world scenarios.
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Appendix

7 Related Works

Theory of Mind Benchmarks Most multi-agent benchmarks focus on single-agent beliefs and
intentions, without exploring inter-agent relationships. (Kim et al., 2023; Chen et al., 2024; Chan
et al., 2024; Sabour et al., 2024). Prior works on testing social relationship understanding use simple
animations and lack realism (Netanyahu et al., 2021; Li et al., 2024). Moreover, existing benchmarks
generally have only text or video. The only exception is MMToM-QA (Jin et al., 2024), which has
single-agent activities depicted in video and text. Our MuMA-ToM benchmark features two agents
interacting in an embodied household environment, with both text and video as multi-modal inputs,
and includes questions that test the agents’ social intentions and their reasoning about each other’s
mental states.

Multi-Modal Benchmarks Most multi-modal QA benchmarks focus on models’ ability to fuse
information from multiple modalities, where answers are directly retrievable without complex
reasoning (Li et al., 2023b; Sanders et al., 2023; Li et al., 2023a; Ying et al., 2024a; Tang et al.,
2024; Pandya et al., 2024). A recent benchmark, Perception Test (Patraucean et al., 2024), evaluates
physical reasoning such as predicting world states and explaining counterfactual facts. But it differs
from ToM reasoning. Pipelines for generating multi-modal datasets, SEED-story (Yang et al., 2024)
and TaskMeAnything (Zhang et al., 2024b), also do not evaluate ToM reasoning.

Machine Theory of Mind Traditional approaches to Theory of Mind reasoning fall into two cate-
gories: end-to-end training (Rabinowitz et al., 2018; Han and Gmytrasiewicz, 2019) and Bayesian
Inverse Planning (Baker et al., 2017; Zhi-Xuan et al., 2020; Stacy et al., 2024). There have been works
on neural amortized inference that combine these two methods for efficient and robust ToM inference
in visual domains (Jha et al., 2024; Puig et al., 2023). Recently, LLMs demonstrated some ToM
(Kosinski, 2023; Bubeck et al., 2023) and social reasoning Jiang et al. (2024); Zhang et al. (2024a)
capabilities in complicated social tasks, but their ToM reasoning is still brittle (Verma et al., 2024;
Amirizaniani et al., 2024; Ullman, 2023; Sclar et al., 2023b; Ivanova et al., 2024; Jiang et al., 2024),
suffering from reasoning errors and rationality grounding. Approaches using prompt engineering
have been proposed to enhance the ToM capacities in LLMs for text-based QAs (Wilf et al., 2023;
Sclar et al., 2023a). (Jin et al., 2024) proposed, BIP-ALM, for multi-modal ToM. While achieving
promising results on MMToM-QA, BIP-ALM lacks multi-agent reasoning capacity and requires
finetuning a language model on hand-designed symbols. Our LIMP model builds on BIP-ALM
and introduces key improvements including multi-agent planning and general, domain-invariant
representations.

8 Question Type Details

In our MuMA-ToM benchmark, we have three types of questions: belief inference, social goal
inference, belief of goal inference. Three question types are explained as follows.

Belief Inference. These questions focus on inferring a person’s belief about the physical state based
on their utterance and social goal. The person may have a true belief or false belief about the location
of the object, which can be inferred when we constrain their social goal to be helping or hindering.
In the example depicted in Figure 1, John asks Mary where he can find the beer. Mary suggests the
coffee table, which turns out to be the correct location, as John successfully finds the beer there. This
could be interpreted in two ways: (1) Mary helps John, genuinely believing the beer is on the coffee
table, or (2) Mary accidentally helps John while intending to mislead him, mistakenly believing that
the beer isn’t on the coffee table. To answer correctly, a model needs to understand: (1) Mary knows
John’s goal (from their conversation), (2) John follows Mary’s directions (from their conversation
and his actions afterward in the video), and (3) John achieves his goal by following Mary’s directions
(as shown in the video). We balance true and false beliefs in the ground-truth answers.
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Social Goal Inference. In these questions, we ask about a person’s social goal. Specifically, we
consider helping, hindering, or acting independently as the three possible social goal categories,
which are also the common social goal types in physically grounded social interaction reasoning
studied by prior works in cognitive science Hamlin et al. (2007); Ullman et al. (2009); Shu et al.
(2020); Malik and Isik (2023). The example in Figure 1 shows an interaction similar to the one in
the example for belief inference questions. In this particular example, Jessica misleads Kevin to
the cabinet where there is no magazine inside. In the question, we assume that Jessica does indeed
know the true state, and therefore, one should infer that Jessica is trying to hinder Kevin. To achieve
this correct inference, a model needs to focus on (1) how Jessica infers Kevin’s goal (from the
conversation), (2) how Kevin searches the room after the conversation (from both the conversation
and the video following the conversation), and (3) whether Kevin can find his goal object at the
location suggested by Jessica (from the video). We balance cooperative and adversarial behaviors for
the ground-truth answers.

Belief of Goal Inference. Belief of goal inference asks a model of how one person thinks about
another person’s goal given the context. In each option for a question of this type, we always pair
the belief of another person’s goal with the corresponding social goal to minimize ambiguity. For
instance, in the interaction for the example question of belief of goal inference in Figure 1, Sarah
moves the book to the coffee table after David places it on the desk. However, it is unclear whether
Sarah is aware that David places the book there and whether Sarah thinks that David wants to keep
the book on the desk. If Sarah were trying to help David, as assumed in the correct option, she would
have believed that David wanted the book on the coffee table instead. In this case, as a third-person
observer, we may not be certain of David’s true intent, but we can still infer Sarah’s belief of David’s
goal given that her social goal is helping him. For this type, half of the questions have a true belief of
goal as the correct answer, and the other half have a false belief of goal as the correct answer.

9 LIMP Details

Actions &
Utterances

Raw output:
John and Jessica both

enters the kitchen.
John ask Jessica
about location of
juice, and Jessica

indicates that there is
juice inside fridge.
Then John walks to
fridge, opens it and
grabs some object.

John  asks Jessica, “Where is
juice”, and Jessica answers “I

found juice inside fridge”.
Then Jessica walks to table

and stands there

Fill missing information and
reconstruct initial state

Kevin Sarah

enter kitchen enter kitchen

“Where is juice?”
“I found juice
inside fridge”

walk to fridge walk to table

grab juice stand at the table

VLM

LLMLLM

Raw action
extraction

Multimodal fusion

Initial state:
Juice inside fridge

Fused Information
Action & Utterance sequence

Text parsing

RGB Videos

Text

Figure 3: Illustration of the multi-modal information fusion in LIMP. It fills in missing information
based on the context and recovers the initial state from agents’ actions.

9.1 Multi-modal Information Fusion

Figure 3 shows a detailed example of the text parsing and multimodal fusion process. In this example,
the VLM was unable to see the occluded object that John grabs from the fridge. However, the LLM
was able to figure out that John grabs the juice based on context from the question.

For processing textual information, we directly use GPT-4o to parse the actions and utterances of
each agent separately, in chronological order. Then, this parsed text information, along with the raw
visual outputs from text input as well as raw visual outputs from Gemini, is provided to GPT-4o for
information fusion.

A key step in our multi-modal fusion process is filling in missing information from the visual output
based on the context. In the prompt given to Gemini, we instruct the model to leave blanks for exact
object names, as accurately recognizing small or obscured objects is often impossible and could lead
to unreasonable results. The raw visual output, along with text input that provides necessary context,

11



is then used by GPT-4o to fill in these blanks with the correct object names mentioned in the context.
This method reduces the model’s reliance on recognizing small objects directly, and takes a more
human-like approach to the problem.

Another important step in the multi-modal fusion process is initial state retrieval. The initial state of
the environment is crucial for the planning process, as the agents’ beliefs are based on the initial state
instead of the changed state, unless they observe other agent moving things around directly. Since we
do not use instance segmentation, it is challenging for the model to directly identify object locations
or generate scene graphs from visual input. Instead, we use the agents’ actions to infer the initial
state of the environment. This reduces uncertainty for the model and allows it to focus on relevant
objects to the interaction while ignoring unrelated ones.

9.2 Hypothesis Parsing

We identify the three latent variables: belief, social goal and the belief of goal for understanding
social interactions. The questions are designed in a way that for each option, there will be a set
of these three latent variables corresponding to it. In the latent variable extraction stage, GPT-4 is
prompted to extract the three sets. Initial state and actions of agents are also given as context as there
are descriptions like "knows the location of the object" or "has put the object at desired location"
requiring checking action & initial state to figure out the exact location of the object.

9.3 Inverse Multi-Agent Planning

Unlike open-source models, GPT-4o does not provide the log probability for any given completion,
so the exact probability of the utterance or action cannot be calculated. However, GPT-4o does
offer the log probabilities for the top 5 responses it generates. To address this, we implement a
method that asks GPT-4o to assess the likelihood of a given utterance or action and restricts its most
likely responses to two choices: A) Likely, or B) Unlikely. We then calculate the probability of the
completion by using the log probability of the token ’A’.

Figure 4 illustrates how IMP evaluates the action and utterance likelihood at one time step. Given
the condition, the LLM estimates that it is likely that agent i will take the observed action (“walk
towards table”) but is unlikely to say “I found a potato inside fridge” as it is inconsistent with the
social goal of hindering agent j (agent i had just put a potato in the fridge before the conversation).
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Figure 4: Illustration for inverse multi-agent planning. We estimate the action and utterance likelihood
of agent i at each step t given the past actions and utterances of both agents from step 0 to step t− 1,
the initial state s0, and the hypothesis H . LL in the figure stands for likelihood.
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10 More Experiment Results

We show the additional experiment results in Table ??

10.1 Chain of Thought Prompting.

We evaluate state-of-the-art models’ performance on our dataset with zero-shot chain of thought
(CoT) prompting, as introduced by Kojima et al. (2022). We add the phrase “Let’s think step by step”
after the question prompt but before the list of options.

For all models tested, using CoT prompting showed no significant improvement in performance.
In fact, for many models, using CoT prompting caused a decrease in performance. While
there are instances where CoT led to some improvement, such as in belief inference for In-
ternVL 2 26B, the overall impact effect was negligible on more challenging social goal and
belief of goal inference questions. These results further highlight the current limitations of state-
of-the-art LMMs. Even with CoT guidance, they struggle to effectively understand social interactions.

10.2 Finetuned Baseline

We finetuned the VideoLlama 2 7B model on our training set for action captioning tasks following
Zhang et al. (2023), using two A100 GPUs for 1 epoch, with a learning rate of 2e-5 and a batch size
of 4. The performance of the model was lower after finetuning, suggesting that the model may have
inherent limitations in ToM reasoning or action recognition. We experimented with finetuning for
up to 3 epochs and found that extending finetuning beyond one epoch leads to over-fitting, and the
model was unable to answer the questions with A, B, or C.

10.3 Advanced Prompting for ToM.

Recent works have leveraged language models to tackle ToM problems through multi-step reasoning
approaches Wilf et al. (2023); Sclar et al. (2023c); Hou et al. (2024). Among these text-only models,
we chose to evaluate SimToM, as the code for the other models was either unavailable or required
extensive modifications to integrate with our benchmark. Since SimToM only accepts textual input,
we adapted it to our dataset by adding Gemini 1.5 Pro’s visual extraction results after the textual input
as input for SimToM and tested it with GPT-4o serving as the primary language model. SimToM,
which analyzes the perspective of each agent to assist the language model, achieved the highest
accuracy in belief-of-goal questions among all the baselines tested. This suggests that a multi-step
approach can improve a language model’s capacity for ToM reasoning. However, the overall accuracy
is still below 50%.

10.4 LIMP w/ Llama 3.1 8B for Inverse Multi-agent Planning

Solving ToM problems with language models usually requires some form of finetuning or few-shot
prompting to equip the model with domain-specific knowledge. In contrast, LIMP leverages the
forward planning capabilities of language models to address the inverse planning problem without
any finetuning or additional domain knowledge. Beyond testing very large models like GPT-4o,
we also explored the potential of smaller models, such as Llama 3.1 8B, as an inverse planner for
LIMP. However, the results indicate that smaller models lack the ability to effectively function as
inverse planners for multi-agent actions. A closer qualitative examination of Llama 8B’s failure
patterns shows that the model is unable to understand the concept of hindering, which leads to poor
performance across all questions related to hindering.

11 Procedural Generation Details

Figure 5 summarizes the procedural generation process. We follow a recent paper GOMA Ying
et al. (2024b) to generate actions & utterance sequence, use the virtualhome Puig et al. (2018b) 3D
simulator to generate humanoid actions within a realistic household environment and use GPT-4o to
generate texts and questions.
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Method Belief Inference Social Goal Inference Belief of Goal Inference All
Llava 1.6 34B 93.6 37.2 27.5 52.8
Llava 1.6 34B CoT 93.2 46.1 19.4 52.9
Llava 1.6 13B 70.2 43.2 17.9 43.7
Llava 1.6 13B CoT 64.9 41.6 25.3 43.9
Gemini 1.5 Flash 53.9 33.0 41.4 42.7
Gemini 1.5 Flash CoT 56.7 35.6 41.4 43.6
Gemini 1.5 Pro 78.9 43.9 46.9 56.4
Gemini 1.5 Pro CoT 79.8 42.6 41.1 54.5
GPT-4o 67.9 39.6 44.4 50.6
GPT-4o CoT 62.2 33.6 39.8 45.2
InternVL 2 8B 62.2 44.6 45.1 50.6
InternVL 2 8B CoT 57.7 44.9 43.5 48.7
InternVL 2 26B 59.3 44.9 35.5 46.6
InternVL 2 26B CoT 64.1 44.9 36.1 48.4
VideoLlama 2 7B 70.1 45.6 37.7 51.1
VideoLlama 2 7B CoT 51.8 42.9 34.9 42.8
VideoLlama 2 7B (finetuned) 42.7 35.7 34.3 37.3
SimToM 54.6 43.5 44.8 47.6
LIMP with Llama 3.1 8B 35.8 23.4 37.7 33.0
BIP-ALM 41.2 34.1 30.6 33.9
LIMP with GPT-4o 93.4 67.7 68.7 76.6

Table 2: All experiment results: For models that accept video input, the full videos were provided. For
models that do not, uniformly sampled frames (every 20 frames) were used instead. Since SimToM is
a text-based model, we provided it with the action recognition outputs from Gemini 1.5 Pro.

Agent 1: goal: milk on table
social goal: none

Agent 2: goal: mug on table
Social goal: help

Apartment: 2
Initial state: book

on sofa, ...

Planner

Action & Utterance sequence
Agent 1: walk into kitchen, ask

about milk, open fridge, ...
Agent 2: walk into kitchen,
inform milk in fridge, grab

mug

Episode descriptions
Michael and Jessica
walks into kitchen, ...

Question template
Given that [name] knows
location of [object name],
which is MOST likely?
A) ...
B) ...
C) ...

Initial
sampler

Actions &
Utterances

Observation

Virtualhome
Simulator

Video synthesis

GPT-4o for
question

generation

GPT-4o for episode
description generation

1 2

RGB video, Text, Questions

3

Figure 5: Overview of the Procedural generation process. This method ensures that the episodes and
ground truth answers are factually correct, while maintaining realistic conversations and scenarios.

Step 1 in Figure 5 shows the action & utterance sequence generation process. We use four different
apartments as the base environment for two agents’ interactions, sampling objects to different
containers & surfaces within the apartment to generate a distinctive environment for each interactive
scenario. Two agents’ initial location (room location), physical goal (finding or rearranging an
object), initial belief (ground-truth belief, false belief, or uniform belief), and social intentions (help,
hinder, independent) are also sampled. For interactive scenarios without language, we sampled the
environment and agents’ goal in a way that ensures two agents’ are aiming to put the same object to
different locations and there is only one object of that type in the environment. In this way, agents
will have to rearrange the object after the other agent has placed the object. Afterward, a Monte Carlo
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Tree Search (MCTS) planner is used to compute the action sequence for each agent. The utterance
is computed separately: for each step, if the two agents are in the same room and the first agent
is uncertain about its goal object’s location (entropy of its belief probability distribution exceeds a
threshold), the first agent will send an inquiry. Upon receiving the inquiry, the second agent will
answer based on its social intention (provide a contradictory answer with its belief when trying to
hinder), and the first agent will update its belief accordingly. As agents’ beliefs do not necessarily
match the ground-truth state, the combination of intention with the ground-truth environment state is
complicated: for instance, providing false information can be interpreted as trying to help but failing
due to mistaken belief or deliberately trying to hinder. After the original utterance is generated, we
use GPT-4o to add variety and improve the quality of language communication.
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