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Abstract

In many physical systems, inputs related by intrinsic system symmetries generate
the same output. So when inverting such systems, an input is mapped to multiple
symmetry-related outputs. This causes fundamental difficulties for tackling these
inverse problems by the emerging end-to-end deep learning approach. Taking phase
retrieval as an illustrative example, we show that careful symmetry breaking on the
training data can help get rid of the difficulties and significantly improve learning
performance in real data experiments. We also extract and highlight the underlying
mathematical principle of the proposed solution, which is directly applicable to
other inverse problems.

1 Introduction

For many physical systems, we observe only the output and strive to infer the input. The inference
task is called inverse problem. Formally, the underlying system is modeled by a forward mapping f ,
and solving the inverse problem amounts to identifying the inverse mapping f−1.

Let y denote the observed output. Traditionally, inverse problems are phrased as regularized optimiza-
tion problems: minx `(y, f(x)) + λΩ(x), where x represents the input to be estimated, `(y, f(x))
ensures y ≈ f(x), and Ω(x) encodes structural information about x to make the problem well
posed. Deep learning has enabled the use of data-driven ` or Ω, or replacing mappings in iterative
methods for solving the regularized formulation by data-adaptive ones. The most radical is using
neural networks directly to approximate f−1, also known as the end-to-end approach. Several review
articles [1–4] have covered these recent developments. We note that most of the successes are about
linear inverse problems, i.e., f is linear.

Figure 1: Symmetries in 2D
PR. (Left) shifted and flipped
copies of the same image;
(Right) their common Fourier
magnitude

In this paper, we focus on the end-to-end approach applied to non-
linear inverse problems, and take phase retrieval (PR)—which is
central to scientific imaging [5]—as an example. Here, we focus on
the 2D version, which is seen most frequently in applications. Given
X ∈ Cn1×n2 , the forward mapping is

Y =
∣∣Fm1×n1

XF ᵀ
m2×n2

∣∣2 ∈ Rm1×m2 , (1.1)

where Fm1×n1 consists of the first n1 columns of the Fourier matrix
Fm1×m1 , often called partial Fourier matrix; similarly for Fm2×n2 .
The mapping is generically injective when m1 ≥ 2n1 − 1 and
m2 ≥ 2n2 − 1, up to three intrinsic symmetries: 1) 2D translation
of the nonzero content of X; 2) conjugate of 2D flipping of X; and 3) global phase transfer to X:
Xeiθ for any θ ∈ [−π, π). Any composition of these changes to X will leave the observation Y
unaltered. Fig. 1 illustrate the first two symmetries, assuming X is a real-valued image.
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Figure 2: Learn to take square
root. An oscillatory function
(in orange) determined by the
training set. Image credit: [6]

Symmetries can cause significant difficulty for the end-to-end ap-
proach. To see this, suppose we randomly sample real values xi’s
and form a training set

{
xi, x

2
i

}
and try to learn the square-root

function, allowing both positive and negative outputs, using the end-
to-end approach. Now if we think of the function determined by the
training set, which the neural network is trying to approximate, it
is highly oscillatory (see Fig. 2): the sign symmetry in the forward
mapping xi 7→ x2i dictates that in the training set, there are frequent
cases where x2i and x2j are close but xi and xj have different signs
and are far apart. Although in theory neural networks with adequate
capacity are universal function approximators, in practice they will
struggle to learn such irregular functions. For general inverse prob-
lems, so long as the forward symmetries can relate remote inputs to
the same output, similar problems can surface. Solving PR is not free from the trouble.

2 Breaking symmetries for PR

The above difficulty has recently been articulated in [6, 7]. Particularly, [6] has proposed a method to
resolve the difficulty in Gaussian PR—a simplified version of PR—called symmetry breaking. The
proposed working principle is to identify a connected (in topological sense), smallest representative
subset of the input space, so that all training samples are mapped to such subset to induce a smoother
function to be approximated. Take the above square root example again, the positive ray R+ ⊂ R
can be taken, as is it topologically connected, and any x ∈ R (except 0) can be represented by an
element in R+ by a sign flipping, and it cannot be made smaller to remain representative. Then the
training data set

{
xi, x

2
i

}
will be processed so that any pair

(
xi, x

2
i

)
with negative xi will be changed

to
{
−xi, x2i

}
, with the rest data points unchanged. Obviously after this processing to the training

set, the function determined will closely trace the upper branch of the square root function, which is
much more smooth.

PR has three symmetries as discussed above. Under the global phase transfer, equivalent data points
form continuous curves that are easy to represent algebraically. The conjugate 2D flipping and
nonzero content translation, however, induce irregular equivalent sets that are hard to represent.
Following [6] and prescribing a rule for symmetry breaking in the original X space seems hopeless.

Fortunately, the three symmetries can be equivalently represented in the complex phase eiθ space
after the Fourier transform. Let X denote the oversampled Fourier transform of X . Now 1)
for 2D translation, any allowable 2D translation t1, t2 ∈ Z induces the change X (k1, k2) 7→

e
i2π

(
k1t1
m1

+
k2t2
m2

)
X (k1, k2); 2) conjugate 2D flipping induces the change X 7→ X , i.e., change

to the complex phase eiΘ 7→ e−iΘ; and 3) global phase transfer induces the change X 7→ eiθX . The
change due to 2) is a global sign flipping in the angle space, and the equivalent set due to 3) is a line
in the angle space. But 1) is still relatively irregular whether represented in the angle or phase space.

Our strategy here is a combination of rigorous symmetry breaking for 2) and 3) in the complex phase
space and heuristic symmetry breaking for 1) in the original space—our later real-data experiments
confirm that the combination is effective. To break 1), we propose to simply center the nonzero
content as a heuristic. To break 2) and 3), we perform a geometric construction of a connected,
smallest representative subset in the angle space and then represent it in the phase space to avoid the
tricky 2π periodicity issue in the angle space. For brevity, we omit intuition behind the construction
and directly present the results as follows.

Consider the following set in the phase domain

R
.
=

{
Ω ∈ Cm1×m2 : Ω(1, 1) = 1, Ω(1, 2) ∈ S+,Ω(i, j) ∈ S ∀ other index (i, j)

}
, (2.1)

where S denotes the 1D complex circle and S+ the upper half circle. We can prove the following,
stated in the equivalent vector space for convenience. We writeR ⊂ Sm1m2 to mean the equivalent
of R in the vector notation.

Theorem 2.1. Consider the conjugate flipping and global phase transfer symmetries only. The
set R is a connected, smallest representative in the phase domain Sm1m2 with a negligible set
N = {1} × {ω ∈ S : Im(ω) = 0}m1m2−1.
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Proof. See Appendix A.1.

To apply this, we work with end-to-end DNNs that directly predicts the m1 ×m2 complex phases.
We first center the nonzero content inside Xi’s in the training set, and then take the oversampled
Fourier transform and perform the symmetry breaking as implied by Theorem 2.1 in the complex
phase space. For any phase matrix Ω, the symmetry breaking goes naturally as follows: first a global
phase transfer is performed to make Ω(1, 1) = 1, and then a global angle (here we assume the angle
has been transferred to the range of [−π, π)) negation is performed, i.e., Ω 7→ −Ω if the second
angle is negative.

Symmetry breaking for general inverse problems For general inverse problems, although the
symmetries might be very different than here and the sample spaces could also be more complicated,
the three properties, which concern only the geometric and topological aspects of the space, can
be generalized as a basic mathematical principle for effective symmetry breaking. Our symmetry-
breaking solution for PR also suggests that for problems with multiple symmetries, one may need
to look at a transformed space, or even mixture of spaces for different symmetries for efficient
representation and symmetry breaking.

3 Numerical Experiments

Table 1: Test error (MSE) using different symmetry schemes

U-Net-B U-Net-A (ours)

No Symmetry 0.103 0.103
Flipping Symmetry 0.168 0.162

Shift Symmetry 0.249 0.102
Shift & Flipping Symmetry 0.248 0.161

In this section, we set up a prelim-
inary experiment to verify our claim
that effective symmetry breaking facil-
itates efficient learning. Particularly,
we show that symmetry breaking sub-
stantially improves PR performance
over alternative methods.

We conduct our experiments on the
Fashion-MNIST dataset [8]. We take
their 60, 000 training images and 10, 000 test images to construct our training and test sets respectively.
Each example is a 28 × 28 grayscale image. To simulate the typical black ground that causes the
translation freedom in PR applications, we place all the images in a black background of 42× 42—
most previous methods overlook this in their experiments, but practically the translation freedom,
or what PR community call support estimation, is a major failing factor for most PR methods. So
n = 42, and we takem = 96 here to ensure injectivity of the forward model 2n− 1 = 83 is exceeded.
We create 4 variants of the dataset to test the impact of symmetries on learning—this is the first time
this kind of rigorous evaluation is performed; most previous methods use natural image datasets
where the image contents are naturally centered and oriented, which does not match the scenarios
in PR applications e.g., in coherent diffraction imaging. We do this by modifying the images as
described below, followed by the standard operation of taking Fourier magnitudes.

• No Symmetry: i.e., all images are placed in the center of the black background i.e. padding
7 pixels on all side; samples shown in Fig. 3 (a)-left;

• Flipping symmetry: all images are placed in the center of the black background and 50%
of randomly selected training and test images are 2D flipped; samples shown in Fig. 3
(b)-left.

• Shift symmetry: all images placed in a larger dark background and randomly translated;
samples shown in Fig. 3 (c)-left;

• Shift and Flipping symmetries: random flipping followed by random translation; samples
shown in Fig. 3 (d)-left.

Results on randomly selected test images are presented in Fig. 3. We use U-Net [9] as our
backbone neural network. For each variant of the dataset, the left column is the groundtruth im-
age, and the middle and right columns are results produced by U-Net-B, i.e., without symmetry
breaking—this is exactly the method used in [10], one of the state-of-the-art methods based on
the end-to-end approach, and U-Net-A, i.e., with symmetry breaking—our method, respectively.
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Figure 3: Visualization of recovery results. For each group, the 1st column contains the groundtruth
images, and the 2nd and 3rd columns are reconstructions produced by U-Net-B and U-Net-A,
respectively. While U-Net-B fails to perform right reconstruction once symmetries are built into the
dataset, our U-Net-A produces consistent recovery results with or without the symmetric data.

Table 2: MSE error

Method MSE

ALM 0.299
U-Net-B 0.249
U-Net-A 0.160

First note that when no explicit symmetries are built into
the dataset, U-Net-B, a representative end-to-end method for
PR [10], gives good recovery. But it fails once we build
in the essential symmetries. The mode of failure is interest-
ing, as the estimated images are almost always the superpo-
sition of the symmetric (translated or flipped) copies of the
groundtruth. This is very similar to the failure mode of the
classic iterative methods on PR. Moreover, for images that
are visually similar between the original and the flipped copy e.g: “handbag", “leggings",
the reconstruction results are good with or without the flipping symmetry, consistent with our intuition.

Figure 4: Comparison with
ALM. 1st column contains
groundtruth images, 2nd, 3rd

and 4th column are reconstruc-
tions from ALM, U-Net-B
and U-Net-A respectively.

On the other hand, irrespective of the symmetries, U-Net-A consis-
tently leads to good recovery. Table 1 provides the average MSE
adjusted to the symmetries (defined in Appendix A.2) for the test
set. As noted above, absent symmetries, both U-Net-B and U-Net-A
work well and the average MSEs are the same. However, once the
dataset contains the essential symmetries, we see a substantial gap
in the MSEs of the reconstructed images, which is consistent with
the visual results.

For practical PR, mostly iterative methods are deployed. However,
these methods are known to fail when there is translation freedom
in the image and the support (i.e., location of nonzero pixels) of
the image content is not precisely known. To see if our end-to-end
approach makes progress on this, we compare it with a state-of-
the-art iterative method for PR recently proposed in [11] that has
demonstrated good numerical stability and competitive performance,
dubbed ALM. Here we only experiment with the most realistic
version of the dataset, i.e., with both shift and flipping symmetries.
Results on randomly selected test images are presented in Fig. 4 and
quantitatively results are presented in Table 2. Visually, our method
faithfully reconstructs the holistic content of the original images, whereas both U-Net-B and ALM
fail miserably. Quantitatively, our method leads the other two by a considerable gap in MSE.

These results show that symmetry breaking is significant in unlocking the true potential of the end-
to-end approach for solving PR in particular, and nonlinear inverse problems with symmetries in
general. In a companion paper [12], we describe a less mathematical yet effective way of performing
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symmetry breaking for PR, that also seems to be generally applicable for other nonlinear inverse
problems.
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A Deferred Proofs

A.1 Proof of Theorem 2.1

Proof. It is clear thatR is connected in Sm1m2 since R is path-connected set on Sm1×m2 with the
inherited subspace Euclidean topology of Cm1×m2 . Also, N is of Lebesgue measure 0 since it is a
product of finite points. Now we are going to proveR is a representative of Sm1m2 .

Let G be the set of all possible symmetry transfers composed of sequences of global phase
transfer and global phase conjugation in PR. For any given z = (eiθ0 , eiθ1 , · · · , eiθm1m2−1), we
need to find a ω ∈ R such that there is a g ∈ G satisfying g(ω) = z. If Im(ei(θ1−θ0)) >
0, we take ω = (1, ei(θ1−θ0), ei(θ2−θ0), · · · , ei(θm1m2−1−θ0)) then ω ∈ R and eiθ0ω =
z. On the other hand, if Im(ei(θ1−θ0)) < 0, we can consider the conjugate format ω =
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(1, ei(θ1−θ0), ei(θ2−θ0), · · · , ei(θm1m2−1−θ0)) ∈ R and obviously a global phase negation followed
by a global phase transfer eiθ0 leads to z. This proves thatR is representative.

At last, we need to show the smallestness in the sense that with any point ofR removed, we cannot
recover it by other points inR. That is, with arbitrary z̃ ∈ R given, for all g ∈ G and all z ∈ R\{z̃},
we have g(z) 6= z̃.

We first claim that any g is equivalent to an optional global phase conjugation followed by a global
phase transfer. To see this, it is sufficient to prove that the order of phase conjugation and phase
transfer can be exchanged. Let ψ denote a global phase transfer by eiψ and f phase conjugation.
Now if ψ ◦ f = f ◦ ψ′, or −(ψ′ + θ) = −θ + ψ + 2kπ, we have ψ′ = −ψ − 2kπ. So one can keep
exchanging conjugation and transfer so that all conjugations precede transfers. The conjugations now
can be equivalently written as an optional conjugation, and the transfers as a single transfer.

Now we can go back to the proof of smallestness. Write z̃ = (eiθ̃0 , eiθ̃1 , · · · , eiθ̃m1m2−1) and
z = (eiθ0 , eiθ1 , · · · , eiθm1m2−1) where θ̃0 = θ0 = 0 and Im(eiθ̃1), Im(eiθ1) > 0. Suppose that there
is a g ∈ G such that z̃ = g(z). we may assume g = f ◦ ψ or g = ψ where ψ is a phase transition
with the total angles ψ and f is the conjugate flipping. If g = f ◦ ψ, z̃ = g(z) implies that

θ̃j ≡ −(ψ + θj) + 2πkj mod 2π ∀j (A.1)

for some kj ∈ Z. We can solve ψ = 2πk0 as j = 0 and this implies θ̃j ≡ 2π(kj − k0) −
θj mod 2π ≡ −θj for all j, especially, θ̃1 = −θ1. This contradict with the fact that Im(eiθ̃1),
Im(eiθ1) > 0. If g = ψ, we then have the relationship

θ̃j ≡ (ψ + θj) + 2πkj mod 2π. (A.2)

Again, we can solve ψ = −2πk0 as j = 0 and this indicates that z̃ = z which contradicts the
assumption. Hence, we prove the smallestness.

A.2 Mean Square Error (MSE)

Our reconstructed image is in Cm×m, where our original image is in Cn×n. To account for the three
symmetries when taking MSE measure, we take the following steps: we take the original image,
and scan through the larger reconstructed image to account for the translation symmetry. At each
scan position, we calculate an adjusted MSE between the current patch B ∈ Cn×n and the original
image A. A λ > 0 and a global phase factor eiθ (to account for the global phase) are introduced
when calculating the MSE, i.e.,

min
θ,η≥0

∥∥A− ηBeiθ
∥∥2
F
. (A.3)

The smallest adjusted MSE is recorded over all scan positions. Then, the original image A is 2D
flipped and the same scanning process is repeated to calculate another smallest MSE, to account for
the flipping symmetry. The smaller of the smallest MSE values is finally taken.

Below, we show that the optimal value in Eq. (A.3) can be easily computed. First we expand the
square inside the objective and perform partial minimization with respect to θ, leading to

max
θ

Re
〈
A,Beiθ

〉
. (A.4)

But Re
〈
A,Beiθ

〉
= Re

(
〈A,B〉 eiθ

)
≤

∣∣〈A,B〉 eiθ∣∣ ≤ |〈A,B〉| and the upper bound is achiev-
able when θ = −∠ 〈A,B〉. So the optimization problem now becomes

min
η≥0

‖A‖2F + η2‖B‖2F − 2η|〈A,B〉|. (A.5)

The minimum of Eq. (A.5) occurs either when η = 0, which is ‖A‖2F , or when 2η‖B‖2F =

2|〈A,B〉| =⇒ η = |〈A,B〉|/‖B‖2F , leading to the function value

‖A‖2F −
| 〈A,B〉 |
‖B‖2F

, (A.6)

which is the smaller one.
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