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CIFAR

Glen Berseth
Mila, Université de Montréal
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ABSTRACT

This paper presents a practical application of Relative Trajectory Balance (RTB),
a recently introduced off-policy reinforcement learning (RL) objective that can
asymptotically solve Bayesian inverse problems optimally. We extend the original
work by using RTB to train conditional diffusion model posteriors from pretrained
unconditional priors for challenging linear and non-linear inverse problems in
vision, and science. We use the objective alongside techniques such as off-policy
backtracking exploration to improve training. Importantly, our results show that
existing training-free diffusion posterior methods struggle to perform effective
posterior inference in latent space due to inherent biases.

1 INTRODUCTION

While deep learning has seen rapid advancements, scientific discovery, particularly in high-
dimensional and multimodal contexts, remains a significant challenge. Many scientific problems,
such as inverse protein design and gravitational lensing, can be framed as Bayesian inverse
problems (Kaipio & Somersalo, 2006; Idier, 2013; Dashti & Stuart, 2013; Latz, 2020) due to the
inherent uncertainties, often introduced by imperfections in scientific instruments. Traditionally,
the scientific community has approached Bayesian inference using methods like Markov chain
Monte Carlo (MCMC), or more efficient alternatives like variational inference (MacKay, 2003),
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Hamiltonian Monte Carlo (Duane et al., 1987; Neal, 2012), and Langevin dynamics (Besag, 1994;
Roberts & Tweedie, 1996; Roberts & Rosenthal, 1998). However, these methods become impractical
when applied to complex, real-world scenarios.

Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) have
emerged as a promising approach for tackling Bayesian inverse problems. Diffusion models Sohl-
Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021b) are a powerful class of hierarchical
generative models, used to model complex distributions over a varied range of objects, including
images Nichol & Dhariwal (2021); Dhariwal & Nichol (2021); Rombach et al. (2022), text (Austin
et al., 2021; Dieleman et al., 2022; Li et al., 2022; Han et al., 2023; Gulrajani & Hashimoto, 2023; Lou
et al., 2023), actions in reinforcement learning, Janner et al. (2022); Wang et al. (2023); Kang et al.
(2024), proteins and more besides. In each of these domains, downstream problems require sampling
product distributions, where a pretrained diffusion model serves as a prior 𝑝(x) that is multiplied by
an auxiliary constraint 𝑟 (x). For example, if 𝑝(x) is a prior over images defined by a diffusion model,
and 𝑟 (x) = 𝑝(𝑐 | x) is the likelihood that an image x belongs to class 𝑐, then class-conditional image
generation requires sampling from the Bayesian posterior 𝑝(x | 𝑐) ∝ 𝑝(x)𝑝(𝑐 | x).
The hierarchical nature of the generative process in diffusion models, which generate samples from
𝑝(x) by a deep chain of stochastic transformations, makes exact sampling from posteriors 𝑝(x)𝑟 (x)
under a black-box function 𝑟 (x) intractable. Common solutions to this problem involve inference
techniques based on linear approximations Song et al. (2022); Kawar et al. (2021); Kadkhodaie &
Simoncelli (2021); Chung et al. (2023) or stochastic optimization Graikos et al. (2022); Mardani
et al. (2024). Others estimate the ‘guidance’ term – the difference in drift functions between the
diffusion models sampling the prior and posterior – by training a classifier on noised data Dhariwal
& Nichol (2021), but when such data is not available, one must resort to approximations or Monte
Carlo estimates (Song et al., 2023; Dou & Song, 2024; Cardoso et al., 2024), which are challenging
to scale to high-dimensional problems. Reinforcement learning methods that have recently been
proposed for this problem Black et al. (2024); Fan et al. (2023) are biased and prone to mode collapse
Venkatraman et al. (2024).

Recently, Venkatraman et al. (2024) introduced an asymptotically unbiased objective for finetuning a
diffusion prior to sample from the Bayesian posterior. The objective was named relative trajectory
balance (RTB) due to its relationship with the trajectory balance objective (Malkin et al., 2022), as
they both arise from the generative flow network perspective of diffusion models (Lahlou et al., 2023;
Zhang et al., 2023). RTB is an asymptotically unbiased objective for finetuning a diffusion prior to
sample from the Bayesian posterior, and has been presented as an alternative to existing on-policy,
policy gradient-based methods Black et al. (2024); Fan et al. (2023) due to its off-policy training
capabilities. However, unlike other methods, RTB has not been thoroughly evaluated on complex,
real-world challenges, raising questions about its scalability to high-dimensional problems and its
feasibility in such settings.

In this paper, we demonstrate the effectiveness of RTB through its application to intractable linear
and nonlinear Bayesian inverse problems in vision and the scientific application of gravitational
lensing. We challenge the uncertainties over prior work by providing empirical evidence that RTB,
when combined with off-policy adaptation techniques (e.g., as introduced in (Zhang & Chen, 2021;
Sendera et al., 2024b)), significantly improves scalability to complex scientific discovery problems.
We also extend RTB to train conditional diffusion posteriors from unconditional priors, and add
experiments combining this objective with other state-of-the-art techniques (e.g. DPS Chung et al.
(2023) or FPS Song et al. (2023)). Our findings demonstrate that RTB is not only a viable off-the-shelf
objective for Bayesian inverse problems in scientific domains but also offer comprehensive guidance
for practitioners on scaling RTB to high-dimensional settings.

To summarize, our contributions are as follows:

• We demonstrate that RTB can effectively address a wide range of complex, linear and non-linear
Bayesian inverse problems in vision. W

• also provide empirical evidence that specific off-policy adaptation techniques enhance RTB, offering
practical insights for real-world applications.

• We extend RTB to train conditional diffusion posteriors from unconditional priors.

• We extend RTB to integrate additional state of the art tecniques (e.g. DPS & FPS)

2



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• We conduct a extensive benchmarks of prior methods, empirically revealing the limitations of
existing training-free methods.

2 SOLVING BAYESIAN INVERSE PROBLEMS WITH RELATIVE TRAJECTORY
BALANCE

Inverse problems. A typical inverse problem is the following: We are interested in recovering some
quantity x ∼ 𝑝(x). However, in the process of measurement, the quantity of interest is perturbed by
some noise, or instrumental systematic effect. The new observation y ∼ 𝑝(y) contains information
about the observation of interest, but it has been distorted by the experiment. Furthermore, we assume
(as it is often the case) that we have a good enough understanding of our instrumentation, to be able
to compute 𝑝(y|x), i.e., if we assume a true underlying x, we know how likely it is to recover our
observation. What we are interested in, however, is 𝑝(x | y), i.e., given our observation, how likely is
a given value of x.

Inverse problems such as these are very common in various scientific disciplines, but can be extremely
ill-posed, particularly if the noise is complex and non-linear, and if the quantities of interest are high-
dimensional. Traditional methods, such as Markov-Chain Monte Carlo, quickly become unusable on
complex problems, such as the ones we illustrate in Section 4 of this paper. Advances in generative
modelling (Song et al., 2021b) have made diffusion models suitable for learning rich and expressive
priors from data for inverse problems (Adam et al., 2022).

Summary of setting. A denoising diffusion model generates data x1 by a Markovian generative
process:

(noise) x0 → xΔ𝑡 → x2Δ𝑡 → . . .→ x1 = x (data), (1)

where Δ𝑡 = 1
𝑇

and 𝑇 is the number of discretization steps.1 The initial distribution 𝑝(x0) is fixed
(typically to N(0, I)) and the transition from x𝑡−1 to x𝑡 is modeled as a Gaussian perturbation with
time-dependent variance:

𝑝(x𝑡+Δ𝑡 | x𝑡 ) = N(x𝑡+Δ𝑡 | x𝑡 + 𝑢𝑡 (x𝑡 )Δ𝑡, 𝜎2
𝑡 Δ𝑡I). (2)

The scaling of the mean and variance by Δ𝑡 is insubstantial for fixed 𝑇 , but ensures that the diffusion
process is well-defined in the limit 𝑇 →∞ assuming regularity conditions on 𝑢𝑡 . The process given
by (1, 2) is then identical to Euler-Maruyama integration of the stochastic differential equation (SDE)
𝑑x𝑡 = 𝑢𝑡 (x𝑡 ) 𝑑𝑡 + 𝜎𝑡 𝑑w𝑡 .

The likelihood of a denoising trajectory x0 → xΔ𝑡 → · · · → x1 factors as

𝑝(x0, xΔ𝑡 , . . . , x1) = 𝑝(x0)
𝑇∏
𝑖=1

𝑝(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ) (3)

and defines a marginal density over the data space:

𝑝(x1) =
∫

𝑝(x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡 . (4)

A reverse-time process, x1 → x1−Δ𝑡 → · · · → x0, with densities 𝑞, can be defined analogously, and
similarly defines a conditional density over trajectories:

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) =
𝑇∏
𝑖=1

𝑞(x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ). (5)

In the training of diffusion models, as discussed below, the process 𝑞 is typically fixed to a simple
distribution (usually a discretized Ornstein-Uhlenbeck process), and the result of training is that 𝑝
and 𝑞 are close as distributions over trajectories. In this work, we consider diffusino model priors.

1The time indexing suggestive of an SDE discretization is used for consistency with the diffusion samplers
literature Zhang & Chen (2021); Sendera et al. (2024a). The indexing x𝑇 → x𝑇−1 → · · · → x0 is often used
for diffusion models trained from data.
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Intractable inference under a diffusion prior. Consider a diffusion model 𝑝𝜃 , defining a marginal
density 𝑝𝜃 (x1), and a positive constraint function 𝑟 : R𝑑 → R>0. We are interested in training a
diffusion model 𝑝post

𝜙
, with drift function 𝑢

post
𝜙

, that would sample the product distribution 𝑝post (x1) ∝
𝑝𝜃 (x1)𝑟 (x1). If 𝑟 (x1) = 𝑝(y | x1) is a conditional distribution over another variable y, then 𝑝post is
the Bayesian posterior 𝑝𝜃 (x1 | y).
Because samples from 𝑝post (x1) are not assumed to be available, one cannot directly train 𝑝 using
the forward KL objective. Nor can one directly apply objectives for distribution-matching training,
such as those that enforce the trajectory balance (TB) constraint, since the marginal 𝑝𝜃 (x1) is not
available. However, Venkatraman et al. (2024) makes the observation that an alternate constraint
relates the denoising process which samples from the posterior to the one which samples from the
prior, and proposes an objective as a function of the vector 𝜙 that parametrizes the posterior diffusion
model and the scalar 𝑍𝜙 (parametrized via log 𝑍𝜙 for numerical stability) as follows:

LRTB (x0 → xΔ𝑡 → · · · → x1; 𝜙) :=

(
log

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1)

𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)

)2

. (6)

When all prior assumptions hold, optimizing this objective to 0 for all trajectories ensures that
𝑝

post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1).

Notably, the gradient of this objective with respect to 𝜙 does not require differentiation (backpropaga-
tion) into the sampling process that produced a trajectory x0 → · · · → x1. This offers two advantages
over on-policy simulation-based methods: (1) the ability to optimize LRTB as an off-policy objective,
i.e., sampling trajectories for training from a distribution different from 𝑝

post
𝜙

itself, as discussed
further in §3; (2) backpropagating only to a subset of the summands in (6), when computing and
storing gradients for all steps in the trajectory is prohibitive for large diffusion models. We discuss
further details about the training and parametrization in §3.

3 TRAINING, PARAMETRIZATION, AND CONDITIONING

Training and exploration. The choice of which trajectories we use to take gradient steps with
the RTB loss can have a large impact on sample efficiency. In on-policy training, we use the current
policy 𝑝

post
𝜙

to generate trajectories 𝜏 = (x0 → . . . → x1), evaluate the reward log 𝑟 (x1) and the
likelihood of 𝜏 under 𝑝𝜃 , and a gradient updates on 𝜙 to minimize LRTB (𝜏; 𝜙).
However, on-policy training may be insufficient to discover the modes of the posterior distribution.
In this case, we can perform off-policy exploration to ensure mode coverage. For instance, given
samples x1 that have high density under the target distribution, we can sample noising trajectories
x1 ← x1−Δ𝑡 ← . . .← x0 starting from these samples and use such trajectories for training. Another
effective off-policy training technique uses replay buffers. We expect the flexibility of mixing on-
policy training with off-policy exploration to be a strength of RTB over on-policy RL methods, as
was shown for distribution-matching training of diffusion models in Sendera et al. (2024a).

Conditional constraints and amortization. We extend the RTB objective to amortize conditional
posterior inference from an unconditional diffusion prior. If the constraints depend on other variables
y – for example, 𝑟 (x1; y) = 𝑝(y | x1) – then the posterior drift 𝑢post

𝜙
can be conditioned on y and the

learned scalar log 𝑍𝜙 replaced by a model taking y as input. In this case, 𝑍𝜙 is thus a function of the
conditioning variable 𝑍𝜙 (s). For continuous variables s or if the number of categories for discrete s
are large, we can parametrize 𝜙 as a neural network. Such conditioning achieves amortized inference
and allows generalization to new y not seen in training. Similarly, all of the preceding discussion
easily generalizes to priors that are conditioned on some context variable, yielding:

LRTB (x0 → xΔ𝑡 → · · · → x1; s, 𝜙) :=

(
log

𝑍𝜙 (s) · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1 | s)

𝑟 (x1, s)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1 | s)

)2

(7)

Efficient parametrization and Langevin inductive bias. Because the deep features learned by
the prior model 𝑢𝜃 are expected to be useful in expressing the posterior drift 𝑢post

𝜙
, we can choose to
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initialize 𝑢
post
𝜙

as a copy of 𝑢𝜃 and to fine-tune it, possibly in a parameter-efficient way (as described
in each section of §4). This choice is inspired by the method of amortizing inference in large language
models by fine-tuning a prior model to sample an intractable posterior Hu et al. (2024).

Furthermore, if the constraint 𝑟 (x1) is differentiable, we can impose an inductive bias on the posterior
drift similar to the one introduced for diffusion samplers of unnormalized target densities in Zhang &
Chen (2021) and shown to be useful for off-policy methods in Sendera et al. (2024a). namely, we
write

𝑢
post
𝜙
(x𝑡 , 𝑡) = NN1 (x𝑡 , 𝑡; 𝜙) + NN2 (x𝑡 , 𝑡, 𝜙)∇x𝑡 log 𝑟 (x𝑡 ), (8)

where NN1 and NN2 are neural networks outputting a vector and a scalar, respectively. This
parametrization allows the constraint to provide a signal to guide the sampler at intermediate steps.

4 EXPERIMENTS

In this section, we demonstrate the wide applicability of RTB to sample from complex image
posteriors with diffusion priors, and highlight important shortcomings of current methods.

LINEAR INVERSE PROBLEMS

Inpainting Inpainting is a classical inverse problem where the goal is to reconstruct missing or
occluded parts of an image (Chung et al., 2023). Let x represent the original image, and the forward
operator 𝐴(x) = 𝑃x, where 𝑃 is a masking matrix that zeros out the missing pixels, representing the
incomplete observation. The measurement y is the partially observed image, and is subject to noise of
scale 𝜎, so y = 𝑃x + N(0, 𝜎2I). The task is to infer the posterior distribution 𝑝(x | y). We consider
two types of inpainting tasks: random inpainting and box inpainting. In random inpainting, the mask
𝑃 is applied randomly to a set of pixels, removing a random subset of the image. Box inpainting,
instead, is a variant where a large rectangular region of the image is removed (Kadkhodaie &
Simoncelli, 2021). We use RTB to fine-tune a score-based prior 𝑝𝜃 (x) into a posterior 𝑝𝜃 (x)𝑝(y | x)
with likelihood 𝑝(y | x) ∝ exp

(
− ∥𝑃x−y∥2

2𝜎2

)
.

NON-LINEAR INVERSE PROBLEMS

We consider two classic non-linear inverse problems, i.e. Fourier phase retrieval, and nonlinear
deblur.

Fourier phase retrieval Fourier phase retrieval is a classical inverse problem in which the objective
is to recover a signal from its Fourier magnitude (Fienup & Dainty, 1987). The challenge lies in the
loss of the phase information during the measurement process, making the inverse problem highly
ill-posed and non-unique (Chung et al., 2023). Let x represent the original signal, and the forward
operator 𝐴(x) = |F (x) | denotes the magnitude of the Fourier transform. The measurement y is the
observed Fourier magnitude corrupted by noise of scale 𝜎, so y = |F (x) | + N (0, 𝜎2I). The inverse
problem is to infer the posterior distribution 𝑝(x | y). We use RTB to fine-tune a score-based prior
𝑝𝜃 (x) into an unbiased posterior 𝑝𝜃 (x)𝑝(y | x) with likelihood 𝑝(y | x) ∝ exp

(
− ∥ |y−F(x) | ∥

2

2𝜎2

)
, for

sample x and reference measurement y, and where 𝜎 controls the temperature of the likelihood.

Nonlinear deblur For nonlinear deblur, the objective is to recover a clean image from its blurry
observation. The forward model generally involves complex, nonlinear, transformations, such as
temporal integration of sharp images through a nonlinear camera response function. We leverage the
neural network-based forward model 𝐴(x) as described by Nah et al. (2017). We can thus describe the
measurement y as y = 𝐴(x) +N (0, 𝜎2I), where x represent the original sharp image, and the forward
operator 𝐴(x) encapsulate the nonlinear blurring process. The use RTB to fine-tune a posterior
𝑝(x | y), considering the likelihood 𝑝(y | x) ∝ exp

(
− ∥𝐴(x)−y∥2

2𝜎2

)
.
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Table 1: Results for linear and nonlinear inverse problems on pretrained standard diffusion models.
We report the mean and standard error of each metric across MNIST and CIFAR-10 datasets.

Linear Inverse Problems
Task→ Inpainting (box) Inpainting (random)

Dataset→ MNIST CIFAR-10 MNIST CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓)
DPS −0.759 ±0.054 −2067.326 ±2.15𝑒 + 02 0.107 ±0.011 −0.680 ±0.083 −51810.868 ±2.07𝑒 + 03 0.083 ±0.009 −1.360 ±0.017 −2945.032 ±1.67𝑒 + 02 0.136 ±0.010 −0.577 ±0.047 −29942.605 ±9.83𝑒 + 02 0.052 ±0.005
FPS −1.010 ±0.140 −1200.852 ±1.20𝑒 + 02 0.141 ±0.010 −0.778 ±0.035 −44381.465 ±1.44𝑒 + 03 0.107 ±0.010 −1.121 ±0.072 −2089.714 ±2.75𝑒 + 02 0.169 ±0.010 −1.009 ±0.021 −42189.443 ±9.54𝑒 + 02 0.077 ±0.007
FPS-SMC −0.902 ±0.153 −1205.810 ±1.28𝑒 + 02 0.128 ±0.010 −0.801 ±0.053 −42424.722 ±1.52𝑒 + 03 0.108 ±0.011 −1.053 ±0.067 −1891.618 ±1.87𝑒 + 02 0.163 ±0.010 −1.103 ±0.024 −40025.465 ±9.39𝑒 + 02 0.077 ±0.007
RTB (ours) −3.133 ±0.205 −18.122 ±1.49𝑒 + 00 0.181 ±0.013 −11.022 ±0.670 −36.567 ±3.79𝑒 + 00 0.493 ±0.034 −2.940 ±0.144 −19.189 ±1.35𝑒 + 00 0.172 ±0.012 −12.152 ±1.34𝑒 + 00 −25.276 ±2.72𝑒 + 00 0.547 ±0.039

Nonlinear Inverse Problems
Task→ Phase Retrieval Nonlinear Deblur

Dataset→ MNIST CIFAR-10 MNIST CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) LPIPS (↓)
DPS −1.722 ±0.235 −1625.894 ±1.12𝑒 + 02 0.184 ±0.023 −2.782 ±0.246 −20885.408 ±2.82𝑒 + 03 0.560 ±0.020 −1.698 ±0.088 −1536.865 ±5.28𝑒 + 01 0.145 ±0.009 −2.672 ±0.100 −33036.342 ±1.08𝑒 + 03 0.191 ±0.012
FPS −2.123 ±0.242 −1860.426 ±2.16𝑒 + 02 0.212 ±0.021 −2.910 ±0.167 −43860.793 ±6.10𝑒 + 03 0.567 ±0.020 −1.760 ±0.092 −1890.115 ±1.17𝑒 + 02 0.150 ±0.010 −3.190 ±0.125 −60519.596 ±2.33𝑒 + 03 0.218 ±0.013
FPS-SMC −2.058 ±0.241 −1394.984 ±7.22𝑒 + 01 0.205 ±0.021 −2.865 ±0.164 −36354.029 ±5.07𝑒 + 03 0.566 ±0.021 −1.585 ±0.070 −1842.228 ±8.26𝑒 + 01 0.120 ±0.009 −21.893 ±1.54𝑒 + 00 −49.469 ±2.51𝑒 + 00 0.654 ±0.010
RTB (ours) −3.600 ±0.209 −17.986 ±1.26𝑒 + 00 0.184 ±0.021 −9.284 ±0.439 −27.573 ±2.76𝑒 + 00 0.566 ±0.033 −3.286 ±0.156 −15.573 ±1.30𝑒 + 00 0.181 ±0.012 −6.964 ±0.289 −36.034 ±2.17𝑒 + 00 0.440 ±0.026

Figure 1: Samples from RTB fine-tuned diffusion posteriors.

RESULTS

We consider diffusion score-based priors with MNIST and CIFAR-10, and re-implement several
methods previously showing state-of-the art results in inverse problems in vision, including DPS
Chung et al. (2023), FPS Song et al. (2023) and FPS-SMC Dou & Song (2024).

UNCONDITIONAL POSTERIORS

In the first set of experiments we finetune unconditional diffusion priors into unconditional posteriors
for a measurement y. For each method and dataset we run experiments on inverse problems defined
above, and report average performance over 10 randomly sampled measurements retrieved from the
validation set of the respective datasets. We report in Table Table 1 the mean log reward (E[log 𝑟 (x)])
of the generated samples, their LPIPS score and the log-partition function log 𝑍 , computed with 5000
posterior samples, and averaged across 10 measurements.

We observe classifier guidance (CF)-based methods to achieve high E[log 𝑟 (x)] and LPIPS values
at the expense of drifting from the true posterior to model (low log 𝑍 values). On the other hand,
RTB reaches competitive rewards while maintaining significantly higher values of log 𝑍 , thus getting
closer to the true posterior.

CONDITIONAL POSTERIORS

In the second set of experiments, we fine-tune unconditional diffusion priors into conditional posteri-
ors. We follow the formulation in Equation 7, and condition the generation of the posterior model
by the corresponding measurement. For each method and dataset we run experiments on all inverse
problems previously defined. We report in Table Table 1 the mean log reward (E[log 𝑟 (x)]) of the
generated samples, their FID score and the log-partition function log 𝑍 , all computed with 10000
posterior samples and respective measurements.

Similarly to before, classifier guidance (CF)-based methods to achieve high E[log 𝑟 (x)] and low
FID values at the expense of drifting from the true posterior to model (low log 𝑍 values). On the

6



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Table 2: Conditional Diffusion results for linear and nonlinear inverse problems on pretrained
standard diffusion models. We report the mean and standard error of each metric across MNIST
and CIFAR-10 datasets.

Linear Inverse Problems
Task→ Inpainting (box) Inpainting (random)

Dataset→ MNIST CIFAR-10 MNIST CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓)
DPS −0.509 ±0.004 −484.746 0.450 −0.279 ±0.001 −15309.502 0.065 −0.383 ±0.002 −870.558 1.317 −0.220 ±0.001 −13771.698 0.253
DPS+CLA −0.507 ±0.004 −550.389 0.446 −0.273 ±0.001 −14988.690 0.066 −0.379 ±0.002 −800.751 1.312 −0.220 ±0.001 −13287.473 0.253
FPS −0.784 ±0.005 −1036.824 0.941 −0.519 ±0.000 −14281.504 0.104 −0.610 ±0.003 −844.831 1.391 −0.495 ±0.000 −12541.325 0.304
FPS-SMC −0.671 ±0.005 −1031.968 0.478 −0.289 ±0.001 −12216.635 0.073 −0.470 ±0.004 −744.221 1.356 −0.267 ±0.001 −14835.040 0.295
RTB (ours) −0.704 ±0.001 −655.195 1.515 −1.394 ±0.001 −2445.463 0.804 −1.048 ±0.001 −628.810 1.397 −1.976 ±0.002 −2459.556 0.774
RTB+DPS (ours) −0.579 ±0.001 −801.660 1.532 −0.491 ±0.001 −7600.880 0.191 −0.358 ±0.001 −1722.438 1.485 −0.330 ±0.001 −9852.971 0.674
RTB+DPS+CLA (ours) −0.527 ±0.001 −807.689 1.457 −0.350 ±0.001 −7704.646 0.482 −0.340 ±0.001 −1982.161 1.539 −0.314 ±0.001 −11071.914 0.681

Nonlinear Inverse Problems
Task→ Phase Retrieval Nonlinear Deblur

Dataset→ MNIST CIFAR-10 MNIST CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓) E[log 𝑟 (x)] (↑) log 𝑍 (↑) FID (↓)
DPS −1.249 ±0.009 −1630.394 1.237 −2.402 ±0.011 −12885.045 0.541 −1.675 ±0.004 −986.008 1.402 −2.214 ±0.005 −10682.691 0.442
DPS+CLA −1.272 ±0.009 −1372.473 1.241 −2.414 ±0.011 −14362.470 0.531 −1.667 ±0.004 −780.577 1.413 −2.211 ±0.005 −11472.098 0.441
FPS −1.715 ±0.011 −1029.060 1.424 −2.842 ±0.011 −12805.804 0.682 −1.754 ±0.005 −815.970 1.386 −2.353 ±0.006 −9779.317 0.495
FPS-SMC −1.668 ±0.011 −1117.023 1.374 −2.796 ±0.011 −11583.854 0.657 −1.948 ±0.006 −324.646 1.479 −6.934 ±0.013 −276.732 0.849
RTB (ours) −2.860 ±0.010 8960.105 1.440 −4.551 ±0.010 −968.128 1.642 −2.406 ±0.004 −204.788 1.464 −2.827 ±0.005 −1912.678 1.018
RTB+DPS (ours) −6.705 ±0.020 −58.640 1.548 −2.622 ±0.010 −6290.827 1.305 −1.896 ±0.004 −638.202 1.413 −2.253 ±0.005 −4747.092 0.873
RTB+DPS+CLA (ours) −2.906 ±0.009 −1321.135 1.382 −2.354 ±0.009 −11500.541 1.087 −1.849 ±0.003 −791.639 1.305 −2.701 ±0.004 −3525.784 1.635

Table 3: Comparison between RTB and CLA for the
lensing problem. We compare mean likelihood log 𝑝(y |
x), and lower bound on the log-partition function log 𝑍 .
Metrics are computed with 50 posterior samples, and
averaged across 3 runs.

Algorithm log 𝑝(y | x) (↑) log 𝑍 (↑)
CLA −8216.02 −12514.67
RTB −8367.9 −8676.85

other hand, RTB reaches competitive rewards while maintaining significantly higher values of log 𝑍 .
Importantly, perform experiments whereby DPS and DPS + CLA drifts are added to the RTB objective
following a similar formulation to Equation 8. We obverse increased rewards when blending these
methods, mitigating the original pitifals of exceptionally low log 𝑍 values.

4.1 GRAVITATIONAL LENSING

In general relativity, light travels along the shortest paths in a spacetime curved by the mass of objects
(Einstein, 1916), with greater masses inducing larger curvature. An interesting inverse problem
involves the inference of the undistorted images of distant astronomical sources whose images have
been gravitationally lensed by the gravity of intervening structures (Einstein, 1911). In the case of
strong lensing, for example when the background source and the foreground lens are both almost
perfectly aligned galaxies, multiple images of the background source are formed and heavy distortions
such as rings or arcs are induced. In this problem, the parameters of interest are the undistorted pixel
values of the background source 𝑥, given an observed distorted image 𝑦. This problem is then linear,
since the distortions can be encoded in a lensing matrix 𝐴 (which we assume to be known): y = 𝐴x+𝜖 ,
with 𝜖 ∼ N(0, 𝜎2I) a small Gaussian observational noise. The Bayesian inverse problem of interest
is the inference of the posterior distribution over source images given the lensed observation, that is
𝑝(x | y). We use the Probes dataset Stone et al. (2022), containing telescope images of undistorted
galaxies in the local Universe, to train a score based prior over source images 𝑝𝜃 (x). Drawing
unbiased samples from the posterior 𝑝(x | y) ∝ 𝑝𝜃 (x)N (y; 𝐴x, 𝜎2I) is quite difficult, especially
if the distribution is very peaky with small 𝜎. RTB allows us to train an asymptotically unbiased
posterior sampler.

We use RTB to finetune the prior model to this posterior, and compare against a biased training-
free diffusion posterior inference baseline (Adam et al., 2022) that previous work has used for this
gravitational lensing inverse problem. This method uses a convolved likelihood approximation (CLA)
𝑝𝑡 (y | x) ≈ N (y | 𝐴x, (𝜎2 + 𝜎2 (𝑡))I). For RTB we use 300 diffusion steps for sampling, but for
CLA we require 2000 steps to obtain reasonable samples. We fix 𝜎 = 0.05 for our experiments. We
report metrics comparing these approaches in Table 3, and illustrative samples in Fig. 2. We found
RTB to be a bit unstable while training, likely because of the peaky reward function. About 30%
of runs, the policy diverged irrecoverably. For the sake of highlighting the advantages of unbiased
posterior sampling, the metrics computed in Table 3 excluded diverged runs. For this problem, we
only used on-policy samples, and we expect off-policy tricks to help stabilize training.
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Figure 2: Lensing problem RTB samples. Plotted are ground truth source, observation, samples from
RTB posterior, their mean observation after forward model (without observation white noise), and
the residual between posterior mean observations and ground truth observation.

5 DISCUSSION

Our study has demonstrated the potential of relative trajectory balance (RTB) as an effective frame-
work for solving Bayesian inverse problems with diffusion models. By systematically evaluating
RTB across a variety of inverse problems, including vision-based reconstructions and gravitational
lensing, we provide comprehensive empirical evidence supporting its scalability and flexibility.

5.1 COMPARISON WITH EXISTING METHODS

RTB exhibits several advantages over existing approaches such as diffusion posterior sampling
(DPS) (Chung et al., 2023) and function-space posterior sampling (FPS) (Song et al., 2023). While
these methods provide practical solutions for Bayesian inverse problems, they often tend to shift the
distribution of samples away from the true posterior, leading to artificially high likelihood values
at the cost of reduced diversity. As an asymptotically unbiased objective, RTB mitigates these
issues while enabling flexible off-policy training strategies. Our results indicate that RTB achieves
competitive likelihood scores while preserving a closer match to the true posterior, as evidenced by
higher log-partition function (log 𝑍) values.

5.2 EXTENSIONS AND FUTURE DIRECTIONS

Despite its strong empirical performance, RTB presents certain challenges that warrant further
exploration.

Off-Policy Stabilization: While we leveraged replay buffers to prevent mode collapse, stability
during training remains a challenge in some settings. Future work could explore improved adaptive
strategies for selecting trajectories and incorporating uncertainty estimation during training.

Integration with Other State-of-the-Art Methods: Our experiments have shown that RTB can
benefit from hybrid approaches, such as combining DPS-based constraints with RTB optimization.
Further research could explore novel ways to blend RTB with other advanced generative modeling
techniques to enhance robustness and scalability.

Application to Broader Scientific Domains: We have primarily focused on inverse problems in
vision and gravitational lensing. However, RTB has the potential to generalize to other scientific
fields, such as climate modeling, computational biology, and medical imaging. Future studies should
investigate its applicability in these domains, particularly in handling multimodal constraints and
heterogeneous data.

6 CONCLUSION

In this work, we demonstrated the effectiveness of off-policy RL fine-tuning via the RTB objective
for asymptotically unbiased posterior inference for diffusion models. We applied RTB to challenging
linear and non-linear Bayesian inverse problems, demonstrating its effectiveness in inverse imaging
and gravitational lensing. The ability to seamlessly integrate off-policy training and other classifier
guidance techniques, as well as the extension of the objective for conditional posteriors, allows
for RTB to be leveraged in more complex and critical domains at scale. Extending RTB to other
important scientific applications, such as inverse protein design would be a promising direction for
future research.
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A BACKGROUND AND SETUP

Diffusion model training as divergence minimization. Diffusion models parametrize the drift
𝑢𝑡 (x𝑡 ) in (Equation 2) as a neural network 𝑢(x𝑡 , 𝑡; 𝜃) with parameters 𝜃 and taking x𝑡 and 𝑡 as input.
We denote the distributions over trajectories induced by (Equation 3, Equation 4) by 𝑝𝜃 to show their
dependence on the parameter.

In the most common setting, diffusion models are trained to maximize the likelihood of a dataset. In
the notation above, this corresponds to assuming 𝑞(x1) is fixed to an empirical measure (with the
points of a training dataset D assumed to be i.i.d. samples from 𝑞(x1)). Training minimizes with
respect to 𝜃 the divergence between the processes 𝑞 and 𝑝𝜃 :
𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)) (9)
= 𝐷KL (𝑞(x1) ∥ 𝑝𝜃 (x1)) +x1∼𝑞 (x1 ) 𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1))
≥ 𝐷KL (𝑞(x1) ∥ 𝑝𝜃 (x1)) =x1∼𝑞 (x1 ) [− log 𝑝𝜃 (x1)] + const.

where the inequality – an instance of the data processing inequality for the KL divergence – shows
that minimizing the divergence between distributions over trajectories is equivalent to maximizing a
lower bound on the data log-likelihood under the model 𝑝𝜃 .

As shown in Song et al. (2021a), minimization of the KL in (Equation 9) is essentially equivalent to
the traditional approach to training diffusion models via denoising score matching Vincent (2011);
Sohl-Dickstein et al. (2015); Ho et al. (2020). Such training exploits that for typical choices of the
noising process 𝑞, the optimal 𝑢𝑡 (x𝑡 ) can be expressed in terms of the Stein score of 𝑞(x1) convolved
with a Gaussian, allowing an efficient stochastic regression objective for 𝑢𝑡 . For full generality of our
exposition for arbitrary iterative generative processes, we prefer to think of (Equation 9) as the primal
objective and denoising score matching as an efficient means of minimizing it.

A.1 DIFFUSION GFLOWNETS

Generative Flow Networks (GFlowNets) aim to sample from a distribution proportional to an
unnormalized density, 𝑝(𝑥) ∝ 𝑟 (𝑥), through a sequential decision-making process. Diffusion
GFlowNets are a family of GFlowNets that model discretized reverse stochastic differential equation
(SDE) trajectories,

𝜏 = (𝑥0 → 𝑥Δ𝑡 → 𝑥2Δ𝑡 → . . .→ 𝑥1) , (10)
where 𝑥0 = (0, 𝑡 = 0) is the initial state. Here, Δ𝑡 = 1

𝑇
, where 𝑇 is the number of discrete time steps.

The forward policy 𝑃𝐹 (𝑥𝑡+Δ𝑡 | 𝑥𝑡 ; 𝜃) is defined to model the mean of a Gaussian kernel, expressed as:

𝑃𝐹 (𝑥𝑡+Δ𝑡 | 𝑥𝑡 ; 𝜃) = N
(
𝑥𝑡+Δ𝑡 ; 𝑥𝑡 + 𝑢(𝑥𝑡 , 𝑡; 𝜃)Δ𝑡, 𝜎(𝑡)2Δ𝑡 I

)
. (11)

Here, 𝑢(𝑥𝑡 , 𝑡; 𝜃) is the learnable score with parameter 𝜃, and 𝜎(𝑡) represents the standard deviation at
time 𝑡. The term I denotes the identity matrix, ensuring that the covariance matrix is isotropic.

The backward policy 𝑃𝐵 (𝑥𝑡−Δ𝑡 | 𝑥𝑡 ) is defined as a discretized Brownian bridge with a noise rate 𝜎:

𝑃𝐵 (𝑥𝑡−Δ𝑡 | 𝑥𝑡 ) = N
(
𝑥𝑡−Δ𝑡 ;

𝑡 − Δ𝑡
𝑡

𝑥𝑡 ,
𝑡 − Δ𝑡

𝑡
𝜎2Δ𝑡 I

)
. (12)

The forward and backward policies defined over complete trajectories are expressed as:

𝑃𝐹 (𝜏; 𝜃) =
𝑇−1∏
𝑖=0

𝑃𝐹

(
𝑥 (𝑖+1)Δ𝑡 | 𝑥𝑖Δ𝑡 ; 𝜃

)
, 𝑃𝐵 (𝜏; 𝑥1) =

𝑇−1∏
𝑖=0

𝑃𝐵

(
𝑥𝑖Δ𝑡 | 𝑥 (𝑖+1)Δ𝑡

)
. (13)

LTB (𝜏; 𝜃, 𝑓 (𝑥1)) = log
(

𝑍𝜃 𝑃𝐹 (𝜏; 𝜃)
𝑓 (𝑥1) 𝑟target (𝑥1) 𝑃𝐵 (𝜏; 𝑥1)

)
, (14)

where 𝑍𝜃 is a learnable constant representing the partition function, 𝑓 (𝑥1) is a weighting function for
the density, and 𝑟target (𝑥1) is the accessible unnormalized true density.

By ensuring that LTB (𝜏; 𝜃, 𝑓 (𝑥1)) = 0 for all trajectories 𝜏, we guarantee an optimal amortized
sampler over the weighted distribution. This condition ensures that the distribution satisfies 𝑝(𝑥1) ∝
𝑓 (𝑥1) 𝑟 (𝑥1). Specifically, when the weighting function is set to 𝑓 (𝑥1) = 1, the target distribution
simplifies to 𝑝(𝑥1) ∝ 𝑟 (𝑥1).
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B RELATIVE TRAJECTORY BALANCE (RTB)

B.1 METHOD

In diffusion GFlowNets, the Trajectory Balance (TB) objective is employed to perform amortized
inference, aiming to approximate the distribution 𝑝(𝑥1) ∝ 𝑟 (𝑥1). In contrast, Relative Trajectory
Balance (RTB) focuses on amortized posterior inference over the prior distribution. Specifically, RTB
defines the posterior as

𝑝post (𝑥1; 𝜃) ∝ 𝑝prior (𝑥1) 𝑟 (𝑥1),

where 𝑝prior (𝑥1) is the prior distribution (e.g., a learned diffusion model) and 𝑟 (𝑥1) represents the
likelihood. The product 𝑝prior (𝑥1) 𝑟 (𝑥1) serves as the target unnormalized density for amortized
inference of 𝑝post (𝑥1; 𝜃).
RTB is TB that has weighted reward 𝑝prior (𝑥1) 𝑟 (𝑥1), where the weight is prior distribution 𝑝prior (𝑥1):
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= LRTB (𝜏; 𝜃). (18)

The cancellation arises from the fact that 𝑃post
𝐵
(𝜏; 𝑥1) = 𝑃

prior
𝐵
(𝜏; 𝑥1), since we assumed the backward

policy to be a fixed Brownian bridge with 𝜎 noise.

C TRAINING, PARAMETRIZATION, AND CONDITIONING

Stabilizing the loss. We propose two simple design choices for stabilizing RTB training. First,
the loss in (6) can be replaced by the empirical variance over a minibatch of the quantity inside
the square, which removes dependence on log 𝑍𝜙 and is especially useful in conditional settings,
consistent with the findings of Sendera et al. (2024a). This amounts to a relative variant of the
VarGrad objective (Richter et al., 2020). Second, we employ loss clipping: to reduce sensitivity to an
imperfectly fit prior model, we do not perform updates on trajectories where the loss is close to 0.

C.1 OFF-POLICY ADAPTATION TECHNIQUES

Similar to methods used in GFlowNets, RTB benefits from the powerful advantages of off-policy
learning. This flexibility allows us to choose any behavior policy over trajectories 𝜏, denoted as 𝑃(𝜏),
independent of the current diffusion sampling process. To leverage this advantage, we employ three
off-policy techniques to enhance the performance of RTB for posterior inference.

Backtracking exploration with replay buffer

Using a replay buffer D = {(𝑥1, 𝑟 (𝑥1))} with a prioritizing distribution 𝑃(𝑥1;D) can prevent
catastrophic forgetting of the sampler, such as mode dropping. By leveraging the off-policy property
of RTB, we utilize a behavior policy defined as

𝑃𝛽 (𝜏) = 𝑃𝐵 (𝜏 | 𝑥1) 𝑃(𝑥1;D),

where we train the RTB objective over 𝜏 ∼ 𝑃𝛽 (𝜏).

13


	Introduction
	Solving Bayesian inverse problems with relative trajectory balance
	Training, parametrization, and conditioning
	Experiments
	Gravitational lensing

	Discussion
	Comparison with Existing Methods
	Extensions and Future Directions

	Conclusion
	Background and setup
	 Diffusion GFlowNets

	Relative trajectory balance (RTB)
	Method

	Training, parametrization, and conditioning
	Off-policy adaptation techniques


