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Abstract

The ability to perform different skills can encourage agents to explore. In this
work, we aim to construct a set of diverse skills that uniformly cover the state
space. We propose a formalization of this search for diverse skills, building on a
previous definition based on the mutual information between states and skills. We
consider the distribution of states reached by a policy conditioned on each skill
and leverage the successor state representation to maximize the difference between
these skill distributions. We call this approach LEADS: Learning Diverse Skills
through Successor State Representations. We demonstrate our approach on a set of
maze navigation and robotic control tasks which show that our method is capable of
constructing a diverse set of skills which exhaustively cover the state space without
relying on reward or exploration bonuses. Our findings demonstrate that this new
formalization promotes more robust and efficient exploration by combining mutual
information maximization and exploration bonuses.

1 Introduction

Humans demonstrate an outstanding ability to elaborate a repertoire of varied skills and behaviors,
without extrinsic motivation and supervision. This ability is currently captured through the problem
of unsupervised skill discovery in reinforcement learning [41]], where one seeks to learn a finite set of
policies in a given environment whose behaviors are notably different from each other. Implicitly,
seeking behavioral diversity is also related to the question of efficient exploration, as a set of skills
that better covers the state space is often preferable. Seeking diversity has recently been successfully
studied through the prism of mutual information maximization [17, [13} [8]. In this article, we
argue maximizing mutual information might be ambiguous when seeking exploratory behaviors
and propose an alternative, motivated variant. The key intuition underpinning this formulation is
that a good set of exploratory skills should maximize state coverage, while preserving the ability to
distinguish a skill from another. Then, we propose a new algorithm which implements this generalized
objective, leveraging neural networks as estimators of the state occupancy measure. This algorithm
demonstrates better exploration properties than state of the art methods, both those designed for
reward-free exploration and those seeking skill diversity.
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We motivate our developments with a first illustrative toy example. Let us consider a reward-free
Markov decision process [38, MDP] (S, A, P, v, dp) where S is the state space, .A the action space,
P the transition function, «y the discount factor and dy the initial state distribution. A behavior policy,
parameterized by 6, maps state to distribution over actions. We define a skill encoding z € R? as an
abstract set of skill descriptors that enhances the policy description and conditions the action taken
a ~ (s, z), making the policy a function 7 : © x S x R? ++ A(A). Unsupervised skill discovery
generally considers a finite collection Z = {2;};c[1,5] of n skills, and a distribution p(z) on skills
within Z (generally uniform). For a given 6, each skill z induces a state distribution p(s|z). The state
distribution under the full set of skills is hence p(s) = > - p(s|z)p(z). When maximizing diversity,
we aim to find 6* such that, for any pair of skills z1, zo € Z, the states visited by each skill are as
separable as possible. Additionally, we would like the state coverage of the full set of skills to cover
as much of the state space as possible.

Maximizing diversity has been formalized in
the literature as the maximization of the mu-

tual information Z(S, Z) between the state ran- O
dom variable S and the skill descriptor Z. This x O x O
mutual information [39, MI] quantifies how A A
predictable S is, when Z is known (and con- [ [

versely): /\ N
I(S,7Z) £ D (P(S, Z)||P(S)P(Z)), z 2
=H(S) - H(5]2),

Figure 1: State distributions of two sets Z; (left)
and Z, (right) of four skills each on a grid maze.
Each skill’s visited states are represented by a dif-
ferent symbol and distributed uniformly. The gray
Figure/1]illustrates why Z(S, Z) is an imperfect boxes are unreachable.

measure of diversity. In this figure, two sets 2

and Z, of four skills each are represented by

their respective state coverage in a grid maze

MDP (one symbol per skill). In each set of skills, each skill is picked with probability p(z) = 1/4.
On the leftmost image (Z;), each skill covers a single state, hence p(s|z) = 1 in this state and
0 otherwise. On the rightmost image (Z23), p(s|z) = 1/2 on each covered state and 0 otherwise.
Consequently, Z; (S, Z) = H1(S) — H1(S|Z) =log4 and 75 (S, Z) = Ha(S) — H2(S|Z) = log 4.
The mutual information is hence ambiguous as it ranks the two sets of skills equally, while Z5 enables
better exploration.

where Dy, is the Kullback-Leibler divergence
and A is the (conditional) entropy.

Our contribution is structured around maximizing a variant of Z(.S, Z), using the successor state
representation [4]] to enable its estimation. Section [2| puts this idea in perspective of the relevant
literature, highlighting similarities and contrasts with previous works. Then Section [3]introduces
and discusses our LEADS algorithm. Section d]reports empirical evidence of the good exploratory
properties of LEADS, demonstrating its ability to outperform state-of-the-art methods on a span of
benchmarks.

2 Related work

This section endeavors to provide the reader with a comprehensive overview of approaches which
aim at exploration in RL and skill diversity.

Exploration bonuses. Driving exploration by defining reward bonuses has been a major field of
research for over two decades [25 16, [1, 13,136, [7, 12, [19]. These methods generally involve defining
reward bonuses across the state space, which decrease over time in well-explored states. In large state
spaces where count-based methods are challenging, these approaches require function approximation
to generalize across the state space. However, as explained by Jarrett et al. [23]], identifying these
exploration bonus approximators is an adversarial optimization problem making these approaches
unstable in practice [12]].

Quality Diversity. Exploration can also be achieved as a by-product of behavior diversity search.
Evolutionary algorithms have been used to search for new behaviors, such as in Novelty Search [27],
and for a diversity of behaviors which encourage high performance through the growing domain



of Quality Diversity algorithms, exemplified by MAP-Elites [[L1]. In these algorithms, skills are
usually characterized through hand-crafted behavior descriptors, although there are methods which
learn such descriptors through variational inference [10l 9]]. Diversity is expressed as the coverage
over such descriptors, and policies are modified through gradient-free [11] or gradient-based [32]
updates in order to incrementally populate an archive of diverse skills. While these algorithms have
demonstrated competitive results with exploration algorithms in RL [9]], in general, they require
expertise to define a behavior descriptor and are less sample-efficient than RL methods [28].

Information theory approaches to diversity. The field of information theory offers valuable insights
into designing algorithms that generically promote diversity. Gregor et al. [1/]], Eysenbach et al. [[13]
and Sharma et al. [40] were pioneers in proposing methods to maximize either the reverse or forward
form of Z(S, Z) for a fixed set of skills Z. To address the issue of unbalanced state distributions
across skills throughout the entire environment, Campos et al. 8] suggest sequencing the problem
into three stages: pure exploration in S to promote sampled states diversity, state clustering via
variational inference, and skill learning by maximisation of the forward form as proposed by Sharma
et al. [40]]. In the exploration phase, Campos et al. [8] employs the State Marginal Matching algorithm
proposed by Lee et al. [26], which resembles MI-based algorithms as it combines mutual information
maximization with an exploration bonus to efficiently explore the state space.

Focusing even more on exploration, Liu and Abbeel [29] automate learning Novelty Search behavior
descriptors by training an encoder with contrastive learning in order to promote exploration. Focusing
also on exploration, Kamienny et al. [24] employ an incremental approach combined with the maxi-
mization of the reverse form of MI to eliminate skills that are not discernable enough, subsequently
generating new skills from the most discernable ones.

Finally, recent studies including those by Park et al. [33]], Park et al. [34], and Park et al. [35],
integrate mutual information (MI) with trajectory-based metrics between states to enhance exploration.
Specifically, these studies aim to maximize the Wasserstein distance, also known as the Earth mover’s
distance, between (.S, Z) and P(S)P(Z) while the definition of MI uses the KL divergence. This
distance requires specifying a metric for the state space. Park et al. [33] and Park et al. [34] uses the
Euclidean distance, while Park et al. [[35] employs the temporal distance.

It is important to note that, although these methods induce an interesting approach to exploration (as a
by-product of diversity), they do not explicitly aim at encouraging coverage of the MDP’s state space.

Successor features for MI maximization. Few attempts have been made to exploit universal
successor features [S]] in MI maximization methods. Machado et al. [30] decompose the learning
process into two stages: first, they automatically acquire specific options, which are then used to
develop a hierarchical policy that integrates these options. In contrast, Hansen et al. [21] first learn a
general task-based policy conditioned on a task z, and subsequently optimize the reverse form of MI
by utilizing universal successor features to identify a range of diverse skills efficiently. More recently,
Grillotti et al. [[18] used successor features to optimize the quality of predefined behaviors based on
the Quality Diversity formulation, which requires hand-crafted behavior descriptors.

The method we propose explicitly aims at promoting diversity with the goal of achieving good
exploration. For this purpose, we turn the MI objective function into a new objective which promotes
exploration, separating this work from previous contributions in MI maximization.

3 Promoting exploration with successor state representations

We now derive an algorithm that explicitly encourages exploration in diversity search. We start
by casting mutual information maximization in terms of state occupancy measures and derive a
lower bound which can be maximized with stochastic gradient ascent on the policy’s parameters
6 (Section[3.1I). Then, as maximizing MI does not encourage exploration, we transform this lower
bound so that its maximization fits this goal, leading to a new target quantity designed to promote both
diversity and exploration (Section [3.2). This enables defining and implementing a general algorithm
for Learning Diverse Skills through successor state representations (LEADS, Section 3.3).



3.1 MI lower bound with successor state representations

The mutual information Z(.S, Z) is naturally expressed through the (conditional) probability densities
of S and Z. Successor state representation estimators [4, SSR] provide a direct way of estimating
these densities. More precisely, we identify the Successor State Representation as the density of the
measure defined on the set of states. The SSR p(s|s1,0, z) of a skill (6, z) is the state occupancy
measure of policy 7y (s, z), when starting from sy, that is

So = S1,
p<52|51,9,z)_2¢p(5t_52 aiiwzut,z))- O
t=0

For the sake of readability, we make € implicit in our notations going forward. This measure can be
understood as the probability density of reaching the state s starting from another state s; when the
skill z is used [22]. It encodes all the paths of the Markov chain that can be taken from s; to s3 when
the skill z is used [4]. Here (s1,52) € S 2 can be any two states of the Markov chain.

The SSR is the fixed point of a Bellman operator and one can employ temporal difference (TD)
learning to guide a function approximator towards this fixed point. There are numerous methods
for estimating the SSR density [4} 22, [14,[15]. In this paper, we use C-Learning [[14] for estimating
the SSR for all experiments. C-Learning proposes to cast the regression problem of learning p
as a classification problem. Specifically, for a given pair (s1, a, 2), a classifier o(fs(s1, a, 52, 2)),
where ¢ is the sigmoid function, is trained to predict whether s5 was sampled from an outcome
trajectory from s; (s2 ~ p(:|s1,a, z)) or from the marginal density of all possible skills (sq ~
p(s), the distribution over ). The optimal classifier holds the following relation with the SSR’s
density: efo(51:0:522) = y(s4]s1, a,2)/p(s2). We denote my(s1,a, s2,2) = efe(51:8:52:2) ag the
SSR estimated via C-Learning, taking a ~ my(s1, 2). For the sake of brevity, we will use the notation

me(s1,82,2) = GNWEFZ“ Y [mg(s1,a, s2,2)]. We note that any method which reliably estimates

mg (81, s2, z) can be used instead of C-Learning in LEADS.

As described in Section[T] the mutual information between the state random variable S and the skill
descriptor Z is Z(S, Z) = D (P(S, Z)||P(S)P(Z)). This can be expressed as

I(Sv Z) = E(sz,z)rvp(s,z) [log (p(52|z)/p(32))] : 2

State s can be any state s within the set S, yet we refer to it as s to ensure that when we incorporate
the definition of the SSR, it aligns directly with the notation of Equation[T] By definition of the SSR
under a given policy 7 (s, z), the state distribution p(s|z) obeys

p(82|2’) = E81~p(s|z) [p(32|513 Z)} . (3)

By sampling s; ~ p(s|z), we can therefore estimate p(sq|z), allowing for the injection of
m(s1, s2,2) = p(s2|s1,z)/p(s2) from Eysenbach et al. [14] into Equation [2}

I(S7 Z) = E(SQ,Z)Np(s,z) DOg (ES1~p(s\z) (m<517 52, Z)))} .

A Monte Carlo estimator of Z(.S, Z) can be obtained by sampling (s, z) from a replay buffer. However,
for every state s sampled this way, the estimate of p(s|z) provided by Equation requires sampling
a batch of s; ~ p(s|z). This is possible through keeping separate replay buffers for each skill, but
would be computationally intractable for an accurate estimation. Hence, as in similar methods, we
turn rather to a lower bound on Z(.S, Z), which admits a Monte Carlo estimator, and which will be
maximized with respect to 6 using stochastic gradient ascent.

Applying Jensen’s inequality to the inner expectation in the previous expression yields

I(5,Z) 2 E . p) [og(m(si,sz,2))]. 4)
s2~p(s|z)
strp(s]2)

Note that 6 participates in this lower bound through m(s1, 52, 2) = Eqr,(.|s,)m(51, @, 52, 2). This
quantity is essentially what an algorithm like DIAYN [13] maximizes: given separate experience

buffers for each skill, one can compute a Monte Carlo estimate of this lower bound on the gradient of
the mutual information Z (S, Z) with respect to 6.



3.2 Promoting exploration with different skills

Looking closely at Equation 4] one can note that the interplay between each skill’s state distribution
is lost when deriving the lower bound. Hence, this bound can be maximized without actually pushing
skills towards distinct states, hence without skill diversity. To regain the incentive to promote skill
diversity, we propose to encourage exploration in each skill to put probability mass on states which
receive little coverage by the full set of skills. In other words, for a given transition (s, 7(s)), we
want to augment the probability of occurrence for one skill while decreasing it for all others.

Since m(s1, s, z) > 0, we can introduce the following bound:

m(sy, o, 2)
I(S,72)> E I 5
(8,2) 2 z~op(2) ) 1+ > m(s1,s2,2") )
s2~p(s|z) 2'€Z

s1~p(s]z)

While Equation [3]is a looser lower bound than Equation[d] it goes towards the goal of diversity search
originally captured by MI maximization: to have distinct state distributions for each skill.

However, as illustrated in the introductory example, maximizing MI does not promote large state
coverage, nor exploratory behaviors. Equation [5| promotes skill diversity, but it does not explicitly
encourage state coverage. We therefore argue that exploratory behaviors can be obtained by focusing
the state distribution of each skill towards specific states within the support of p(s|z). Instead of
sampling s according to p(s|z), we encourage exploration by attributing more probability mass to
states that trigger exploration. We do so by creating a sampling distribution §(s|z) based on an
uncertainty measure u; (s, z), as explained next.

Biasing a skill towards promising states for exploration is often achieved through exploratory bonuses
based on uncertainty measures [36, 7, [2], or repulsion mechanisms [[16]]. These heuristic measures
encourage exploration by pushing policies towards states of high uncertainty or away from previously
covered transitions. The novelty of our approach is the use of an exploration bonus in the framing
of mutual information maximization. However, by replacing s ~ p(s|z) by another sampling
distribution §(s|z), we lose the theoretic guarantee of maximizing the lower bound of Equation
Rather, we propose a new objective, expressing an incentive to explore within the search for skill
diversity, but with a greater focus on state coverage through distinct skills than previous lower bounds
on mutual information. The quantity we maximize is then:

m(817 Az, S2, Z)

0) = E lo 6
G z~p(z) & 14+ > m(s1,a.r,82,2") ©
s1~p(s|z) Z'€Z
a,~me(+|s1,2)
s2~8(s|2)

The uncertainty measure u; which defines the distribution §(s|z) is designed to explore under-visited
areas and to create repulsion between different skills. We define three desired properties for states
to prioritize using this measure. To describe these properties, consider a sequence of policies 7,
each defining a set of skills {m¢(, 2)}.cz, and the corresponding sequence of SSRs m;; the three
properties are then as follows. (1) A good target state s for skill z at time step ¢ is one that has high
probability of being visited by (-, z), but was relatively infrequently visited by previous policies’
state occupancy measures {my} ke[1,¢—1] for any skill. (2) It is also a state which has both high
probability of being reached by the current 7 (-, z) and low probability of being reached by any other
current skill, starting from sg. (3) Given a previous target state s;_,, a good new target state is one
that has high (resp. low) probability to be reached by (-, z) (resp. any other skill), starting from
s7_1. While the first property explicitly encourages visiting under-visited states, the two others do not
encourage exploration per se, and rather strengthen skill diversity by pushing their state distributions
apart. This leads to the idea of ranking target states according to:

Ut(S,Z) _ log t_lmt(s()asazi) / + Z log (mt(szt,_l’s’zl) > +10g (mt(SO,S,Z/) )
Dokt 2o (80, 8, 2') s my(si_q, 8, 2") m¢(so, 8,2")

Explore under-visited areas Repulsion between skills

(N



The §(s|z) distribution of Equation [6]therefore allocates more probability to states with high w,(s, z).
Empirically, we found that making ¢ deterministic as the Dirac distribution on a state that maximizes
ut(s, z) enabled efficient exploration. Appendix [A| provides a more formal perspective on the
derivation of the u; uncertainty measure.

3.3 The LEADS algorithm

With the objective of maximizing G (6) (Equation|6)), we define the LEADS (Learning Diverse Skills
through successor state representations) algorithm, presented in Algorithm I

In order to maximize G(6), we must
first sample from p(s|z) for each skill
z, then compute the SSR for the cur- n
rent skills 7¢(-, z) in order to define Algo.l?th'm 1 LEADS
G(0), then finally update 6 to maxi- Initialize 6

mize G(). As such, an iteration of ~ fort e [0, N] do

LEADS features three phases in order # Collect samples
to learn a new set of skills: sampling, D.=0V2€Z
learning the SSR, and optimizing the for e € [1,1¢] do
policy parameters 6. Sample skill z ~ p(z) )
) ) {(st,a¢, 14, 8,)} = episode with 7, (+, z) from s
First, the sampling phase populates D, =D, U{(st,as,7,5,)}
separate replay buffers D, for each end for
skill z ~ p(z). This is achieved by # Learn the SSR
rolling out ¢, episodes with a given Learn m, for 7y, using on-policy C-learning
policy (-, z). Then, C-learning is Sample s ~ §(s|2)
used to compute the parameters ¢; of # Improve 0
ajoint SSR my(s1,a, s, z) for m;, and for i € [1, nsgp] do
store it. We note that the on-policy ver- Sample z ~ p(z), s1 ~ p(s|2)
sion of C-learning can be used for this 0« 0+ aVe|G(H) + M\ H(9)]
step as the data in the replay buffers Update ¢, using off-policy C-learning
has been collected with the current end for

policy 7. This SSR, and all previous end for
ones, are then used to define u.(s, 2),
which in turn defines the distribution
(s, z). As this can be approximated for a static policy, sampling can be performed before updating
6. Sampling s ~ §(s|z) is performed by running all states in D, through (s, z), although, to limit
computational cost, we can restrict this evaluation and selection to only a uniformly drawn subset of
each D,.

We therefore have the necessary components to optimize 6 according to G(6): a means of sampling
states and the SSR. At each gradient ascent step, we sample a mini-batch of states s; from D, for a
given skill z ~ p(z) to estimate p(s|z). This permits calculating the objective G(#) for the current
6 using m,, and performing a gradient step. In the gradient calculation, we also include an action
entropy maximization term, as done in other works [31} 20]]:

H(O) = . %z) [—log(mg(alsi, 2))]. )
zevp(z)
ar~7(s1,2)

6 is therefore updated to maximize G(6) + A H(6), although Ay, is intentionally kept small (0.05) to
focus on the principal LEADS objective G(0).

Finally, after each gradient step, the SSR is updated using the off-policy formulation of C-learning so
that m,, remains representative of the state distribution under 7, . This is done without sampling
new transitions and is justified by the fact that the target state s; and the states along a trajectory to
s are already within the replay buffer D,. ngap steps of gradient ascent on ¢ are performed in this
way, before a new iteration of LEADS is started.



4 Experiments & Results

We demonstrate LEADS on a set of maze navigation and robotic control tasks and compare its
behavior to state-of-the-art exploration algorithms. We provide all code for LEADS and the baseline
algorithms, as well as the scripts to reproduce the experiments (repository). All hyperparameters are
summarized in Appendix [C}

4.1 Evaluation benchmarks

Mazes. Maze navigation has been frequently used in the exploration literature, as 2D environments
allows for a clear visualization of the behaviors induced by an algorithm. The assessment of state
coverage is also easier to understand than in environments with high-dimensional states. We design
three different maze navigation tasks, named Easy, U, and Hard (depicted in Figure |Z|), of increasing
difficulty in reaching all parts of the state space. In each of the mazes, the state space is defined by the
agent’s Euclidean coordinates S = [—1, 1] and the action space corresponds to the agent’s velocity
A = [~1,1]2. Hitting a wall terminates an episode, making exploration difficult.

Robotic control. We further assess the capabilities of LEADS in complex robotic control tasks.
These tasks allow evaluating the ability of LEADS to explore in diverse and high-dimensional state
spaces. We evaluate LEADS on a variety of MuJoCo [42]] environments from different benchmark
suites. Fetch-Reach [37] is a 7-DoF (degrees of freedom) robotic arm equipped with a two-fingered
parallel gripper; its observation space is 10-dimensional. Fetch-Slide extends the former with a puck
placed on a platform in front of the arm, increasing the observation space dimension to 25. Hand
[37] is a 24-DoF anthropomorphic robotic hand, with a 63-dimensional observation space. Finger
[44] a 3-DoF, 12-dimensional observation space, manipulation environment where a planar finger is
required to rotate an object on an unactuated hinge. Appendix [D]discusses additional experiments
and limitations on other MuJoCo tasks.

LEADS

@ skillo @ skilll @ skill2 Skill 3 @ skill4 ® skills

Figure 2: Skill visualisation for each algorithm. Per algorithm, the tasks are the mazes Easy (top
left), U (top right), Hard (bottom left), and the control task Fetch-Reach (bottom right).

4.2 SKkill Visualization

The first goal of this work, as exposed in the introductory example, is to obtain a set of skills that are
as distinct from each other as possible in their visited states, while simultaneously covering as much
of the state space as possible. We first assess this property in LEADS, DIAYN [13] and LSD [33]]
through a visual analysis of their state space coverage in Figure 2] For all experiments, the number of
skills is ngin = 6. To ensure fairness, for each algorithm, we report the skill visualization from the
experiment that achieves maximum coverage (as defined in the following section) out of five runs.
For each algorithm, Figure 2] presents four figures: the three mazes and the Fetch-Reach environment.
In all the mazes, we visualize the 2D coordinates of the states reached over training. Given that 2D
visualization is not suitable for the Fetch-Reach environment due to its higher state space dimension,


https://github.com/SuReLI/LEADS

we project the state onto the two first eigenvectors of a Principal Component Analysis (PCA) of the
states encountered by all skills in this environment.

We note that LEADS clearly defines distinct skills in the state space. Furthermore, it leads to a more
extensive exploration of the environment than LSD and DIAYN. The Hard maze (bottom left) is
noteworthy, as some parts of the environment are difficult to access due to bottleneck passages in the
maze. LEADS is the only algorithm that manages to reach all sections of the Hard maze.

skill 0 skl 1 skill 0 skill 1

%

skil 2 skil3 skill2 skill 3

A

skl 4 skil 5 skill 5

pr

Figure 3: LEADS exploration
of the Hand environment state

. N (a) Occupancy measure (b) Uncertainty
space, using ngiy = 12 skills
thr:tieg PCA over all explored Figure 4: (a): The SSR m(sy, s, z) at a given epoch during

training on Hard maze, per skill, normalized in [0, 1]. (b): The
uncertainty measure (s, z) at the final epoch on Hard maze, per
skill, with the maximum state highlighted.

Figure 3] further demonstrates the ability of LEADS to create distinct skills in the high-dimensional
state space of the Hand environment. It reports the state distribution obtained by ngi = 12 skills
found by LEADS, projected onto the two first components of a PCA on all visited states. As in the
maze navigation tasks, LEADS explores states in distinct clusters, organized by skill. These skills
correspond to a visual variety of finger positions, illustrating the ability to discover varied behaviors.

Section[3.2|claimed that the uncertainty measure u.(s, z) of Equation and its associated distribution
0 triggered relevant exploratory behaviors. Figures and[4(b)] display the final SSR and uncertainty
measure, respectively, for the Hard maze task. The same visual representation of these densities for
the other environments can be found in Appendix [B] Figure fi(a)]demonstrates that the SSR clearly
separates states based on skill. The SSR is zero for all states outside of the distribution of a given
skill, and all states in a skill have a non-zero probability of being reached by that skill. This confirms
that this SSR can reliably be used within the objective function of Equation [6]

Similarly, Figure (b} illustrates how the uncertainty measure concentrates on states that promote
both exploration and diversity. High values for this measure are found in very different states for
each skill (hence promoting diversity), and within a skill, the highest value is found far from the
starting state so (hence promoting exploration). The state maximizing u; is represented by a colored
dot for each skill. This confirms that the uncertainty measure achieves the joint goal of exploring
under-visited areas and creating repulsion between skills. By defining d(s|z) as the state which
maximizes u; (s, z) for each skill z, LEADS ensures a continuing exploration of the state space.

4.3 Quantitative Evaluation

We now turn to a quantitative evaluation of the ability to explore using diversified skills. For the sake
of completeness, we compare LEADS to seven seminal algorithms. Five of these are skill-based,
namely DIAYN [13], SMM [26], LSD [33]], CSD [34], and METRA [335]. We use ngin = 6 for
each skill-based algorithm and for all environments. The two last algorithms are pure-exploration
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Figure 5: Relative coverage evolution across six tasks. The x-axis represents the number of samples
collected since the algorithm began.

Method Easy (%) Umaze (%) Hard (%) Fetch Reach (%) Finger (%) Fetch Slide (%)

RND 76.6 7.3 39.6+54 30.8+4.3 17.6 £2.7 21.3+£16 21.6£3.2
DIAYN 814486 55.0+8.2 43.8+4.5 85.6 £8.7 53.8+£12.3 523+£8.5
SMM  100.0+0.0 70.6 +£3.7 53.4£0.5 22.3+£5.5 31.2+14 53.3+34
NGU 86.8 £84 73.4+6.0 57.2£8.3 53.4£4.5 76.4+£56 57.8=£4.5
LSD 99.8+£04 79.8+4.5 70.0£0.6 71.9+£5.2 69.8£88 61.5%£5.2
CSD 974+34 79.8+54 64.0+6.2 83.2£0.5 96.2+9.1 63.0+28
METRA 928 +4.2 78.0+5.3 54.8+9.5 825+£1.5 83.4+75 50.7+22
LEADS 100.0£0.0 96.0£4.3 90.8 5.3 89.7£8.8 874+46 85472

Table 1: Final coverage percentages for each method on each environments. Bold indicates when a
single method is statistically superior to all other methods (p < 0.05). Full T-test results are presented
in Appendix B}

ones, which do not rely on skill diversity and rather rely on exploration bonuses: Random Network
Distillation (RND) [7]] and Never Give Up (NGU) [2].

A metric of state space coverage should characterize how widespread the state distribution is, in
particular across behavior descriptors that are meaningful for the task at hand. Following the practice
of previous work, for high-dimensional environments, we use a featurization of the state, retaining
a low-dimensional representation of meaningful variables: the (z,y, z) coordinates of the gripper
in Fetch-Reach, the (x,y) coordinates of the puck in Fetch-Slide, and the angles of the finger’s
two joints and the hinge’s angle in Finger. This projection is then discretized and the coverage of
a trajectory is defined as the number of visited cells. Figure 5] depicts the evolution of coverage,
normalized by the maximum coverage achieved by any run in the current environment. This figure
illustrates how coverage progresses relative to the number of samples taken in the environment since
the beginning of the algorithm. Shaded areas represent the standard error across five seeds for each
algorithm.

One can note that LEADS outperforms other methods across almost all tasks. This is especially
notable in the Fetch-Slide environment, where LEADS exceeds the coverage of all other methods
by over 20%. Furthermore, besides LEADS, no algorithm is consistently good across all tasks. In
the Fetch-Reach task, DIAYN, METRA, and CSD each achieved a coverage between 80% and 85%.
LEADS excelled with 90% coverage, significantly outperforming NGU at 50% and SMM and RND,
both at 20%. CSD surpasses LEADS and all other methods on the Finger environment, achieving



a relative mean coverage of 96% where LEADS is still competitive with 87%. On this specific
benchmark, NGU, METRA and LSD are competitive with LEADS, whereas DIAYN, SMM and
RND exhibit low coverage.

5 Conclusion

In this work, we consider the problem of exploration in reinforcement learning, via the search for
behavioral diversity in a finite set of skills. We take inspiration from the classical framework of
maximization of the mutual information between visited states and skill descriptors, and illustrate
why it might be insufficient to promote exploration. This motivates the introduction of a new
objective function for skill diversity and exploration. This objective exploits an uncertainty measure
to encourage extensive state space coverage. We leverage off-the-shelf estimators of the successor
state representation to estimate this non-stationary uncertainty measure, and introduce the LEADS
algorithm.

Specifically, LEADS estimates the successor state representation for each skill, then specializes each
skill towards under-visited states while keeping skills in distinct state distributions. This results in an
efficient method for state space coverage via skill diversity search. Our experiments highlight the
efficacy of this approach, achieving superior coverage in nearly all tested environments compared to
state-of-the-art baselines.

LEADS intrinsically relies on good SSR estimators. In this work, we used C-Learning [[14] for all
experiments, which proved efficient but might reach generalization limits in some environments. As
a consequence, advances on the question of reliable SSR estimation will directly benefit LEADS,
opening new perspectives for research.
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A A formal motivation for the uncertainty measure of Equation [7|

In Section we introduced a new optimization target, based on the uncertainty measure u(s, z),
used in LEADS to strategically distribute probability mass across states for each skill to foster
effective exploration. u,(s, z) is introduced in Equation (7, which is reproduced here for clarity:

me(so, S, 2 me(s7_1,8,2 me(so, S, 2
wi(s, 2) = log [ —g (8018, 21) )30 g(t(tl>>+10g (M)
Zk:l 2/ mk(SQ,S,Z ) 2tz mt(st 155, % ) mt(SOaSaZ )

Explore under-visited areas Repulsion between skills

This section delves into the theoretical foundations of this target. We begin by discussing the left
term of Equation [7} which corresponds to the exploration component of the measure. Subsequently,
we detail the right term, which promotes greater repulsion between the skills.

A.1 Exploration term (left side of Equation [7)

The Successor State Representation (SSR) extends the concept of the occupancy measure. Unlike
the traditional occupancy measure, which begins with the initial state distribution, the SSR is an
estimation of the occupancy measure starting from any state. In practice, we work with the expected
sum of discounted presences of a state over time because we know this measure exists regardless of
the ergodicity of the Markov process.

LEADS is an epoch-based algorithm with each epoch consisting of four phases, as presented in
Section[3.2]and Algorithm [T}

. Sample transitions from the environment for each skill,

. Learn the SSR of each skill (for the given policy),

. Define a state on which to put more probability mass for each skill,

AW NN =

. Use the objective of Equation [6]to update the policy so that it implements this probability
mass transport plan.

Since the policy changes in each epoch, the discounted occupancy measure of the policy also evolves
over time. For a given skill and epoch n, it can be defined as:

prz (5) =E 80~00 [Z’V ]1 ‘|

ar~m(-]se,2)
si+1~P(|(s1,00))

This occupancy measure has a direct estimator, using the SSR in the initial state sg:
pgz (S) = mn(307 S, Z)

At epoch n, the state occupancy measure of all skills is the mixture of all skills’ state occupancy

measures:
p’rl : p pﬂ

Then, the left side term in the definition of the uncertainty measure u, (s, z) corresponds to the
contribution of a state s to the following Kullback-Leibler divergence:

n—1
™ (s)
Lo | pw):ESN . [l(p)] ©
( ,; * ’ o (s)

Spi?(s)log< el 2 )ds

k=1 Zz’ mk(S(), 5, Z/)
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Note in particular that this divergence accounts for the discrepancy between p =, ie. the states visited
by skill z at epoch n, and ZZ;II pr. ie. the states previously explored by all skills in all past epochs.
Thus, the KL divergence of Equation [0 serves as a measure of novelty for the current distribution.
Intuitively, the newer a state visited by the current distribution p7=(s) is, the larger its contribution to
this KL divergence will be. Recall that at this stage, we do not modify the policy (it is the role of
the objective function of Equation [6), but rather aim at identifying which states within the support
of pr= should be those skill z is encouraged to explore next. By defining the state-wise novelty
my, (50,8,2)

SIS (807572,)), the distribution d(s|z) unfolds as the Dirac distribution which

maximizes the expected value of this score. Overall, LEADS aims to identify and prioritize states
with the highest novelty score for each skill, thereby enhancing exploration by shifting each skill’s
induced distribution towards these novel states.

score log (

A.2 Repulsion term (right side of Equation 7)

Building on the previous discussion about the formal motivation of the exploration term on the left
side in [/} we now explore the right side term, which is intended to enhance repulsion between skills.

The right side term of Equation [/|can be interpreted as the contribution of a state s within a sum of
multiple Kullback-Leibler divergences:

> RL(mn(s5 -1, 2) [ ma(si—y, - 2) + LT (3) || o7 (s)) (10)
2/ #z (a) (b)

In this equation, term (a) represents the KL divergence of the occupancy measure for the current skill
z, starting from its last target state, compared to the occupancy measure of each other skill starting
from their respective last target states. Maximizing this KL divergence aims to make the distribution
of each skill (starting from their last target state) as distinct as possible. Similarly, term (b) is the KL
divergence between the occupancy measures of a skill z and that of any other skill z’. Maximizing
these two KL divergences leads to disjoint distributions for each skill. As in the previous subsection,
we do not change the policy at this stage (this would lead to an ill-defined optimization problem as the
KL can become unbounded), but rather aim at identifying which are the states that contribute most to
these KL divergences, so that we can promote exploration towards them. Overall, LEADS combines
all these terms into the uncertainty measure of Equation[/|to determine which state contributes the
most to these KL divergences for each skill. In turn, these states define the distribution § designed to
promote exploration, by increasing the weight of the most likely states of ¢ in Equation [§]

A.3 Numerical advantage of Lower Bound [4]

This section offers a more detailed explanation of the passage from the definition of Mu-
tual Information Q] to the Lower Bound Edl The mutual information can be defined as:

E(sy,2)~p(s,2) 10g (Esy [m(s1, 82, 2)])], with 51 ~ p(s1]2).

Suppose we wish to maximize this quantity using SGD. For each sample (s2, z), we need to compute
the expectation E, . ,(s|z) (m(s1, 52, 2)) (because the log is not linear). In practice, this is compu-
tationally expensive because it requires sampling a mini-batch of s; states for every single s, state.
Instead, we use Jensen’s inequality, leveraging the concavity of the log function to derive the lower
bound:

Ezrvp(z) sa~vp(s|z) s1~p(s|z) [log(m(sla 52, Z))]

Maximizing this new quantity can be done with SGD by sampling three independent mini-batches at
each iteration.

B Supplementary Analyses and Visualizations

LEADS is based on the estimation of the successor state representation for each skill. Figure [6]and
Figure [/| show the final SSR and uncertainty measure, respectively, for the maze and Fetch tasks.
These correspond to the same runs shown in Figure |2{for LEADS.
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Figure 7: The uncertainty measure u(s, z) at a given epoch during training on each task, per skill,
with the maximum state highlighted.

Figure [3]illustrates the temporal evolution of coverage for all methods across various environments,
evaluated over five different seeds. We extend our analysis by presenting the p-values from the t-tests
conducted on the distributions of the final (highest) coverage values for these five seeds, comparing
the first method to both the second and third methods. We conducted a t-test for each environment in
which no method outperformed the second method by a margin greater than 10%. The results are

visible in the table 2l

Environment: Method 1/ Method 2 | p-value
Umaze: LEADS/CSD 0.01522
Umaze: LEADS/LSD 0.01152
Hard: LEADS/CSD 0.00246
Hard: LEADS/LSD 0.00977
Fetch Reach: LEADS/CSD 0.06354
Fetch Reach: LEADS/DIAYN 0.08307
Finger: CSD/LEADS 0.07072
Finger: CSD/LSD 0.00753
Fetch Slide: LEADS/CSD 0.00070
Fetch Slide: LEADS/LSD 0.00055

Table 2:

Comparison of p-values for paired t-tests across methods



B.1 Key Differences with Baseline Methods

The LEADS algorithm learns diverse skills that evolve over time to maintain exploration of the state
space. Unlike the baselines, LEADS does not rely on any reward function to be maximized. Instead,
it uses the same tool, the SSR, to plan exploration and adjust the set of skills to ensure effective
exploration. Unlike static skills, the skills learned by LEADS are dynamic, continuously adapting
throughout the algorithm’s execution to move away from previously explored areas, as explained in
LEADS achieves this by maximizing an uncertainty measure, which includes elements from the
Kullback-Leibler divergence between the current occupancy measure of each skill and the history of
occupancy measures from the set of skills.

This mechanism differs from algorithms such as DIAYN [13]], LSD [33]], CSD [34], and METRA
[35]], which aim to learn a static set of skills. These methods evolve the skills until reaching an
optimum or sub-optimum. DIAYN maximizes mutual information, represented as the Kullback-
Leibler divergence between P(S, Z) and P(S)P(Z), while LSD, CSD, and METRA maximize the
Wasserstein distance between these distributions using different metrics.

In contrast, NGU [2] and RND [7] use uncertainty methods that evolve only a single policy over time
and do not seek to learn a set of diverse skills. The method closest to LEADS is SMM [26]], which
also learns a set of diverse skills that explore using a specific uncertainty measure. SMM uses the loss
from a VAE [17]] as the uncertainty measure, framing the optimization as a two-player adversarial
game.

LEADS uses a novelty-based uncertainty measure, which appears to lead to a more stable optimization
process leading to a more continous and efficient exploration.

C Hyperparameters

The following table (Table[3) summarizes the hyperparameters used in our experimental setup.

Hyperparameter | Value
kil 6

Zdim 20

Ah 0.05

~ 0.95
)\c—learning 0.5

Qp 5x 1077
(lc-learning 5x 1077
Nepisode 16

TSGD, c-learning 256
TUSGD, actor 16
Narchive 1

batch sizec jearning 1024
batch sizejg; 1024

Table 3: Hyperparameters used for LEADS

Layer | Type | Input Dimensions | Output Dimensions | Activation
Classifier Network

1 Dense | (State Dim)x2 + Action dim + Z Dim 256 RelLU

2 Dense 256 128 RelLU

3 Dense 128 1 Sigmoid

Actor Network

1 Dense State Dim + Action Dim 256 RelLU

2 Dense 256 256 ReLU

3 Dense 256 Action Dim Linear

4 Dense 256 Action Dim Tanh

Table 4: Structure of the Classifier and Actor Networks
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C.1 The number of skills

As with other skill-based algorithms, LEADS’s coverage changes with the number of skills. However,
the skills learned by LEADS evolve throughout the entire training procedure to visit unexplored areas.
Hence, one can expect LEADS to require fewer skills to achieve the same final coverage performance
than algorithms that learn static skills, like DIAYN [[13]. Choosing the number of skills involves
a tradeoff between the acceptable computational runtime of the algorithm (which increases with
the number of skills) and the desired efficiency in state space coverage. This choice is also highly
problem-dependent. Dynamic adaptation of the number of skills is a challenging and open topic,
covered by works such as the one proposed by Kamienny et al. [24]. Although this remains an open
question, for LEADS we worked with a hand-chosen, predetermined number of skills and did not
focus on this aspect.

D Failure cases of the successor state representation estimation

LEADS relies intrinsically on the quality of the SSR estimator. When this estimator is poor, LEADS
might not yield diverse and exploratory skills. For instance, in a number of standard MuJoCo
environments from the Gymnasium suite [43], LEADS performs poorly as a consequence of C-
Learning’s inability to obtain a reliable estimation of the successor state representation. Figures [§|and
[Qillustrate this phenomenon on the HalfCheetah benchmark after 25 epochs of LEADS. We evaluate
the discrepancy between the estimated state occupancy measure and the actual distribution of states
for a set of 6 skills. To enable visualization of these quantities, we project these densities on the (z,y)
plane where x and y are the coordinates of the center of mass of the cheetah’s torso. Figures|[§|reports
the estimated state occupancy measure from the initial state m(sg, II(s), ), where II(s) = (z,y),
using the SSR. In contrast, Figure [9] displays the scatter plot of visited states for each skill in the
(z,y) plane. Despite experimenting with an extensive range of hyperparameters for C-Learning, a
satisfactory estimation of the measure could not be obtained and the probability density of Figure[§]
could not match the (x, y) coordinates of the visited states of Figure

As a comparison, Figures|10|and |l 1|illustrate the identical experiment conducted in the Fetch-Reach
environment reported in the main body of the paper. The state occupancy estimated with the SSR of
Figure|10|matches closely the states encountered by each skill in Figure This corroborates the
quantitative results reported in Figure[5} when a reliable estimation of the SSR is available, LEADS
performs effectively.

Investigating why C-Learning performs poorly in such MuJoCo environments is beyond the scope
of this paper. One could conjecture, following the conclusions of Blier et al. [4], that learning a
successor state representation that generalizes efficiently through high-dimensional state spaces is a
challenging task. Although we could not obtain conclusive results with C-Learning in these specific
cases, recent methodologies [[15, 145]] demonstrate improved generalization capabilities. These new
methods appear to be more successful in MuJoCo environments. We reserve the extension of LEADS
to such SSR estimators for future work.
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Question: Do the main claims made in the abstract and introduction accurately reflect the

paper’s contributions and scope?

Answer: [Yes]

Justification: Our study illustrates the limitations of using mutual information (MI) as an
objective for exploration. We propose a refined objective, offer a theoretical perspective on
it, and demonstrate experimentally that it surpasses state-of-the-art approaches.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims

made in the paper.

19



The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss it in a section in the appendix. See section D]

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: See[Al
Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: The code was provided, and the description of the method, along with the
details provided in[C] ensures full reproducibility of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .
Justification: Everything is provided in this repository.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The paper is self-contained. The method section [3|provide the pseudo-code of
the algorithm with all the hyper-parameters used and [C|provide the values used in this study.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: For every quantitative experiment, the specific standard deviation is made
explicit. Additionally, [2]provides the p-value when the final distributions of coverage are
closely matched between methods.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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8.

10.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .

Justification: All experiments conducted in this study can be performed on any minimal
system architecture, without the need for a GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes] .
Justification: We preserved anonimity and conformed with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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11.

12.

13.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.
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14.

15.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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