© ® N O O A~ W N =

32

(&)
w

OrgAccess: A Benchmark for Role-Based Access

Control in Organization Scale LLMs

Abstract

Role-based access control (RBAC) and hierarchical structures are foundational to
how information flows and decisions are made within virtually all organizations.
As the potential of Large Language Models (LLMs) to serve as unified knowledge
repositories and intelligent assistants in enterprise settings becomes increasingly ap-
parent, a critical, yet underexplored, challenge emerges: can these models reliably
understand and operate within the complex, often nuanced, constraints imposed
by organizational hierarchies and associated permissions? Evaluating this cru-
cial capability is inherently difficult due to the proprietary and sensitive nature
of real-world corporate data and access control policies. To address this barrier
and provide a realistic testbed, we collaborated with professionals from diverse
organizational structures and backgrounds to develop a synthetic yet representa-
tive OrgAccess benchmark. OrgAccess defines 40 distinct types of permissions
commonly relevant across different organizational roles and levels. We further
create three types of permissions: 40,000 easy (1 permission), 10,000 medium
(3-permissions tuple), and 20,000 hard (5-permissions tuple) to test LLMs’ ability
to accurately assess these permissions and generate responses that strictly adhere
to the specified hierarchical rules, particularly in scenarios involving users with
overlapping or conflicting permissions, a common source of real-world complex-
ity. We evaluate LLMs across various sizes and providers on this benchmark to
provide a detailed report on model performances. Surprisingly, our findings re-
veal that even state-of-the-art LLMs struggle significantly to maintain compliance
with role-based structures, even with explicit instructions, with their performance
degrades further when navigating interactions involving two or more conflicting
permissions. Specifically, even GPT-4.1 only achieves an F1-Score of 0.27 on our
hardest benchmark. This demonstrates a critical limitation in LLMs’ complex
rule following and compositional reasoning capabilities beyond standard factual or
STEM-based benchmarks, opening up a new paradigm for evaluating their fitness
for practical, structured environments. Our benchmark thus serves as a vital tool
for identifying weaknesses and driving future research towards more reliable and
hierarchy-aware LLMs. The datasetﬂ and the codeE] has been open-sourced.

1 Introduction

LLM advancements [Team et al.| (2025); |OpenAl et al.| (2024); |Grattafiori et al.[(2024); |Jiang et al.
(2024); |Guo et al.| (2025) are driving their exploration in enterprises as knowledge repositories

Irespai-lab/orgaccess Datasets at Hugging Face
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and support staff. Large firms like JPMorgan Chase E] and McKinsey E] are piloting internal LLMs.
However, enterprise reliability requires robust reasoning beyond general knowledge. A critical,
overlooked need is LLMs’ ability to adhere to dynamic role-based access control (RBAC)|Sandhu
(1998) and organizational hierarchies. Permissions constantly evolve; navigating these nuances,
respecting constraints, is paramount for safe deployment. Despite interest in LLMs as enterprise
“Conversational Operating Systems” [Packer et al.| (2024)); Ge et al.| (2023), benchmarks for this
capability are absent Feretzakis & Verykios| (2024); Zhang et al.| (2024).

Evaluating LLMs within realistic organizational structures presents substantial challenges, largely
explaining limited research. The primary difficulty is the proprietary and sensitive nature of real-world
corporate data, internal hierarchies, and access control policies. Organizations are reluctant to share
these configurations due to privacy, competitive, and security risks Wang et al.|(2025); Bodensohn
et al.| (2025)); Harandizadeh et al.| (2024). Further difficulty arises from complex real-world role
assignments, where individuals may hold multiple, conflicting permissions, demanding sophisticated
reasoning. Failure to respect hierarchy or permissions can lead to severe consequences, including data
privacy compromises, compliance violations, or significant financial losses. Thus, safe, widespread
adoption of LLMs in enterprise necessitates extensive, realistic testing mirroring access control
policies.

Addressing the critical gap between enterprise interest in LLMs and suitable evaluation tools for
organizational hierarchies, we introduce a novel benchmark. Collaborating with professionals, we
curated a high-quality, synthetic, yet representative dataset[I] This benchmark simulates real-world
permissioning by defining 40 distinct permission types. It uses carefully crafted user queries to test
LLMs’ ability to strictly adhere to assigned permissions and respect hierarchical structures. Following
Role-Based Access Control principles, our dataset models permissions attached to roles, assigned
to users, allowing for realistic dynamic scenarios where permissions combine or change ﬂ Using
this modular design, we construct three difficulty splits: easy, medium (3 concurrent permissions),
and hard (5 concurrent permissions). Each split incrementally increases permission combinations
and query complexity, enabling nuanced evaluation of navigating different permissions, identifying
conflicts, and maintaining access controls.

To assess the current state of LLM capabilities in this critical domain, we conducted extensive
empirical evaluations using our benchmark. We tested a diverse set of frontier LLMs spanning
various model sizes and providers, ranging from models as small as 4B [Team et al.| (2025) parameters
to state-of-the-art LLMs like GPT-4.1 OpenAl| (2024) and Gemini-2.5-Pro Team| (2025)), probing
their performance on tasks requiring permission-aware responses. Our results reveal a surprising and
significant finding: current state-of-the-art LLMs are remarkably ill-equipped to function reliably as
knowledge repositories requiring strict adherence to organizational hierarchies and permissions. Even
on the comparatively straightforward easy splits, where permissions are less complex, prominent
models such as Qwen, Llama, Gemma, and Mistral yield surprisingly low accuracies. Furthermore,
we observed no significant improvement in performance on the more complex medium and hard
splits as model size increased, indicating that simply scaling up current architectures does not
effectively address this particular deficit. This performance ceiling highlights a fundamental gap in
current LLMSs’ practical reasoning abilities—specifically, their capacity for robust, compositional
rule-following and conflict resolution within a structured, hierarchical context, distinguishing it
sharply from performance on standard academic or STEM-based benchmarks.

We present the following contributions in our work:

@ Identifying a Critical Evaluation Gap: We highlight the pressing need for robust evaluation of
LLMs within organizational hierarchical and role-based access control contexts, a crucial requirement
for their safe and effective enterprise deployment, which has been largely overlooked as a reasoning
paradigm.

0 A New Benchmark for Organizational Reasoning: We introduce the first-of-its-kind, expert-
curated synthetic benchmark specifically tailored to test LLMs’ ability to reason about and respect

*https://www.cnbc.com/2024/08/09/ jpmorgan-chase-ai-artificial-intelligence-assistant-chatgpt-openai.

html
“https://wuw.mckinsey.com/capabilities/mckinsey-digital/how-we-help-clients/

rewiring-the-way-mckinsey-works-with-1i11li
3https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
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organizational permissions and hierarchies, featuring 40 distinct permission types and three progres-
sively challenging evaluation splits.

® Empirical Evidence of LLM Limitations: Through extensive evaluation of 16 LLMs of varying
sizes, including state-of-the-art LLMs like GPT-4.1 and Gemini-2.5-Pro, we provide compelling
empirical evidence demonstrating that current frontier models surprisingly struggle with permission-
aware reasoning, particularly in scenarios involving conflicting constraints, indicating a significant
limitation in their practical reasoning capabilities.

® Paving the Way for Hierarchy-Aware LLMs: Our benchmark provides a vital, reproducible tool
for the community to assess models, diagnose specific failure modes, and drive future research towards
developing LLMs that are genuinely reliable and safe for integration into structured organizational
environments.

2 The OrgAccess Dataset

2.1 Setting the Core Permission Set: Grounding the Benchmark in Organizational Reality

To ensure our benchmark accurately reflects the complexities and operational realities of large-scale
organizations, and to move beyond simplistic, “toy” data configurations, a fundamental step in our
methodology was the rigorous definition and selection of the core set of permissions. This permission
set forms the bedrock upon which our simulated organizational structures and user queries are
built. Our primary objective was to curate permissions that are not only diverse but also genuinely
representative of the types of access controls and data handling constraints encountered in real-world
enterprise environments. The permission schemas were vetted by a cross-disciplinary panel of
practitioners: a CTO of a CRM (Customer Relationship Management) company, a Head of Media
and Advertising at a (IT) services and consulting company, a Security Architect at a leading global
cloud provider, a Senior Engineer at a E-commerce company, and a Senior Technical Staff at a major
semiconductor company. Their feedback confirmed that the synthetic roles and access combinations
reasonable aligned with real-world RBAC patterns in large enterprises.

Our approach is rooted in Role-Based Access Control (RBAC)|Sandhu| (1998)), where permissions are
tied to roles, and users to roles, allowing for dynamic permission assignments Ghazal et al.| (2021).
To establish an industry-aligned foundation, we adopted a top-down strategy using the NIST Special
Publication 800-53 Control Families [NIST|(2020) and the NIST Cybersecurity Framework (CSF)
NIST|(2024). From these comprehensive frameworks, we identified seven broad control groups
representing critical enterprise domains: @ Identity & Authentication Controls (NIST SP 800-53
TA[TIA!(2013), NIST CSF PR.DS|CSF|(2018)), ® Access Provisioning & Role Management (NIST
SP 800-53 AC |AC|(2020)), ® Data Protection & Privacy Controls (NIST CSF PR.DS, NIST SP
800-53 MP MP|(2020))), ® Compliance, Audit & Policy Controls (NIST SP 800-53 AU |AU|(2020),
PL |PL](2020)), ® System & Network Security Controls (NIST SP 800-53 SC|SC|(2020), CM|CM
(2020)), ® Operational & Emergency Controls (NIST SP 800-53 CP (CP|(2020), IR [IR|(2020))), and
@ Collaboration & Workflow Controls (CSF ID.GV IDGV/|(2018))).

Permissions derived from these widely recognized frameworks provide a robust and relevant basis
for simulating enterprise access control. To operationalize this, we initially drafted ten specific
permissions under each of these seven categories, aiming for granular examples of access rights. This
initial pool was then subjected to a rigorous expert validation process to refine and select the final set.
We engaged professionals from diverse industrial sectors and educational institutions, leveraging their
real-world experience through a structured Delphi method Rashid et al.[(2020); | Ahmed et al.| (2022).
In this iterative process, each expert independently reviewed the drafted permissions, removing those
they deemed unrealistic, ambiguous, or redundant in a typical organizational context. The results
were aggregated, and the refined list was presented to the experts for subsequent rounds of review.
This Delphi process was repeated three times, converging on a final list of 40 distinct permissions
(details in Appendix), which our expert panel validated as highly representative of permissions held
by employees across various designations and organizational levels.

This focused, expert-validated, and framework-aligned process ensures that the fundamental building
blocks of our benchmark; the 40 permissions are grounded in actual organizational practices and
security considerations, thereby supporting our overall goal of providing a realistic and challenging
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{"user_role": "Senior_Manager_Engineering”,
"permissions”:
"department”: [

"allowed_actions": [ "View Sensitive Data",
"Access Project Timelines", "Approve Project Budgets”,
"Access Confidential Reports", "Manage Team Access",
"Generate Performance Reports”, "Update Project

imeli view Security Protocols"],
"password_rotation": 7,
"biometric_required": true,
"device_compliance": true},
"query": "I need to access the detailed project timeline for the
upcoming product launch scheduled for next quarter.
Additionally, T want 1o review the latest security protocols
implemented in the engineering department and update the
project budget allocations. I will be using my personal laptop
for this task, but I will provide my biometric authentication

via the online portal. T last changed my password less than a
week ago, and I need to ensure that all my devices comply
with the latest security requirements. Can you provide me
‘with the necessary access and information?",
"expected_response": "full",

"rationale": "The query involves accessing sensitive project
timelines, security protocols, and budget allocations, which
are all within the allowed actions for a Senior Manager in
Engineering. Hence the request can be fully satisfied."},

Delphi process
refining

a1y (DAL
pemissions 7 | ©, 8 ©

—> 5

Expert panel (Hard Split}
. lard Spli
review Intra-domain
{Medium Split} 2 05-0pg gm.’ss asr’rtz7 ”f es
Inter-domain ’ 2
3-permissions
10,000 samples {Easy Split}

Single permission
40,000 samples

ministration"], "access_level: "Medium'",

nage_calendars” , "prepare_financial_reports", "view_financial_documents"],
,"Mexico'T},

"query": "Generate a comprehensive report on the financial performance of our offices in Switzerland, Mexico, and Treland for
the last fis

"location_restriction": [ "Switzerlan

highlighting key achievements and areas for improvement.",
ponse”: "partial”

nior_Software_Engineer",
department": [ "Engineering", "Software

or",
‘Code Deployment", "Bug Fixing", "Feature
s Feedback data'],

Development”,
"session_timeout”: 50,
"deadline": "2024- .
"location_restriction": [ "North America", "Europe”, "Asia"],
"automation_restriction": False,

"collaboration_access": [ "Product Management", "Design’,
"DevOps" 1 },

"query": "I need to access the latest customer feedback data from
the Texas region to optimize a new feature we are developing. The
feature involves sensitive customer data, and I need to ensure that
the data retention policies are compliant with both internal and
external regulations. Can you provide me with the necessary access
and documentation for this task? Also, I need to collaborate with the
Product Management team to discuss the feature's timeline and
potential contractual obligations that might affect our development
schedule. T assure you that i have set up an environment which
automatically refreshes the system every 45 minutes to avoid any
timeout issues.”,

"expected_response": "full",

"rationale": "The user's query involves multiple complex
permissions and access controls that need to be carefully

scrutinized. The query touches upon data retention policies, disaster
recovery access, contractual obligations, API rate limits, and session
timeout policies. However, the user does not have the necessary
permissions for any of the specific permissions mentioned in the
query, which makes it impossible to provide  full or partial
response. The user's access i restricted to specific departments and
Tocations, and the query involves sensitive data and operations that
require higher-level permissions. Therefore, the expeced response
is 'rejected "}

+ "The user can access financial documents and generate reports, but their location restriction limits access to
Switzerland and Mexico. Therefore, the report will include data for Switzerland and Mexico, but exclude information for
Ireland due to geographic restrictions."}

Figure 1: The pipeline for creating OrgAccess. 40 permissions are selected after expert-review
from a pool of 70 initial permissions. These 40 permissions are then used to create the 3 data splits
: Easy (single permission), Medium (3 permissions), and Hard (5 permissions). The permission
combinations for Medium and Hard splits are created after 3 rounds of selection from the expert
panel.

evaluation environment for LLMs beyond artificial scenarios. These 40 permissions serve as the
vocabulary from which we generate complex queries in subsequent stages of our methodology.

2.2 Generating the Easy Split: Establishing Baseline Permission Understanding

Having meticulously defined and validated the set of 40 core organizational permission types, the
subsequent step in constructing our benchmark was to generate a large-scale synthetic dataset. The
objective of the easy split is to systematically evaluate LLMs’ fundamental capacity to correctly
interpret and adhere to individual permission constraints in isolation. This serves as a crucial baseline
to understand if models can grasp the core meaning of each permission type before evaluating
their performance on more complex scenarios involving permission combinations and conflicts.
Synthetic data generation was essential as realistic organizational data with explicit permission labels
is proprietary and inaccessible. We aimed for a controlled, high-quality generation process to produce
a substantial number of diverse query-response pairs for each permission.

Our generation pipeline for the easy split began by leveraging the 40 defined permissions. For
each permission type, we first hand-authored 100 high-quality seed data points. Each seed point
comprises a specific permission instance Figure[I] a realistic user query related to that permission,
and the correct expected response along with a rationale justifying why the response adheres to the
permission. These seeds were rigorously peer-reviewed by the author team and our domain experts to
ensure they accurately capture the nuances of each permission type and provide clear, unambiguous
ground truth.

These 100 high-quality seeds per permission served as anchors for generating a larger synthetic
dataset using a powerful LLM. We employed Mistral Small 3.1 [Mistral| (2025) to generate 1000
synthetic data points for each of the 40 permission types, resulting in a total of 40,000 data points
for the easy split. We specifically opted an open-source model like Mistral for its strong generation
capabilities while offering greater transparency and reproducibility with a reduced carbon footprint.
In initial generation trials, we observed a notable challenge: the synthetically generated data points,
while grammatically correct, exhibited significant biases and lacked diversity, closely mirroring
known biases in LLM training data [Zhu et al.| (2024)); Kamruzzaman et al.| (2024); [Venkit et al.
(2023). For instance, in permissions involving geographic restrictions, the generated locations were
overwhelmingly limited to the US and Canada. Similarly, permissions related to Third-Party Vendor
Access, Region-wise restrictions, and Code deployment permissions showed limited variation in the
specific entities generated. This lack of diversity would undermine the benchmark’s ability to test
LLMs on a wide spectrum of real-world scenarios.

To counteract these generative biases and ensure realistic diversity, we developed a guided generation
strategy. For permission types prone to limited variation, we curated comprehensive lists of diverse,
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representative options (e.g., a list of 40 global countries for location restrictions, lists of various
cloud providers from different nations, software repositories). During synthetic data generation for
these specific permissions, our prompting strategy included instructions in a few-shot setting |Brown
et al.| (2020) to sample uniformly from these curated lists to populate the variable fields within the
permission statements and user queries. We observe that this guided generation approach, combined
with carefully engineered system prompts tailored for each permission type and the strategic curation
of relevant roles (e.g., limiting Employee Onboarding/Offboarding queries to HR roles, or Al training
data access to Data Science/Research roles), resulted in a vastly more diverse, well-distributed, and
practically aligned dataset for the easy split.

2.3 Constructing the Medium and Hard Splits: Simulating Complex Organizational Realities

While the easy split provides a baseline for individual permissions, a crucial aspect of real-world
organizations is that employees handle multiple concurrent permissions, often conflicting. Evaluating
LLMs’ ability to navigate this complexity is essential for enterprise readiness. To test this, we
extended our benchmark with medium and hard splits, simulating scenarios with 3 and 5 concurrent
permissions, respectively.

Creating meaningful permission combinations required a deliberate, non-random approach to ensure
benchmark relevance and query quality. We adopted a balanced stochastic method guided by expert
insight. Building on the seven control groups (Section [2.1)), we drafted initial combinations as
triplets (medium) and quintets (hard). We prioritized combinations within the same or related groups,
including inter-group combinations for stochasticity. For the medium split, 100 intra-group and 50
inter-group triplets were initially drafted; experts selected the final 100. For the hard split, 200
inter-group and 100 additional inter-domain quintets were prepared. This expert-guided approach
ensures realistic and challenging permission combinations.

To validate and refine these potential combinations, we again engaged our panel of industry profes-
sionals. Using a modified Delphi method similar to the one for selecting the core permissions, experts
independently reviewed the drafted combinations, eliminating those deemed redundant, ambiguous,
or unrealistic. This was followed by two rounds of blind peer review, where experts evaluated the
selections made by others. This iterative, expert-driven process converged on a final set of 100
representative permission triplets for the medium split and, following the same rigorous process with
an initial pool of combinations, 200 meaningful permission quintets for the hard split. This rigorous
selection process ensures that the permission combinations in our medium and hard splits reflect
plausible, challenging scenarios encountered in real organizational contexts, including situations
where permissions may be implicitly or explicitly conflicting or consisting certain edge cases.

With the permission combinations defined, we proceeded to generate the corresponding data points.
Leveraging the successful few-shot guided generation strategy developed for the easy split (Section
[2.2), we adapted it to handle multiple simultaneous permissions. For each of the 100 selected triplets
and 200 quintets, we generated 100 synthetic data points using Mistral Small 3.1. The model was
specifically prompted to incorporate all permissions within the given combination and to craft a user
query that requires the LLM to reason about the interaction of these permissions to derive the correct
response. Crucially, for combinations involving permissions with variable parameters (like locations
or vendors), we continued to uniformly sample from the curated lists of diverse options established
during the easy split generation, ensuring variety within each combination’s instances.

This generation process resulted in 10,000 data points for the medium split and 20,000 data points for
the hard split. Throughout the generation, we maintained close monitoring and incorporated a manual
review step for each batch of 100 generations to check for inconsistencies and verify that all specified
permissions were correctly factored into the model’s simulated reasoning process and the expected
output (more details in[2.4)). This extensive, controlled methodology, moving from expert-selected
realistic permission combinations to guided synthetic data generation with quality checks, allowed us
to create a total of 70,000 data points across the three splits, representing a tiered benchmark that
moves from fundamental permission understanding to navigating the complexities of concurrent,
potentially conflicting, constraints and edge cases inherent in real-world organizational environments.
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Table 1: Performance of 10 LLMs on all 3 splits. We observe that smaller models like Gemma-3-4B
struggle to cross 50% accuracy on the easy split, with the loss in performance even pronounced in the
more difficult splits. For the larger models like Qwen2.5-14B and Gemma-3-12B, the performance
on the medium splits significantly improves from their smaller counterparts, but this improvement
does not scale to the hard split.

Models | Easy Medium Hard
|  Accuracy F1-Score |  Accuracy F1-Score |  Accuracy F1-Score

Gemma-3-4B 0.46 £+ 0.03 0.41 £+ 0.05 0.24 £+ 0.08 0.25 £ 0.02 0.13 £0.10 0.09 £ 0.07
Qwen-2.5-7B 0.54 £+ 0.06 0.51 +0.09 0.30 £ 0.04 0.33 £0.11 0.19 £ 0.03 0.15 £+ 0.08
Mistral-7B 0.51 £ 0.05 0.49 + 0.02 0.28 + 0.07 0.26 £ 0.09 0.17 £ 0.04 0.14 + 0.06
Llama-3.1-8B 0.49 £+ 0.08 0.51 +0.04 0.27 +0.10 0.30 £ 0.03 0.16 £ 0.07 0.11 +0.05
Aya-Expanse-8B 0.56 £ 0.02 0.59 + 0.06 0.37 £ 0.09 0.41 £ 0.05 0.18 £ 0.03 0.12 £+ 0.08
Falcon-3-10B 0.51 £ 0.07 0.50 £+ 0.03 0.43 £ 0.05 0.39 £ 0.07 0.17 £ 0.09 0.13 £ 0.02
Gemma-3-12B 0.55 £+ 0.04 0.61 + 0.08 0.43 £ 0.02 0.46 £ 0.06 0.20 £0.11 0.16 £+ 0.03
Qwen-2.5-14B 0.54 £ 0.09 0.57 + 0.05 0.41 + 0.07 0.38 £ 0.04 0.19 £ 0.02 0.11 +£0.10
Phi-4-14B 0.57 £0.03 0.55 + 0.07 0.45+0.11 0.41 £ 0.09 0.20 £ 0.05 0.10 + 0.04
Mistral-Small-3.1-24B 0.66 = 0.11 0.67 £ 0.02 0.49 £+ 0.08 0.51 +0.03 0.22 + 0.07 0.18 £ 0.09

2.4 Post-processing and Quality Assurance: Refining the Synthetic Dataset

While our guided generation pipeline was designed for controlled data creation with initial monitoring,
the inherent variability and potential for subtle errors in large-scale synthetic generation necessitate
rigorous post-processing |Liu et al.|(2024). This crucial final stage serves as a comprehensive quality
assurance layer. Our primary objective was to detect and correct any inconsistencies, biases introduced
during generation, or subtle inaccuracies in the expected outputs or rationales that could compromise
the integrity and reliability of the benchmark, particularly for the more complex medium and hard
splits.

Automated Consistency Checks for Verifiable Permissions. For permissions involving quantifiable
constraints or logical conditions that can be programmatically verified — such as API Rate Limit
Permission, Budget Threshold Permission, or Session Timeout Permission — we developed simple
python scripts. These scripts automatically parse the defined permission values, the user query, and the
generated expected response to check for logical consistency (e.g., verifying that a query exceeding a
budget threshold correctly results in a “rejected” response). This automated step efficiently identified
a subset of data points with objective inconsistencies that were missed during manual spot checks.
These flagged data points were then subject to manual review, correction, and replacement to ensure
logical accuracy grounded in the permission rules.

Addressing Response Class Skew. During analysis of the generated data, we observed that for
some permission types or combinations, the synthetic outputs exhibited a noticeable skew towards
flagging responses as “partial”’. To mitigate this, we systematically reviewed the distribution of
expected response types (“full”, “partial”, and “rejected”’) within each data file. For files exhibiting a
considerable skew, we performed targeted manual corrections, replacing a portion of the overrepre-
sented response type data points with corresponding instances yielding balanced quantities of the
underrepresented types. This iterative balancing process aimed to ensure a more uniform distribution
of different response outcomes where appropriate.

Rigorous Rationale Assessment and Correction. The rationale provided for the expected response
in each data point is vital for model training and interpretation. Ensuring its accuracy and clarity,
particularly in complex scenarios, is paramount. For the hard split (20,000 data points), where
LLM generation is most prone to subtle reasoning errors, we conducted an exhaustive, human-
powered rationale assessment. Experts were asked to rate the quality and consistency of the generated
rationale for the expected response type of each data point on a scale of 1 to 5. Data points
receiving a rating below 3 were flagged for manual verification and correction. This intensive review
process reconfirmed that synthetic generation, even when guided, can falter on complex reasoning.
Approximately 750 data points in the hard split required manual regeneration or significant correction
of their rationales due to inconsistencies. A small portion of the medium split data also underwent
this rationale verification, resulting in the replacement of 84 data points.



Table 2: Performance breakdown by decision type. F1 scores for selected larger models across all
splits. Reveals the “’False Partial” error: models achieve lower F1 for "Full’ and Rejected’ decisions
than for "Partial’ due to over-classification of "Partial’ responses, a trend that persists even in flagship
models. While performance increases on the easy split compared to smaller models, this gap narrows

on medium and hard splits.

Models | Easy Medium Hard
| Full Partial Rejected | Full Partial Rejected | Full Partial  Rejected

Mistral-Small-3.1-24B 0.65 0.67 0.68 0.45 0.49 0.51 0.18 0.23 0.20
Gemma-3-27B 0.58 0.69 0.60 0.53 0.52 0.54 0.19 0.21 0.17
Qwen-2.5-32B 0.65 0.72 0.67 0.50 0.51 0.48 0.20 0.16 0.19
Phi-3.5-MoE 0.59 0.62 0.62 0.50 0.47 0.52 0.20 0.19 0.22
GPT-40-mini 0.62 0.64 0.61 0.49 0.52 0.48 0.17 0.21 0.19
GPT-4.1 0.72 0.86 0.74 0.63 0.61 0.68 0.27 0.25 0.27
Gemini-2.5-Pro 0.76 0.81 0.72 0.68 0.64 0.66 0.25 0.24 0.28

Table 3: Error analysis by complexity. The errors
made in the CoT traces of models across sizes can
largely be classified into one of these 8 error types.
We observe that “Scope” and “Context” Erros are
observed more often in the Hard split, provides us
a good starting point for increasing model perfor-

Table 4: Performance breakdown by permission
categories. We gain an insight into which specific
class of permissions do the models struggle more
with. We observe that the “Identity and Authenti-
cation” category has the lowest scores for the Hard

split, indicating that models tend to overlook this

mance. when mixed with other permissions.
Error Category ‘ Easy Medium Hard Performance Category ‘ Easy Medium Hard
nstraint Error o 5% lo . -
Constraint Erro 08% 5% 87% Identity and Authentication 0.59 045 0.16
Scope Error 73% 79% 94% ’ T
L. Access provisioning and Role Manage 0.68 0.48 0.20
Prerequisite Error 47% 49% 61% . R
: Data Protection and Privacy 0.64 0.58 0.17
Conflict Error 56% 1% 86% . . .
L Compliance, Audit, and Policy 0.66 0.60 0.15
Restriction Error 34% 37% 43% .
System and Network Security 0.62 0.58 0.22
Context Error 2% 79% 91% .
Action Mismatch Error 65% 73% 80% Operational and Emergency 0.59 0.45 0.21
’ o i Collaboration and Workflow 0.71 0.59 0.22

False Partial Error 74% 81% 85%

57 3 Experiments and Results

258 To rigorously evaluate the capacity of LLMs to understand and adhere to complex organizational
259 permissions and hierarchical structures, we subjected a diverse set of 16 models, spanning various
260 sizes and providers, to our benchmark. The experimental setup was designed to directly test LLMs’
261 ability to act as permission-aware gateways: given a user query and a defined set of permissions
262 assigned to that user, the model was tasked with outputting a discrete decision: “Full Access”, “Partial
263 Access”, or “Rejected Access”. Prompts included explicit instructions outlining the conditions under
264 which a “Partial Access” decision was appropriate (e.g., if access is permissible except for specific
265 constraints like location or ethical guidelines), guiding the models towards nuanced responses only
266 when strictly justified by the permissions. We quantified model performance using standard Accuracy
267 and F1-score metrics across the three difficulty splits: Easy, Medium, and Hard.

268 Current LLMs exhibit a pronounced decline in performance as organizational access control
269 Scenarios increase in complexity. As detailed in Table|l| our evaluation reveals a stark and con-
270 cerning trend: model performance, measured by both Accuracy and F1-score, degrades sharply
271 and consistently as the number of concurrent permissions increases from the Easy split (single
272 permission) to the Medium (3 permissions) and Hard (5 permissions) splits. For instance, models
273 achieving 70% accuracy on the Easy split plummet to below 40-60% on the Medium split, and
274  further collapse to accuracies often below 20% on the Hard split, as is visualised in Figure 3| (left) .
275 This significant performance drop across diverse models, including state-of-the-art, indicates current
276 LLMs fundamentally struggle with the combinatorial logic and interaction effects of concurrent
277 permissions, directly challenging their viability in realistic enterprise environments.

278 The observed performance plateau suggests current model scaling alone does not adddress the
279 reasoning deficit. Contrary to the trend seen in many standard benchmarks where performance scales
280 reliably with model size, Table [T] and Table [2] show that while larger models like Mistral-Small-
281 3.1 or Phi-4 tend to perform better than smaller ones within each split, they still exhibit the same
282 severe performance degradation across splits. Notably, even these larger models struggle to achieve
283 accuracies much above 30% on the Hard split, and the gap in performance between the easy and
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Figure 2: Performance on individual response types for the larger LLMs. We observe that although
the larger LL.Ms have closed down the gap between the Easy and Medium splits, they struggle the
same as the smaller LLMs on the Hard split. The difference is more pronounced in the flagship
models, GPT-4.1 and Gemini-2.5-Pro, where the performance for the Easy and Medium splits have
increased across response types, but the performance on Hard is barely different from the rest. We
also visualise the “False Partial Error” in the plots, where the “Full” and “Rejected” scores are slightly
lesser than the “Partial” scores due to over-prediction.

the hard split only increases with model size as is seen in Figure [3 (right). This finding is critical: it
implies that simply increasing model parameters or training data on general tasks is insufficient to
instill the specific type of robust, compositional reasoning required to navigate complex, hierarchical
access control policies.

Analysis of model outputs reveals consistent patterns of fundamental reasoning errors across
diverse architectures. To understand why models are failing, we conducted a detailed error analysis,
categorizing the types of mistakes observed in the models’ generated rationales and final decisions.
As summarized in Table 3] (with detailed definitions in the Appendix), common error categories like
“Constraint Error” (failing to apply a specified limit or condition), “Scope Error” (misunderstanding
the boundaries or applicability of a permission, e.g., failing to recognize Texas is within the scope of
US access), and “Conflict Error” (inability to resolve contradictions or complex interactions between
multiple permissions) are prevalent and, importantly, increase significantly in frequency from the
Easy to the Hard splits. This consistent pattern across models suggests that the struggle is rooted
in a fundamental difficulty with logical deduction, scope resolution, and conflict handling within
structured rule sets, rather than model-specific quirks or architectural limitations.

A particularly troublesome failure mode is the propensity for “False Partial” responses, under-
mining trustworthiness. Delving deeper into the decision-making outcomes, Table [2] provides a
breakdown of F1 scores for “Full”, “Partial”, and “Rejected” response types for select larger models.
A concerning pattern emerges: models frequently achieve lower F1 scores on “Full” and “Rejected”
decisions compared to “Partial” decisions, particularly on the more complex splits. This is signif-
icantly driven by the “False Partial Error” (Table 3), where models incorrectly classify a query as
requiring “Partial Access” even when the correct response is clearly “Full Access” or “Rejected
Access” based on the provided permissions and explicit prompt instructions. Our examination of
model rationales indicates that even when the chain-of-thought reasoning appears somewhat coherent,
the final decision mapping to the discrete output classes falters, often defaulting to the “partial” option.
This indicates a difficulty in making definitive, binary logical conclusions based strictly on complex
inputs.

Even state-of-the-art flagship models struggle significantly with hierarchical reasoning and exhibit
similar core limitations. Our evaluation included models widely considered to be at the forefront of

LLM capabilities, such as GPT-4.1 and Gemini-2.5-Pro. While these flagship models tend to exhibit
slightly more consistent internal reasoning trajectories (leading to fewer “False Partial” errors as a
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Figure 3: left. Comparing the performance of 10 LLMs varying from 4B model to 24B size model
across the difficulty splits. We observe that while the larger models are more capable in solving the
Easy and Medium splits, the performance on the Hard split is not very different from the smaller
ones. Some models like Phi-4, which although score very well in the first two splits, incur a sharp
drop in performance on the last split. right. A visualisation of the performance gap for the larger
models between the Hard (the portion in dark) and the Easy (the portion in the lighter colour) split.
The flagship models, GPT-4.1 and Gemini-2.5-Pro, have higher scores that the rest of the models, the
performance gap is still the same. This highlights that a good performance on the benchmark would
require effectively reducing this performance gap between the Easy and the Hard split.

percentage of total errors compared to some smaller models, although still significant), Table 2] shows
that their performance on the Hard split still hovers below an F1 of 0.3. Even for GPT-4.1, widely
regarded as a strong reasoner, the ability to correctly handle the interaction of 5 potentially conflicting
permissions remains limited. Our analysis of their failures reveals that they often either overlook
certain permissions entirely or incorrectly prioritize non-critical elements in the user query over the
strict logical constraints imposed by the permissions, pointing to persistent challenges in systematic,
rule-based reasoning in complex contexts.

Performance varies across permission categories, pinpointing specific areas of weakness in orga-
nizational logic understanding. Zooming out to the seven high-level control groups defined in our
methodology, Table [d] presents the average F1 scores by permission category across the splits. While
performance declines universally with complexity, certain categories appear consistently more chal-
lenging or reveal particular sensitivities. For instance, categories like “Identity and Authentication” or
“Compliance, Audit, and Policy” show lower F1 scores, especially in the Hard split. This aligns with
our error analysis: Identity/Authentication permissions often involve sequential prerequisites prone to
“Prerequisite Errors™, while Compliance/Audit/Policy controls frequently present intricate, layered
rules and edge cases that exacerbate “Constraint Errors” and “Conflict Errors”, proving particularly
difficult for models to resolve accurately.

The evaluation of 35 state-of-the-art LLMs over the OrgAccess dataset reveals that current LLMs
struggle significantly with real-world access control complexities, with performance dropping sharply
with increasing difficulty. Analysis shows prevalent reasoning errors, including scope, constraint,
conflict, and false partial failures. This indicates current LLM reasoning is insufficient for structured,
rule-based enterprise systems, supporting our thesis and highlighting the urgent need for focused re-
search in enabling organizational Al deployment. The OrgAccess dataset could serve as a benchmark
for this overlooked domain of research.

4 Conclusion

We developed a new, expert-validated synthetic benchmark grounded in established cybersecurity
frameworks (NIST/RBAC), defining 40 representative permissions across three difficulty splits
(Easy, Medium, Hard). The empirical findings underscore that current LLMs are not inherently
capable of strictly adhering to organizational access policies. This highlights the need for focused
research into models capable of reliable, hierarchy-aware reasoning. Our benchmark provides a
vital tool for the community to assess limitations, diagnose failures, and drive development towards
truly dependable organization scale LLM . While expertly validated, our synthetic benchmark is an
abstraction; expanding its scope and partnering with organizations for deeper insights are important
future steps to enhance realism and impact.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claimed proposing a high-quality synthetic dataset which paves way for
a new reasoning paradigm for current state-of-the-art LLMs. Our results show that even
flagship LLMs struggle to achieve good scores on our benchmark.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: A dedicated “Limitations” section have been included in the Appendix and a
hint of the same can be seen in the Conclusion of the work. We discuss how representing
organisational structures is a serious hurdle due to closed-source information. However, we
hope that our work inspires more people to collaborate and further LLM reasoning research
in this domain.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not have any theoretical results in our paper. Everything has been
empircally validated.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A dedicated ‘“Reproducibility” section has been included in the Appendix
of the work which provides detailed guidance into how to set up benchmarking for their
own LLMs by accessing our dataset from HuggingFace. Code has also been provided for
reference.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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736 (d) We recognize that reproducibility may be tricky in some cases, in which case

737 authors are welcome to describe the particular way they provide for reproducibility.
738 In the case of closed-source models, it may be that access to the model is limited in
739 some way (e.g., to registered users), but it should be possible for other researchers
740 to have some path to reproducing or verifying the results.

741 5. Open access to data and code

742 Question: Does the paper provide open access to the data and code, with sufficient instruc-
743 tions to faithfully reproduce the main experimental results, as described in supplemental
744 material?

745 Answer: [Yes]

746 Justification: We have open-sourced both our dataset hosted on HuggingFace and our code
747 repository on Github. Links to both can be found on Page 1.

748 Guidelines:

749 » The answer NA means that paper does not include experiments requiring code.

750 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
751 public/guides/CodeSubmissionPolicy) for more details.

752 * While we encourage the release of code and data, we understand that this might not be
753 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
754 including code, unless this is central to the contribution (e.g., for a new open-source
755 benchmark).

756 * The instructions should contain the exact command and environment needed to run to
757 reproduce the results. See the NeurIPS code and data submission guidelines (https:
758 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

759 * The authors should provide instructions on data access and preparation, including how
760 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
761 * The authors should provide scripts to reproduce all experimental results for the new
762 proposed method and baselines. If only a subset of experiments are reproducible, they
763 should state which ones are omitted from the script and why.

764 * At submission time, to preserve anonymity, the authors should release anonymized
765 versions (if applicable).

766  Providing as much information as possible in supplemental material (appended to the
767 paper) is recommended, but including URLSs to data and code is permitted.

768 6. Experimental setting/details

769 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
770 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
771 results?

772 Answer: [Yes]

773 Justification: Section [2| contains the detailed pipeline that was adopted for creating the
774 dataset, and why certain actions were chosen. We have not trained LLMs or any other
775 machine learning models for our work.

776 Guidelines:

777 * The answer NA means that the paper does not include experiments.

778 * The experimental setting should be presented in the core of the paper to a level of detail
779 that is necessary to appreciate the results and make sense of them.

780 * The full details can be provided either with the code, in appendix, or as supplemental
781 material.

782 7. Experiment statistical significance

783 Question: Does the paper report error bars suitably and correctly defined or other appropriate
784 information about the statistical significance of the experiments?

785 Answer: [Yes]

786 Justification: Confidence intervals for all relevant tables have been added. Intervals for Table
787 [2]and Table 4] will be included in the Appendix for adding them in the main paper causes it
788 to extend out of the paper borders.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We mention the execution time for the benchmark on various models that we
have used in the “Reproducibility” section in the Appendix. We do not have any training
involved and work with the Mistral API, hence memory usage is not relevant for our work.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have thoroughly read the Code of Ethics and abide by the same.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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12.

Answer: [Yes]

Justification: A short section named “Social Considerations” have been included in the
Appendix which discusses the social impact of using LLMs in large scale organisations and
how to be careful with them.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The entire Section [2]discusses the various safety measures that were adopted
to reduce bias in the dataset and make it more diverse and practical.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code and data has been open-sourced under the MIT license. Since we
are the first to publish an organizational reasoning benchmark, we hope the rest of the
community picks up on the same.
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14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed documentation for using the dataset and the benchmark codes have
been provided on both HuggingFace and Github repositories that have been open-sourced.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any crowdsourcing experiments. Some details into how certain
decisions about the dataset were taken with the expert panel of professionals have been
discussed in the Appendix of the paper.

Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not include any human subjects for our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in developing pipeline or the methodology for the dataset.
LLM-based grammar checkers have been used in paper writing.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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