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Abstract

Role-based access control (RBAC) and hierarchical structures are foundational to1

how information flows and decisions are made within virtually all organizations.2

As the potential of Large Language Models (LLMs) to serve as unified knowledge3

repositories and intelligent assistants in enterprise settings becomes increasingly ap-4

parent, a critical, yet underexplored, challenge emerges: can these models reliably5

understand and operate within the complex, often nuanced, constraints imposed6

by organizational hierarchies and associated permissions? Evaluating this cru-7

cial capability is inherently difficult due to the proprietary and sensitive nature8

of real-world corporate data and access control policies. To address this barrier9

and provide a realistic testbed, we collaborated with professionals from diverse10

organizational structures and backgrounds to develop a synthetic yet representa-11

tive OrgAccess benchmark. OrgAccess defines 40 distinct types of permissions12

commonly relevant across different organizational roles and levels. We further13

create three types of permissions: 40,000 easy (1 permission), 10,000 medium14

(3-permissions tuple), and 20,000 hard (5-permissions tuple) to test LLMs’ ability15

to accurately assess these permissions and generate responses that strictly adhere16

to the specified hierarchical rules, particularly in scenarios involving users with17

overlapping or conflicting permissions, a common source of real-world complex-18

ity. We evaluate LLMs across various sizes and providers on this benchmark to19

provide a detailed report on model performances. Surprisingly, our findings re-20

veal that even state-of-the-art LLMs struggle significantly to maintain compliance21

with role-based structures, even with explicit instructions, with their performance22

degrades further when navigating interactions involving two or more conflicting23

permissions. Specifically, even GPT-4.1 only achieves an F1-Score of 0.27 on our24

hardest benchmark. This demonstrates a critical limitation in LLMs’ complex25

rule following and compositional reasoning capabilities beyond standard factual or26

STEM-based benchmarks, opening up a new paradigm for evaluating their fitness27

for practical, structured environments. Our benchmark thus serves as a vital tool28

for identifying weaknesses and driving future research towards more reliable and29

hierarchy-aware LLMs. The dataset1 and the code2 has been open-sourced.30

1 Introduction31

LLM advancements Team et al. (2025); OpenAI et al. (2024); Grattafiori et al. (2024); Jiang et al.32

(2024); Guo et al. (2025) are driving their exploration in enterprises as knowledge repositories33

1respai-lab/orgaccess Datasets at Hugging Face
2respailab/orgaccess Code at GitHub
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and support staff. Large firms like JPMorgan Chase 3 and McKinsey 4 are piloting internal LLMs.34

However, enterprise reliability requires robust reasoning beyond general knowledge. A critical,35

overlooked need is LLMs’ ability to adhere to dynamic role-based access control (RBAC) Sandhu36

(1998) and organizational hierarchies. Permissions constantly evolve; navigating these nuances,37

respecting constraints, is paramount for safe deployment. Despite interest in LLMs as enterprise38

“Conversational Operating Systems” Packer et al. (2024); Ge et al. (2023), benchmarks for this39

capability are absent Feretzakis & Verykios (2024); Zhang et al. (2024).40

Evaluating LLMs within realistic organizational structures presents substantial challenges, largely41

explaining limited research. The primary difficulty is the proprietary and sensitive nature of real-world42

corporate data, internal hierarchies, and access control policies. Organizations are reluctant to share43

these configurations due to privacy, competitive, and security risks Wang et al. (2025); Bodensohn44

et al. (2025); Harandizadeh et al. (2024). Further difficulty arises from complex real-world role45

assignments, where individuals may hold multiple, conflicting permissions, demanding sophisticated46

reasoning. Failure to respect hierarchy or permissions can lead to severe consequences, including data47

privacy compromises, compliance violations, or significant financial losses. Thus, safe, widespread48

adoption of LLMs in enterprise necessitates extensive, realistic testing mirroring access control49

policies.50

Addressing the critical gap between enterprise interest in LLMs and suitable evaluation tools for51

organizational hierarchies, we introduce a novel benchmark. Collaborating with professionals, we52

curated a high-quality, synthetic, yet representative dataset 1. This benchmark simulates real-world53

permissioning by defining 40 distinct permission types. It uses carefully crafted user queries to test54

LLMs’ ability to strictly adhere to assigned permissions and respect hierarchical structures. Following55

Role-Based Access Control principles, our dataset models permissions attached to roles, assigned56

to users, allowing for realistic dynamic scenarios where permissions combine or change 5. Using57

this modular design, we construct three difficulty splits: easy, medium (3 concurrent permissions),58

and hard (5 concurrent permissions). Each split incrementally increases permission combinations59

and query complexity, enabling nuanced evaluation of navigating different permissions, identifying60

conflicts, and maintaining access controls.61

To assess the current state of LLM capabilities in this critical domain, we conducted extensive62

empirical evaluations using our benchmark. We tested a diverse set of frontier LLMs spanning63

various model sizes and providers, ranging from models as small as 4B Team et al. (2025) parameters64

to state-of-the-art LLMs like GPT-4.1 OpenAI (2024) and Gemini-2.5-Pro Team (2025), probing65

their performance on tasks requiring permission-aware responses. Our results reveal a surprising and66

significant finding: current state-of-the-art LLMs are remarkably ill-equipped to function reliably as67

knowledge repositories requiring strict adherence to organizational hierarchies and permissions. Even68

on the comparatively straightforward easy splits, where permissions are less complex, prominent69

models such as Qwen, Llama, Gemma, and Mistral yield surprisingly low accuracies. Furthermore,70

we observed no significant improvement in performance on the more complex medium and hard71

splits as model size increased, indicating that simply scaling up current architectures does not72

effectively address this particular deficit. This performance ceiling highlights a fundamental gap in73

current LLMs’ practical reasoning abilities—specifically, their capacity for robust, compositional74

rule-following and conflict resolution within a structured, hierarchical context, distinguishing it75

sharply from performance on standard academic or STEM-based benchmarks.76

We present the following contributions in our work:77

❶ Identifying a Critical Evaluation Gap: We highlight the pressing need for robust evaluation of78

LLMs within organizational hierarchical and role-based access control contexts, a crucial requirement79

for their safe and effective enterprise deployment, which has been largely overlooked as a reasoning80

paradigm.81

❷ A New Benchmark for Organizational Reasoning: We introduce the first-of-its-kind, expert-82

curated synthetic benchmark specifically tailored to test LLMs’ ability to reason about and respect83

3https://www.cnbc.com/2024/08/09/jpmorgan-chase-ai-artificial-intelligence-assistant-chatgpt-openai.
html

4https://www.mckinsey.com/capabilities/mckinsey-digital/how-we-help-clients/
rewiring-the-way-mckinsey-works-with-lilli

5https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html

2

https://www.cnbc.com/2024/08/09/jpmorgan-chase-ai-artificial-intelligence-assistant-chatgpt-openai.html
https://www.cnbc.com/2024/08/09/jpmorgan-chase-ai-artificial-intelligence-assistant-chatgpt-openai.html
https://www.mckinsey.com/capabilities/mckinsey-digital/how-we-help-clients/rewiring-the-way-mckinsey-works-with-lilli
https://www.mckinsey.com/capabilities/mckinsey-digital/how-we-help-clients/rewiring-the-way-mckinsey-works-with-lilli
https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html


organizational permissions and hierarchies, featuring 40 distinct permission types and three progres-84

sively challenging evaluation splits.85

❸ Empirical Evidence of LLM Limitations: Through extensive evaluation of 16 LLMs of varying86

sizes, including state-of-the-art LLMs like GPT-4.1 and Gemini-2.5-Pro, we provide compelling87

empirical evidence demonstrating that current frontier models surprisingly struggle with permission-88

aware reasoning, particularly in scenarios involving conflicting constraints, indicating a significant89

limitation in their practical reasoning capabilities.90

❹ Paving the Way for Hierarchy-Aware LLMs: Our benchmark provides a vital, reproducible tool91

for the community to assess models, diagnose specific failure modes, and drive future research towards92

developing LLMs that are genuinely reliable and safe for integration into structured organizational93

environments.94

2 The OrgAccess Dataset95

2.1 Setting the Core Permission Set: Grounding the Benchmark in Organizational Reality96

To ensure our benchmark accurately reflects the complexities and operational realities of large-scale97

organizations, and to move beyond simplistic, “toy” data configurations, a fundamental step in our98

methodology was the rigorous definition and selection of the core set of permissions. This permission99

set forms the bedrock upon which our simulated organizational structures and user queries are100

built. Our primary objective was to curate permissions that are not only diverse but also genuinely101

representative of the types of access controls and data handling constraints encountered in real-world102

enterprise environments. The permission schemas were vetted by a cross-disciplinary panel of103

practitioners: a CTO of a CRM (Customer Relationship Management) company, a Head of Media104

and Advertising at a (IT) services and consulting company, a Security Architect at a leading global105

cloud provider, a Senior Engineer at a E-commerce company, and a Senior Technical Staff at a major106

semiconductor company. Their feedback confirmed that the synthetic roles and access combinations107

reasonable aligned with real-world RBAC patterns in large enterprises.108

Our approach is rooted in Role-Based Access Control (RBAC) Sandhu (1998), where permissions are109

tied to roles, and users to roles, allowing for dynamic permission assignments Ghazal et al. (2021).110

To establish an industry-aligned foundation, we adopted a top-down strategy using the NIST Special111

Publication 800-53 Control Families NIST (2020) and the NIST Cybersecurity Framework (CSF)112

NIST (2024). From these comprehensive frameworks, we identified seven broad control groups113

representing critical enterprise domains: ❶ Identity & Authentication Controls (NIST SP 800-53114

IA IA (2013), NIST CSF PR.DS CSF (2018)), ❷ Access Provisioning & Role Management (NIST115

SP 800-53 AC AC (2020)), ❸ Data Protection & Privacy Controls (NIST CSF PR.DS, NIST SP116

800-53 MP MP (2020)), ❹ Compliance, Audit & Policy Controls (NIST SP 800-53 AU AU (2020),117

PL PL (2020)), ❺ System & Network Security Controls (NIST SP 800-53 SC SC (2020), CM CM118

(2020)), ❻ Operational & Emergency Controls (NIST SP 800-53 CP CP (2020), IR IR (2020)), and119

❼ Collaboration & Workflow Controls (CSF ID.GV IDGV (2018)).120

Permissions derived from these widely recognized frameworks provide a robust and relevant basis121

for simulating enterprise access control. To operationalize this, we initially drafted ten specific122

permissions under each of these seven categories, aiming for granular examples of access rights. This123

initial pool was then subjected to a rigorous expert validation process to refine and select the final set.124

We engaged professionals from diverse industrial sectors and educational institutions, leveraging their125

real-world experience through a structured Delphi method Rashid et al. (2020); Ahmed et al. (2022).126

In this iterative process, each expert independently reviewed the drafted permissions, removing those127

they deemed unrealistic, ambiguous, or redundant in a typical organizational context. The results128

were aggregated, and the refined list was presented to the experts for subsequent rounds of review.129

This Delphi process was repeated three times, converging on a final list of 40 distinct permissions130

(details in Appendix), which our expert panel validated as highly representative of permissions held131

by employees across various designations and organizational levels.132

This focused, expert-validated, and framework-aligned process ensures that the fundamental building133

blocks of our benchmark; the 40 permissions are grounded in actual organizational practices and134

security considerations, thereby supporting our overall goal of providing a realistic and challenging135
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Figure 1: The pipeline for creating OrgAccess. 40 permissions are selected after expert-review
from a pool of 70 initial permissions. These 40 permissions are then used to create the 3 data splits
: Easy (single permission), Medium (3 permissions), and Hard (5 permissions). The permission
combinations for Medium and Hard splits are created after 3 rounds of selection from the expert
panel.

evaluation environment for LLMs beyond artificial scenarios. These 40 permissions serve as the136

vocabulary from which we generate complex queries in subsequent stages of our methodology.137

2.2 Generating the Easy Split: Establishing Baseline Permission Understanding138

Having meticulously defined and validated the set of 40 core organizational permission types, the139

subsequent step in constructing our benchmark was to generate a large-scale synthetic dataset. The140

objective of the easy split is to systematically evaluate LLMs’ fundamental capacity to correctly141

interpret and adhere to individual permission constraints in isolation. This serves as a crucial baseline142

to understand if models can grasp the core meaning of each permission type before evaluating143

their performance on more complex scenarios involving permission combinations and conflicts.144

Synthetic data generation was essential as realistic organizational data with explicit permission labels145

is proprietary and inaccessible. We aimed for a controlled, high-quality generation process to produce146

a substantial number of diverse query-response pairs for each permission.147

Our generation pipeline for the easy split began by leveraging the 40 defined permissions. For148

each permission type, we first hand-authored 100 high-quality seed data points. Each seed point149

comprises a specific permission instance Figure 1, a realistic user query related to that permission,150

and the correct expected response along with a rationale justifying why the response adheres to the151

permission. These seeds were rigorously peer-reviewed by the author team and our domain experts to152

ensure they accurately capture the nuances of each permission type and provide clear, unambiguous153

ground truth.154

These 100 high-quality seeds per permission served as anchors for generating a larger synthetic155

dataset using a powerful LLM. We employed Mistral Small 3.1 Mistral (2025) to generate 1000156

synthetic data points for each of the 40 permission types, resulting in a total of 40,000 data points157

for the easy split. We specifically opted an open-source model like Mistral for its strong generation158

capabilities while offering greater transparency and reproducibility with a reduced carbon footprint.159

In initial generation trials, we observed a notable challenge: the synthetically generated data points,160

while grammatically correct, exhibited significant biases and lacked diversity, closely mirroring161

known biases in LLM training data Zhu et al. (2024); Kamruzzaman et al. (2024); Venkit et al.162

(2023). For instance, in permissions involving geographic restrictions, the generated locations were163

overwhelmingly limited to the US and Canada. Similarly, permissions related to Third-Party Vendor164

Access, Region-wise restrictions, and Code deployment permissions showed limited variation in the165

specific entities generated. This lack of diversity would undermine the benchmark’s ability to test166

LLMs on a wide spectrum of real-world scenarios.167

To counteract these generative biases and ensure realistic diversity, we developed a guided generation168

strategy. For permission types prone to limited variation, we curated comprehensive lists of diverse,169
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representative options (e.g., a list of 40 global countries for location restrictions, lists of various170

cloud providers from different nations, software repositories). During synthetic data generation for171

these specific permissions, our prompting strategy included instructions in a few-shot setting Brown172

et al. (2020) to sample uniformly from these curated lists to populate the variable fields within the173

permission statements and user queries. We observe that this guided generation approach, combined174

with carefully engineered system prompts tailored for each permission type and the strategic curation175

of relevant roles (e.g., limiting Employee Onboarding/Offboarding queries to HR roles, or AI training176

data access to Data Science/Research roles), resulted in a vastly more diverse, well-distributed, and177

practically aligned dataset for the easy split.178

2.3 Constructing the Medium and Hard Splits: Simulating Complex Organizational Realities179

While the easy split provides a baseline for individual permissions, a crucial aspect of real-world180

organizations is that employees handle multiple concurrent permissions, often conflicting. Evaluating181

LLMs’ ability to navigate this complexity is essential for enterprise readiness. To test this, we182

extended our benchmark with medium and hard splits, simulating scenarios with 3 and 5 concurrent183

permissions, respectively.184

Creating meaningful permission combinations required a deliberate, non-random approach to ensure185

benchmark relevance and query quality. We adopted a balanced stochastic method guided by expert186

insight. Building on the seven control groups (Section 2.1), we drafted initial combinations as187

triplets (medium) and quintets (hard). We prioritized combinations within the same or related groups,188

including inter-group combinations for stochasticity. For the medium split, 100 intra-group and 50189

inter-group triplets were initially drafted; experts selected the final 100. For the hard split, 200190

inter-group and 100 additional inter-domain quintets were prepared. This expert-guided approach191

ensures realistic and challenging permission combinations.192

To validate and refine these potential combinations, we again engaged our panel of industry profes-193

sionals. Using a modified Delphi method similar to the one for selecting the core permissions, experts194

independently reviewed the drafted combinations, eliminating those deemed redundant, ambiguous,195

or unrealistic. This was followed by two rounds of blind peer review, where experts evaluated the196

selections made by others. This iterative, expert-driven process converged on a final set of 100197

representative permission triplets for the medium split and, following the same rigorous process with198

an initial pool of combinations, 200 meaningful permission quintets for the hard split. This rigorous199

selection process ensures that the permission combinations in our medium and hard splits reflect200

plausible, challenging scenarios encountered in real organizational contexts, including situations201

where permissions may be implicitly or explicitly conflicting or consisting certain edge cases.202

With the permission combinations defined, we proceeded to generate the corresponding data points.203

Leveraging the successful few-shot guided generation strategy developed for the easy split (Section204

2.2), we adapted it to handle multiple simultaneous permissions. For each of the 100 selected triplets205

and 200 quintets, we generated 100 synthetic data points using Mistral Small 3.1. The model was206

specifically prompted to incorporate all permissions within the given combination and to craft a user207

query that requires the LLM to reason about the interaction of these permissions to derive the correct208

response. Crucially, for combinations involving permissions with variable parameters (like locations209

or vendors), we continued to uniformly sample from the curated lists of diverse options established210

during the easy split generation, ensuring variety within each combination’s instances.211

This generation process resulted in 10,000 data points for the medium split and 20,000 data points for212

the hard split. Throughout the generation, we maintained close monitoring and incorporated a manual213

review step for each batch of 100 generations to check for inconsistencies and verify that all specified214

permissions were correctly factored into the model’s simulated reasoning process and the expected215

output (more details in 2.4). This extensive, controlled methodology, moving from expert-selected216

realistic permission combinations to guided synthetic data generation with quality checks, allowed us217

to create a total of 70,000 data points across the three splits, representing a tiered benchmark that218

moves from fundamental permission understanding to navigating the complexities of concurrent,219

potentially conflicting, constraints and edge cases inherent in real-world organizational environments.220
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Table 1: Performance of 10 LLMs on all 3 splits. We observe that smaller models like Gemma-3-4B
struggle to cross 50% accuracy on the easy split, with the loss in performance even pronounced in the
more difficult splits. For the larger models like Qwen2.5-14B and Gemma-3-12B, the performance
on the medium splits significantly improves from their smaller counterparts, but this improvement
does not scale to the hard split.

Models Easy Medium Hard

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Gemma-3-4B 0.46 ± 0.03 0.41 ± 0.05 0.24 ± 0.08 0.25 ± 0.02 0.13 ± 0.10 0.09 ± 0.07
Qwen-2.5-7B 0.54 ± 0.06 0.51 ± 0.09 0.30 ± 0.04 0.33 ± 0.11 0.19 ± 0.03 0.15 ± 0.08
Mistral-7B 0.51 ± 0.05 0.49 ± 0.02 0.28 ± 0.07 0.26 ± 0.09 0.17 ± 0.04 0.14 ± 0.06
Llama-3.1-8B 0.49 ± 0.08 0.51 ± 0.04 0.27 ± 0.10 0.30 ± 0.03 0.16 ± 0.07 0.11 ± 0.05
Aya-Expanse-8B 0.56 ± 0.02 0.59 ± 0.06 0.37 ± 0.09 0.41 ± 0.05 0.18 ± 0.03 0.12 ± 0.08
Falcon-3-10B 0.51 ± 0.07 0.50 ± 0.03 0.43 ± 0.05 0.39 ± 0.07 0.17 ± 0.09 0.13 ± 0.02
Gemma-3-12B 0.55 ± 0.04 0.61 ± 0.08 0.43 ± 0.02 0.46 ± 0.06 0.20 ± 0.11 0.16 ± 0.03
Qwen-2.5-14B 0.54 ± 0.09 0.57 ± 0.05 0.41 ± 0.07 0.38 ± 0.04 0.19 ± 0.02 0.11 ± 0.10
Phi-4-14B 0.57 ± 0.03 0.55 ± 0.07 0.45 ± 0.11 0.41 ± 0.09 0.20 ± 0.05 0.10 ± 0.04
Mistral-Small-3.1-24B 0.66 ± 0.11 0.67 ± 0.02 0.49 ± 0.08 0.51 ± 0.03 0.22 ± 0.07 0.18 ± 0.09

2.4 Post-processing and Quality Assurance: Refining the Synthetic Dataset221

While our guided generation pipeline was designed for controlled data creation with initial monitoring,222

the inherent variability and potential for subtle errors in large-scale synthetic generation necessitate223

rigorous post-processing Liu et al. (2024). This crucial final stage serves as a comprehensive quality224

assurance layer. Our primary objective was to detect and correct any inconsistencies, biases introduced225

during generation, or subtle inaccuracies in the expected outputs or rationales that could compromise226

the integrity and reliability of the benchmark, particularly for the more complex medium and hard227

splits.228

Automated Consistency Checks for Verifiable Permissions. For permissions involving quantifiable229

constraints or logical conditions that can be programmatically verified – such as API Rate Limit230

Permission, Budget Threshold Permission, or Session Timeout Permission – we developed simple231

python scripts. These scripts automatically parse the defined permission values, the user query, and the232

generated expected response to check for logical consistency (e.g., verifying that a query exceeding a233

budget threshold correctly results in a “rejected” response). This automated step efficiently identified234

a subset of data points with objective inconsistencies that were missed during manual spot checks.235

These flagged data points were then subject to manual review, correction, and replacement to ensure236

logical accuracy grounded in the permission rules.237

Addressing Response Class Skew. During analysis of the generated data, we observed that for238

some permission types or combinations, the synthetic outputs exhibited a noticeable skew towards239

flagging responses as “partial”. To mitigate this, we systematically reviewed the distribution of240

expected response types (“full”, “partial”, and “rejected”) within each data file. For files exhibiting a241

considerable skew, we performed targeted manual corrections, replacing a portion of the overrepre-242

sented response type data points with corresponding instances yielding balanced quantities of the243

underrepresented types. This iterative balancing process aimed to ensure a more uniform distribution244

of different response outcomes where appropriate.245

Rigorous Rationale Assessment and Correction. The rationale provided for the expected response246

in each data point is vital for model training and interpretation. Ensuring its accuracy and clarity,247

particularly in complex scenarios, is paramount. For the hard split (20,000 data points), where248

LLM generation is most prone to subtle reasoning errors, we conducted an exhaustive, human-249

powered rationale assessment. Experts were asked to rate the quality and consistency of the generated250

rationale for the expected response type of each data point on a scale of 1 to 5. Data points251

receiving a rating below 3 were flagged for manual verification and correction. This intensive review252

process reconfirmed that synthetic generation, even when guided, can falter on complex reasoning.253

Approximately 750 data points in the hard split required manual regeneration or significant correction254

of their rationales due to inconsistencies. A small portion of the medium split data also underwent255

this rationale verification, resulting in the replacement of 84 data points.256
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Table 2: Performance breakdown by decision type. F1 scores for selected larger models across all
splits. Reveals the ”False Partial” error: models achieve lower F1 for ’Full’ and ’Rejected’ decisions
than for ’Partial’ due to over-classification of ’Partial’ responses, a trend that persists even in flagship
models. While performance increases on the easy split compared to smaller models, this gap narrows
on medium and hard splits.

Models Easy Medium Hard

Full Partial Rejected Full Partial Rejected Full Partial Rejected

Mistral-Small-3.1-24B 0.65 0.67 0.68 0.45 0.49 0.51 0.18 0.23 0.20
Gemma-3-27B 0.58 0.69 0.60 0.53 0.52 0.54 0.19 0.21 0.17
Qwen-2.5-32B 0.65 0.72 0.67 0.50 0.51 0.48 0.20 0.16 0.19
Phi-3.5-MoE 0.59 0.62 0.62 0.50 0.47 0.52 0.20 0.19 0.22
GPT-4o-mini 0.62 0.64 0.61 0.49 0.52 0.48 0.17 0.21 0.19
GPT-4.1 0.72 0.86 0.74 0.63 0.61 0.68 0.27 0.25 0.27
Gemini-2.5-Pro 0.76 0.81 0.72 0.68 0.64 0.66 0.25 0.24 0.28

Table 3: Error analysis by complexity. The errors
made in the CoT traces of models across sizes can
largely be classified into one of these 8 error types.
We observe that “Scope” and “Context” Erros are
observed more often in the Hard split, provides us
a good starting point for increasing model perfor-
mance.

Error Category Easy Medium Hard

Constraint Error 68% 75% 87%
Scope Error 73% 79% 94%
Prerequisite Error 47% 49% 61%
Conflict Error 56% 71% 86%
Restriction Error 34% 37% 43%
Context Error 72% 79% 91%
Action Mismatch Error 65% 73% 80%
False Partial Error 74% 81% 85%

Table 4: Performance breakdown by permission
categories. We gain an insight into which specific
class of permissions do the models struggle more
with. We observe that the “Identity and Authenti-
cation” category has the lowest scores for the Hard
split, indicating that models tend to overlook this
when mixed with other permissions.

Performance Category Easy Medium Hard

Identity and Authentication 0.59 0.45 0.16
Access provisioning and Role Manage 0.68 0.48 0.20
Data Protection and Privacy 0.64 0.58 0.17
Compliance, Audit, and Policy 0.66 0.60 0.15
System and Network Security 0.62 0.58 0.22
Operational and Emergency 0.59 0.45 0.21
Collaboration and Workflow 0.71 0.59 0.22

3 Experiments and Results257

To rigorously evaluate the capacity of LLMs to understand and adhere to complex organizational258

permissions and hierarchical structures, we subjected a diverse set of 16 models, spanning various259

sizes and providers, to our benchmark. The experimental setup was designed to directly test LLMs’260

ability to act as permission-aware gateways: given a user query and a defined set of permissions261

assigned to that user, the model was tasked with outputting a discrete decision: “Full Access”, “Partial262

Access”, or “Rejected Access”. Prompts included explicit instructions outlining the conditions under263

which a “Partial Access” decision was appropriate (e.g., if access is permissible except for specific264

constraints like location or ethical guidelines), guiding the models towards nuanced responses only265

when strictly justified by the permissions. We quantified model performance using standard Accuracy266

and F1-score metrics across the three difficulty splits: Easy, Medium, and Hard.267

Current LLMs exhibit a pronounced decline in performance as organizational access control268

scenarios increase in complexity. As detailed in Table 1, our evaluation reveals a stark and con-269

cerning trend: model performance, measured by both Accuracy and F1-score, degrades sharply270

and consistently as the number of concurrent permissions increases from the Easy split (single271

permission) to the Medium (3 permissions) and Hard (5 permissions) splits. For instance, models272

achieving 70% accuracy on the Easy split plummet to below 40-60% on the Medium split, and273

further collapse to accuracies often below 20% on the Hard split, as is visualised in Figure 3 (left) .274

This significant performance drop across diverse models, including state-of-the-art, indicates current275

LLMs fundamentally struggle with the combinatorial logic and interaction effects of concurrent276

permissions, directly challenging their viability in realistic enterprise environments.277

The observed performance plateau suggests current model scaling alone does not adddress the278

reasoning deficit. Contrary to the trend seen in many standard benchmarks where performance scales279

reliably with model size, Table 1 and Table 2 show that while larger models like Mistral-Small-280

3.1 or Phi-4 tend to perform better than smaller ones within each split, they still exhibit the same281

severe performance degradation across splits. Notably, even these larger models struggle to achieve282

accuracies much above 30% on the Hard split, and the gap in performance between the easy and283
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Figure 2: Performance on individual response types for the larger LLMs. We observe that although
the larger LLMs have closed down the gap between the Easy and Medium splits, they struggle the
same as the smaller LLMs on the Hard split. The difference is more pronounced in the flagship
models, GPT-4.1 and Gemini-2.5-Pro, where the performance for the Easy and Medium splits have
increased across response types, but the performance on Hard is barely different from the rest. We
also visualise the “False Partial Error” in the plots, where the “Full” and “Rejected” scores are slightly
lesser than the “Partial” scores due to over-prediction.

the hard split only increases with model size as is seen in Figure 3 (right). This finding is critical: it284

implies that simply increasing model parameters or training data on general tasks is insufficient to285

instill the specific type of robust, compositional reasoning required to navigate complex, hierarchical286

access control policies.287

Analysis of model outputs reveals consistent patterns of fundamental reasoning errors across288

diverse architectures. To understand why models are failing, we conducted a detailed error analysis,289

categorizing the types of mistakes observed in the models’ generated rationales and final decisions.290

As summarized in Table 3 (with detailed definitions in the Appendix), common error categories like291

“Constraint Error” (failing to apply a specified limit or condition), “Scope Error” (misunderstanding292

the boundaries or applicability of a permission, e.g., failing to recognize Texas is within the scope of293

US access), and “Conflict Error” (inability to resolve contradictions or complex interactions between294

multiple permissions) are prevalent and, importantly, increase significantly in frequency from the295

Easy to the Hard splits. This consistent pattern across models suggests that the struggle is rooted296

in a fundamental difficulty with logical deduction, scope resolution, and conflict handling within297

structured rule sets, rather than model-specific quirks or architectural limitations.298

A particularly troublesome failure mode is the propensity for “False Partial” responses, under-299

mining trustworthiness. Delving deeper into the decision-making outcomes, Table 2 provides a300

breakdown of F1 scores for “Full”, “Partial”, and “Rejected” response types for select larger models.301

A concerning pattern emerges: models frequently achieve lower F1 scores on “Full” and “Rejected”302

decisions compared to “Partial” decisions, particularly on the more complex splits. This is signif-303

icantly driven by the “False Partial Error” (Table 3), where models incorrectly classify a query as304

requiring “Partial Access” even when the correct response is clearly “Full Access” or “Rejected305

Access” based on the provided permissions and explicit prompt instructions. Our examination of306

model rationales indicates that even when the chain-of-thought reasoning appears somewhat coherent,307

the final decision mapping to the discrete output classes falters, often defaulting to the “partial” option.308

This indicates a difficulty in making definitive, binary logical conclusions based strictly on complex309

inputs.310

Even state-of-the-art flagship models struggle significantly with hierarchical reasoning and exhibit311

similar core limitations. Our evaluation included models widely considered to be at the forefront of312

LLM capabilities, such as GPT-4.1 and Gemini-2.5-Pro. While these flagship models tend to exhibit313

slightly more consistent internal reasoning trajectories (leading to fewer “False Partial” errors as a314
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Figure 3: left. Comparing the performance of 10 LLMs varying from 4B model to 24B size model
across the difficulty splits. We observe that while the larger models are more capable in solving the
Easy and Medium splits, the performance on the Hard split is not very different from the smaller
ones. Some models like Phi-4, which although score very well in the first two splits, incur a sharp
drop in performance on the last split. right. A visualisation of the performance gap for the larger
models between the Hard (the portion in dark) and the Easy (the portion in the lighter colour) split.
The flagship models, GPT-4.1 and Gemini-2.5-Pro, have higher scores that the rest of the models, the
performance gap is still the same. This highlights that a good performance on the benchmark would
require effectively reducing this performance gap between the Easy and the Hard split.

percentage of total errors compared to some smaller models, although still significant), Table 2 shows315

that their performance on the Hard split still hovers below an F1 of 0.3. Even for GPT-4.1, widely316

regarded as a strong reasoner, the ability to correctly handle the interaction of 5 potentially conflicting317

permissions remains limited. Our analysis of their failures reveals that they often either overlook318

certain permissions entirely or incorrectly prioritize non-critical elements in the user query over the319

strict logical constraints imposed by the permissions, pointing to persistent challenges in systematic,320

rule-based reasoning in complex contexts.321

Performance varies across permission categories, pinpointing specific areas of weakness in orga-322

nizational logic understanding. Zooming out to the seven high-level control groups defined in our323

methodology, Table 4 presents the average F1 scores by permission category across the splits. While324

performance declines universally with complexity, certain categories appear consistently more chal-325

lenging or reveal particular sensitivities. For instance, categories like “Identity and Authentication” or326

“Compliance, Audit, and Policy” show lower F1 scores, especially in the Hard split. This aligns with327

our error analysis: Identity/Authentication permissions often involve sequential prerequisites prone to328

“Prerequisite Errors”’, while Compliance/Audit/Policy controls frequently present intricate, layered329

rules and edge cases that exacerbate “Constraint Errors” and “Conflict Errors”, proving particularly330

difficult for models to resolve accurately.331

The evaluation of 35 state-of-the-art LLMs over the OrgAccess dataset reveals that current LLMs332

struggle significantly with real-world access control complexities, with performance dropping sharply333

with increasing difficulty. Analysis shows prevalent reasoning errors, including scope, constraint,334

conflict, and false partial failures. This indicates current LLM reasoning is insufficient for structured,335

rule-based enterprise systems, supporting our thesis and highlighting the urgent need for focused re-336

search in enabling organizational AI deployment. The OrgAccess dataset could serve as a benchmark337

for this overlooked domain of research.338

4 Conclusion339

We developed a new, expert-validated synthetic benchmark grounded in established cybersecurity340

frameworks (NIST/RBAC), defining 40 representative permissions across three difficulty splits341

(Easy, Medium, Hard). The empirical findings underscore that current LLMs are not inherently342

capable of strictly adhering to organizational access policies. This highlights the need for focused343

research into models capable of reliable, hierarchy-aware reasoning. Our benchmark provides a344

vital tool for the community to assess limitations, diagnose failures, and drive development towards345

truly dependable organization scale LLM . While expertly validated, our synthetic benchmark is an346

abstraction; expanding its scope and partnering with organizations for deeper insights are important347

future steps to enhance realism and impact.348
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Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,580
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NeurIPS Paper Checklist630

1. Claims631

Question: Do the main claims made in the abstract and introduction accurately reflect the632

paper’s contributions and scope?633

Answer: [Yes]634

Justification: We claimed proposing a high-quality synthetic dataset which paves way for635

a new reasoning paradigm for current state-of-the-art LLMs. Our results show that even636

flagship LLMs struggle to achieve good scores on our benchmark.637

Guidelines:638

• The answer NA means that the abstract and introduction do not include the claims639

made in the paper.640

• The abstract and/or introduction should clearly state the claims made, including the641

contributions made in the paper and important assumptions and limitations. A No or642

NA answer to this question will not be perceived well by the reviewers.643

• The claims made should match theoretical and experimental results, and reflect how644

much the results can be expected to generalize to other settings.645

• It is fine to include aspirational goals as motivation as long as it is clear that these goals646

are not attained by the paper.647

2. Limitations648

Question: Does the paper discuss the limitations of the work performed by the authors?649

Answer: [Yes]650

Justification: A dedicated “Limitations” section have been included in the Appendix and a651

hint of the same can be seen in the Conclusion of the work. We discuss how representing652

organisational structures is a serious hurdle due to closed-source information. However, we653

hope that our work inspires more people to collaborate and further LLM reasoning research654

in this domain.655

Guidelines:656

• The answer NA means that the paper has no limitation while the answer No means that657

the paper has limitations, but those are not discussed in the paper.658

• The authors are encouraged to create a separate ”Limitations” section in their paper.659

• The paper should point out any strong assumptions and how robust the results are to660

violations of these assumptions (e.g., independence assumptions, noiseless settings,661

model well-specification, asymptotic approximations only holding locally). The authors662

should reflect on how these assumptions might be violated in practice and what the663

implications would be.664

• The authors should reflect on the scope of the claims made, e.g., if the approach was665

only tested on a few datasets or with a few runs. In general, empirical results often666

depend on implicit assumptions, which should be articulated.667

• The authors should reflect on the factors that influence the performance of the approach.668

For example, a facial recognition algorithm may perform poorly when image resolution669

is low or images are taken in low lighting. Or a speech-to-text system might not be670

used reliably to provide closed captions for online lectures because it fails to handle671

technical jargon.672

• The authors should discuss the computational efficiency of the proposed algorithms673

and how they scale with dataset size.674

• If applicable, the authors should discuss possible limitations of their approach to675

address problems of privacy and fairness.676

• While the authors might fear that complete honesty about limitations might be used by677

reviewers as grounds for rejection, a worse outcome might be that reviewers discover678

limitations that aren’t acknowledged in the paper. The authors should use their best679

judgment and recognize that individual actions in favor of transparency play an impor-680

tant role in developing norms that preserve the integrity of the community. Reviewers681

will be specifically instructed to not penalize honesty concerning limitations.682
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3. Theory assumptions and proofs683

Question: For each theoretical result, does the paper provide the full set of assumptions and684

a complete (and correct) proof?685

Answer: [NA]686

Justification: We do not have any theoretical results in our paper. Everything has been687

empircally validated.688

Guidelines:689

• The answer NA means that the paper does not include theoretical results.690

• All the theorems, formulas, and proofs in the paper should be numbered and cross-691

referenced.692

• All assumptions should be clearly stated or referenced in the statement of any theorems.693

• The proofs can either appear in the main paper or the supplemental material, but if694

they appear in the supplemental material, the authors are encouraged to provide a short695

proof sketch to provide intuition.696

• Inversely, any informal proof provided in the core of the paper should be complemented697

by formal proofs provided in appendix or supplemental material.698

• Theorems and Lemmas that the proof relies upon should be properly referenced.699

4. Experimental result reproducibility700

Question: Does the paper fully disclose all the information needed to reproduce the main ex-701

perimental results of the paper to the extent that it affects the main claims and/or conclusions702

of the paper (regardless of whether the code and data are provided or not)?703

Answer: [Yes]704

Justification: A dedicated “Reproducibility” section has been included in the Appendix705

of the work which provides detailed guidance into how to set up benchmarking for their706

own LLMs by accessing our dataset from HuggingFace. Code has also been provided for707

reference.708

Guidelines:709

• The answer NA means that the paper does not include experiments.710

• If the paper includes experiments, a No answer to this question will not be perceived711

well by the reviewers: Making the paper reproducible is important, regardless of712

whether the code and data are provided or not.713

• If the contribution is a dataset and/or model, the authors should describe the steps taken714

to make their results reproducible or verifiable.715

• Depending on the contribution, reproducibility can be accomplished in various ways.716

For example, if the contribution is a novel architecture, describing the architecture fully717

might suffice, or if the contribution is a specific model and empirical evaluation, it may718

be necessary to either make it possible for others to replicate the model with the same719

dataset, or provide access to the model. In general. releasing code and data is often720

one good way to accomplish this, but reproducibility can also be provided via detailed721

instructions for how to replicate the results, access to a hosted model (e.g., in the case722

of a large language model), releasing of a model checkpoint, or other means that are723

appropriate to the research performed.724

• While NeurIPS does not require releasing code, the conference does require all submis-725

sions to provide some reasonable avenue for reproducibility, which may depend on the726

nature of the contribution. For example727

(a) If the contribution is primarily a new algorithm, the paper should make it clear how728

to reproduce that algorithm.729

(b) If the contribution is primarily a new model architecture, the paper should describe730

the architecture clearly and fully.731

(c) If the contribution is a new model (e.g., a large language model), then there should732

either be a way to access this model for reproducing the results or a way to reproduce733

the model (e.g., with an open-source dataset or instructions for how to construct734

the dataset).735
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(d) We recognize that reproducibility may be tricky in some cases, in which case736

authors are welcome to describe the particular way they provide for reproducibility.737

In the case of closed-source models, it may be that access to the model is limited in738

some way (e.g., to registered users), but it should be possible for other researchers739

to have some path to reproducing or verifying the results.740

5. Open access to data and code741

Question: Does the paper provide open access to the data and code, with sufficient instruc-742

tions to faithfully reproduce the main experimental results, as described in supplemental743

material?744

Answer: [Yes]745

Justification: We have open-sourced both our dataset hosted on HuggingFace and our code746

repository on Github. Links to both can be found on Page 1.747

Guidelines:748

• The answer NA means that paper does not include experiments requiring code.749

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/750

public/guides/CodeSubmissionPolicy) for more details.751

• While we encourage the release of code and data, we understand that this might not be752

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not753

including code, unless this is central to the contribution (e.g., for a new open-source754

benchmark).755

• The instructions should contain the exact command and environment needed to run to756

reproduce the results. See the NeurIPS code and data submission guidelines (https:757

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.758

• The authors should provide instructions on data access and preparation, including how759

to access the raw data, preprocessed data, intermediate data, and generated data, etc.760

• The authors should provide scripts to reproduce all experimental results for the new761

proposed method and baselines. If only a subset of experiments are reproducible, they762

should state which ones are omitted from the script and why.763

• At submission time, to preserve anonymity, the authors should release anonymized764

versions (if applicable).765

• Providing as much information as possible in supplemental material (appended to the766

paper) is recommended, but including URLs to data and code is permitted.767

6. Experimental setting/details768

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-769

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the770

results?771

Answer: [Yes]772

Justification: Section 2 contains the detailed pipeline that was adopted for creating the773

dataset, and why certain actions were chosen. We have not trained LLMs or any other774

machine learning models for our work.775

Guidelines:776

• The answer NA means that the paper does not include experiments.777

• The experimental setting should be presented in the core of the paper to a level of detail778

that is necessary to appreciate the results and make sense of them.779

• The full details can be provided either with the code, in appendix, or as supplemental780

material.781

7. Experiment statistical significance782

Question: Does the paper report error bars suitably and correctly defined or other appropriate783

information about the statistical significance of the experiments?784

Answer: [Yes]785

Justification: Confidence intervals for all relevant tables have been added. Intervals for Table786

2 and Table 4 will be included in the Appendix for adding them in the main paper causes it787

to extend out of the paper borders.788
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Guidelines:789

• The answer NA means that the paper does not include experiments.790

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-791

dence intervals, or statistical significance tests, at least for the experiments that support792

the main claims of the paper.793

• The factors of variability that the error bars are capturing should be clearly stated (for794

example, train/test split, initialization, random drawing of some parameter, or overall795

run with given experimental conditions).796

• The method for calculating the error bars should be explained (closed form formula,797

call to a library function, bootstrap, etc.)798

• The assumptions made should be given (e.g., Normally distributed errors).799

• It should be clear whether the error bar is the standard deviation or the standard error800

of the mean.801

• It is OK to report 1-sigma error bars, but one should state it. The authors should802

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis803

of Normality of errors is not verified.804

• For asymmetric distributions, the authors should be careful not to show in tables or805

figures symmetric error bars that would yield results that are out of range (e.g. negative806

error rates).807

• If error bars are reported in tables or plots, The authors should explain in the text how808

they were calculated and reference the corresponding figures or tables in the text.809

8. Experiments compute resources810

Question: For each experiment, does the paper provide sufficient information on the com-811

puter resources (type of compute workers, memory, time of execution) needed to reproduce812

the experiments?813

Answer: [Yes]814

Justification: We mention the execution time for the benchmark on various models that we815

have used in the “Reproducibility” section in the Appendix. We do not have any training816

involved and work with the Mistral API, hence memory usage is not relevant for our work.817

Guidelines:818

• The answer NA means that the paper does not include experiments.819

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,820

or cloud provider, including relevant memory and storage.821

• The paper should provide the amount of compute required for each of the individual822

experimental runs as well as estimate the total compute.823

• The paper should disclose whether the full research project required more compute824

than the experiments reported in the paper (e.g., preliminary or failed experiments that825

didn’t make it into the paper).826

9. Code of ethics827

Question: Does the research conducted in the paper conform, in every respect, with the828

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?829

Answer: [Yes]830

Justification: We have thoroughly read the Code of Ethics and abide by the same.831

Guidelines:832

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.833

• If the authors answer No, they should explain the special circumstances that require a834

deviation from the Code of Ethics.835

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-836

eration due to laws or regulations in their jurisdiction).837

10. Broader impacts838

Question: Does the paper discuss both potential positive societal impacts and negative839

societal impacts of the work performed?840
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Answer: [Yes]841

Justification: A short section named “Social Considerations” have been included in the842

Appendix which discusses the social impact of using LLMs in large scale organisations and843

how to be careful with them.844

Guidelines:845

• The answer NA means that there is no societal impact of the work performed.846

• If the authors answer NA or No, they should explain why their work has no societal847

impact or why the paper does not address societal impact.848

• Examples of negative societal impacts include potential malicious or unintended uses849

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations850

(e.g., deployment of technologies that could make decisions that unfairly impact specific851

groups), privacy considerations, and security considerations.852

• The conference expects that many papers will be foundational research and not tied853

to particular applications, let alone deployments. However, if there is a direct path to854

any negative applications, the authors should point it out. For example, it is legitimate855

to point out that an improvement in the quality of generative models could be used to856

generate deepfakes for disinformation. On the other hand, it is not needed to point out857

that a generic algorithm for optimizing neural networks could enable people to train858

models that generate Deepfakes faster.859

• The authors should consider possible harms that could arise when the technology is860

being used as intended and functioning correctly, harms that could arise when the861

technology is being used as intended but gives incorrect results, and harms following862

from (intentional or unintentional) misuse of the technology.863

• If there are negative societal impacts, the authors could also discuss possible mitigation864

strategies (e.g., gated release of models, providing defenses in addition to attacks,865

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from866

feedback over time, improving the efficiency and accessibility of ML).867

11. Safeguards868

Question: Does the paper describe safeguards that have been put in place for responsible869

release of data or models that have a high risk for misuse (e.g., pretrained language models,870

image generators, or scraped datasets)?871

Answer: [Yes]872

Justification: The entire Section 2 discusses the various safety measures that were adopted873

to reduce bias in the dataset and make it more diverse and practical.874

Guidelines:875

• The answer NA means that the paper poses no such risks.876

• Released models that have a high risk for misuse or dual-use should be released with877

necessary safeguards to allow for controlled use of the model, for example by requiring878

that users adhere to usage guidelines or restrictions to access the model or implementing879

safety filters.880

• Datasets that have been scraped from the Internet could pose safety risks. The authors881

should describe how they avoided releasing unsafe images.882

• We recognize that providing effective safeguards is challenging, and many papers do883

not require this, but we encourage authors to take this into account and make a best884

faith effort.885

12. Licenses for existing assets886

Question: Are the creators or original owners of assets (e.g., code, data, models), used in887

the paper, properly credited and are the license and terms of use explicitly mentioned and888

properly respected?889

Answer: [Yes]890

Justification: All code and data has been open-sourced under the MIT license. Since we891

are the first to publish an organizational reasoning benchmark, we hope the rest of the892

community picks up on the same.893
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Guidelines:894

• The answer NA means that the paper does not use existing assets.895

• The authors should cite the original paper that produced the code package or dataset.896

• The authors should state which version of the asset is used and, if possible, include a897

URL.898

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.899

• For scraped data from a particular source (e.g., website), the copyright and terms of900

service of that source should be provided.901

• If assets are released, the license, copyright information, and terms of use in the902

package should be provided. For popular datasets, paperswithcode.com/datasets903

has curated licenses for some datasets. Their licensing guide can help determine the904

license of a dataset.905

• For existing datasets that are re-packaged, both the original license and the license of906

the derived asset (if it has changed) should be provided.907

• If this information is not available online, the authors are encouraged to reach out to908

the asset’s creators.909

13. New assets910

Question: Are new assets introduced in the paper well documented and is the documentation911

provided alongside the assets?912

Answer: [Yes]913

Justification: Detailed documentation for using the dataset and the benchmark codes have914

been provided on both HuggingFace and Github repositories that have been open-sourced.915

Guidelines:916

• The answer NA means that the paper does not release new assets.917

• Researchers should communicate the details of the dataset/code/model as part of their918

submissions via structured templates. This includes details about training, license,919

limitations, etc.920

• The paper should discuss whether and how consent was obtained from people whose921

asset is used.922

• At submission time, remember to anonymize your assets (if applicable). You can either923

create an anonymized URL or include an anonymized zip file.924

14. Crowdsourcing and research with human subjects925

Question: For crowdsourcing experiments and research with human subjects, does the paper926

include the full text of instructions given to participants and screenshots, if applicable, as927

well as details about compensation (if any)?928

Answer: [NA]929

Justification: We do not have any crowdsourcing experiments. Some details into how certain930

decisions about the dataset were taken with the expert panel of professionals have been931

discussed in the Appendix of the paper.932

Guidelines:933

• The answer NA means that the paper does not involve crowdsourcing nor research with934

human subjects.935

• Including this information in the supplemental material is fine, but if the main contribu-936

tion of the paper involves human subjects, then as much detail as possible should be937

included in the main paper.938

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,939

or other labor should be paid at least the minimum wage in the country of the data940

collector.941

15. Institutional review board (IRB) approvals or equivalent for research with human942

subjects943
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Question: Does the paper describe potential risks incurred by study participants, whether944

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)945

approvals (or an equivalent approval/review based on the requirements of your country or946

institution) were obtained?947

Answer: [NA]948

Justification: We do not include any human subjects for our work.949

Guidelines:950

• The answer NA means that the paper does not involve crowdsourcing nor research with951

human subjects.952

• Depending on the country in which research is conducted, IRB approval (or equivalent)953

may be required for any human subjects research. If you obtained IRB approval, you954

should clearly state this in the paper.955

• We recognize that the procedures for this may vary significantly between institutions956

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the957

guidelines for their institution.958

• For initial submissions, do not include any information that would break anonymity (if959

applicable), such as the institution conducting the review.960

16. Declaration of LLM usage961

Question: Does the paper describe the usage of LLMs if it is an important, original, or962

non-standard component of the core methods in this research? Note that if the LLM is used963

only for writing, editing, or formatting purposes and does not impact the core methodology,964

scientific rigorousness, or originality of the research, declaration is not required.965

Answer: [NA]966

Justification: No LLMs were used in developing pipeline or the methodology for the dataset.967

LLM-based grammar checkers have been used in paper writing.968

Guidelines:969

• The answer NA means that the core method development in this research does not970

involve LLMs as any important, original, or non-standard components.971

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)972

for what should or should not be described.973
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