
MAESTRO: Orchestrating Robotics Modules with Vision-Language
Models for Zero-Shot Generalist Robots

Junyao Shi∗, Rujia Yang∗, Kaitian Chao∗, Selina Bingqing Wan, Yifei Shao, Jiahui Lei, Jianing Qian, Long Le,
Pratik Chaudhari, Kostas Daniilidis, Chuan Wen, Dinesh Jayaraman

∗equal contribution
University of Pennsylvania
maestro-robot.github.io

Abstract— Today’s best-explored routes towards generalist
robots center on collecting ever larger “observations-in actions-
out” robotics datasets to train large end-to-end models, copying
a recipe that has worked for vision-language models (VLMs). We
pursue a road less traveled: building generalist policies directly
around VLMs by augmenting their general capabilities with
specific robot capabilities encapsulated in a carefully curated
set of perception, planning, and control modules. In MAESTRO,
a VLM coding agent dynamically composes these modules
into a programmatic policy for the current task and scenario.
MAESTRO’s architecture benefits from a streamlined closed-loop
interface without many manually imposed structural constraints,
and a comprehensive and diverse tool repertoire. As a result, it
largely surpasses today’s VLA models for zero-shot performance
on challenging manipulation skills. Further, MAESTRO is easily
extensible to incorporate new modules, easily editable to suit
new embodiments such as a quadruped-mounted arm, and even
easily adapts from minimal real-world experiences through local
code edits. See our project site maestro-robot.github.io for videos
and supplementary material.

I. INTRODUCTION

The prevailing view in robotics today holds that achieving
general-purpose capabilities requires training a single end-to-
end model on massive, robotics-specific datasets, typically
collected through labor-intensive manual teleoperation [1–3].
Compared to the abundance of text and image data available
for language and vision models, the scarcity of robotics data is
often cited as the key reason why robotic systems lag behind
their generalist counterparts in these other domains. Hoping to
bridge this gap, many efforts have been launched to massively
scale up data collection for training vision-language-action
(VLA) models.

Through careful experiments on a suite of challenging tasks,
we demonstrate that, even without exploiting any of today’s
large robotics datasets, MAESTRO matches and in many cases
surpasses state-of-the-art VLA models for zero-shot perfor-
mance on tabletop manipulation skills, a domain that remains
a benchmark for generalist robotic capabilities. MAESTRO
therefore represents the first competitive modular policy for
generalist robotics. In retrospect, this strength of MAESTRO
is not surprising: it simply scales the traditional, tried-and-
tested, paradigm of modular robotics system engineering by
exploiting VLM capabilities to replace task-specific human
engineering.

Going beyond its plain zero-shot capabilities, we show
that MAESTRO inherits many of the advantages tradition-
ally associated with manually engineered modular systems,
such as interpretability, debuggability, and extensibility. For
example, new tools, including VLA models themselves,
can be integrated into MAESTRO’s repertoire with minimal
effort. Adapting the system to new embodiments such as
mobile manipulators, or improving performance from limited
experience, often requires only localized edits to the tool
repertoire or policy code, rather than retraining or large-
scale data collection. Moreover, in MAESTRO, robotics-
specific data, training, and design are dealt with at the
level of domain-specific modules, permitting learning from
diverse pre-existing sources of training experiences (e.g.,
segmentation, pose estimation, grasp candidate generation
datasets) rather than requiring all training data to fit into one
common “observations-in-actions-out” straitjacket [4, 5].

These advantages do currently come at the cost of higher
latencies and computational overheads compared to end-to-
end VLA policies. We view this as a transitional limitation: as
VLMs’ inference hardware continue to evolve, we anticipate
that systems like MAESTRO will become increasingly viable
even for real-time, resource-constrained deployment—without
sacrificing generality or adaptability. In the end, while more
robotics data can only help, our results with MAESTRO suggest
that it is far from the only way towards generalist robotic
policies: pre-trained VLMs as robotic policies may offer a
viable and attractive alternative route.

In summary, our contributions are:
1) We introduce MAESTRO, a novel VLM-driven agentic

framework that leverage diverse robotics modules for
general-purpose robot manipulation. We evaluate it
extensively across tabletop and mobile embodiments,
demonstrating that it outperforms state-of-the-art VLAs
on diverse tasks.

2) We conduct systematic ablations to analyze design
choices, providing insights into why MAESTRO sub-
stantially outperforms prior code-as-policy and VLA
methods.

3) We demonstrate MAESTRO can further improve by
evolving code programs from a small number of real-
world trials.



Fig. 1: MAESTRO receives language instruction and leverages a set of tools to complete diverse tasks in a zero-shot setting.

II. RELATED WORK

We describe prior attempts at directly using VLMs and
LLMs as robotic policies. See Supp. III on project site for
extended discussion on prior work that utilizes VLMs and
LLMs as modular components in robotics.

A. VLMs and LLMs as Robotic Policies

Modern vision-language-action (VLA) foundation models
explicitly intended for robotics typically start from pre-trained
LLM/VLM backbones before fine-tuning on large quantities
of robotics-specific data [2, 6–12]. We are instead interested in
studying the possibility of directly using off-the-shelf VLMs
and LLMs in the robotic control loop.

Among such applications of “VLMs and LLMs as policies”,
directly generating low-level robotic actions has had limited
success restricted to simple tasks [13], likely due to the large
distribution shift from the web data used to train such models.
Instead, the most successful approaches have converged to
generating “code as policies”. The very first such approach
CaP [14] demonstrated the remarkable capability of a text-
based LLM to orchestrate a small set of perception and
control APIs in a program to execute several robotic tasks.
However, the program once generated is static and the LLM
agent cannot respond to any unexpected scenarios that occur
during execution — in this sense, a line of CaP work [14–16]
is “open-loop”.

More recent work [8, 17, 18] has explored the ability to
“close the loop” with the VLMs, so that the robot actions
within a trial do not have to be fully prescribed by one static
program, by leveraging visual reasoning and closed-loop code
generation based on visual feedback. While these results are
encouraging, the general consensus within the field today is
that off-the-shelf VLMs as generalist robotic policies are far
behind their robot-data-trained VLA counterparts. A case in
point is the recent release of Gemini Robotics VLA in March
2025 [2], which implements a closed-loop VLM-as-policy
with a more capable perception API. While this is likely
the most capable CaP-based system to date (we compare
against our implementation of this system in our experiments),
its performance is reported to be significantly inferior to
their VLA model trained on tele-operation data. Broadly,
dexterity and generalization have remained key challenges

for such policies, particularly for tasks beyond pick-and-place
on simple, symmetric objects.

We re-examine this consensus. We design a CaP system
with two key characteristics: a more comprehensive set
of robotics-relevant “tool” modules, and a simplified and
streamlined closed-loop interface between the VLM and the
APIs devoid of much manually imposed restrictive structure.
Our choices permit the VLM to express itself more fully,
and to benefit better from the best-in-class among tools
produced by the large robotics research community over
many years. As we will show in our experiments, the results
surpass performance of today’s state-of-the-art VLA models
on challenging tasks at the frontier of today’s generalist
robotic capabilities.

B. Scaling up Data for Zero-Shot Robot Control

Data-driven approaches have recently become the dominant
route toward general-purpose robotic manipulation. While
some efforts have explored alternative data sources—such
as simulation data [19–21] or human videos [22–24]—the
most performant methods still rely on massive real-world
teleoperation data [1–3, 10, 12], which are costly and labor-
intensive to collect.

In our experiments, we adopt the state-of-the-art π0.5
model [10] as a strong baseline. We demonstrate that, beyond
simply scaling robot data, scaling the right set of tools for a
robotics agent can also yield general-purpose manipulation
capabilities. Furthermore, we show that MAESTRO can strategi-
cally leverage VLAs as callable tools in addition to its original
set of tools, thus providing coverage in scenarios where
VLAs struggle or face out-of-distribution inputs, while still
maintaining the efficiency and strengths of VLAs themselves.

Taken together, these results indicate that large-scale robot
data is not the only viable path to generalist robotic manip-
ulation. By appropriately scaling the toolset and autonomy
of code-based agents, it is possible to achieve and even
surpass the performance of data-heavy approaches in zero-
shot settings.

III. METHOD

We call our approach Managerial Agent for Executing
Sensorimotor Tasks in RObotics, or MAESTRO for short.
MAESTRO is a simple yet versatile robotic system centered
on an agent that writes and executes code to leverage a rich



Fig. 2: Given prompt and images, VLM plans by writing and executing code that integrates perception, spatial reasoning,
control, learned visuomotor policies, and image editing. Execution results (images and stdout) provide feedback for reacting
and replanning, forming a closed-loop perception–action–learning cycle. This enables adaptive long-horizon manipulation, as
illustrated in the tabletop example on the right (instruction: Grasp the knife by the handle and cut the banana in the middle).

toolkit spanning perception, geometry, control, pre-trained
policies, and image editing. To specify a task, MAESTRO
receives a system prompt, a scene image, and task instructions.
Rather than invoking a VLM only once at the start of its
attempt to perform the task, MAESTRO continually monitors
the environment and calls the VLM as needed throughout
execution, updating its code and actions in response to new
observations and feedback in real time. We curate its set
of tool modules to maximize coverage and capability, to
provide a comprehensive foundation for manipulation tasks.
This design forms an adaptive perception–action–learning
loop. In the following sections, we detail the tool modules
available (Sec. III-A), the monitoring system for closed-loop
reaction and replanning (Sec. III-B), and the evolutionary
improvement mechanism (Sec. III-C); an overview of this
loop and the API is shown in Fig. 2.

A. Principles for Building MAESTRO Module Toolset
For tabletop manipulation, we experiment with the widely

used DROID [29] platform visualized in Fig. 1, a 7-DoF
Franka Panda robotic arm equipped with a Robotiq 2F gripper,
supported by a wrist-mounted camera and a third-person
camera. For this setup, Table I summarizes the modules
present in MAESTRO compared to those used in prior work.
Below, we highlight the key design principles that guided
these choices (see Supp. I on project site for full technical
details of each module).

“Coarse-to-fine” hierarchy of perception modules. Since
different tasks require perceptual information about different
regions of the scene at varying resolutions, we provide tools
ranging from the fastest and simplest level (raw sensory input),
medium level (mask centroid), to precise but slow (VLM-
selected task-relevant keypoints). These tools give MAESTRO
agency to autonomously select the right tools for the right
uses, balancing execution speed and task performance.

Active perception module as an enabler improving other
modules. Off-the-shelf tools, even when they are widely used
and deployed, are often noisy and rely on acquiring the
right informative observations of the scene. We believe that
actively gathering better sensing (zoom in) or more sensory
information (look around) with the wrist camera is essential
for improving performances of vision-based tools (e.g. better
point cloud for grasp model, better task-relevant keypoint
selection) for downstream.

Geometry and linear algebra modules to scaffold spatial
reasoning. Explicitly providing tools that construct vectors,
measure Cartesian distances, measure rotation between two
vectors, and compute vector rotation by an angle significantly
improves MAESTRO’s ability to reason step-by-step about
object affordances and spatial relations.

Fast-inference VLM monitor enables VLA usage. Since
VLAs run fast but are not trained to stop themselves after task
completion, incorporating VLAs as modules into MAESTRO
requires high-frequency interruption monitor. Locally hosted
Qwen2.5-VL-72B-Instruct VLM is capable of generating
”yes” or ”no” output to check task-relevant conditions based
on current image at 2HZ, allowing us to precisely interrupt
VLA execution after completion or for replanning.

Collision avoidance key for object interactions. To
perform robustly and generalizably in cluttered scenes, we
add efficient point-cloud based collision-free motion planning.

Semantic map enables efficient long-horizon planning.
By caching observed object locations, it supports persistent
reasoning for mobile manipulation tasks.

B. Plan, React, and Replan in a Loop

Given a task instruction and image obvervation at the
start of an episode, MAESTRO first plans: it decomposes
the task into smaller substeps and generates code for the



TABLE I: Comparison of modules used in prior work and in MAESTRO across tabletop and mobile manipulation. New or
distinctive components in MAESTRO are shown in bold; cells marked None indicate no equivalent module in prior work.

Tool Category Prior Work Examples MAESTRO Modules

Tabletop Manipulation

Perception Raw sensory inputs (RGB +
proprioception);
Segmentation/Bounding Box
centers [2, 6, 17]

Raw sensory inputs (RGB + proprioception); Segmentation
centers; Active perception (zoom/look around with wrist
camera); FoundationStereo [25] depth; Gemini pointing;
VLM-selected task-relevant keypoints
(ReKep-inspired [26])

Control Cartesian control, gripper
control [2, 17]; Movement
primitives [6]

Cartesian control, gripper control; cuRobo collision-free
motion planning

Learned Visuomotor Policies m2t2 grasp model [27] GraspGen grasp model [28]; π0.5 VLA with
high-frequency closed-loop monitoring (Qwen-2.5-VL)

Geometry &
Linear Algebra (new) None Distance measurement, vector construction, vector

rotation, relative rotation between vectors
Image Editing (new) None Draw points, overlay 6D poses to improve visual

grounding

Extra Modules for Mobile Manipulation

Perception Build global/local map [18] Mobile base state estimation; Active perception tools (look
left/right/ground, view carry-on basket, log object location)

Locomotion Navigation [18] Navigation; Fine-grained “nudge” tool for local adjustment

Fig. 3: A summarized overview of MAESTRO’s system prompt.

initial substep. After executing the code of the first substep,
MAESTRO reacts: it ingests the original instruction, code
output, robot state, and the images from the last substep to
assess whether the subgoal has been achieved. If successful,
it proceeds to plan again by generating code for the next
substep; if not, MAESTRO replans: it diagnoses the likely
cause of failure and rewrites improved code for the same
substep. The plan, react, replan thus proceeds in a loop,

allowing MAESTRO to continuously adapt its behavior to
changes in the environment or its own mistakes until the
overall task is complete. Note that in mobile manipulation
settings, before performing failure analysis and rewriting
code, MAESTRO is also prompted to actively look around and
perceive the environment to build a more complete situational
understanding. See Fig. 3 for a schematic of MAESTRO’s
system prompts for both initial plan generation and reacting
to plan next step or replan.

C. Evolution Based on Previous Runs
Our evolution mechanism builds on a database that logs all

past task executions. After each run, we store the generated
code, standard output, and Gemini’s success/failure analysis
of the execution video. Before each new run, this accumulated
record is supplied to Gemini as in-context examples, enabling
it to draw on prior successes and failures to refine its code
generation and improve performance over time.

IV. EXPERIMENTS

Our experiments aim to study the following research
questions:

• How well does MAESTRO perform zero-shot on vari-
ous embodiments in various settings for various tasks,
compared to state-of-the-art VLA and CaP generalist
policies?

• Which system design choices are most important for
MAESTRO’s performance?

• Can MAESTRO improve from a small number of real-
world trials, using the approach described in Sec. III-C?

A. Real-World Experiment Setup
We conduct a diverse set of real-world evaluations to

demonstrate MAESTRO’s versatility and robustness. Our



experiments are designed to showcase its ability to generalize
across three critical axes: category of manipulation challenge,
evaluation setting diversity, and robot embodiment. By varying
these dimensions, we highlight how MAESTRO adapts to
different hardware platforms, performs a wide range of
manipulation skills, and maintains stable performance across
distinct real-world contexts.

Embodiments. We evaluate MAESTRO across two distinct
robot embodiments — one for tabletop manipulation and one
for mobile manipulation — to rigorously test its generality.
Our tabletop platform follows the DROID setup [29]: it is
a 7-DoF Franka Emika Panda robotic arm equipped with a
Robotiq 2F gripper, supported by a wrist-mounted camera
and a third-person camera. This platform best supports
experiments comparing MAESTRO to previously proposed
generalist policies amongst which tabletop manipulation is the
most widely studied task domain. We also deploy MAESTRO
on a Unitree Go2-W wheeled quadruped outfitted with an
AgileX Robotics PiPER manipulator arm mounted on top and
a calibrated wrist-mounted camera for egocentric perception.

Tasks. We identify key axes of challenges for generalist
robot policies and consolidate 5 tabletop and 4 mobile
manipulation tasks. See Sec. IV-B and IV-C for details.

Evaluation Protocol. To ensure systematic experimenta-
tion, we adopt the STAR-Gen taxonomy of generalization for
robot manipulation [30]. STAR-Gen formalizes generalization
through systematic perturbations relative to a base task. Using
the scenario generation tool provided by STAR-Gen, we
prompt Gemini to generate perturbed task instances along
four axes: visual changes to task-relevant objects, changes to
object poses, changes to action verbs requiring new behavior,
and introducing entirely new manipulated objects, resulting
in a total of 5 evaluation trials for each task, held fixed across
all compared methods. This approach ensures that every trial
of our evaluation differs substantially and meaningfully from
the rest, capturing realistic in-the-wild diversity and providing
a rigorous test of MAESTRO ’s robustness and adaptability.
Additionally, since both MAESTRO and our baselines are
capable of retries, we set a time limit for each task based on
the task horizon. Following π0 [1], we design a score rubric
that measures progress on each task for quantitative results,
see Supp. II on the project site for details.

B. Zero-Shot Tabletop Manipulation Results

Baselines. We benchmark MAESTRO against the strongest
generalist robot policies from both the Code-as-Policies (CaP)
and VLA paradigms. For CaP, we adopt the approach recently
described in the Gemini Robotics technical report [2], which
uses Gemini to enable zero-shot robot control via code
generation. While it has a similar closed-loop replanning
structure, it contains only a limited set of simple tools (see
Table I), thus restricting its capability to pick-and-place of
simple, symmetric objects. We implement this using the latest
Gemini 2.5 Pro and denote it as the Gemini Robotics Agent.
For VLAs, we compare against the state-of-the-art models
π0 [1] and π0.5 [10]. Specifically, we use the π0-FAST-DROID
checkpoint for π0—π0-FAST model fine-tuned on the DROID

Pick–Place: pick up item and put into the bowl

Deformable: fold cloth, four corners into the center

Articulated: open cabinet

Spatial reasoning: rotate cube purple side up

Memory: erase stacking instructions, then stack cups

Fig. 4: Tabletop manipulation evaluation tasks.

dataset—and the π0.5-DROID checkpoint for π0.5, which
is similarly fine-tuned. We also include MAESTRO + π0.5,
where π0.5 is incorporated as a callable module within our
framework, allowing MAESTRO to leverage it dynamically.
Tasks. We evaluate MAESTRO on five tasks, visualized in
Fig. 4, that reflect the key challenge axes facing today’s
generalist tabletop manipulation policies: pick-place—put
item in bowl; deformable object—fold four corners of the
towel into the center; articulated object—open cabinet;
spatial reasoning—rotate cube to purple side up; memory
& long-horizon semantic reasoning—erase the whiteboard
instructions, then stack cups in the specified order.
Results. Table II summarizes the tabletop manipulation results.
Across all five tasks, MAESTRO substantially outperforms
every baseline. This performance gap is most evident in
tasks demanding semantic reasoning or trials with STAR-
Gen semantic perturbations: while VLA baselines frequently
fail under major changes in background and instructions,
VLM-based agents remain robust. VLAs also lack any
explicit memory mechanism, resulting in poor performance
on memory tasks, and their training data, dominated by pick-
and-place scenarios, leads to near-zero progress on more
out-of-distribution tasks such as open cabinet or rotate cube.

VLM-based agents, by contrast, excel at high-level se-
mantic reasoning and planning. However, our CaP baseline,
Gemini Robotics Agent, still struggles to turn these high-level
plans into effective low-level actions because it lacks modules
for precise perception and control. It performs reasonably
on simple pick-and-place tasks but fails in settings requiring
richer visual information processing or specialized actions.
For example, in the open cabinet task it cannot localize the
handle without active perception, and its top-down grasping
strategy no longer applies. Similar issues occur in fold towel



TABLE II: Tabletop manipulation results: average task progress (0–100; higher is better) across methods.

Challenge Task Description Gemini
Robotics Agent π0 π0.5 MAESTRO

Pick–Place Put item in bowl 73.3±46.2 74.0±37.1 70.0±41.1 98.0±4.5
Deformable object Fold the four corners of

the towel into the center
40.0±17.3 47.0±25.1 70.0±15.4 71.3±21.4

Articulated object Open cabinet 3.3±5.8 8.3±2.9 0.0±0.0 68.0±31.3
Spatial reasoning Rotate cube purple side up 23.6±3.5 29.0±1.7 10.0±0.0 60.0±38.1
Memory &
long-horizon &
semantic

Erase instructions on
whiteboard, then follow
instruction to stack cups

26.7±24.7 12.0±12.0 22.0±22.8 63.0±16.8

TABLE III: Mobile manipulation results: average task
progress (0–100; higher is better) for MAESTRO.

Task Category Task Description MAESTRO

Long-horizon
manipulation

Collect all toys on table 85.0±22.4

Long-horizon
loco-manipulation

Throw green ball into
garbage can

76.7±14.9

Active exploration Search item and put on table 96.0±8.9
Object affordance Press button to open door 93.3±14.9

and erase whiteboard, where Gemini Robotics Agent can
plan but cannot localize towel corners or correctly grasp and
orient the eraser.

MAESTRO bridges this gap by coupling VLM-level seman-
tic reasoning with a broad suite of specialized tool modules.
It leverages grasp models for reliable pick-and-place, active
perception modules for accurate point-cloud reconstruction
of cabinet handles, task-relevant keypoints for towel corner
localization, and geometric reasoning to rotate objects to
precise orientations (e.g., turning a cube to place a target
color face upward). When errors occur, MAESTRO ’s “react
and replan” mechanism analyzes execution history and images,
then revises its code and module orchestration. For example,
to pick up the tennis ball on the shelf, it first attempts a
top-down grasp but, after detecting rolling and collision risks,
switches to active perception to refine the point cloud and
leverages the grasp model tool to generate a safer, reachable
grasp pose.

By orchestrating its diverse tools in a “plan, react, replan”
loop, MAESTRO fuses the semantic reasoning strength of
VLMs with the precision and reliability of specialized
modules. This enables it to surpass prior CaP systems in
dexterity and task coverage, performing tasks that were
previously challenging for code-as-policies approaches and
typically considered better suited to VLA-style approaches.

C. Zero-Shot Mobile Manipulation Results

Tasks. Similar to the tabletop case, we evaluate on four tasks,
visualized in Fig 5, that demonstrate key challenge axes for
mobile manipulation: long-horizon manipulation—collect all
toys on table; long-horizon loco-manipulation—throw green
ball into garbage can; active exploration—search for item

Long-horizon manipulation: collect all toys on table

Loco-manipulation: throw green ball into garbage can

Active exploration: search for object and return

Object affordance: press button to open door

Fig. 5: Mobile manipulation evaluation tasks.

and return; object affordance reasoning—press button to
open door.
Results. The two long-horizon tasks show lower progress
rates due to their multi-stage object interactions. A cached
semantic map substantially improves performance by allowing
the agent to re-track objects and complete sub-tasks without
redundant search. Remaining failures primarily stem from
low-level execution. The throwing trash task achieves 76.7%
due to occasional inaccurate depth estimates of the garbage
can. This led to invalid grasp poses that violated the IK
constraints, causing aborted motions. Likewise, the reactive
replanning mechanism sometimes entered oscillatory loops
when no collision-free path was found. In contrast, active
exploration shows high progress as we provide multi-view
images at replan sessions to improve spatial reasoning. The
press button task benefits from precise keypoints selection,
reliably identifying pressing location from image input.

D. How important is each component of MAESTRO?

While Table I details the comprehensive list of improve-
ments and additions we made over prior CaP systems, in
the following experiments, we focus on two key category
of design choices among them. MAESTRO w/o advanced
perception evaluate the impact of task-relevant keypoint
module and active perception module. MAESTRO w/o geom-



TABLE IV: Ablation results on the Fold Towel and Rotate
Cube tasks (average task progress out of 100).

Method Fold Towel Rotate Cube

MAESTRO 71.3±21.4 60.0±38.1
MAESTRO w/o
advanced perception

40.0±7.1 25.0±0.0

MAESTRO w/o
geometry modules

67.5±3.5 42.5±31.8

etry modules tests the impact of the geometry and linear
algebra modules. For systematic comparison, we fairly isolate
each factor by following a “change one at a time” approach,
creating variants where only one module category is reverted
to the prior baseline while keeping all other components
identical to MAESTRO.
Task. We use the “fold towel” and ”rotate cube” tasks.
In fold towel, robot must fold the corners into the center,
thus the task requires reasoning about object geometry and
specific points of interaction on the object. In rotate cube,
the robot must rotate it until a particular color side faces
up, requiring extensive spatial reasoning about rotation and
object affordance.

Results. Table IV shows that both key module components
are essential for strong performance across tasks. For example,
the fold towel task requires precise interaction at the towel’s
corners, and MAESTRO w/o advanced perception fails to
identify the correct interaction points. Likewise, the rotate
cube task depends on constructing vectors based on task-
relevant keypoints on the cube and the gripper to compute
rotations, and therefore neither MAESTRO w/o advanced
pereption nor MAESTRO w/o geometry modules can achieve
progress. Overall, these results highlight that our carefully
curated modules such as advanced perception and geometry
tools are essential for MAESTRO to achieve high manipulation
accuracy and robust performance across diverse tasks.

E. MAESTRO improves from evolution across trials

Using the method described in Sec. III-C, we evaluate
MAESTRO ’s ability to improve over successive trials by
evolving its code from prior attempts on the same task.
Starting with an the least successful run in our open-cabinet
experiments, where MAESTRO achieved only 35% progress:
it correctly identified the cabinet handle but attempted a top-
down grasp, which failed. After one evolutionary update,
MAESTRO adjusted its behavior, scanning around the handle
and leveraging its grasp model to successfully grasp but
still pulled the handle straight rather than along its rotation
axis, reaching 70.0± 5.0 progress. By the third evolution,
MAESTRO corrected this mistake, using vectors constructed
from handle and hinge keypoints to compute the correct
rotation and apply it, achieving 85.0±7.4 progress.

V. CONCLUSION

We present MAESTRO, a simple yet powerful VLM-driven
agent that orchestrates diverse robotic tools for general-
purpose manipulation across both tabletop and mobile settings.

Without relying on any robot training data, MAESTRO
consistently outperforms state-of-the-art VLAs and prior CaP
systems. Its performance will continue to scale with advances
in both robotic modules and the underlying VLM.

Despite these strengths, MAESTRO still has limitations.
Achieving more delicate and continuous control will require
richer low-level behaviors than currently supported. Addi-
tionally, VLM API response times introduce pauses when
MAESTRO reacts and replans, prolonging its overall runtime.
Addressing these challenges is a focus for future work.

We view runtime as a transitional limitation: recent ad-
vances in VLM optimization, model distillation, and efficient
code generation are already closing the gap in responsiveness
and resource efficiency. As VLMs continue to evolve, we
anticipate that modular systems like MAESTRO will become
increasingly viable for a real-time deployment with limited
resources – without sacrificing generality or adaptability.
In fact, in the long run, modular generalist policies like
MAESTRO may be more resource-efficient, due to only
requiring resource allocation to match the current demands
of the task, unlike monolithic one-size-fits-all VLA models.

REFERENCES

[1] K. Black, N. Brown, et al., “π0: A vision-language-
action flow model for general robot control,” arXiv
preprint arXiv:2410.24164, 2024.

[2] G. R. Team, S. Abeyruwan, et al., “Gemini robotics:
Bringing ai into the physical world,” arXiv preprint
arXiv:2503.20020, 2025.

[3] J. Bjorck, F. Castañeda, et al., “Gr00t n1: An open
foundation model for generalist humanoid robots,”
arXiv preprint arXiv:2503.14734, 2025.

[4] A. Khazatsky, K. Pertsch, et al., “DROID: A Large-
Scale In-The-Wild Robot Manipulation Dataset,” RSS,
2024.

[5] L. collaboration, “Open X-Embodiment: Robotic Learn-
ing Datasets and RT-X Models,” ICRA, 2024. [Online].
Available: https://robotics-transformer-
x.github.io/.

[6] M. Zawalski, W. Chen, et al., “Robotic control via
embodied chain-of-thought reasoning,” arXiv preprint
arXiv:2407.08693, 2024.

[7] W. Chen, S. Belkhale, et al., Training strategies for
efficient embodied reasoning, 2025. arXiv: 2505 .
08243 [cs.RO]. [Online]. Available: https://
arxiv.org/abs/2505.08243.

[8] L. Shi, B. Ichter, et al., “Teaching robots to listen and
think harder,” 2025, Published February 26, 2025; Phys-
ical Intelligence (Hi Robot project). [Online]. Avail-
able: https://www.physicalintelligence.
company/research/hirobot.

[9] Q. Zhao, Y. Lu, et al., Cot-vla: Visual chain-of-thought
reasoning for vision-language-action models, 2025.
arXiv: 2503.22020 [cs.CV]. [Online]. Available:
https://arxiv.org/abs/2503.22020.



[10] P. Intelligence, K. Black, et al., π0.5: A vision-language-
action model with open-world generalization, 2025.
arXiv: 2504.16054 [cs.LG]. [Online]. Available:
https://arxiv.org/abs/2504.16054.

[11] J. Bjorck, F. Castañeda, et al., “Gr00t n1.5: An
improved open foundation model for generalist hu-
manoid robots,” arXiv preprint arXiv:2503.14734,
2025, GR00T N1.5 version; NVIDIA Labs. DOI: 10.
48550/arXiv.2503.14734. [Online]. Available:
https : / / research . nvidia . com / labs /
gear/gr00t-n1_5/.

[12] J. Lee, J. Duan, et al., Molmoact: Action reasoning
models that can reason in space, 2025. arXiv: 2508.
07917 [cs.RO]. [Online]. Available: https://
arxiv.org/abs/2508.07917.

[13] T. Kwon, N. D. Palo, and E. Johns, “Language models
as zero-shot trajectory generators,” IEEE Robotics and
Automation Letters, vol. 9, no. 7, pp. 6728–6735, Jul.
2024, ISSN: 2377-3774. DOI: 10.1109/lra.2024.
3410155. [Online]. Available: http://dx.doi.
org/10.1109/LRA.2024.3410155.

[14] J. Liang, W. Huang, et al., “Code as policies: Language
model programs for embodied control,” in arXiv
preprint arXiv:2209.07753, 2022.

[15] I. Singh, V. Blukis, et al., “Progprompt: Generating
situated robot task plans using large language models,”
in 2023 IEEE International Conference on Robotics
and Automation (ICRA), 2023, pp. 11 523–11 530. DOI:
10.1109/ICRA48891.2023.10161317.

[16] H. Ha, P. Florence, and S. Song, “Scaling up and
distilling down: Language-guided robot skill acquisi-
tion,” in Proceedings of the 2023 Conference on Robot
Learning, 2023.

[17] J. Duan, W. Yuan, et al., “Manipulate-anything: Au-
tomating real-world robots using vision-language mod-
els,” arXiv preprint arXiv:2406.18915, 2024.

[18] P. Zhi, Z. Zhang, et al., Closed-loop open-vocabulary
mobile manipulation with gpt-4v, 2025. arXiv: 2404.
10220 [cs.RO]. [Online]. Available: https://
arxiv.org/abs/2404.10220.

[19] M. Dalal, M. Liu, et al., “Local policies enable
zero-shot long-horizon manipulation,” International
Conference of Robotics and Automation, 2025.

[20] T. G. W. Lum, M. Matak, et al., “DextrAH-g: Pixels-
to-action dexterous arm-hand grasping with geometric
fabrics,” in 8th Annual Conference on Robot Learning,
2024. [Online]. Available: https://openreview.
net/forum?id=S2Jwb0i7HN.

[21] T. Lin, K. Sachdev, et al., “Sim-to-real reinforcement
learning for vision-based dexterous manipulation on
humanoids,” arXiv:2502.20396, 2025.

[22] J. Shi, Z. Zhao, et al., “Zeromimic: Distilling robotic
manipulation skills from web videos,” in International
Conference on Robotics and Automation (ICRA), 2025.

[23] R. Yang, Q. Yu, et al., Egovla: Learning vision-
language-action models from egocentric human videos,
2025. arXiv: 2507 . 12440 [cs.RO]. [Online].

Available: https://arxiv.org/abs/2507.
12440.

[24] L. Y. Zhu, P. Kuppili, et al., Emma: Scaling mo-
bile manipulation via egocentric human data, 2025.
arXiv: 2509.04443 [cs.RO]. [Online]. Available:
https://arxiv.org/abs/2509.04443.

[25] B. Wen, M. Trepte, et al., “Foundationstereo: Zero-shot
stereo matching,” arXiv, 2025.

[26] W. Huang, C. Wang, et al., “Rekep: Spatio-temporal
reasoning of relational keypoint constraints for robotic
manipulation,” arXiv preprint arXiv:2409.01652, 2024.

[27] W. Yuan, A. Murali, et al., “M2t2: Multi-task masked
transformer for object-centric pick and place,” in 7th
Annual Conference on Robot Learning, 2023.

[28] A. Murali, B. Sundaralingam, et al., “Graspgen: A
diffusion-based framework for 6-dof grasping with on-
generator training,” arXiv preprint arXiv:2507.13097,
2025. [Online]. Available: https://arxiv.org/
abs/2507.13097.

[29] A. Khazatsky, K. Pertsch, et al., “Droid: A large-scale
in-the-wild robot manipulation dataset,” 2024.

[30] J. Gao, S. Belkhale, et al., “A taxonomy for evaluating
generalist robot policies,” 2025.


