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Abstract

Multi-modal large language models (MLLMs) have shown impressive capabilities
as a general-purpose interface for various visual and linguistic tasks. However,
building a unified MLLM for multi-task learning in the medical field remains
a thorny challenge. To mitigate the tug-of-war problem of multi-modal multi-
task optimization in MLLMs, recent advances primarily focus on improving the
LLM components, while neglecting the connector that bridges the gap between
modalities. In this paper, we introduce Uni-Med, a novel medical generalist foun-
dation model which consists of a universal visual feature extraction module, a
connector mixture-of-experts (CMoE) module, and an LLM. Benefiting from the
proposed CMoE that leverages a well-designed router with a mixture of projection
experts at the connector, Uni-Med achieves efficient solution to the tug-of-war
problem and can perform six different medical tasks including question answering,
visual question answering, report generation, referring expression comprehension,
referring expression generation and image classification. To the best of our knowl-
edge, Uni-Med is the first effort to tackle multi-task interference at the connector
in MLLMs. Extensive ablation experiments validate the effectiveness of intro-
ducing CMoE under any configuration, with up to an average 8% performance
gains. We further provide interpretation analysis of the tug-of-war problem from
the perspective of gradient optimization and parameter statistics. Compared to
previous state-of-the-art medical MLLMs, Uni-Med achieves competitive or su-
perior evaluation metrics on diverse tasks. Code and resources are available at
https://github.com/tsinghua-msiip/Uni-Med.

1 Introduction

Driven by the growth of datasets, the increase in model size, and advances in generative language
foundation models [Achiam et al., 2023; Touvron et al., 2023], multi-modal large language models
(MLLMs) now offer unprecedented abilities as general-purpose interfaces. These advancements are
spurring innovation across various visual and linguistic tasks [Chen et al., 2023a; Lyu et al., 2023;
Su et al., 2023]. While significant strides have been made in building a unified foundation model
for natural scenery [Chen et al., 2022; Lu et al., 2022, 2023], the development of generalist medical
artificial intelligence is still in its early stages [Moor et al., 2023a].

The goal of a unified and generalist medical foundation model is to enable joint training on massive
medical datasets. This model aims to handle multiple tasks and modalities within a single architecture
with shared parameters [Zhang et al., 2023; Li et al., 2024]. It seeks to eliminate the need for
task-specific modules and further fine-tuning, thereby revolutionizing the traditional task-specific
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Figure 1: Three hypotheses and corresponding architectural implementations for multi-task learning
in MLLMs. (a) Synergy hypothesis. (b)-(c) Conflict hypothesis in LLM and connector, respectively.
(d)-(e) Conflict-synergy coexist hypothesis in LLM and connector, respectively.

approach to model development [Wu et al., 2023b; Tu et al., 2024]. However, existing open-source
efforts have not yet fully achieved these ambitious goals.

A key challenge in creating a unified medical foundation model is the complexity of multi-modal,
multi-task learning, often exacerbated by the tug-of-war problem [Hadsell et al., 2020]. Inherent task
conflicts and data imbalances can cause interference during the simultaneous learning of different
tasks. This problem is particularly acute in the medical field, where tasks and modalities are highly
specialized and diverse. As a result, the performance of each task may degrade compared to task-
specialized models [Yu et al., 2020; Zhu et al., 2022].

To mitigate the tug-of-war problem in multi-task learning, recent advances introduce the well-known
Mixture-of-Experts (MoE) [Jacobs et al., 1991] into MLLMs. Figure 1 illustrates three distinct
hypotheses and their corresponding architectural implementations for multi-task learning in MLLMs.
The first "synergy hypothesis" suggests that all tasks benefit from a fully shared backbone comprising
a visual encoder, connector, and language model, which is the standard architecture for MLLMs. The
second "conflict hypothesis", proposes that each task requires its own specific adaptations, thereby
preventing knowledge sharing among tasks. The third "conflict-synergy coexistence hypothesis",
posits that all tasks share multi-task adaptations, which reduces interference and promotes more
efficient knowledge sharing. However, current research [Zadouri et al., 2023; Gou et al., 2023; Liu et
al., 2023b; Lin et al., 2024] mainly tailors the MoE approach to the language model components,
overlooking the potential benefits of exploring and enhancing the connector in MLLMs. Furthermore,
the optimization of the tug-of-war problem lacks a detailed, explainable analysis.

In this study, we first identify a tug-of-war problem in multi-task learning at the connector level within
standard MLLM architectures. This issue indicates that different tasks may emphasize different types
of features in multi-modal, multi-task scenarios. Consequently, a fully shared connector may fall short
as it cannot accommodate the diverse modal features required by each task. Drawing inspiration from
the successful application of MoE in LLMs, we introduce Connector-MoE (CMoE), a novel approach
that employs a mixture of projection experts to align visual and language embedding spaces effectively,
thus mitigating the tug-of-war problem. As a pioneering effort in constructing a unified generalist
foundation model in the medical field, we present Uni-Med. This model comprises a universal
visual feature extraction module, a CMoE module, and an LMM. Uni-Med demonstrates impressive
performance across six distinct medical tasks, with minimal training computational overhead. It
achieves joint training on 12 datasets on a single A800 in under 10 hours. The effectiveness and
generalization of CMoE are underscored through ablation experiments. Additionally, an interpretable
analysis reveals that Uni-Med provides a superior solution to the tug-of-war problem at the connector
level. Overall, Uni-Med delivers competitive or even superior performance compared to open-source,
state-of-the-art medical MLLMs on all test sets. Our contributions can be summarized as:

• We present Uni-Med, an open-source medical generalist foundation model with a unified
interface and shared parameters, which can perform six different medical tasks including
question answering, visual question answering, report generation, referring expression
comprehension, referring expression generation and image classification.

• We propose CMoE, a well-designed connector component for MLLMs, which significantly
outperforms baselines under any configuration, with up to an average 8% performance gains.
To our knowledge, Uni-Med is the first attempt to focus on the connector in MLLMs to
mitigate the tug-of-war problem, which is critical but has always been overlooked.
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• Focusing on the question of how the tug-of-war problem is optimized, which has never
been quantitatively discussed, we provide detailed interpretability analysis and instructive
findings from the perspective of gradient optimization and parameter statistics.

• Uni-Med achieves competitive or superior performance compared to the open-source, state-
of-the-art medical MLLMs on test set of diverse tasks and datasets, which demonstrates the
huge potential of medical generalist foundation models.

2 Related work

Medical foundation models The increasing availability of medical data, as well as advances in
multi-modal LLM technologies, have paved the way for the emergence of medical foundational
models. Med-Flamingo [Moor et al., 2023b] continues pre-training on paired and interleaved medical
image-text data based on OpenFlamingo [Awadalla et al., 2023]. LLaVA-Med [Li et al., 2024]
curates a medical multi-modal instruction following dataset and fine-tunes LLaVA [Liu et al., 2024a]
with it. XrayGPT [Thawkar et al., 2023] can analyze and answer open-ended questions about chest
X-rays. BiomedGPT [Zhang et al., 2023] is a multi-task foundation model pretrained on a diverse
source of medical images, literature, and clinical notes. However, most of these efforts require further
fine-tuning on task-specific data to support downstream applications. One step further, the generalist
foundation model uses the same weight to excel at various tasks without fine-tuning. RadFM [Wu et
al., 2023b] is dedicated to build a generalist foundation model for radiology. Med-PaLM M [Tu et al.,
2024] is directly trained in a unified framework to jointly handle many tasks, which is perhaps most
similar to our effort, but it does not provide access for usage. In addition, recent studies [Wu et al.,
2023a; Yan et al., 2024; Xia et al., 2024] have suggested the the necessity for a more comprehensive
and detailed evaluation of the capabilities of medical MLLMs.

MoE in multi-task learning MoE is originally considered to increase the model capacity [Riquelme
et al., 2021; Fedus et al., 2022] and gains popularity in mitigating multi-task interference [Chen et
al., 2023e, 2024]. It achieves this by utilizing a router to determine the token set handled by each
expert, thus reducing interference between different types of samples. Recent studies have focused
on combining MoE with LLM, such as MoE-LLaVA [Lin et al., 2024] and Mixtral 8x7B [Jiang et al.,
2024], or combining MoE with one of the representative parameter-efficient tuning techniques, i.e.,
LoRA [Hu et al., 2021], such as Octavius [Chen et al., 2023d], MoCLE [Gou et al., 2023], MTLoRA
[Agiza et al., 2024] and MOELoRA[Liu et al., 2024b]. However, neither of them introduces MoE into
the connector component for MLLMs. Furthermore, there is a lack of clear and explicit interpretable
analysis on how the multi-task interference is mitigated through the use of MoE.

Cross-modality connector in MLLM The connector between the multi-modal encoder and the
LLM is critical in aligning multi-modal features [Song et al., 2023]. One of the most popular
paradigms is to map multi-modal features into a feature space that aligns with language, such as linear
projection [Liu et al., 2024a] and MLP projection [Liu et al., 2023a; Chen et al., 2023c]. Another
paradigm is to transform multi-modal features into multi-modal tokens that are consistent with the
embedded representation space of LLM, such as cross-attention [Li et al., 2022; Ye et al., 2023b,
2024], perceiver resampler [Alayrac et al., 2022; Peng et al., 2023] and Q-Former [Li et al., 2023;
Zhu et al., 2023]. However, existing paradigms use the same connector when processing the same
modal data for different tasks, ignoring the imperative to acquire distinct alignment patterns tailored
to the demands of each task.

3 Methodology

3.1 Preliminaries

3.1.1 Multi-task interference

To quantify the intricate tug-of-war problem in a unified foundation model, we provide interpretability
from the perspective of gradient optimization and parameter statistics.

Perspective of gradient optimization When optimizing the shared parameters θ according to task
j, the change in the update direction of loss Li for task i can be defined as [Zhu et al., 2022]:
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Figure 2: Dataset-level multi-task interference of the synergy hypothesis model at the connector in
MLLMs. (a) Perspective of gradient direction GD. (b) Perspective of gradient magnitude GM.
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where xi and xj are the sampled training batches of task i and j, respectively. The interference of
task j on task i in the update direction can be quantified as:

GDi,j = Exi

(
∆jLi (xi)

∆iLi (xi)

)
(2)

The gradient magnitude similarity between task i and task j can be defined as:

GMi,j = GMj,i =
2Exi

(
∥∇θLi (xi)∥2

)
Exj

(
∥∇θLj (xj)∥2

)(
Exi

(
∥∇θLi (xi)∥2

))2
+

(
Exj

(
∥∇θLj (xj)∥2

))2 (3)

GMi,j goes to zero when the difference in gradient magnitudes is large, indicating that some task
is dominant [Yu et al., 2020]. For all T tasks, we can get GD,GM ∈ RT×T . Then, we define the
tug-of-war indexes for each task in multi-task learning through the function G as follows:

tug-of-war indexes = G(GD,GM) =
[∑T

j=1
GDi,j · GMi,j

]T
i=1

(4)

Perspective of parameter statistics Inspired by the Gradient Positive Sign Purity proposed by
Chen et al. [2020], we define the statistics score of a single parameter in multi-task learning:

statistics score =

∣∣∣∣∣
∑T

i ∇θLi∑T
i |∇θLi|

∣∣∣∣∣ (5)

where ∇θLi is the gradient for task i. The range of the statistics score is [0, 1], and a value close to 1
indicates that this parameter suffers less gradient conflict during multi-task training. Upon collecting
the statistics scores of all parameters, we can intuitively demonstrate and analyze the phenomenon of
multi-task interference.

To be specific, we sample 100 batches for each datasets and record the gradients to calculate all
of the above metrics. Figure 2 shows the dataset-level (more granular than task-level) multi-task
interference of the synergy hypothesis model at the connector in the standard MLLM architecture.

3.1.2 Mixture-of-Experts

A Mixture-of-Experts (MoE) contains a set of expert networks E1, E2, ..., EN along with a routing
network R. For each token xi in the input sequence X = {xi}Li=1, the output of MoE is the weighted
sum of outputs from each expert, where the weight is calculated by the router:

yi =

N∑
k=1

R(xi)k · Ek(xi) (6)
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The types of R can mainly be divided into: 1) Constant router, which assigns equal weight to each
expert. 2) Hard router, which enforces one-to-one mapping between tasks and experts. 3) Sparse
router, which selects Top-K experts with the maximum routing weight. 4) Soft router, which calculates
the routing weights for each expert. For more details on the routing networks, see Appendix A.1.

3.2 Model Architecture

With the primary goal of achieving a unified medical generalist foundation model and mitigating the
tug-of-war problem of multi-task learning in mind, we design the overall architecture of Uni-Med as
illustrated in Figure 3, which contains three components: a universal vision feature extraction module,
a connector-MoE module and an LLM. Detailed descriptions are presented in the following sections.

3.2.1 Visual feature extraction module

Taking one of the multi-modal medical images I ∈ RH×W×C as input, the visual encoder Ven

extracts the image tokens fv ∈ RNv×Dv for image perception, where Nv = HW/P 2 is the number
of image patches and Dv is the hidden size of visual embeddings.

To alleviate the efficiency issues caused by prolonged visual input tokens during the training and
inference, we scheme a resampler with a compression rate α for visual feature aggregation. Concretely,
α adjacent visual tokens are concatenated and projected into one single embedding. Thus we obtain
aggregated image tokens fag

v ∈ RNv/α×Dvα as follows:

fag
v = resampler (Ven (I) , α) (7)

3.2.2 Connector-MoE module

Aligning the visual space with the language embedding space of the large language model is a critical
process, especially in the complex and diverse input of multi-task multi-modal medical image text
pairs. Based on the conflict-synergy coexist hypothesis, we propose the Connector-MoE (CMoE)
module, which aims to adaptively minimize task conflict and maximize task synergy at the connector.
CMoE module has N projection experts E1, E2, ..., EN , where each expert is a two-layer MLP, and
a soft router Rsoft to control the contribution of each expert.

According to Figure 2, we find that: (1) Gradient optimization conflict is common and consistent at
the task level. (2) Even for the same task, there are significant differences in conflict and synergy
at dataset-level. To alleviate the above problems, we randomly initialize vision-level special task
tokens {fsp

t }t∈T , where fsp
t ∈ RDvα and T is the set of tasks. Rsoft is a lightweight MLP designed

to receive the concatenated inputs of fag
v (token level) and fsp

t (task level), and calculate the routing
weights wsoft ∈ RDv/α×N of each expert for each image token, which can be formulated as:
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Table 1: Text-level special task identifiers for different tasks.

Task Question
Answering

Visual
Question

Answering

Report
Generation

Referring
Expression

Comprehension

Referring
Expression
Generation

Image
Classification

Identifier [qa] [vqa] [caption] [refer] [identify] [cls]

wsoft (f
ag
v ) = σ ·Rsoft ([f

ag
v , Repeat (fsp

t )]) (8)

where [, ] denotes concatenation operation, σ is SoftMax function. Then we can obtain aligned visual
tokens falign

v ∈ RNv/α×Dt through a weighted sum of all experts’ output as follows:

falign
v =

N∑
k=1

wsoft,k · Ek(f
ag
v ) (9)

where Dt is the hidden size of the language embedding space of the large language model and wsoft,k
denotes the routing weight of the k-th projection expert. We discuss and analyze the effects of router
type, router strategy, and number of experts in Section 4.2.1.

3.2.3 Large language model

Similar to the vision-level special task tokens, we assign the text-level special task identifiers for
question answering (QA), visual question answering (VQA), report generation (RG), referring
expression comprehension (REC), referring expression generation (REG) and image classification
(CLS) as shown in Table 1, which can help reduce multi-task ambiguity [Chen et al., 2023b]. The
text prompt is designed as "<Img> < ImageFeature> </Img> [Task Identifier] Instruction", which
merges the converted image features with the textual instructions. See details about our multi-task
instruction template in Appendix C.

After word embedding, we can obtain textual tokens ft ∈ RNt×Dt , where Nt denotes the number of
textual tokens. LLM generates the response O = {Oi}Li=1 conditioned on the aligned visual tokens
falign
v and textual tokens ft inputs in an autoregressive manner, which can be formulated as:

p
(
Ot | falign

v ,ft

)
=

L∏
i=1

p
(
Oi | falign

v ,ft, O<i

)
(10)

where L is the length of output tokens. We use low-rank adaption (LoRA) [Hu et al., 2021] for
efficient LLM fine-tuning, which is applied to all the linear layers.

4 Experiments

4.1 Experiment settings

Tasks and datasets Text-only data is collected from MedQA [Jin et al., 2021] and PubMedQA
[Jin et al., 2019] for the task of QA. Image-text pairs are collected from Path-VQA [He et al., 2020]
and Slake-VQA [Liu et al., 2021] for the task of VQA, MIMIC-CXR [Johnson et al., 2019] and
MPx-Single [Wu et al., 2023b] for the task of RG, MedMNIST v2 [Yang et al., 2023] for the task
of CLS. For tasks such as REG and REC that require representation of spatial locations, we use the
bounding boxes of the format "<Xmin><Ymin><Xmax><Ymax>", which denotes the coordinates of
objects. Then, we respectively process datasets Slake-VQA [Liu et al., 2021] and SA-Med2D-20M
[Ye et al., 2023a] to get datasets Slake-REC, Slake-REG, SA-Med2D-REC, and SA-Med2D-REG.
For a detailed description, processing and splitting of all datasets, see Appendix B.

Implementation details We adapt the open-sourced ViT-G/14 from EVA-CLIP [Fang et al., 2023]
and LLaMA2-Chat (7B) [Touvron et al., 2023] as our visual backbone and LLM, respectively.
During the training process, each task is assigned a sample rate that is calculated in proportion to the
respective task’s data volume. The visual backbone remains frozen with an input image resolution
of 224*224 and the LLM is fine-tuned through LoRA [Hu et al., 2021] with the rank of 8. The
compression rate α=4 and the number of projection experts N=5. Uni-Med only requires one-stage
training on a NVIDIA A800-SXM4-80GB GPU, with the first 10k iterations to warm-up and a total
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of 100k iterations with a batch size of 4, which lasts roughly 10 hours. The peak learning rate is set
to 1e-6 and it decays to 1e-7 following the cosine strategy. We use AdamW [Loshchilov and Hutter,
2017] optimizer with β1=0.9, β2=0.95 and weight decay of 0.05.

Evaluation metrics For ablation studies, we report BLEU-1 for the task of VQA, REG,
and RG, IoU for the task of REC, Accuracy for the task of CLS. In addition, we use ∆ =
1
S

∑S
i=1 (Mm,i −Mb,i) /Mb,i × 100% to evaluate the performance gains, where Mm,i and Mb,i

are the metrics of our model and baseline model, S can be the number of datasets or tasks. For
the overall comparison between models, we report more metrics such as F1, ROUGE, METEOR,
RadGraph F1 and RadCliQ [Yu et al., 2023]. See details at Appendix D.1.

4.2 Ablation study

4.2.1 Ablation on module design

Connector design Taking the connector of a two-layer MLP as baseline setup, we first discuss the
performance of different multi-task learning hypothesis. In Table 2 (a), connectors based on conflict-
synergy coexist hypothesis (CMoE with sparse / soft router) show a more holistic improvement
trend in multi-task learning compared to connectors based on the conflict hypothesis (CMoE with

Table 2: Experiments of ablation study. Metrics are reported on "Slake-VQA/Path-VQA", "Slake-
REC/SA-Med2D-REC", "Slake-REG/SA-Med2D-REG", "MIMIC-CXR/MPx-Single", "DermaM-
NIST/OrganSMNIST" for the task of VQA, REC, REG, RG, and CLS, respectively.

Router VQA REC REG RG CLSConnector Type Strategy BLEU-1 ∆(↑) IoU ∆(↑) BLEU-1 ∆(↑) BLEU-1 ∆(↑) Accuracy ∆(↑) Total
∆(↑)

(a) Connector design

Linear - - 77.90 / 56.27 -1.4% 28.44 / 11.59 -23.9% 74.98 / 55.61 -2.1% 13.80 / 15.85 -11.6% 72.47 / 69.39 -5.4% -8.9%
MLP - - 79.81 / 56.48 35.18 / 16.26 74.54 / 58.42 18.55 / 15.50 76.26 / 73.64

Constant - 82.74 / 57.38 2.6% 33.94 / 15.49 -4.1% 73.58 / 58.51 -0.6% 23.16 / 15.88 13.7% 75.91 / 76.50 1.7% 2.7%
Hard - 81.85 / 59.09 3.6% 30.01 / 11.59 -21.7% 70.91 / 58.04 -2.8% 22.76 / 15.79 12.3% 81.55 / 81.18 8.6% 0.0%

Sparse Token 80.68 / 57.02 1.0% 37.07 / 18.41 9.3% 76.86 / 60.08 3.0% 24.02 / 15.73 15.5% 73.47 / 74.93 -1.0% 5.6%
Token 81.79 / 57.69 2.3% 35.51 / 17.79 5.2% 74.43 / 61.34 2.4% 26.27 / 15.61 21.2% 76.56 / 77.21 2.6% 6.7%
Task 82.51 / 57.43 2.5% 38.33 / 19.68 15.0% 78.18 / 60.67 4.4% 23.34 / 15.89 14.2% 77.56 / 76.55 2.8% 7.8%

CMoE

Soft
Token&Task 81.52 / 57.75 2.2% 37.54 / 20.30 15.8% 77.45 / 60.42 3.7% 24.70 / 15.55 16.7% 75.61 / 76.92 1.8% 8.0%

(b) Resampler design

Compression Rate = 1 79.63 / 58.34 1.5% 30.20 / 14.48 -12.6% 70.81 / 60.12 -1.0% 23.92 / 15.54 14.6% 78.20 / 76.16 3.0% 1.1%
Compression Rate = 2, Projection 83.74 / 57.70 3.5% 37.02 / 18.57 9.7% 71.89 / 60.32 -0.2% 25.83 / 15.77 20.5% 74.56 / 76.70 1.0% 6.9%
Compression Rate = 4, Max Pooling 80.36 / 57.44 1.2% 27.16 / 14.37 -17.2% 68.30 / 57.56 -4.9% 18.85 / 15.60 1.1% 75.71 / 73.08 -0.7% -4.1%
Compression Rate = 4, Avg Pooling 81.96 / 57.93 2.6% 34.21 / 14.76 -6.0% 73.39 / 59.59 0.2% 22.18 / 15.88 11.0% 72.42 / 74.54 -1.9% 1.2%
Compression Rate = 4, Projection 81.52 / 57.75 2.2% 37.54 / 20.30 15.8% 77.45 / 60.42 3.7% 24.70 / 15.55 16.7% 75.61 / 76.92 1.8% 8.0%

(c) Number of projection experts

3 80.45 / 56.88 0.8% 35.98 / 17.36 4.5% 66.64 / 58.10 -5.6% 24.00 / 16.00 16.3% 74.86 / 74.59 -0.3% 3.1%
5 81.52 / 57.75 2.2% 37.54 / 20.30 15.8% 77.45 / 60.42 3.7% 24.70 / 15.55 16.7% 75.61 / 76.92 1.8% 8.0%
8 82.71 / 57.86 3.0% 36.66 / 18.34 8.5% 71.15 / 58.40 -2.3% 24.47 / 15.74 16.7% 77.91 / 76.53 3.0% 5.8%

10 83.21 / 57.85 3.3% 38.70 / 19.01 13.5% 75.06 / 61.43 2.9% 25.02 / 15.05 16.0% 77.66 / 77.99 3.9% 7.9%
16 82.92 / 58.70 3.9% 35.74 / 17.66 5.1% 76.74 / 61.45 4.1% 27.18 / 15.48 23.2% 75.86 / 77.36 2.3% 7.7%

(d) Module generalization under LoRA rank setting

rank Connector&Router
MLP 80.70 / 56.42 36.35 / 16.32 64.34 / 57.02 22.70 / 15.54 71.62 / 74.06

CMoE,Hard 81.94 / 57.77 2.0% 29.30 / 10.98 -26.1% 70.14 / 51.45 -0.4% 22.74 / 15.76 0.8% 81.95 / 80.46 11.5% -2.4%4
CMoE,Soft 82.63 / 57.66 2.3% 32.80 / 15.31 -8.0% 68.12 / 60.84 6.3% 24.46 / 15.61 4.1% 76.11 / 73.84 3.0% 1.5%

MLP 79.81 / 56.48 35.18 / 16.26 74.54 / 58.42 18.55 / 15.50 76.26 / 73.64
CMoE,Hard 81.85 / 59.09 3.6% 30.01 / 11.59 -21.7% 70.91 / 58.04 -2.8% 22.76 / 15.79 12.3% 81.55 / 81.18 8.6% 0.0%8
CMoE,Soft 81.52 / 57.75 2.2% 37.54 / 20.30 15.8% 77.45 / 60.42 3.7% 24.70 / 15.55 16.7% 75.61 / 76.92 1.8% 8.0%

MLP 79.10 / 56.45 32.73 / 14.81 72.65 / 57.89 24.42 / 16.09 69.18 / 75.43
CMoE,Hard 81.38 / 57.70 2.5% 30.01 / 12.89 -10.6% 71.56 / 56.42 -2.0% 22.05 / 15.69 -6.1% 81.75 / 79.83 12.0% -0.8%16
CMoE,Soft 82.54 / 58.85 4.3% 38.11 / 19.13 22.8% 71.99 / 59.99 1.4% 26.52 / 15.58 2.7% 76.51 / 75.99 5.7% 7.4%

MLP 79.23 / 56.50 33.50 / 16.13 72.04 / 58.78 18.67 / 15.42 71.67 / 72.69
CMoE,Hard 82.25 / 58.54 3.7% 30.56 / 11.97 -17.3% 73.16 / 59.70 1.6% 23.22 / 15.58 12.7% 82.19 / 80.67 12.8% 2.7%32
CMoE,Soft 82.39 / 57.18 2.6% 35.95 / 17.03 6.4% 70.14 / 59.66 -0.6% 26.56 / 15.45 21.2% 77.61 / 77.18 7.2% 7.4%

MLP 79.35 / 57.23 35.22 / 17.95 72.46 / 56.65 22.29 / 14.90 71.12 / 75.84
CMoE,Hard 81.52 / 58.55 2.5% 31.93 / 12.28 -20.5% 66.82 / 46.29 -13.0% 23.88 / 15.85 6.7% 82.00 / 79.97 10.4% -2.8%64
CMoE,Soft 81.53 / 58.04 2.1% 35.64 / 18.81 3.0% 73.82 / 60.26 4.1% 25.89 / 16.77 14.3% 75.21 / 77.29 3.8% 5.5%

(e) Module generalization under LoRA-MoE setting (rank = 4)

LLM fine-tuning Connector&Router
LoRA MLP 80.70 / 56.42 36.35 / 16.32 64.34 / 57.02 22.70 / 15.54 71.62 / 74.06

LoRA-MoE MLP 85.17 / 61.29 7.1% 32.40 / 14.91 -9.7% 78.68 / 65.77 18.8% 11.26 / 14.05 -30.0% 76.66 / 78.67 6.6% -1.4%
LoRA-MoE CMoE,Hard 84.10 / 61.25 6.4% 31.56 / 12.64 -17.9% 78.58 / 62.51 15.9% 22.67 / 13.23 -7.5% 80.65 / 79.89 10.2% 1.4%
LoRA-MoE CMoE,Soft 84.92 / 61.66 7.3% 39.33 / 17.10 6.5% 79.90 / 67.69 21.4% 18.73 / 13.75 -14.5% 78.90 / 77.98 7.7% 5.7%
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hard router) and synergy hypothesis (linear, MLP, CMoE with constant router). Though the hard
router has a obvious lead on the CLS task, implying that the CLS task is better suited to a separate
connector to avoid conflicts with other tasks. The soft router achieves the best multi-task performance,
indicating that it not only alleviates conflicts between tasks, but also promotes collaboration between
tasks. We then discuss three types of router strategy. The strategy of combining token-level with
task-level information is superior to using each information separately, indicating the effectiveness
for considering the tug-of-war problem from both token and task level.

Resampler design We explore whether aggregating visual features through resampler has unfavor-
able effects in Table 2 (b). Despite an increase in compression rate α from 1 to 4, the performance of
models utilizing projection aggregation is improved. While the performance of average pooling and
max pooling approaches is not satisfactory, especially the latter has severe performance degradation,
which may be attributed to the excessive loss of feature information. This phenomenon shows that
appropriate visual feature compression can bring efficiency to the training process without losing or
even improving performance.

Number of projection experts The number of projection experts N is one of the most significant
hyperparameters, which is closely related to the number of tasks and modalities that the CMoE
module can accommodate. It is a challenging study as the complexity of the scenario can end up
overfitting to simpler tasks and modalities or underfitting complex ones. As shown in Table 2 (c),
increasing the number of experts N , namely an augmentation in parameters, still brings performance
gains on some datasets, but the average gain tends to stabilize across all tasks and datasets. Therefore,
CMoE with 5 projection experts is sufficient to handle the tug-of-war problem in the existing medical
multi-task learning scenarios and training configuration. A higher value of N does not bring the
desired further improvement in total ∆.

4.2.2 Ablation on module generalization

We demonstrate the generalization capability of the CMoE module in any configuration, especially
when the key hyperparameters and strategies for LLM fine-tuning change. We first focus on the rank
of LoRA, which directly determines the LLM capacity, i.e., trainable parameters. Our observations
in Table 2 (d) reveal that CMoE with soft router can steadily improve multi-task performance when
LoRA rank increases from 4 to 64. In Table 2 (e), we introduce MoE to LoRA, namely LoRA-MoE,
which is considered a favorable parameter-efficient tuning solution for multi-task applications [Liu et
al., 2023b; Chen et al., 2024]. See details of LoRA-MoE at Appendix A.2. We find that separate
LoRA-MoE results in significant performance improvement in 3 tasks while degradation in 2 tasks,
indicating that it does not achieve the efficient solution to the tug-of-war problem. After combining
CMoE with soft router, we achieve a balance of consistent performance gains, further demonstrating
the necessity and effectiveness of mitigating the tug-of-war problem at the connector level in MLLMs.

4.3 Interpretation

We conduct interpretation analysis of the tug-of-war problem based on methods mentioned in
Section 3.1.1. Specifically, we focus on the changes in the connector using CMoE compared to
MLP and show how the tug-of-war problem is optimized: (1) From the perspective of gradient
optimization, we use maximum normalization to make the tug-of-war indexes comparable under
different architectures. CMoE results in a more consistent tug-of-war indexes, i.e. higher mean and
smaller standard deviation, among different tasks or datasets, implying each individual gets a more
balanced optimization, as shown in Figure 4 (a). (2) From the perspective of parameter statistics,
we discrete the statistics scores into ten intervals and count the ratio of all parameters at connector
by interval. CMoE results in an increase in the proportion of high-value intervals in Figure 4 (b).
We show the routing weights of projection experts after the warm-up stage and the final model in
Figure 4 (c). CMoE adaptively learns different patterns of routing weights for different tasks.

To better reflect the coexistence of conflict and synergy among tasks, as well as the critical role played
by the connector, we visualize the distribution of visual features before and after passing through
the connector using the t-SNE method [Van der Maaten and Hinton, 2008]. From the perspective
of multi-task learning, we randomly select 200 samples from each task. It can be observed that
CMoE promotes the optimization of the tug of war problem when aligning the visual space with
the textual space of the LLM in Figure 5. Specifically, visual features of the same task are more
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tightly distributed. For fine-grained REC and REG tasks, the distribution is highly overlapping,
which facilitates synergy between tasks. For coarse-grained CLS task, the distribution is significantly
different from other tasks, which is consistent with the conclusion in Section 4.2.1. We also provide
visualization analysis of visual features on different medical image modalities in Appendix D.4
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Table 3: Model capability comparison with open source medical MLLMs. The mean and standard
deviation of performance of Uni-Med are obtained after several 300k iterations. Results with bold,
underlines and gray background are the overall best, second, and zero-shot performance, respectively.

Task Dataset Metric Med-Flamingo RadFM LLaVA-Med XrayGPT Uni-Med

BLEU-1 21.51 81.66 76.95 - 82.12±0.38
Slake-VQA

F1 23.66 82.38 77.30 - 83.07±0.34

BLEU-1 33.38 24.83 46.42 - 58.07±0.32

Visual
Question

Answering Path-VQA
F1 34.01 25.20 47.08 - 58.74±0.33

BLEU-1 23.25 6.81 19.90 27.11 27.79±2.50
BLEU-4 1.92 1.52 0.59 3.56 6.46±0.20

ROUGE-1 18.73 16.81 15.65 24.35 28.81±1.22
ROUGE-2 2.28 4.48 1.13 4.97 9.62±0.99
ROUGE-L 12.25 12.67 10.29 16.29 22.58±2.86
METEOR 7.95 5.32 5.47 9.71 10.59±0.87

RadGraph-F1 7.15 7.19 2.86 9.00 13.98±2.45
RadCliQ-v0↓ 4.44 4.43 4.79 4.42 3.75±0.17

MIMIC-CXR

RadCliQ-v1↓ 1.80 1.82 2.03 1.79 1.38±0.11

BLEU-1 8.14 - 9.46 8.51 15.80±0.24
BLEU-4 0.45 - 0.59 0.23 2.47±0.08

ROUGE-1 11.37 - 11.31 8.00 14.32±0.03
ROUGE-2 0.93 - 1.02 0.45 2.68±0.01
ROUGE-L 9.65 - 8.96 6.48 12.29±0.04
METEOR 4.31 - 5.51 3.60 5.92±0.07

RadGraph-F1 1.85 - 2.63 1.32 4.91±0.31
RadCliQ-v0↓ 4.00 - 3.88 4.17 3.59±0.02

Report
Generation

MPx-Single

RadCliQ-v1↓ 1.62 - 1.55 1.72 1.37±0.01

DermaMNIST Accuracy 1.15 5.14 - - 76.96±0.46
Image

Classification OrganMNIST Accuracy 8.90 18.90 - - 78.07±1.63
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4.4 Overall comparison

To demonstrate the model capabilities of Uni-Med on multi-task learning, four open source and
state-of-the-art medical MLLMs including Med-Flamingo [Moor et al., 2023b], RadFM [Wu et al.,
2023b], LLaVA-Med [Li et al., 2024], and XrayGPT [Thawkar et al., 2023] are used for performance
comparison in Table 3. Any method of fine-tuning will inevitably lead to changes in the initial
capability of the model. Therefore, we use readily available model checkpoints for testing, following
the prompt template requirements of different models. Under this comparison strategy, if the training
datasets of a model and Uni-Med intersect and strictly follow the official partition, it is fair and
comparable to Uni-Med on these datasets. Specifically, LLaVA-MED provides dataset-specific fine-
tuning checkpoints on Slake-VQA and Path-VQA separately. XrayGPT focuses on the task of report
generation and utilizes MIMIC-CXR as training dataset. RadFM provides a model checkpoint for
joint fine-tuning on Slake-VQA, MIMIC-CXR and MPx-Single. However, we do not list performance
of RadFM on MPx-Single as we have identified the issue of data leakage, see Appendix D.2.

The results in Table 3 show that our Uni-Med achieves leading and competitive evaluation metrics
across all tasks, which has the following prominent advantages: (1) Uni-Med is able to handle a
greater variety of medical tasks, which is attributed to multi-task learning during training process.
Due to the fact that the above MLLMs do not support input and output in coordinate form, we report
the performance of Uni-Med on REC and REG tasks at Appendix D.5. Based on the different input
and output forms supported by each model, we have also listed the zero-shot results in Table 3
for reference only. (2) Uni-Med achieves better results through joint training fine-tuning rather
than dataset-specific fine-tuning like LLaVA-Med, which benefits from efficient optimization of
the tug-of-war problem. In addition to directly compare the capability of existing models, we take
LLaVA-Med as an example to compare the capability of model architectures in Appendix D.6.

5 Conclusion

In this paper, we present a novel open-source medical generalist foundation model Uni-Med, which
can handle six different medical tasks including question answering, visual question answering,
report generation, referring expression comprehension, referring expression generation and image
classification. Benefiting from the proposed CMoE, which combines MoE with the connector, Uni-
Med achieves efficient solution to the tug-of-war problem in multi-task learning. Uni-Med not only
achieves competitive or superior performance compared to the open-source state-of-the-art medical
MLLMs, but also provides interpretability analysis from the perspective of gradient optimization
and parameter statistics on how the tug-of-war problem is optimized. We hope Uni-Med can greatly
promote the development of medical generalist foundation models and inspire more research toward
generalist medical artificial intelligence.

6 Limitations

While Uni-Med has demonstrated strong potential as a unified and generalist medical foundation
model, it still exhibits several limitations: (1) Limitations in handling genuine 3D medical image
inputs. Most commonly used medical image are in 3D. Same as most medical MLLMs, we process
3D images into 2D slices as input, resulting in significant information loss. (2) The potential of
performance gains in more complex multi-modal and multi-task learning scenarios has not yet
been explored. Uni-Med use 12 datasets of 6 medical tasks, with a total data volume of 140k. (3)
The potential of performance gains in different LLM backbones has not yet been explored. Uni-
Med utilizes LLaMA2-7B. (4) Deeper theoretical analysis of tug of war problem remains to be
explored. We attempt to combine the existing methods to analyze it from the perspective gradient
optimization and parameter statistics. (5) Potential negative societal impacts. We cannot prevent
potential malicious or unintended uses, such as generating fake profiles or wrong medical diagnoses,
and provide necessary safeguards.
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A Component design

A.1 Type of the routing network

Constant router The simplest routing network is to assign equal weights to the output of each
expert, which can be expressed as:

Rconstant(xi) = {1/N}Nk=1 (11)

Hard router Each token is assigned to a specific expert based on its type (task / modal), with the
number of experts being equal to the number of token types. It can be formulated as:

Rhard (xi) = { IsType (xi, k)}Nk=1

IsType (xi, k) =

{
1, if xi belongs to type k

0, otherwise

(12)

Sparse router Using a small network g, the sparse router computes a score vector for each token,
with a length equal to the number of experts N . Subsequently, the Top-K function retains the top-K
values in the vector, while setting all other values to zero. Finally, the Softmax function is applied to
obtain the final routing vector. The whole process is shown as follows:

Rsparse (xi) = Softmax (Top-K (g (xi) ,K))

Top-K(v,K) =

{
v, if v is in the top K

0, otherwise
(13)

Soft Router Similar to the sparse router, the soft router computes a score vector for each token
through a small network g. Subsequently, it applies the Sigmoid function to the score vector and
normalizes it, yielding the final routing vector. It can be formulated as:

Rsoft(xi) =
Sigmoid(g(xi))

Sum(Sigmoid(g(xi)))
(14)

A.2 LoRA-MoE

LoRA-MoE freezes the original parameters of the model to preserve world knowledge and introduces
LoRA experts to learn new knowledge, thereby improving performance across multiple downstream
tasks with few parameters.

Specifically, given a frozen linear layer with a weight matrix W0 ∈ Rdin×dout , LoRA-MoE creates
N low-rank trainable matrix pairs Ak and Bk, where Ak ∈ Rdin×r, Bk ∈ Rr×dout , and the rank
r ≪ min(din, dout). As in the case of LoRA, Ak is initialized with a random Gaussian distribution,
and Bk is initialized to zero. During training, the parameters of W0 are frozen, and the parameters of
Ak and Bk are updated. The forward process of a LoRA-MoE layer can be represented as:

h = W0xi +∆Wxi = W0xi +
α

r

N∑
k=1

R(xi)AkBkxi (15)

where xi is the input token, R is the router in the LoRA-MoE layer, α is the learning rate scaling
factor, and h is the output token. In ablation experiments, we transform each linear layer in the LLM
into a LoRA-MoE layer with a sparse router. The rank r = 4, the learning rate scaling factor α = 8,
the number of LoRA experts N = 5, and select the top 2 experts.

B Dataset

B.1 Data source

MedQA MedQA [Jin et al., 2021] is a open-domain multiple-choice question answering dataset
for solving medical problems. These questions are sourced from professional medical board exams,
which feature diverse content and typically demand a comprehensive understanding of related medical
concepts learned from medical textbooks in order to provide accurate answers. This dataset covers
three languages: English, simplified Chinese, among which there are 12,723 QA pairs for English.
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PubMedQA PubMedQA [Jin et al., 2019] is a biomedical question answering dataset collected
from PubMed abstracts. The task of PubMedQA is to answer research questions with yes/no/maybe
using the corresponding abstracts. It has 1K expert-annotated, 61.2K unlabeled and 211.3K artificially
generated QA instances. Each instance consists of: (1) a question which is either an existing research
article title or derived from one, (2) a context which is the corresponding abstract without its
conclusion,(3) a long answer, which is the conclusion of the abstract and, presumably, answers the
research question, and (4) a yes/no/maybe answer which summarizes the conclusion.

Slake-VQA Slake-VQA [Liu et al., 2021] is a semantically annotated, knowledge-enhanced
bilingual (English and Chinese) VQA dataset for radiology images. It contains 642 annotated
images accompanied by 14,028 question-answer pairs, spanning 12 diseases, 39 organ systems,
and 3 imaging modalities (CT, MRI, and X-ray). Questions are either open-ended (free-form) or
closed-ended (balanced yes/no) related to various aspects of the image content such as plane, quality,
position, organ, abnormality, size, color, shape, and knowledge graph.

Path-VQA Path-VQA [He et al., 2020] is a pathology VQA dataset comprising 4,998 pathology
images and 32,799 question-answer pairs. These pathology images are sourced from medical
textbooks and online digital libraries. Each image is associated with multiple QA pairs pertaining
to different aspects of the pathology including color, location, appearance, shape, etc. The dataset
includes 16,465 open-ended questions, which make up 50.2% of the total and are categorized into
six types: what, where, when, whose, how, and how much/how many. The remaining questions are
close-ended "yes/no" questions, with a balanced distribution of 8,145 "yes" answers and 8,189 "no"
answers. In the official dataset split, the training set, validation set and test set contain 19,755, 6,279
and 6,761 QA pairs, respectively.

SA-Med2D-20M SA-Med2D-20M [Ye et al., 2023a] is a large-scale segmentation dataset of 2D
medical images built upon numerous public and private datasets. It consists of 4.6 million 2D
medical images and 19.7 million corresponding masks, covering almost the whole body and showing
significant diversity. It comprises 10 modalities, with CT and MR modalities being predominant
in both the number of images and masks. Specifically, there are 2338,753 images and 12547,037
masks for CT and 2217,633 images and 7147,784 masks for MR. This is primarily attributed to their
widespread presence in public medical image segmentation datasets and the 3D dimension of CT and
MR scans, which yields a high volume of slices when segmented across three axes.

MIMIC-CXR MIMIC-CXR [Johnson et al., 2019] is a large dataset of chest radiographs with
free-text radiology reports. A total of 377,110 images are available in the dataset from 227,835 image
studies collected for 65,379 patients. Each patient may have multiple studies and each study may
contain one or more images associated with the same free-text report. Images in MIMIC-CXR are
collected from multiple view positions: e.g., anterior-posterior (AP), posterior- anterior, and lateral
(LA). Protected health information (PHI) in radiology reports and images is removed, which results
in missing information in some sentences of the reports.

The MIMIC-CXR-JPG dataset is derived from MIMIC-CXR, providing JPG format files derived
from the DICOM images and structured labels derived from the free-text reports. The aim of MIMIC-
CXR-JPG is to provide a convenient processed version of MIMIC-CXR, as well as to provide a
standard reference for data splits and image labels.

RadFM [Wu et al., 2023b] processes radiology reports in MIMIC-CXR by extracting the indication,
findings, and impression sections, and removing redundant white spaces. Images without reports
and reports where the findings section can not be extracted are discarded from both the training and
test sets. Additionally, reports with findings sections exceeding 800 characters are filtered out. To
enhance the model’s capability to process images from different view positions, images of different
orientations associated with the same report are treated as independent samples.

MPx MPx [Wu et al., 2023b] is a report generation dataset collected from the MedPix website
(https://medpix.nlm.nih.gov/) and organized by cases. Each case includes multiple radiologic scans,
general clinical findings, discussions, and diagnostic results. Additionally, MPx provides scan-level
annotations, such as image modality, shooting plane, and captions for each scan. The dataset is
divided into MPx-Single and MPx-Multi, with annotations provided at the case level and scan level,
respectively.
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MedMNIST v2 MedMNIST v2 [Yang et al., 2023] is a large-scale MNIST-like collection of
standardized biomedical images, including 2D datasets with resolutions up to 224×224 pixels and
3D datasets with resolutions up to 64×64×64 voxels. The 2D datasets include 12 subsets: PathM-
NIST, ChestMNIST, DermaMNIST, OCTMNIST, PneumoniaMNIST, RetinaMNIST, BreastMNIST,
BloodMNIST, TissueMNIST, OrganAMNIST, OrganCMNIST, and OrganSMNIST. The 3D datasets
comprise 6 subsets: OrganMNIST3D, NoduleMNIST3D, FractureMNIST3D, AdrenalMNIST, Ves-
selMNIST3D, and SynapseMNIST3D. Covering primary data modalities in biomedical images, it
is designed to perform classification on lightweight 2D and 3D images with various data scales
(from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The
comprehensive dataset, comprising approximately 708K 2D images and 10K 3D images, supports a
wide range of research and educational purposes in biomedical image analysis, computer vision, and
machine learning.

DermaMNIST, a 2D subset of MedMNIST v2, is based on HAM10000 [Tschandl et al., 2018;
Codella et al., 2019], a large collection of multi-source dermatoscopic images of common pigmented
skin lesions. Comprising 10,015 dermatoscopic images, the dataset is categorized into 7 distinct
classes: actinic keratoses and intraepithelial carcinoma, basal cell carcinoma, benign keratosis-like
lesions, dermatofibroma, melanoma, melanocytic nevi, and vascular lesions.

OrganSMNIST, another 2D subset of MedMNIST v2, is based on 3D computed tomography (CT)
images from Liver Tumor Segmentation Benchmark (LiTS) [Bilic et al., 2023]. Organ labels are
obtained by using bounding-box annotations of 11 body organs from another study [Xu et al., 2019].
Hounsfield-Unit (HU) of the 3D images are transformed into grey scale with a abdominal window.
Subsequently, 2D images are cropped from the center slices of the 3D bounding boxes in sagittal
views. Comprising 25,211 images, the dataset is categorized into 11 distinct classes: bladder, left
femur, right femur, heart, left kidney, right kidney, liver, left lung, right lung, pancreas, and spleen.

Custom dataset splitting To prevent the model from encountering training images during testing,
the official dataset split from Slake-VQA is not utilized. Instead, we randomly divide all images into
training and testing sets at a ratio of 6:1, along with their respective QA pairs and bounding boxes.
Consequently, the training set comprises 550 images, 6018 English QA pairs, and 1421 bounding
boxes, while the testing set includes 92 images, 1014 English QA pairs, and 201 bounding boxes.

For MIMIC-CXR, JPG images provided in MIMIC-CXR-JPG and the corresponding reports from
RadFM are used for the report generation task. The training set is a subset of the original training
set, containing 9,997 samples, while the test set remains the same as the original test set, containing
3,858 samples.

B.2 Well-crafted datasets for REC and REG tasks

Slake-REC / Slake-REG As a semantically-labeled knowledge-enhanced dataset for medical
visual question answering, Slake-VQA provides bounding boxes for each object in the image. As
shown in Figure 6 (a), the original format of each bounding box is [X,Y,W,H]. First, we convert it
to the [Xmin, Ymin, Xmax, Ymax] format. Assuming the relative size of each image is 100×100, we
then normalize each coordinate value in the bounding box to fall within the range of 0 to 100.

As shown in Figure 6 (c), in the REC task, an image and object name are given to find the object’s
bounding box. In the REG task, an image and object bounding box are provided to identify the
object’s name. The Slake-REC and Slake-REG datasets are thus created.

SA-Med2D-REC / SA-Med2D-REG Each image in the SA-Med2D-20M dataset has one or more
masks, with each mask corresponding to an object. As shown in Figure 6 (b), we calculate the
bounding box for each mask and normalize it to a range of 0 to 100, resulting in a bounding box for
each object in the [Xmin, Ymin, Xmax, Ymax] format.

The SA-Med2D-REC and SA-Med2D-REG datasets are organized as depicted in Figure 6 (c). 10,000
samples each are selected from the CT and MR subsets as the training set, and 2,000 samples each
are selected as the test set.
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Figure 6: Data production process for REC and REG tasks. (a) the process of transforming bounding
boxes in Slake-VQA, (b) the process of obtaining bounding boxes from masks in SA-Med2D, (c) the
input-output organization of REC and REG tasks.

B.3 Data availability

In the Table B.3, we list the links for each dataset, the number of samples in the training and test sets,
and their licenses.

Table 4: Data availability.

Dataset Link Train / Test Split License

MedQA https://github.com/jind11/MedQA 10178 / 1273 MIT License

PubMedQA https://github.com/pubmedqa/pubmedqa 500 / 500 MIT License

Slake-VQA 6018 / 1014 Open Access

Slake-REC 1421 / 201 -

Slake-REG

https://www.med-vqa.com/slake

1421 / 201 -

Path-VQA https://github.com/UCSD-AI4H/PathVQA 19755 / 6761 MIT License

SA-Med2D-20M - Apache-2.0 license

SA-Med2D-REC 20000 / 4000 -

SA-Med2D-REG

https://openxlab.org.cn/datasets/GMAI/SA-Med2D-20M

20000 / 4000 -

https://physionet.org/content/mimic-cxr-jpg/2.1.0
PhysioNet Credentialed

Health Data License 1.5.0
MIMIC-CXR

https://huggingface.co/datasets/chaoyi-wu/RadFM_data_csv
9997 / 3858

Apache-2.0 license

https://huggingface.co/datasets/chaoyi-wu/MedPix-Images Open Access
MPx-Single

https://huggingface.co/datasets/chaoyi-wu/RadFM_data_csv
31416 / 6664

Apache-2.0 license

DermaMNIST https://medmnist.com 7007 / 2005 Apache-2.0 License

OrganSMNIST https://medmnist.com 13932 / 8827 Apache-2.0 License

C Multi-task instruction template

We have designed different instruction templates for different datasets. During the training process,
when a sample from a dataset is selected, an instruction template is also sampled from the corre-
sponding dataset’s template pool and used to format the sample. Examples of instruction templates
for each dataset are shown below.
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MedQA

Example 1: [qa] A researcher evaluates healthy breast tissue from 100 women, 50 women that were
pregnant at the time of the study and 50 age-matched non-pregnant women. The breast tissue in pregnant
women contained an increased number of acinar glands with epithelial proliferation compared to the
non-pregnant women. Which process caused this change?

Example 2: [qa] If you are a doctor, please answer the following question briefly: a researcher evaluates
healthy breast tissue from 100 women, 50 women that were pregnant at the time of the study and 50
age-matched non-pregnant women. The breast tissue in pregnant women contained an increased number
of acinar glands with epithelial proliferation compared to the non-pregnant women. Which process
caused this change?

PubMedQA

Example 1: [qa] Does the severity of obstructive sleep apnea predict patients requiring high continuous
positive airway pressure?

Example 2: [qa] If you are a doctor, please answer the following question using "yes", "no" or "maybe":
does the severity of obstructive sleep apnea predict patients requiring high continuous positive airway
pressure?

Slake-VQA / Path-VQA

Example 1: <Img> <ImageFeature> </Img> [vqa] What modality is used to take this image?

Example 2: <Img> <ImageFeature> </Img> [vqa] Based on the image, respond to this question with a
short answer: what modality is used to take this image?

Slake-REC / SA-Med2D-REC

Example 1: <Img> <ImageFeature> </Img> [refer] Liver.

Example 2: <Img> <ImageFeature> </Img> [refer] Give me the location of liver.

Example 3: <Img> <ImageFeature> </Img> [refer] Where is liver?

Example 4: <Img> <ImageFeature> </Img> [refer] From this image, tell me the location of liver.

Example 5: <Img> <ImageFeature> </Img> [refer] The location of liver is

Example 6: <Img> <ImageFeature> </Img> [refer] Could you tell me the location for liver?

Example 7: <Img> <ImageFeature> </Img> [refer] Where can I locate the liver?

Slake-REG / SA-Med2D-REG

Example 1: <Img> <ImageFeature> </Img> [identify] <16><36><42><61>

Example 2: <Img> <ImageFeature> </Img> [identify] What object is in this location
<16><36><42><61>?
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Example 3: <Img> <ImageFeature> </Img> [identify] Identify the object present at this location
<16><36><42><61>.

Example 4: <Img> <ImageFeature> </Img> [identify] What is it in <16><36><42><61>?

Example 5: <Img> <ImageFeature> </Img> [identify] Describe this object in <16><36><42><61>.

Example 6: <Img> <ImageFeature> </Img> [identify] This <16><36><42><61> is

Example 7: <Img> <ImageFeature> </Img> [identify] The object in <16><36><42><61> is

MIMIC-CXR

Example 1: <Img> <ImageFeature> </Img> [caption] Describe the given chest x-ray image in detail.

Example 2: <Img> <ImageFeature> </Img> [caption] Take a look at this chest x-ray and describe the
findings and impression.

Example 3: <Img> <ImageFeature> </Img> [caption] Could you provide a detailed description of the
given x-ray image?

Example 4: <Img> <ImageFeature> </Img> [caption] Describe the given chest x-ray image as detailed
as possible.

Example 5: <Img> <ImageFeature> </Img> [caption] What are the key findings in this chest x-ray
image?

MPx-Single

Example 1: <Img> <ImageFeature> </Img> [caption] Describe this input image.

Example 2: <Img> <ImageFeature> </Img> [caption] Help captioning the image.

Example 3: <Img> <ImageFeature> </Img> [caption] What can be inflected from the scan?

Example 4: <Img> <ImageFeature> </Img> [caption] Can you give a caption for this image?

Example 5: <Img> <ImageFeature> </Img> [caption] Can you provide a brief summary of the radiology
image?

Example 6: <Img> <ImageFeature> </Img> [caption] Please write a report about the image?

Example 7: <Img> <ImageFeature> </Img> [caption] Can you provide an analysis of this image?

Example 8: <Img> <ImageFeature> </Img> [caption] Can you explain what is shown in this image?

Example 9: <Img> <ImageFeature> </Img> [caption] What can be indicated from the radiologic
scans?

Example 10: <Img> <ImageFeature> </Img> [caption] What can you infer from this photograph?
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DermaMNIST

Example: <Img> <ImageFeature> </Img> [cls] Which category does this multi-source dermatoscopic
image of common pigmented skin lesions belong to: actinic keratoses and intraepithelial carcinoma,
basal cell carcinoma, benign keratosis-like lesions, dermatofibroma, melanoma, melanocytic nevi, or
vascular lesions?

OrganSMNIST

Example: <Img> <ImageFeature> </Img> [cls] Which category does this CT image belong to: bladder,
left femur, right femur, heart, left kidney, right kidney, liver, left lung, right lung, pancreas, or spleen?

D Experiments

D.1 Evaluation metrics

F1 Score Assuming m is the number of common words in the candidate C and the reference R with
the number of words of c and r, the precision and recall for a candidate sentence can be calculated
as:

precision =
m

c
(16)

recall =
m

r
(17)

Considering class imbalance, F1 score is used to evaluate the performance of the model on both the
VQA and REG tasks, which means the harmonic mean of precision and recall. A higher average F1
score for the dataset indicates a higher performance of the model.

F1 =
2× precision × recall

precision + recall
(18)

BLEU-N We use BLEU-1 to assess the model’s performance on both the VQA and REG tasks,
while employing both BLEU-1 and BLEU-4 to evaluate its performance in the report generation task.
Given the candidate C and reference R, BLEU-N is defined as:

BLEU-N =

∑
gramN∈C Countclip(gramN )∑

gramN∈C Count(gramN )
(19)

When N=1, the above formula calculates BLEU-1; when N=4, it calculates BLEU-4.

ROUGE-N We use ROUGE-1 and ROUGE-2 to evaluate the performance of the model on the RG
task. Given the candidate C and reference R, ROUGE-N is defined as:

ROUGE-N =

∑
gramN∈R Countmatch(gramN )∑

gramN∈R Count(gramN )
(20)

When N=1, the above formula calculates ROUGE-1; when N=2, it calculates ROUGE-2.

ROUGE-L ROUGE-L is also used to evlaute the quality of the generated text on the task of
report generation, which stands for recall-oriented understudy for gisting evaluation with the longest
common subsequence. Given the candidate C and reference R, let LCS(C,R) be the length of the
longest common subsequence, which is determined by using dynamic programming, it can be an
defined as:

ROUGE-L =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
(21)

where RLCS = LCS(C,R)
LC

, PLCS = LCS(C,R)
LR

, β = PLCS

RLCS
. LC and LR represent the length of the

candidate and reference. A higher ROUGE-L score means that the generated text shares more of the
same sequences of words as the reference text, which typically indicates better quality in terms of
capturing the salient points of the reference.
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METEOR METEOR is also used to evlaute the quality of the generated text on the task of report
generation, which stands for metric for evaluation of translation with explicit ordering. METEOR for
a sentence is computed as:

METEOR = (1− p)× precision × recall
α× precision + (1− α)× recall

(22)

where p = γ( chm )θ is the penalty factor. ch is the number of chunks, which means a contiguous
ordered block. α, θ and γ are hyperparameters determined according to different datasets.

RadGraph F1 To assess the semantic accuracy in the task of report generation, RadGraph F1
computes the overlap in clinical entities and relations between a machine-generated report and a
radiologist-generated report. Specifically, following the criteria in RadGraph [Jain et al., 2021], two
entities are matched if their tokens (words in the original report) and labels (entity type) match. Two
relations are matched if their start and end entities match and the relation type matches. RadGraph F1
metric computes the overlap in entities and relations separately and reports their average.

RadCliQ RadCliQ (radiology report clinical quality) is also used to assess the semantic accuracy
in the task of report generation. Two versions of the RadCliQ metric: RadCliQ-v0 and RadCliQ-v1
both use a machine learning model to take in values from other metrics, such as BERTScore and
CheXbert vector similarity, and then produce a composite score based on these input values, which
predict the total number of errors in a report.

IoU We use IoU (Intersection over Union) to evaluate the performance of the model on the REC
task. It can be formulated as:

IoU =
P ∩G

P ∪G
(23)

where P is the prediction area of the model, G is the area of the ground truth.

R@0.5 We alse use R@0.5 to evaluate the performance of the model on the referring expression
comprehension task. R stands for recall, and 0.5 denotes the IoU threshold. When the IoU between
the prediction and the ground truth is greater than or equal to 0.5, it is considered a true positive (TP).
When the IoU is less than 0.5, it is considered a false negative (FN). Therefore, for a sample with
only one bounding box, R@0.5 can be formalized as:

R@0.5 =
TP

TP + FN
=

{
1, IoU ≥ 0.5

0, IoU < 0.5
(24)

D.2 Data leakage issue of RadFM on MPx-Single

When we directly use the model checkpoint provided by RadFM open-source repository for model
inference, we find that the model outputs for many samples were completely consistent with ground
truth. This issue only occurs on the MPx-Single dataset, while we strictly follow the official test set
split. This appears to be unreasonable, raising suspicions of potential data leakage. Here are some
examples:

Example 1

Instruction: Describe this input image.

Ground truth: Neuroradiology Quiz

RadFM: Neuroradiology Quiz

Uni-Med: axial noncontrast ct image shows a large,
well-circumscribed, non-aggressive appearing mass in the
right frontal lobe.
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Example 2

Instruction: Describe this input image.

Ground truth: Focal necrosis of splenium of corpus
callosum secondary to subacute diffuse axonal injury.

RadFM: Focal necrosis of splenium of corpus callo-
sum secondary to subacute diffuse axonal injury.

Uni-Med: there is a large, well-circumscribed, extra-
axial mass in the right frontal region. the mass is
predominantly cystic with a few foci of solid tissue. there
is no evidence of hemorrhage or enhancement on the mr
sequences.

Example 3

Instruction: Describe this input image.

Ground truth: MRI day 2- hydrocephalus Acute bi-
lateral cerebellar infarcts Acute bilateral thalamic infarcts
Acute right occipital lobe infarct MRA no flow in distal
basilar artery or posterior cerebal arteries.

RadFM: MRI day 2- hydrocephalus Acute bilateral
cerebellar infarcts Acute bilateral thalamic infarcts Acute
right occipital lobe infarct MRA no flow in distal basilar
artery or posterior cerebal arteries.

Uni-Med: acute right mca infarct. acute infarction
of the right cerebellar hemisphere. acute infarction of the
right brainstem. acute cerebral edema.

D.3 Ablation on special token and identifier

We have designed vision-level special task tokens and text-level special task identifiers for visual
features and text prompt, respectively. Through ablation experiment, we verify whether they have
a positive effect on model performance. As shown in Table 5, we observe that text-level special
task identifiers bring limited improvement. In contrast, vision-level special task tokens significantly
improve the model’s overall performance on all datasets, further illustrating the effectiveness of
mitigating the tug-of-war problem at the connector.

Table 5: Ablation Experiments on special token and identifier.

Special Token / Identifier VQA REC REG RG CLS
Connector

Text-level Vision-level BLEU-1
Avg.

IoU
∆(↑)

BLEU-1
∆(↑)

BLEU-1
∆(↑)

Accuracy
∆(↑) Total

∆(↑)

MLP - - 79.81 56.48 35.18 16.26 74.54 58.42 18.55 15.50 76.26 73.64

- - 81.59 57.35 1.9% 36.76 18.74 9.9% 76.07 58.81 1.4% 24.71 15.42 16.4% 74.46 76.07 0.5% 6.0%
- " 81.33 57.29 1.7% 37.85 20.14 15.7% 77.23 62.72 5.5% 23.29 15.74 13.6% 76.76 76.55 2.3% 7.8%
" - 81.79 57.69 2.3% 35.51 17.79 5.2% 74.43 61.34 2.4% 26.27 15.61 21.2% 76.56 77.21 2.6% 6.7%CMoE

" " 81.52 57.75 2.2% 37.54 20.30 15.8% 77.45 60.42 3.7% 24.70 15.55 16.7% 75.61 76.92 1.8% 8.0%

D.4 Visualization analysis of visual features on image modalities

We use t-SNE to visualize the distribution of visual features by modalities in Figure 7. We first
observe the visual feature distribution of different modalities under the same task in Figure 7 (a-c).
The feature of CT and MRI modalities in the REG task already have good discriminability after
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Figure 7: Visual features distribution on image modalities. (a)-(c) The feature distribution of CT and
MRI modalities in the REG task. (a) passing through the frozen visual encoder.(b) passing through
the MLP connector. (c) passing through the CMoE. (d)-(f) The feature distribution of 8 modalities
after passing through the frozen visual encoder. (d) EVA-CLIP ViT-G/14. (e) CLIP ViT-L/14. (f)
BiomedCLIP ViT-B/16.

passing through the frozen visual encoder. After passing through the connector, the improvement in
Silhouette score (from 0.3049 to 0.3335) is relatively limited. In addition, we select 100 samples from
each of the 8 modalities and observe their visual feature distributions after passing through different
visual encoders in Figure 7 (d-f). It can still be observed that visual features of different modalities
already have specific patterns in the feature space, whether using EVA-CLIP, CLIP or BiomedCLIP.

The above findings also provide an explanation for why we attempt to explicitly introduce task
information instead of modality information in CMoE. When aligning visual and language embedding
spaces through the connector in Uni-Med’s multi-modal and multi-task scenario, task information is
more difficult to distinguish than modality information.

D.5 Performance of Uni-Med on REC and REG tasks

We report the metrics of Uni-Med on the tasks of referring expression comprehension and referring
exression generation in Table 6. The mean and standard deviation of performance of Uni-Med are
obtained after several 300k iterations.

Table 6: Performance of Uni-Med on REC and REG tasks.

Task Dataset Metric Uni-Med

Referring Expression Comprehension
Slake-REC

IoU 37.71±0.52
R@0.5 39.30±0.76

SA-Med2D-REC
IoU 21.60±2.19

R@0.5 14.42±3.20

Referring Expression Generation

Slake-REG
BLEU-1 75.78±2.05

F1 77.35±1.97
Accuracy 68.16±1.32

SA-Med2D-REG
BLEU-1 61.47±1.76

F1 62.17±1.90
Accuracy 57.69±1.07
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D.6 Comparison of architecture capability between Uni-Med and LLaVA-Med

In addition to directly compare the capability of existing models, we take LLaVA-Med as an example
to compare the capability of model architectures.

Specifically, we use the checkpoints of the second stage (medical instruction tuning) to perform
two strategies of LLM full parameter fine-tuning: (1) Dataset-specific fine-tuning; (2) Joint training
fine-tuning. The data split and the prompt format are completely consistent with Uni-Med and
LLaVA-Med, respectively. Both strategies last for 3 epochs (the same as Uni-Med). The results are
shown in Table 7.

Following the model architecture of LLaVA-Med, there is a serious tug-of-war problem when we
implement joint fine-tuning strategy on multiple tasks and datasets. While the strategy of dataset-
specific fine-tuning has significantly improved the evaluation metrics of each dataset.

It is worth noting that Uni-Med has achieved competitive and leading results through joint training,
without dataset-specific fine-tuning. It can be concluded that the model architecture of Uni-Med,
especially the design of CMoE, has achieved a superior solution to the tug-of-war problem, which
reduces interference and promotes more efficient knowledge sharing.

Table 7: Comparison of architecture capability between Uni-Med and LLaVA-Med. We utilize
dataset-specific fine-tuning and joint training fine-tuning on LLaVA-Med, respectively.

Task Dataset Metric LLaVA-Med Uni-Med
Joint Training Dataset-specific Joint Training

Visual Question Answering
Slake-VQA

BLEU-1 33.69 72.00 82.12
F1 35.83 73.07 83.07

Path-VQA
BLEU-1 37.79 56.86 58.07

F1 38.55 57.51 58.74

Report Generation

MIMIC-CXR

BLEU-1 20.43 21.03 27.79
BLEU-4 4.86 4.96 6.46

ROUGE-1 26.11 28.28 28.81
ROUGE-2 7.66 9.01 9.62
ROUGE-L 19 20.61 22.58
METEOR 8.73 8.89 10.59

MPx-Single

BLEU-1 15.11 14.63 15.80
BLEU-4 2.4 1.75 2.47

ROUGE-1 13.22 13.03 14.32
ROUGE-2 2.39 2.19 2.68
ROUGE-L 10.99 10.85 12.29
METEOR 5.83 5.79 5.92

Image Classification
DermaMNIST Accuracy 25.84 79.95 76.96

OrganSMNIST Accuracy 66.80 77.84 78.07

Referring Expression Comprehension
Slake-REC

IoU 4.07 22.41 37.71
R@0.5 1.99 18.41 39.30

SA-Med2D-REC
IoU 8.64 17.67 21.60

R@0.5 4.75 9.98 14.42

Referring Expression Generation

Slake-REG
BLEU-1 27.21 50.79 75.78

F1 30.97 53.15 77.35
Accuracy 20.40 44.78 68.16

SA-Med2D-REG
BLEU-1 45.83 55.15 61.47

F1 47.11 55.98 62.17
Accuracy 40.80 50.92 57.69
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly state our contributions and scope in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Although the paper does not include theoretical results, but uses and combines
existing theoretical methods for interpretability analysis about the tug-of-war problem. All
assumptions are clearly stated or referenced in the statement.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and resources are available at https://github.com/
tsinghua-msiip/Uni-Med
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the training and test details including data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In overall comparison, we report the mean and standard deviation of perfor-
mance of our model on all tasks, which is calculated through three different random seed
configurations.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the information about computer resources such as GPU and
time of execution in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the potential positive societal impacts in section of Intro-
duction and Conclusion, and negative societal impacts in Section 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: For our open-source model, providing effective safeguards is a challenge.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators or original owners of assets used in the paper are properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

30



• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have produced new datasets for several tasks and described the processing
process in Appendix B.2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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