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ABSTRACT

In this work, we introduce a novel approach called Scaling to Emphasize Atten-
tion for Long-context retrieval (SEAL), which enhances the retrieval performance
of large language models (LLMs) over extended contexts. Previous studies have
shown that each attention head in LLMs has unique functionality and collectively
contributes to the overall behavior of the model. Similarly, we observe that specific
heads are closely tied to long-context retrieval, showing positive or negative corre-
lation with retrieval scores. Building on this insight, we propose a learning-based
mechanism using zero-shot generated data to emphasize these heads, improving
the model’s performance in long-context retrieval tasks. By applying SEAL, we
achieved significant improvements in in-domain retrieval performance across var-
ious tasks and considerable improvement in the cross-domain document QA task
of LongBench. Additionally, when combined with existing training-free context
extension techniques, SEAL extends the context limits of LLMs while maintain-
ing highly reliable outputs, opening new avenues for research in this field.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al.|(2020)), Radford et al.|(2019)), [Touvron et al.| (2023))
are capable of rapidly generating high-quality answers to a wide range of questions by leveraging the
diverse knowledge embedded in their vast number of parameters. However, in-depth analyses have
revealed a common issue known as hallucination (Shuster et al.| (2021), |[Lin et al.| (2021)), |J1 et al.
(2023)), where the models confidently produce inaccurate answers. To address this, research has
focused on using external information as context to guide the outputs, such as Retrieval-Augmented
Generation (Lewis et al| (2020), Xu et al] (2023)) and Chain-of-Thought reasoning
(2022)). These approaches have significantly improved the reliability of LLMs by enabling them
to reference existing information during generation. However, this trend has also highlighted a key
limitation of LLMs: the constraint of their context window length.
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Figure 1: Overview of the proposed SEAL and corresponding retrieval score improvements for

LongChat-7B-v1.5-32k (2023)) model.
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This limitation of the context window stems from several problems, such as the design constraints
of positional encoding in LLMs and the preference for shorter sequences in training data. It is an
inherent feature of trained LLMs, where performance rapidly degrades once the predefined context
window size is exceeded. To mitigate this issue, several methods (Xiao et al|(2023), Han et al.
(2023)), Zhang et al.| (2024)) of training-free and fine-tuning-based have been developed to extend
the context length of trained LLMs. Recently, model providers have even started releasing models
specifically designed for long context windows to address this limitation (Abdin et al.[(2024)), Jiang
et al. (2024)).

However, even within extended context windows, performance tends to degrade as the context length
approaches its limit. This leads to phenomena such as the “lost in the middle” effect (Liu et al.
(2024)), where the model exhibits biases towards focusing on the early and later parts of the context,
resulting in an increased likelihood of incorrect answers or hallucinations. This issue, where retrieval
performance is influenced by the length of the input, has been consistently observed.

In this study, we aim to address this second problem. We specifically address cases where retrieval
tasks are performed on long-context inputs, which we define as long-context retrieval. Our approach
is based on the insight that well-trained LLMs possess the inherent ability to infer information accu-
rately regardless of context length, but biases in their trained parameters often lead to performance
degradation. For a representative long-context retrieval benchmark, we observed that certain atten-
tion heads contribute notably to long-context retrieval, and adjusting their strength either improved
or reduced accuracy largely.

Building on these observations, we propose a novel approach, Scaling to Emphasize Attention for
Long-context retrieval (SEAL). SEAL is a learning-based attention scaling technique that fine-tunes
attention strength using stochastic gradient descent (SGD) on a small set of generated data following
the format of the task domain. SEAL consists of two major processes. First, training data focused
on the context format is generated for the target task. Our goal is to alter the head-wise contribution
rather than update the embedded knowledge. Therefore, a small set of generated data is sufficient to
identify the important heads relevant to retrieval. Subsequently, head-wise and channel-wise learn-
able scales are fine-tuned for SEAL-H and SEAL-C, respectively. Through this fine-tuning process,
SEAL not only probes the importance of each attention component but also adjusts the scaling
to enhance retrieval performance. Unlike widely known Parameter-Efficient Fine-Tuning (PEFT)
methods (Hu et al., |Houlsby et al|(2019)), SEAL focuses on head emphasis relevant to retrieval,
supported by our observations, enabling high accuracy with minimal data and learnable parameters.

Using this method, we achieved significant accuracy improvements in in-domain environments with
less than one hour of fine-tuning for 7B scale models, regardless of the network type. Addition-
ally, we verified that SEAL maintains generalization ability even for the out-of-domain tasks. Most
importantly, SEAL delivered substantial improvements in long-context accuracy for LLMs that had
already been trained and had their context extended using existing techniques, and this breakthrough
opens up new possibilities for enhancing the long-context retrieval capabilities of existing LLMs.

2 RELATED WORK

Circuit Analysis There have been continuous efforts to identify and interpret the internal mech-
anisms of LLMs and Transformers. Elhage et al.| (2021) analyzed the mechanism of a two-layer
attention-only model, revealing the presence of attention heads that contribute to in-context learning.
Ferrando et al.| (2024) identified various roles of attention heads, such as copy heads and positional
heads. [Wu et al.| (2024)) further demonstrated that certain heads play a role in copying the correct
answer during retrieval. These studies have primarily focused on analyzing the roles of individual
heads, and in addition, analysis methods such as circuit analysis and logit attribution (Ferrando et al.
(2024), Lieberum et al.| (2023)) have been proposed.

Context Window Extension There are several studies to push beyond the limitations of LLMs’
pre-trained context window. Position interpolation based methods (Chen et al.| (2023)), [Peng et al.
(2023))) have been proposed for models using Rotary Position Embedding (RoPE), where interpo-
lation is applied to position encodings and then fine-tuned with a small amount of data. Alternative
methods have been proposed to increase the context length based on the Neural Tangent Kernel
(bloc97| (2023a), |bloc97| (2023b), lemozillal (2023)) theory, which takes into account the loss of in-
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Figure 2: Changes in retrieval score (%) with different settings. (a) Overview of pruning settings,
(b) head-wise pruning results, (c) channel-wise pruning results, and (d) retrieval score of scaling
multiple heads.

formation at high frequencies. Self-Extend (Jin et al.| (2024)) introduces grouped positions to map
positions beyond the learned context length to positions within the learned context, allowing it to
handle long input without additional training.

Benchmarks for Long Context LLMs Several benchmarks have been proposed to evaluate the
retrieval and reasoning capabilities of long context LLMs. Needle-in-a-Haystack (Kamradt| (2023))
inserts a random fact or statement (‘needle’) into a long-context text (‘haystack’) and asks the model
to retrieve the needle. This benchmark has shown that LLMs struggle to retrieve the needle as the
input context length increases. LongEval (L1 et al.| (2023)) line retrieval is the task of retrieving the
corresponding digit given a key within a long text consisting of sentences with a line key and a value
of up to five digits. LongBench (Bai et al.| (2023))) is a benchmark consisting of 21 tasks across 6
categories, designed to comprehensively assess long context understanding capabilities.

3 MOTIVATION

Research on Transformer-based architectures (Elhage et al.|(2021),[Ferrando et al.[(2024))) has shown
that attention heads, a key component, perform distinct roles such as copying, retrieval, and rele-
vance, working together to shape the network’s overall functionality. Notably, some heads specialize
in handling long sequences, while others focus on retrieval. This leads to an optimistic prediction:
if we can identify and strengthen the heads specialized in long context retrieval, we might
significantly enhance performance in that area.

3.1 PRIMARY OBSERVATION: PER-HEAD PRUNING

To validate this prediction, we first re-examine whether each attention head contributes differently
to the retrieval process and determine if we can identify an attention head specialized for retrieval.
Our experimental design is straightforward. As shown in Figure 2a), we pruned one head at a time
on the LongChat-7B-32k model and compared the resulting accuracy changes with the accuracy of
the full network. To simplify the experiment, we used the LongEval (Li et al.|(2023))) line retrieval
benchmark, where the goal is to retrieve a digit of up to five characters randomly located in a given
text. This benchmark is particularly convenient because the target retrieval tokens are limited to the
digits O through 9.

As shown in Figure 2[b), the impact of each head varies significantly, with accuracy changes of
approximately +20% or more, indicating that certain attention heads play a crucial role in retrieval.
These positive and negative head-wise impacts are consistently observed in both mid-range (x-axis)
and long-range (y-axis) contexts. While these results do not definitively show whether the heads are
directly involved in retrieval or are performing other important tasks necessary for accuracy (e.g. ,
understanding the format), an intriguing observation emerges: pruning certain attention heads can
actually lead to an increase in retrieval scores.
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3.2 GENERALIZED APPROACH: ATTENTION HEAD-WISE SCALING

Next, we developed a more general approach to extend the head-wise pruning experiment. Since
pruning multiple heads simultaneously can lead to performance degradation, a more scalable method
was needed. To address this, we adjusted the scale of the identified heads to see if this could holis-
tically improve accuracy. Building on this insight, we divided the quadrants in Figure 2{b) based on
baseline performance (0.0) on the x and y axes. Instead of pruning individual heads, we tried scal-
ing multiple heads together. By scaling the influence of all heads in the first quadrant (Q1)—whose
pruning benefits the retrieval task—by 0.9, we observed an accuracy increase from 32% to 56% at
31k (blue dotted line in Figure[2(d)). In contrast, scaling the heads in Q3—whose pruning degrades
retrieval—by 0.9 resulted in a significant drop in performance (yellow line). Interestingly, when
we scaled Q1 by 0.9 and Q3 by 1.1 simultaneously, we observed an even greater improvement in
retrieval scores (red line). This suggests that jointly scaling and controlling the influence of these
heads can significantly enhance retrieval performance.

3.3 EXTENDED APPROACH: ATTENTION CHANNEL-WISE SCALING

While previous observations show that head-wise scaling offers new possibilities for improving
long context retrieval performance, there is still room for refining the granularity of scaling. As
noted in Quantizable Transformers (Bondarenko et al.|(2023)), earlier research suggests that specific
channels handle syntactic elements like delimiter tokens, and even encodes task-specific knowledge
(Rudman et al.). In our LongChat (L1 et al.| (2023))) pruning experiment, we further applied channel-
wise pruning to the head with the greatest performance improvement (L1H18) and the head with
the largest performance drop (L13H16), as shown in Figure 2Jc). Interestingly, within LIH18’s 128
channels, only certain channels accounted for most of the performance changes. Similarly, when
we controlled L13H16 at a finer channel level, we discovered that some channels actually improved
performance during pruning, despite the overall head causing a significant drop. This underscores
the need for channel-wise manipulation at a finer granularity than the head-level adjustments.

4 PROPOSED METHOD: SEAL

Building on these invaluable observations, we introduce a novel method called Scaling to Empha-
size Attention for Long-Context Retrieval (SEAL), a framework designed to validate our findings
and enhance the long-context retrieval performance of existing LLMs. In SEAL, we update exist-
ing LLMs without altering their learned behavior, instead efficiently adjusting the strength of each
attention component. Since sequentially performing head or channel-wise pruning to identify the
influence of all heads or channels for each task is infeasible, our key idea is to leverage gradient
descent to ascertain the impact of each head on retrieval. Figure [3] provides an overview of SEAL.
SEAL is intentionally designed to validate our observations and enables the updating of LLMs with
minimal training data and fine-tuning, as outlined in the previous section. SEAL’s key contributions
are in two main areas: context-aware generation of training datasets and the design of a learnable
space that maximizes retrieval performance while minimizing cost.

4.1 GENERATING TRAINING DATA FOCUSED ON THE CONTEXT FORMAT

During the dataset generation stage, we observed that SEAL’s focus is not on the inherent value of
real-world data, but rather on the format of data representation for long-context tasks. To demonstrate
this, we generated synthetic training data using an LLM based on the task domain’s format, instead
of using real data with meaningful values, and used it to train the attention strength.

Initially, we generated 50 sample input and answer sets for the given downstream long-context task.
To avoid contamination, we ensured consistency only in format while generating random content.
The method for obtaining format samples may vary depending on the type of downstream task.
The left side of Figure [3] visualizes the pipeline for generating training samples for the Needle-in-
a-Haystack task, as an example. Below are examples created for line retrieval (a) and Needle-in-a-
Haystack (b) tasks.
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Figure 3: The overview of the proposed SEAL method. SEAL-H (head) or SEAL-C (channel) can
be used depending on scaling granularity.

(a) Prompt: ... line righteous-ethernet: REGISTER_CONTENT is <40779> ...
Answer _string: The <REGISTER_CONTENT> in line righteous-ethernet is 40779.

(b) Prompt: ... Based on the content of the book, Question: What is immediately noticeable
upon entering the room?

Answer _string: Immediately noticeable upon entering the room is the large oak table posi-
tioned beneath the chandelier.

4.2 LEARNABLE SPACE DESIGN: SEAL-H AND SEAL-C

Using the generated data, we train a learnable scaling for attention components. Based on the intu-
ition from pruning experiments of Section[3} we propose two granularities for attention control. The
first is SEAL-H (head), which places a learnable scalar head-wise to learn the strength of each head
(FigureB|Right). This process allows us to probe the influence of each head on retrieval while jointly
learning scaling appropriate for long contexts. The second option is SEAL-C (channel), which ad-
ditionally uses a learnable vector for each hidden dimension of the attention output (channel-wise).
As observed in Section [3.3] we found that within the attention heads, there are channels that have
both positive and negative impacts. SEAL-C assigns and updates parameters on a per-channel basis.
While this increases the number of parameters to be learned, it is expected to allow for more fine-
grained manipulation of the attention head outputs, potentially leading to improved performance.

4.3 PEFT BASELINE: SEAL-L (LORA)

The proposed SEAL method can be categorized under Parameter-Efficient Fine-Tuning (PEFT),
as it selects vital, minimal learnable parameters that can impact retrieval and performs supervised
fine-tuning on these scales. From this perspective, a representative PEFT, LoRA (Hu et al.), can intu-
itively serve as our baseline and validate the effectiveness of our fine-tuning pipeline. Furthermore,
comparisons with SEAL-C and SEAL-H suggest that if these methods achieve performance compa-
rable to SEAL-L with fewer parameters, it would validate that we have accurately identified the key
factors contributing to improved retrieval performance. Considering the most basic form of LoRA
with r = 1, the learnable vectors of LoRA adjust the retrieval-related influence in a manner similar
to SEAL-C by controlling the effect across different channels. For this reason, we propose SEAL-L
(LoRA), which can be viewed as a superset of SEAL-C. In SEAL-L, while the LoORA module is
used, the data and training scheme come from SEAL. Through experiments, we demonstrate that
SEAL-H and SEAL-C represent the core components responsible for quality improvement.

In the case of SEAL-H, the total number of learnable parameters is LH (the number of blocks
* heads). In the case of the LongChat-7B model, this amounts to only 1,024 parameters, making
it highly efficient. While SEAL-C uses more parameters, e.g. , 128k in LongChat-7B, this cost is
still affordable, nearly 10 times smaller than SEAL-L. Furthermore, the dataset contains only 50
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Figure 4: Effects of attention heads and MLP on logits: (a) Direct effects of attention heads, (b)
direct effects of MLP layers, and (c) final logits before softmax function for each case. As can be
seen from the y-axis scale, the direct effects of MLPs (b) dominate over Attention heads (a).

samples, resulting in the use of fewer than 2 million tokens for adjusting intensity. Moreover, the
tuned head-wise or channel-wise scale can be multiplied with the weights of adjacent layers (v_proj
or o_proj of Llama) offline, ensuring no additional computational cost during inference time. This
efficient design across various aspects highlights the superiority and practicality of SEAL.

5 QUALITATIVE ANALYSIS BASED ON DIRECT EFFECT

Before measuring SEAL’s performance in downstream tasks, we first conducted a qualitative anal-
ysis in this section to provide a deeper understanding of how the proposed SEAL contributes to
improving retrieval scores. While various circuit analysis techniques have been proposed to ana-
lyze the functioning of Transformer architecture, we utilized the direct effect method, which is one
of the most intuitive and successful approaches for presenting analysis results. Let f(p) represent
the hidden states output of each component (e.g. , attention heads, MLPs) for a prompt p whose
effect we aim to observe, and we denote the head weight as Wj.q. Then the direct effect can be
expressed by the following equation:

A= Wheadf(p) (1)
Specifically, we utilized a form similar to the direct effect proposed in [Lieberum et al|(2023), ex-

cluding the normalization term.

5.1 DIRECT EFFECT ANALYSIS BEFORE AND AFTER SEAL

For the line retrieval task from the LongEval, we selected an example where the baseline LongChat
model produced an incorrect answer, while the tuned model with SEAL provided the correct retrieval
answer. The selected example is shown below.

Prompt: ...odd-shrimp: REGISTER_.CONTENT is <32616> \nline verdant-efficiency: REGIS-
TER_CONTENT is <24819> \nline permissible-prostanoid:...
Question: Tell me what is the <REGISTER_.CONTENT > in line verdant-efficiency? I need the number.

Correct Answer: The <REGISTER_CONTENT>> in line verdant-efficiency is 24819.
Wrong Answer: The <REGISTER_CONTENT> in line verdant-efficiency is “24856”.

We analyzed the impact of each transformer component on the final logit at the position of the last
token in the input, just before the results diverged (1 and 5 in the example above), to examine the
role SEAL played in the autoregressive generation process.
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Table 1: Comparison of the line retrieval task score. Params. (#, %) represent the number of tunable
parameters and the ratio of tunable parameters to the total parameters of the baseline, respectively.

Model Method  Params. (#, %) 9K 14K 19K 23K 28K 31K

Baseline - 098 096 0.84 054 038 0.32
SEAL-H 1.0K, 1.5e-5% 1.00 1.00 098 1.00 094 0.80
LongChat-7B-v1.5-32K SEAL-C  131.1K, 1.9¢-3% 098 096 094 092 094 0.88
SEAL-L  4.2M, 6.2e-2% 1.00 1.00 1.00 1.00 094 0.80
SEAL-D 4.7M, 7.0e-2 1.00 1.00 1.00 1.00 0.94 0.86

Baseline - 098 1.00 090 086 088 0.94
SEAL-H 1.0K, 1.4e-5% 1.00 1.00 1.00 098 098 1.00
Mistral-7B-Instruct-v0.2 ~ SEAL-C  131.1K, 1.8¢-3% 1.00 1.00 1.00 1.00 1.00 0.98
SEAL-L  4.2M, 5.8e-2% 1.00 1.00 100 1.00 1.00 1.00
SEAL-D 4.7M, 6.5e-2 1.00 1.00 1.00 1.00 1.00 1.00

Model Method  Params. (#, %) 5K 7K 9K 12K 14K 16K

Baseline - 1.00 1.00 096 092 0.60 0.64
SEAL-H 1.0K, 1.5e-5% 1.00 1.00 1.00 098 092 0.84
Vicuna-7B-v1.5-16K SEAL-C  131.1K,1.9e-3% 1.00 1.00 1.00 094 096 0.98
SEAL-L  4.2M, 6.2e-2% 1.00 1.00 1.00 096 096 0.96
SEAL-D 4.7M, 7.0e-2 1.00 1.00 1.00 096 098 0.98

Baseline - 096 094 092 092 080 0.60
SEAL-H 1.6K, 1.2e-5 1.00 1.00 098 1.00 1.00 0.92
LongChat-13B-16K SEAL-C ~ 207.7K, 1.6e-3 1.00 1.00 1.00 1.00 1.00 0.96

SEAL-L 6.6M, 5.0e-2 1.00 1.00 098 1.00 098 0.96
SEAL-D 7.5M, 5.6e-2 1.00 1.00 098 1.00 098 0.96
Baseline 098 098 094 088 0.68 042

SEAL-H 1.6K, 1.2e-5 1.00 1.00 096 1.00 0.96 0.94
Vicuna-13B-v1.5-16K SEAL-C 207.7K, 1.6e-3 1.00 1.00 096 098 098 0.94
SEAL-L 6.6M, 5.0e-2 098 098 0.88 1.00 1.00 0.90
SEAL-D 7.5M, 5.6e-2 1.00 098 090 1.00 1.00 0.92

The first and second rows of Figure [d] represent the direct effect of all attention heads and MLPs
for the models, respectively. In the first row, the multi-heads within the same layer are flattened and
indexed. When comparing the scale of the direct effect metrics, we observed two key findings: first,
the influence of the MLPs was more dominant than that of the attention heads. Interestingly, we also
identified specific MLPs in the later layers (20th: digit 5, 28th: digit 1) that appeared to amplify the
effects on the logits corresponding to the numbers being retrieved.

According to the definition of direct effect, the sum of the direct effects of all components for
each token constitutes the final logits, and the difference in this sum leads to variations in retrieval
outcomes. In the Baseline model, the direct effect of the 20th MLP for the token corresponding to
the digit 5 is more dominant than the direct effect of the 28th MLP for the digit 1. As a result, this
influence is reflected in the logit, leading to the incorrect prediction of the digit 5. However, there
is also a peak in the direct effects of MLPs for the correct digit 1, and final logits for the correct
answer have the second-highest logit value. This indicates that the Baseline model does possess
some internal retrieval ability for the correct answer.

In contrast, when examining the direct effects of the MLPs in the proposed SEAL-H model, we
observe that the peak value for the digit 5 is reduced, while the peak for the digit 1 is increased.
This is due to the appropriate head-wise scaling of SEAL-H, which eventually influences the final
logit and the retrieval results. In the case of SEAL-C, which employs channel-wise scaling, it more
precisely scales the effect of attention, resulting in both the direct effect and the logit value clearly
favoring digit 1.

Through this, we can understand how SEAL’s attention scaling can alter retrieval outcomes. Next,
we investigated the quantitative improvements SEAL brings to actual retrieval tasks by evaluating
its performance across various down-stream tasks.

6 EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed SEAL, we evaluated its retrieval performance on long-
context inputs for two widely used tasks: line retrieval from LongEval and the Needle-in-a-Haystack.
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Models: We validated SEAL on five models: LongChat-7B-v1.5-32K and Mistral-7B-Instruct-v(.2
(Jiang et al.[(2023))), which support a 32K context window length, and Vicuna-7B-v1.5-16K (Chiang
et al.[(2023)), Vicuna-13B-v1.5-16K, LongChat-13B-16K, which support a 16K context window.

Settings: We utilized the Axolotl framework to tune SEAL-H, SEAL-C, and SEAL-L. The tuning
was performed using the AdamW optimizer without learning rate decay, and all models were tuned
for 1 epoch. For tuning in the line retrieval task, SEAL-C used a learning rate of 2e-2, while SEAL-
H used le-2 and 2e-2 for the 7B and 13B models, respectively. For the Needle-in-a-Haystack task,
learning rates of 4e-2 and Se-2 were used. For SEAL-L, a LoRA module with » = 4 was applied
to every linear layer in the attention module (QKVO), with a learning rate of 2e-4. A single A100
80GB GPU was used for both tuning and evaluation.

Dataset generation: We used 50 generated samples for each task. LongChat and Mistral were tuned
with samples containing 31K input tokens, while Vicuna used 16K input tokens. For the 7B models,
tuning with the 31K dataset took about 40 minutes, and tuning with the 16K dataset took about 10
minutes.

6.1 RESULTS ON LINE-RETRIEVAL TASK

In Table |1} the Baseline models of LongChat and Vicuna show significant score degradation as the
input length approaches their context window limits. However, the proposed SEAL methods demon-
strated dramatic improvements over the baseline across all input lengths, with particularly notable
improvements for LongChat 7B(from 0.32 to 0.88) and Vicuna 7B(from 0.64 to 0.98). Mistral, while
not experiencing a steep drop within the 32K input length, also shows substantial improvement in
almost all cases, reaching near 100% performance when SEAL is applied.

Compared to SEAL-L (LoRA), SEAL-H achieves comparable performance to LoRA, which tunes
the entire QKVO, while using approximately 4,000 times fewer parameters. This demonstrates that
tuning the head-wise influence of attention is key to improving retrieval performance, a finding also
validated through analysis. Additionally, when comparing SEAL-H to SEAL-C, SEAL-C generally
exhibits higher performance, confirming that fine-grained control at the channel-wise level is impor-
tant, even within the influence of heads. This result supports our analysis that varying the strength
of each head can significantly enhance long-context retrieval capabilities in a cost-efficient manner.

6.2 RESULTS ON NEEDLE-IN-A-HAYSTACK TASK

Figure [5] presents the results of applying SEAL to the Needle-in-a-Haystack task. While Mistral
does’t collapse at longer input than 32k, it still experiences performance degradation with signifi-
cantly longer inputs. Despite using only 50 samples and training with synthesized needles that are
different from the actual target needle, as depicted in Figure |3 SEAL demonstrates remarkable per-
formance improvement. Below are examples of correct and incorrect responses of the LongChat
model at a length of 20533 tokens, 22% depth of needle insertion.

Prompt: ...It’s a worrying prospect. The best thing to do in San Francisco is eat a sandwich and sit in
Dolores Park on a sunny day. It would be a bummer to have another grim monoculture like...
Question: What is the best thing to do in San Francisco?

SEAL-C (score: 100%): The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park
on a sunny day.
Baseline (score: 8.3%): Go to the top of the hill at Lands End and look out at the city.

Although SEAL-H shows relatively lower performance than SEAL-C or SEAL-L, it once again
confirms that retrieval performance can be greatly recovered by simply adjusting the head-wise
influence through scalar values for each head, which is only 1024 parameters for the entire model.

Interestingly, in the case of Mistral, even though sample data was generated for a length of 31K
for the SEAL method, performance improved with inputs much longer than 31K. However, for
LongChat and Vicuna, the naive application of SEAL does not allow them to extend beyond their
learned context window length.
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Figure 5: Comparison of Needle-in-a-Haystack performance. The x-axis and y-axis represent the
token length and the positions where the needle is inserted, respectively. The dotted black lines
denote the context window limits of the original models. DoRA and 13B models results are added.

Table 2: Line retrieval scores for context length extension methods with and without SEAL in
Llama-2-7b-Chat.

Method | 5K 7K 9K 12K 14K 16K | Method | 5K 7K 9K 12K 14K 16K

Baseline | 0.00 0.00 0.00 0.00 0.00 0.00 Baseline 0.00 0.00 0.00 0.00 0.00 0.00
NTK 088 0.32 0.16 0.00 0.00 0.00 | Self-Extend | 0.76 052 046 026 022 0.10
+SEAL-C | 0.90 0.92 0.92 0.84 074 0.88 | +SEAL-C | 0.96 0.96 0.90 0.84 0.68 0.56

7 SEAL WITH TRAINING-FREE CONTEXT LENGTH EXTENSION

In this work, we address one of the two major problems that can arise with lengthy inputs: the gradual
decline in performance within the context window. However, our approach can be used orthogonally
to methods that extend the context window length itself. In fact, the application of SEAL to models
like LongChat is an example where the Llama (Touvron et al| (2023)) model has already been
extended with context windows through RoPE scaling and fine-tuning. However, such tuning-based
extensions come with significant costs in terms of time, data, and training infrastructure.

Recently, training-free context length extension methods (e.g. , NTK (20234)), Self-Extend
(Jin et al.| (2024))) have emerged and garnered considerable attention. However, it is important to
note that these methods generally exhibit lower performance compared to fine-tuning-based ap-
proaches (e.g. , PI (Chen et al|(2023)), YaRN (Peng et al.| (2023))). If SEAL could be applied
orthogonally to these training-free context length extension methods, it would offer the attractive
possibility of simultaneously leveraging the low-cost advantages of the SEAL and tuning-free ap-
proach while restoring performance degradation through SEAL.

The results in Table 2| show that when extending the effective context length to over 16k using
only NTK or Self-Extend, the retrieval performance at lengths greater than 8k drops significantly.
However, by utilizing SEAL in combination to adjust the attention influence, we can dramatically
improve performance beyond the original base model’s context window limitation (4k of Llama).
Notably, NTK was completely unable to retrieve information at lengths above 12k, yet with the
application of SEAL, it achieves performance comparable to that at shorter lengths.

Figure [6] presents the measured performance results for the Needle-in-a-Haystack task, further
demonstrating that SEAL significantly enhances the insufficient performance of the context length
extension methods. These results enable a practical approach to effectively increase the context
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Figure 6: The results of Needle-in-a-Haystack in Llama-2-7b-Chat. The dotted black line denotes
the context window limits of the original Llama model: 4k tokens.

Table 3: The retrieval performance of out/in-domain long context tasks in LongChat-7B-v1.5-32K.

Single Doc QA | Multi Doc QA
MultiField MultiField Narrative HotPot 2WikiM

Domain  Method

QA-EN QA-ZH QA Qasper  Avg. QA QA Musique DuReader Avg.

Baseline | 42.52 35.15 20.66 29.16  31.87 | 33.12 23.89 14.49 21.66 23.29

Out SEAL-H 43.26 36.94 19.65 32.61 3312 | 3055 24.07 15.67 24.22 23.63
domain  SEAL-C 42.23 37.57 20.26 31.77 3296 | 32.55 23.85 13.34 24.37 23.53
In SEAL-H 41.46 36.57 20.21 3582 33.52 | 38385 23.13 19.24 23.71 26.23
domain  SEAL-C 44.02 43.35 19.59 3486 3546 | 45.13 32.50 22.93 24.52 31.27

length of any model at less than 1% of the cost associated with fine-tuning-based methods by com-
bining training-free context length extension with SEAL.

8 GENERALIZATION ABILITY OF SEAL

The proposed SEAL method adopts a task-specific approach using formatted data for particular
downstream tasks, but it is fundamentally based on the theoretical premise of scaling attention com-
ponents to enhance retrieval capabilities. To evaluate whether SEAL can deliver general improve-
ments in retrieval performance for out-of-domain tasks, we measured the scores for the QA task type
in LongBench using the scaling values learned from the line retrieval task in Section [6.1] We used
the learned scaling values of the LongChat model, which showed the largest performance improve-
ment in line retrieval, and compared its performance when LongBench was used as an in-domain
task. Additionally, to ensure that SEAL’s retrieval-focused scaling does not degrade the inherent
knowledge or reasoning abilities of the LLM, we measured the MMLU score.

The out-of-domain MMLU results are 42.53 / 42.34 / 42.17 for Baseline, SEAL-H, and SEAL-C,
respectively. The MMLU score remains nearly unchanged, indicating that our method effectively
identifies and scales only the attention heads relevant to long-context retrieval. Additionally, despite
SEAL being applied task-specifically to line retrieval, which focuses on retrieving numbers, Table[3]
shows that the scores in the out-of-domain LongBench metrics are maintained or even slightly im-
proved. This demonstrates that the retrieval performance gains achieved by SEAL contribute to tasks
like document QA, confirming the generalization capability of our approach.

9 CONCLUSION

The ability to retrieve and extract information from long-length input is an important component
of the LLM. Through our analysis, we found that there are attention heads that have a good or bad
impact on the retrieval score. Based on this, we introduced SEAL, a cost-efficient attention strength
scaling method to deliberately control the impact of each head. Despite using very few formatted
sample data and scaling parameters, it maintains generalization performance and significantly im-
proves retrieval performance. We believe that our insights will promote the widespread adoption of
LLMs.
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A TRAINING CONFIGURATIONS

LongBench in-domain tuning

We used the same training hyperparameters with line retrieval fine-tuning. In specific, we used learn-
ing rate le-2 and 2e-2 for SEAL-H and SEAL-C, respectively.

SEAL with Training-free context length extension For NTK, we set the scaling factor to 4 to
extend the context length from 4096 to 16384. For Self-Extend, we set the group size to 6 and the
neighbor window size to 1024 to extend the length to (4096-1024) x 6 = 18432.

We used a learning rate of 4e-4 for the tuning SEAL-C of Mistral, on the Needle-in-a-Haystack
samples.

B GENERATING SAMPLE DATA FOR DOWNSTREAM TASK

B.1 LINE RETRIEVAL

LongEval provides generate_testcases.py to create random data of the desired length. We created
a prompt (input) for the sample utilizing that code. The answer label for scale tuning is made as
follows:

data[’answer_str’] = f{’The <REGISTER_.CONTENT> in line data[’random_idx’][0] is
data[’expected_number’].”

We further used appropriate system prompts and conversation templates for each model when train-
ing with axolotl.

B.2 NEEDLE-IN-A-HAYSTACK

The pipeline for generating sample data for Needle-in-a-Haystack is detailed in the Figure [3] We
used the following input prompt to generate random needles using chatGPT:

I am trying to test the retrieval performance of the model. I need needle sentences to find in a long
context, with the corresponding retrieval question. Here is one example case: “needle”: ”The first thing
you notice upon entering the room is the bright green chair sitting in the center facing the window.”,
”question”: ”What is the first thing you notice upon entering the room?”. I want to make 10 sets of nee-
dles and corresponding retrieval questions in jsonl format, like needle”: ...”, “question™: ”...”. Here are
some restrictions about needles and questions. 1. Since the purpose is to test only retrieval performance,
the less it is related to general knowledge, the better. 2. It is better to place the content corresponding to
the question at the beginning of the needle sentence, like the given example. 3. Keep the length of the
needle similar to or longer than the length of the example needle provided. 4. Please give variations to
the format, “first thing”.

Can you make 10 sets of examples for me?

The 10 random needle and question pairs created from the above prompt are as follows.

13
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“needle”: "Immediately noticeable upon entering the room is the large oak table positioned beneath the
chandelier.”, question”: "What is immediately noticeable upon entering the room?”

“needle”: A striking feature of the room is the tall bookshelf that spans the entire length of the far
wall.”, ”question”: "What is a striking feature of the room?”

“needle”: “Dominating the center of the room is a grand piano, its polished surface reflecting the light
from the windows.”, ’question”: “What dominates the center of the room?”

“needle”: ’Catching your eye as you step inside is the intricate tapestry hanging on the left wall, its
colors vivid and bright.”, ”question”: ”What catches your eye as you step inside?”

”needle”: ”The first thing that draws your attention is the large framed photograph resting on the man-
tel.”, question”: “What is the first thing that draws your attention?”

“needle”: "Clearly visible as you enter is the large circular rug that covers most of the hardwood floor.”,
”question”: "What is clearly visible as you enter?”

“needle”: "What stands out immediately is the tall standing lamp positioned next to the armchair in the
corner.”, ”question”: ”What stands out immediately in the room?”

“needle”: "The most noticeable item upon stepping inside is the antique grandfather clock, ticking rhyth-
mically in the corner.”, “question”: ”What is the most noticeable item upon stepping inside?”

“needle”: ”Your attention is immediately drawn to the stained glass window, casting colorful patterns of
light across the floor.”, "question”: ”What is your attention immediately drawn to?”

“needle”: ”Visible as soon as you enter the room is a large painting of a landscape, mounted prominently

on the main wall.”, ”question”: "What is visible as soon as you enter the room?”

C ANALYSIS ON NUMBER OF SAMPLES AND LEARNING RATE
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Figure 7: Line retrieval results when using fewer samples than the default 50 samples.

One of the advantages of SEAL is that it can achieve significant performance improvements with
a very small number of formatted data samples. To analyze the impact of the number of samples
on scale tuning, as well as the influence of the key hyperparameter, learning rate. We tuned the
scale of SEAL-H by sweeping the learning rate and the number of samples. For this experiment,
we generated a new set of 100 random samples for line retrieval using the same method proposed
in Appendix [B| The results of applying SEAL-H to LongChat-7B-v1.5-32k with different hyper-
parameter configurations are shown in Table [d] Generally, performance improves as the number of
samples increases, and for LongChat, a learning rate of 3e-2 was identified as the best configuration.
However, for general configurations, we adopted a learning rate of 1e-2 in the main experiments.

Additionally, we tested whether comparable performance improvements could be achieved using
significantly fewer samples, with only 25 or 10 samples. In Figure [7, we compared tuning with 25

| 10 30 50 70 99

5e-3 | 0.56 0.64 0.68 0.70 0.72
le-2 | 0.68 0.74 0.78 0.82 0.82
2e-2 | 070 082 082 0.84 0.70
3e-:2 | 076 0.84 090 0.86 0.82

Table 4: 31k line retrieval results on LongChat, with different learning rates (y-axis) and the number
of samples (x-axis).
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samples over 2 epochs and 10 samples over 5 epochs against the original SEAL-H (which used 50
samples). The results show that even with as few as 25 samples, it is possible to achieve comparable
performance. Although there is a relative performance decrease when tuning with only 10 samples
for 5 epochs, it is remarkable that even with just 10 samples, there is a substantial improvement
over the baseline. Preparing around 10 samples can be easily done by hand without the need for a
complex data processing pipeline, which highlights the cost-effectiveness of the SEAL method.
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