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Abstract. Computer-aided diagnosis systems must make critical deci-
sions from medical images that are often noisy, ambiguous, or conflicting,
yet today’s models are trained on overly simplistic labels that ignore di-
agnostic uncertainty. One-hot labels erase inter-rater variability and force
models to make overconfident predictions, especially when faced with in-
complete or artifact-laden inputs. We address this gap by introducing
a novel framework that brings uncertainty back into the label space.
Our method leverages neural network training dynamics (NNTD) to as-
sess the inherent difficulty of each training sample. By aggregating and
calibrating model predictions during training, we generate uncertainty-
aware pseudo-labels that reflect the ambiguity encountered during learn-
ing. This label augmentation approach is architecture-agnostic and can
be applied to any supervised learning pipeline to enhance uncertainty
estimation and robustness. We validate our approach on a challenging
echocardiography classification benchmark, demonstrating superior per-
formance over specialized baselines in calibration, selective classification,
and multi-view fusion.

Keywords: Multi-View Learning · Echocardiography · Uncertainty ·
Training Dynamics

1 Introduction

Medical image-based diagnosis faces two key challenges. First, it is safety-critical,
where diagnostic errors can have serious consequences. Second, image acquisition
is inherently imperfect. For example, ultrasound imaging depends heavily on the
sonographer’s skill and patient-specific factors, making it difficult to capture im-
ages at the optimal angle consistently. These limitations can lower image quality
and, in turn, compromise diagnostic accuracy. As a result, evaluating these sys-
tems requires more than measuring classification accuracy; it must also account
⋆ P. Abolmaesumi and T. Tsang are joint senior authors.
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for the model’s uncertainty estimates. In challenging cases or when image qual-
ity is poor, the system should know to abstain from making a prediction and
instead refer the case to a human expert. This capability is assessed through the
task of selective classification. Moreover, arriving at a diagnosis often requires
integrating information from multiple sources, such as different imaging modal-
ities or several views of the same anatomy. Crucially, the fusion process must
account for the varying degrees of uncertainty associated with each source. This
capability is evaluated through the task of multi-view fusion.

We propose a method to enhance selective classification and multi-view fusion
by improving uncertainty estimation (UE). We focus on aleatoric uncertainty
(AU), the irreducible uncertainty caused by incomplete or ambiguous input data.
Although AU is less common in traditional vision tasks, it is critical in medical
imaging, where anatomical features can be obscured or ambiguous because of
patient variability, the imaging process, and modality-specific factors.

A core challenge in estimating AU is the lack of ground-truth labels that
faithfully capture uncertainty. Classification datasets typically provide a single,
definitive label, even though expert assessments often reflect borderline cases
or ambiguity. Moreover, the common use of “one-hot” labels fails to convey the
nuanced reasoning needed in uncertain cases. To achieve this, the model’s con-
fidence should be better aligned with task difficulty.

We leverage Neural Network Training Dynamics (NNTD) to generate pseudo-
labels that quantify uncertainty based on how confidently and consistently the
model learns each sample during training. Rather than relying on a fixed label,
we track the model’s evolving predictions across epochs and treat this trajectory
as a measure of sample difficulty. NNTD-based methods have proven effective in
detecting label noise [23,26], improving classification [24], and producing more
reliable uncertainty estimates [9].

We propose Pseudo-D, a novel technique which combines NNTD informa-
tion from both the training and validation sets to created pseudo-labels which
are calibrated at the sub-class level. This is particularly useful when certain
sub-classes are harder to distinguish than others. We evaluate Pseudo-D on a
challenging multi-view ultrasound dataset for aortic stenosis (AS) classification,
which requires integrating information from multiple scanning planes and han-
dling patient-specific variability in image quality. We demonstrate that training
with Pseudo-D improves uncertainty estimation in standard deep learning clas-
sifiers, and outperforms specialized methods on selective classification and multi-
view fusion tasks. Compared to existing approaches, our method better aligns
model uncertainty with input-specific factors like image quality and anatomical
visibility. Furthermore, Pseudo-D is agnostic to model architecture and requires
minimal changes to integrate to existing customized workflows.

2 Related Works

Selective Classification. The task of selective classification (SC), or prediction
with a “reject” option, was initially extended to deep learning by Geifman et
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Fig. 1. We augment the training phase by first recording the history of predicted logits.
The magnitude of the correct class logit (shown in blue) relative to other classes (in
black) varies with task difficulty. We use the training history to generate pseudo-labels
that align with the difficulty of each example. Our proposed training technique, Pseudo-
D, yields a model with predicted probabilities that strongly correspond to image quality.
Additionally, the pseudo-labels help mitigate overfitting by assigning lower confidence
values to difficult training examples.

al. [8]. DeVries and Taylor [6] proposed explicitly learning uncertainty as an
additional output of the model, using a modified loss function. Rabanser et
al. [24] suggested using model checkpoints from different training epochs to form
an ensemble for SC. Huang et al. [14] explored how label augmentation can
improve SC, and Feng et al. [7] showed that the softmax response can out-
perform specialized scoring functions in existing SC approaches.

Multi-view Fusion. Multi-view fusion involves the combination of classifier
predictions, where each prediction stems from a unique view of the same under-
lying object. The fusion of predicted probabilities can be through averaging [25],
majority voting [19], or by learned weighting scheme [31]. Zhang et al. [33] es-
tablishes a theoretical link between uncertainty estimation and multi-view clas-
sification performance for logit-based approaches. Evidential Neural Networks
(ENNs) [27] are trained to output belief masses instead of logits. Belief masses
can be aggregated using Dempster’s Rule of Combination, a mathematically
rigorous method for combining multiple predictions [12].
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Aortic Stenosis Severity Classification. Aortic stenosis (AS) is a heart valve
disease characterized by restricted blood flow through the aortic valve. The clin-
ical standard for AS diagnosis relies on measuring blood flow volume through
the left ventricular outflow tract, typically derived from spectral Doppler [21].
However, Doppler-based diagnosis is sensitive to measurement variability [28,22]
and is often unavailable on newer, lightweight ultrasound devices [10]. Recent
clinical works [1,20] proposed assessing AS severity through B-mode ultrasound
interpretation by human clinicians. AI-based AS classification using B-mode ul-
trasound has gained traction: works [5,11] classify using single-image or video
inputs, while [2,13,15,17,30] and [32] utilize multiple views from retrospective
exams, combining predictions via majority voting or averaging of predicted con-
fidence. Huang et al. [16] uses multiple-instance learning to learn the importance
of each image.

3 Methodology

3.1 Background: Construction of pseudo-labels via NNTD

Training samples Xtrain = (x0, y0), . . . , (xN , yN ) vary in how difficult they are
for a model to learn. This difficulty may stem from intrinsic task complexity
(e.g., distinguishing visually similar classes), data-related issues (such as noise,
occlusions, or imaging artifacts), or label noise. The model’s evolving predictions
f(xi) over T training epochs provide insight into the difficulty of each data
point. For easy examples, the logit corresponding to the ground truth class tends
to dominate consistently across epochs. In contrast, for difficult or mislabeled
examples, the logits for different classes often remain uncertain or competitive.
We can compute pseudo-labels y′i ∈ [0, 1]C which represent the model’s average
class confidence over time:

y′i =
1

T

T∑
t=1

σ(ft(xi)), xi ∈ Xtrain, (1)

where ft(xi) denotes the model logits at epoch t, and σ(·) is the softmax function
applied over class outputs.

These pseudo-labels encode the uncertainty related to sample difficulty, en-
abling more robust learning. Prior work has shown that training on such soft
targets improves resistance to label noise [4,14] and enhances uncertainty estima-
tion [9]. Training on y′ can be viewed as a form of knowledge distillation from
a training-dynamics-based ensemble, capturing model behavior across epochs.
Crucially, these pseudo-labels are architecture-agnostic and can be used to train
any downstream model on the same task.

3.2 Calibrated pseudo-labels

A limitation of Eqn. 1 is that the confidence of y′i may not be well-calibrated, i.e.
even if f(.) fits these pseudo-labels, the predicted probabilities might still be over-
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or under-confident. To address this, we generate pseudo-labels using information
from both Xtrain and Xval. Specifically, we apply temperature scaling to the
logits so that output confidences better reflect the true accuracy (Eqn. 2 - 4):

vi =
1

T

T∑
t=1

ft(xi), (2)

y′i = σ(γ∗ vi), xi ∈ Xtrain, (3)
γ∗ = argmin

γ
CrsEnt(γ vj , yj), xj ∈ Xval, (4)

where vi ∈ RC denotes the logit vector averaged over epochs for both Xtrain

and Xval. The temperature parameter, denoted as γ∗, is chosen to minimize the
negative log-likelihood (NLL), which is equivalent to minimizing cross entropy,
on Xval. We refer to this approach as Pseudo-T.

While temperature scaling is a common technique for improving model cali-
bration, it typically applies a single global scaling factor across all classes. This
uniform treatment fails to account for class-specific variability, since some classes
can be inherently harder to differentiate compared to others.

To address this limitation, we adopt Dirichlet Calibration [18], which applies
class-wise scaling to the model logits. This approach learns a transformation
matrix and bias that adjust each class individually, yielding pseudo-labels with
improved sub-class calibration:

y′i = σ(A∗vi + b∗), xi ∈ Xtrain, (5)

A∗, b∗ = argmin
A,b

CrsEnt(Avj + b, yj) +
λ1

C
|b|22 +

λ2

C2
|D̄(A)|22, xj ∈ Xval. (6)

Here, vi denotes the model logits, A ∈ RC×C is the learned scaling matrix,
and b ∈ RC is a bias vector. Compared to simple temperature scaling (Pseudo-
T ), this method introduces significantly more parameters, increasing the risk
of overfitting to the validation set Xval. To mitigate this, we apply regular-
ization terms: one to penalize large bias magnitudes, and another to suppress
off-diagonal entries in A (denoted D̄(A)). In practice, this results in a flexible
yet stable calibration scheme: the diagonal entries of A remain expressive, while
off-diagonal interactions are dampened. We refer to this pseudo-label method as
Pseudo-D.

4 Experiments

4.1 Dataset

We use an anonymized private dataset obtained from a tertiary hospital with
ethics approval. The dataset contains 2572 retrospective echo studies, acquired
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with Philips iE33, Vivid i, and Vivid E9 transducers. The studies were first la-
beled as normal/mild/moderate/severe based on spectral Doppler measurements
using AS diagnostic guidelines from [3]. Consistent with prior methods [15,32,30],
the moderate and severe classes are combined into a single “significant class”. An
experienced cardiologist selected parasternal long-axis and short-axis views from
each study, resulting in a total of 9117 videos. We created training, validation
and test using a randomized 80/10/10 split, ensuring no patients overlap across
subsets. Each video was preprocessed by extracting approximately one heart
cycle, removing background UI elements, and resizing to 16× 224× 224.

4.2 Evaluation Procedure and Metrics

We compare models trained on the following pseudo-labels: RT4U [9] (Eqn.
1), Pseudo-T, and Pseudo-D on selective classification and multi-view fusion.
We compare the pseudo-label approaches with Vanilla, a baseline cross-entropy
approach; Abstention [6], which trains an extra network branch specializing in
rejecting uncertain predictions; and TMC [12], which specializes in combining
probabilities from multiple sources.

In selective classification, models are provided with an option to “reject”
the prediction f(x) based on a selection function g(x) and threshold τ . The
effectiveness of selective classification depends on both the accuracy of f(x)
and the sensitivity of g(x) for identifying likely misclassifications. The coverage
(Eqn. 7) and accuracy (Eqn. 8) are evaluated at different thresholds. Performance
over multiple thresholds can be summarized by the Area Under Risk-Coverage
Curve (AURC) [8] (Eqn. 9):

Cov(f, g, τ) = |x : g(x) > τ |, (7)

Acc(f, g, τ) =
|(x, y) : f(x) = y, g(x) > τ |

|x : g(x) > τ |
, (8)

AURC(f, g) =
1

|T |
∑
τ

Acc(f, g, τ) ∗ Cov(f, g, τ). (9)

We choose g(x) to be tied to the softmax confidence of the predicted class, since it
was shown to be successful across multiple specialized methods [7]. Traditionally
the AURC measures loss; we co-opt the metric to assess balanced accuracy due
to the nature of the classification task. We pre-compute the set of thresholds T
at the percentiles of coverage ranging uniformly from 50% to 100%.

We use multi-view fusion to aggregate video-level predictions to study-level.
In some studies, only one or two videos clearly show signatures of stenosis on the
aortic valve. Thus, we adopt a “worst-case” aggregate strategy. If all videos in the
study are predicted as normal, we average the softmax probability. Otherwise,
we average only over the subset of videos predicted as abnormal.

In terms of metrics, we measure the accuracy (ACC), expected calibration
error (ECE), and mean average error (MAE) with class 0 as normal, 1 as early,
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Table 1. Evaluation over the test set of the aortic stenosis classification dataset. Each
study consists of multiple ultrasound videos of the same patient. Models predict at the
video-level, and predictions are fused into the study-level. We report metrics computed
separately for each class, then averaged. Best and second-best results are bolded and
underlined, respectively.

Video-level Study-level
Method MAE ↓ ACC ↑ ECE ↓ AURC ↑ MAE ↓ ACC ↑ ECE ↓ AURC ↑
Vanilla .257 .765 .170 .804 .224 .790 .138 .852
Abstention [6] .250 .769 .130 .820 .216 .794 .094 .881
TMC [12] .252 .771 .213 .746 .205 .808 .163 .777
RT4U [9] .246 .773 .105 .804 .171 .836 .073 .877
Pseudo-T (ours) .234 .786 .097 .838 .192 .808 .089 .874
Pseudo-D (ours) .220 .787 .096 .793 .180 .820 .071 .885

and 2 as significant. To account for class imbalance, we report balanced metrics
by computing each metric per class and then averaging the results.

4.3 Implementation Details

For both pseudo-label generation and fitting, we model f(.) using R(2+1)D [29]
with Kinetics400 initialization, trained with ADAM, learning rate 1e-4 for 20
epochs. We augment the input via random rotation of ±15◦ and cropping with
ratio 0.7. To compute y′i, we save the logits from Xtrain and Xval every epoch;
we tune temperature parameters γ, A and b using SGD with learning rate 0.01
and λ1 = λ2 = 1.

4.4 Results and Discussion

Table 1 compares the pseudo-labeling and specialized methods at both the video-
and study-level. Overall, Pseudo-D performs best across most evaluation met-
rics. Abstention is effective for selective classification based on AURC, but under-
performs on other metrics. TMC has similar accuracy and MAE to other meth-
ods, but its predictions are less well-calibrated, as the method was designed
primarily for aggregation rather than uncertainty estimation.

The pseudo-label based methods may be performing better on noisy imaging
modalities such as ultrasound because they reduce overfitting to difficult training
examples. The difference between these methods is how the output probabilities
are scaled. Pseudo-T improves over the baseline, but its lack of class-wise cal-
ibration is limiting. This is due to the heterogeneity in class confusion. In this
instance, it is easier to distinguish between normal and early than between early
and significant aortic stenosis disease. The learned calibration parameters γ∗,
A∗ and b∗ show that off-diagonal terms and biases are near zero, with the most
notable differences coming from the class-specific scaling factors,
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Fig. 2. Density plot of predicted confidence scores, grouped by presence of bicuspid
aortic valve and prediction correctness. Dotted lines show the average confidence for
each subgroup. Models trained with pseudo-label methods show stronger separation,
meaning cases harder to classify correctly are more identifiable through uncertainty.

γ∗ = [0.698], A∗ =

 0.944 0.070 −0.064
−0.083 0.621 0.085
0.061 −0.056 0.591

 , b∗ =

−0.026
0.003
0.029

 .

Figure 1 presents an inference example from a particularly challenging case
with significant AS. The ultrasound acquisition was difficult, resulting in low-
quality videos. In acquisition 1, the valve is not clearly visible. The baseline
model, trained using one-hot labels, is overconfident despite the poor image
quality. In contrast, the model trained with Pseudo-D remains appropriately
uncertain about the severity. For acquisition 2, the model’s confidence increases
accordingly due to the improved visual clarity.

We evaluate classification for the subset of patients with bicuspid aortic valve
(BAV). The aortic valve is normally tricuspid, consisting of three leaflets. BAV is
a congenital defect where two leaflets are fused, consisting of 14.1% of studies in
our dataset. These cases are harder to classify due to their under-representation
in the dataset and atypical valve morphology. Accurate uncertainty estimation
is key to ensuring that misclassifications are flagged with high uncertainty. In
Figure 2, we show the distribution of model confidence scores for each sub-
group. Ideally, the confidence distributions for correct and incorrect predictions
should be well separated. Since models perform worse on BAV cases, we also
expect lower average confidence for this subgroup. Both pseudo-labeling meth-
ods improve subgroup separation and better align uncertainty with actual error
likelihood.

5 Conclusion

We introduced a method for approximating the difficulty of training samples via
NNTD, and generating pseudo-labels that reflect the unique challenge each case
presents. We demonstrated improved performance in selective classification and
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multi-view fusion, two tasks where reliable UE is essential. NNTD can reveal
valuable insights about data quality and model uncertainty, even when only a
single ground truth label is available.

However, NNTD is still limited by and may vary based on the network archi-
tecture. Future work may explore distillation via creating/fitting pseudo-labels
with larger/smaller networks respectively, combining dynamics-based strategies
with other methods for capturing AU, accounting for inter-clinician variability
through multiple label sets, and improving the sensitivity with respect to specific
classes or sub-groups.
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