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ABSTRACT

Graph Neural Networks (GNNs) provide a principled framework for learning on
graph-structured data, yet their expressiveness is fundamentally limited by over-
squashing-the exponential compression of information from distant nodes into
fixed size vectors. While graph rewiring methods attempt to alleviate this issue
by modifying topology, existing approaches can introduce prohibitive computa-
tional bottlenecks. We propose Schreier-Coset Graph Rewiring (SCGR), a group-
theoretic rewiring method that augments the input graph with a Schreier-coset
graph derived from a special linear group SL(2,Z,,). Unlike heuristic rewiring,
SCGR provides provable theoretical guarantees: the auxiliary graph exhibits a
spectral gap and a bounded effective resistance, creating low-resistance bypasses
for long-range communication. By coupling these two graphs with strength, we
ensure that effective resistance between any node pair is bounded, directly mit-
igating over-squashing. Empirical evaluations demonstrate that SCGR reduces
effective resistance by 15-40% across benchmark datasets while maintaining com-
petitive accuracy and lower computational overhead, making it practical for both
large-scale and diverse applications.

1 INTRODUCTION

Graph Neural Networks (GNNs) are designed to process data exhibiting a graph structure (Hamilton
et al., [2017). Their versatility has led to widespread adoption and empirical success across diverse
domains (Wu et al.| [2020; |Abadal et al.| [2021). Several GNN variants have emerged. The Graph
Convolutional Networks (GCN) (Kipf & Welling} 2016)) employs a localized, first-order approxi-
mation of spectral graph convolutions. It aggregates normalized features from neighboring nodes to
update node embeddings, achieving a computational complexity that scales linearly with the num-
ber of edges denoted as O(F). The Graph Isomorphism Network (GIN) (Xu et al., 2018) utilizes
sum aggregation neighbor features, followed by a multi-layer perceptron (MLP), to maximize its
ability to distinguish between different graph structures. When its MLPs process sufficient capacity,
GIN’s discriminative power is equivalent to Weisfeiler-Lehman test for graph isomorphism (Huang
& Villar, 2021).

Most contemporary GNNs operate under Message Passing Neural Network (MPNN) paradigm (He
et al., 2023). In this framework, nodes iteratively exchange information with their neighbors to
refine their representations. While more layers are often necessary to capture long-range interac-
tions within the graph, increasing network depth can lead to challenges. Specifically, the receptive
field of nodes grows exponentially with depth. This results in large amounts of information from
extensive neighborhoods being compressed into fixed-size embeddings (Wilson et al, |2024). This
phenomenon, known as over-squashing (Alon & Yahav, 2020), can cause significant information
loss (Shi et al., [2023)) and thereby substantially limit the expressive capacity of GNNs (D1 Giovanni
et al., [2023).

Further the performance and behavior of GNNs are intrinsically linked to the underlying graph
topology. For instance, the Jacobian of node features is influenced by topological properties such as
graph curvature and effective resistance (Di Giovanni et al., 2023} Topping et al., 2021} Black et al.,
2023)). Various methods are employed to address over-squashing in graph neural networks. Graph
rewiring techniques by [Deac et al| (2022), constructs expander graphs, including Cayley graphs
(Wilson et al.| [2024) to aid propagation. [Wilson et al.| (2024) modifies topology using properties
such as curvature (Fesser & Weber, |2024)), spectral expansion (Karhadkar et al., 2022} |Banerjee
et al.,[2022)), and effective resistance (Black et al., 2023) to optimize the flow of information.
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Feature Augmentation offers an alternative approach. Laplacian Positional Encoding (LapPE) by
Dwivedi et al.[(2021) injects long-range structural context into node features, reducing the need for
deep message-passing layers. However, its O(n?) eigenvector computation limits scalability and
makes it sensitive to topological perturbations. Another method, shortest-path distance encoding
directly inputs hop counts (all-pair computation is O(n(E)), bypassing intermediate message prop-
agation. This method typically encodes only scalar distances, thus neglecting information about
other possible paths and connectivity issues.

In this work, we introduce SCHREIER-COSET GRAPH REWIRING (SCGR), a novel framework that
augments input graphs with Schrier-coset graphs derived from SL(2, Z,,). Unlike prior approaches,
that rely solely on Cayley expanders or heavy rewiring, SCGR provides a principled alternative. Our
main contribution are:

* Formalization of Schreier—coset rewiring. We define the construction of Schreier—coset
graphs and their integration into GNNs as rewiring augmentations. Vertices correspond to
cosets of SL(2,Z,) modulo an upper-triangular subgroup, with constant-side generators
yielding d-regular graphs.

* Theoretical analysis. We provide rigorous theoretical analysis of SCGR, through the anal-
ysis of spectral properties, and bounds on effective resistance of the Schreier graph, and the
resulting performance guarantees of SCGR including over-squashing mitigation in GNNSs.

* Empirical Validation. We evaluate SCGR on benchmark datasets for node and graph clas-
sification, as well as synthetic stochastic block models with varying modularity. Results
demonstrate that SCGR consistently matches, attains higher scores against rewiring base-
lines, and performs well with varying graph modularity.

2 RELATED WORKS AND EXISTING APPROACHES

A common strategy to mitigate structural bottlenecks is to decouple the input graph from the com-
putational graph. |Alon & Yahav| (2020) proposed rewiring by making the final GNN layer fully
adjacent, enabling all nodes to interact directly without full-graph pre-analysis. Graph Transformers
(Ying et al., 2021} [Kreuzer et al., |2021) follow a similar principle with full connectivity in each
layer, but their O(|V'|*) edge complexity restricts scalability. Alternatively, |Gilmer et al.| (2017)
introduced a controller node connected to all others, reducing diameter to 2 with only O(|V'|) edges,
but risking a new bottleneck by over-centralizing flow.

In Feature Augmentation, node/edge attributes are enriched with global signals. [Eliasof et al.|(2023))
concatenate top-k Laplacian eigenvectors to each node, so long-range information need not prop-
agate hop by hop. However, eigen-decomposition costs O(n?) and O(nk) memory, and suffers
from sign ambiguity and batch inefficiency. In Graph Rewiring, the input graph is modified to im-
prove spectral properties. [Karhadkar et al| (2022) and others (Banerjee et al.| 2022; Black et al.,
2023} |Arnaiz-Rodriguez et al., [2022) use spectral metrics or effective resistance to reduce over-
squashing. While effective, these approaches demand costly full-graph analysis. In Expander
Graphs-Expanders provide favorable spectral gap and resistance. |Banerjee et al.| (2022)) proposed
random local rewiring inspired by expanders. Shirzad et al.|(2023) combined expanders with virtual
nodes in a graph transformer. Wilson et al.| (2024) extended this to Cayley propagation, inflating
node count to O(n?) and requiring heavy padding/truncation.

3 SCHREIER-COSET GRAPHS REWIRING (SCGR) FOR GNNS

3.1 PRELIMINARIES

Graphs. Let G = (V| E) denote an undirected, connected, and non-bipartite graph with node
set V and edge set E. Its adjacency matrix is A € R™*™ with entries A;; = 1if (4,j) € E
and 0 otherwise, where |V'| = n. Define the diagonal degree matrix D = diag(dy, ..., d,) with
D,, = d,. The normalized Laplacian is

L=D"*(D—AD'2
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The eigenvalues of L satisfy 0 = Ag < A < --- < A,—1. The eigenvector associated with )\
(the algebraic connectivity) is known as the Fiedler vector. It provides a canonical one-dimensional
embedding of the nodes that reflects graph connectivity.

Special Linear Group SL(2,7Z,). LetZ, = Z/nZ denote the ring of integers modulo n. The
group G = SL(2,7Zy,) is defined as:
G =SL(2,Z,) = {M €Z2? | det(M) =1 (modn)}.

Here, n depends on the input graph size.

Subgroup. Let H be a subgroup H C SL(2,Z,) which consists of diagonal matrices with unit
determinant within G:
a 0
H:{(O d) €Glad=1 (modn)}.

Generator. Let S be the generator set:

{8 )4 )

Expander graphs. An expander graph is sparse yet highly connected, with edges scaling linearly
with nodes. We use pre-computed expander graphs based on Cayley graphs Cay(G;S) derived
from the special linear group G = SL(2,Z,, with generating set S. While these graphs have good
expansion properties, achieving large node counts is often impractical due to the node count formula:

vicaw@s - ] (1-)

prime p|n

which creates excessive memory requirements for large n (where n is the smallest value satisfying
[V(Cay(SL(2,Z4); )| = [V

3.2 SCHREIER-COSET GRAPHT'.

Following Schreier] (1927), Schreier—coset graphs provide a permutation representation of finitely
generated groups on the cosets of a subgroup of SL(2, Z,,). The Schreier-coset graph plays a central
role in our rewiring scheme, serving as an auxiliary structure that encodes robust expansion and
mixing behavior through group-theoretic symmetries.

Formally, for a group G, a subgroup H C @, a generating set S C G, the Schreier-coset graph
' = (Vp, Er) is defined as:

* Vertex Set : V1 = {gH : g € G} (collection of right cosets).

* Edge Set : For each gH € Vi and each s € S, include an undirected edge {gH, (¢9s)H} €
Er.

This yields a d-regular graph with d = |S|, since each coset has one neighbor for every generator.

In constructing the the Schreier graph, we employ a canonical construction. That is, I is constructed
over the group G = SL(2, Z,,) with subgroup H consisting of diagonal matrices, and use elementary
row operations as generators:

1 +1 1 0
(3 )4 ) e

The resulting Schreier-coset graph has |Vr| = SLl(z’lZ") = ”((Z;:)l)

totient function.

vertices, where ¢(n) is Euler’s

3.3 SCHREIER-GUIDED GRAPH REWIRING

We augment the input graph G;,, = (Vip, E;p) using structure-preserving rewiring guided by the
Schreier—coset graph I'. Central to this procedure is a locality-preserving mapping ¢ : V;,, — V.
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Spectral Mapping Construction. Let ®;, : V;,, — R" be spectral embeddings using the r lead-
ing eigenvectors of their respective graph Laplacians. We defined the locality-preserving mapping
¢ : Vin — Vp by solving:

Case (i) |Vin| < [V|:
min Z distr(o(u), ¢(v))

Vin =W
¢ r (u,v)EEin

subject to || Pr(p(v)) — Pin(v)||2 being small.

Case (ii) |Vi,| > |Vr|: Use disjoint copies T(!), ..., T(@ or a product T' x K, and apply case (i) per
block.

The optimization ensures that neighborhoods in G, are mapped to neighborhoods in I', preserving
local structure for effective rewiring.

Rewiring Strategy. Edges are added to GG, between nodes u,v € V;, if their Schreier images
¢(u), $(v) are connected by short paths in I" but far apart in G;,,. This creates an alternative that
leverages the expander properties of I'. Specifically:

e Distance Threshold Selection: Fix a maximum distance £ > 1 in I.
* Schreier Proximity Detection: For each pair (u, v), compute distp(d(u), ¢(v)).
* Conditional edge addition: Add (u,v) if:

1. (u,v) ¢ E;, (not already connected),

2. distr(¢(u), d(v)) < £ (close in Schreier Graph),

3. distg,, (u,v) > £ (distant in original graph).

The rewired graph is
G = Vi, E™),  E™ = B, U{(u,) : distr(¢(u), ¢(v)) < £ < distg,, (u,v)}.

Added edges are weighted by
Wyy = €~ f(dlth(¢(u)a ¢(U)))7

where € > 0 is a global strength parameter and f(-) is a monotone decreasing function.

SCGR rests on three key pillars: (i) locality preservation through spectral embeddings, (ii) effective
resistance reduction via alternative low-resistance pathways, and (iii) quantifiable over-squashing
mitigation while maintaining near-linear complexity. We establish formal theoretical guarantees for
each component in the next Section. Here we first analyze the computational complexity of the
approach.

The practical implementation of SCGR involves several computational components, each with well-
defined complexity bounds.

Graph Construction: The Schreier-coset graph I' has Vi = O(n) vertices for (mod n) (and
O(n - polylog(n)) in general case), with constant degree d = |S| = 4. Its edge set therefore satisfies
|Er| = O(]Vr|). Constructing I" via coset representatives and generator multiplications requires
O(|Vr|) group operations, which can be cached once and reused across multiple input graphs.

Mapping and Rewiring: The locality-preserving mapping ¢ : V;,, — V1 can be computed using
spectral embeddings of dimension r < |V'|. This requires O(r - | E;;,|) operations via power itera-
tion on the Laplacian. For rewiring, distance queries distr(¢(u), ¢(v)) can be approximated using
truncated BFS or landmark-based embeddings, avoiding a quadratic scan over all pairs. Thus the
edge addition process runs in O(|E;,| + |Vinl) - degp () where degp ) is the number of Schreier
neighbors within distance ¢.

Message Passing: Each GNN layer on the rewired graph requires O(|E"*?|) operations. Since
E™ = O (B, + Vi) - degr(,) and degr(¢) grows moderately (expander property), the per-layer
complexity remains near-linear in the input size.

Space Complexity: The node set is unchanged (|V"%¢| = |V;,[). The added edges are at most
O(|Vin| - degry) ), and degp(yy = O(d*) with d = 4. Thus the memory overhead is tunable via £
and typically sub-quadratic.
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4 THEORETICAL PROPERTIES OF SCGR

We first show that the Schreier-coset graph I' is an expander with strong spectral and mixing prop-
erties that enable efficient information propagation through low effective resistance paths.

Lemma 4.1 (Spectral Gap). The Schreier-coset graph I has a spectral gap
’y:l—AQ(P)>O7
where P is the transition matrix of the random walk on I.

Lemma 4.2 (Expander Mixing). For the random walk matrix P on T and all t > 0,

\(Ptm I P

[Vr|

log(2|Vr|) 1
lft Z Og%’ then (Pt)i'u Z m

Lemma 4.3 (Effective Resistance Bound). For any vertices u,v € Vr,
Reﬁ (U, U) S R
where d = S| is the degree and = is the spectral gap.

The bounded effective resistance guarantees that any two nodes in the Schreier graph are well-
connected, with resistance inversely proportional to the spectral gap ~y. This property is crucial for
creating efficient rewiring patterns.

Bi-Lipschitz Control via Spectral Embeddings. The spectral alignment between G;,, and I pre-
serves distance relationships up to a controlled factor, ensuring that the rewiring preserves meaning-
ful structural relationships.

Theorem 4.1 (Lipschitz Locality). If ®;, and ®r are bi-Lipschitz on relevant scales, then there
exists ¢ > 1 such that

distr(¢(u), p(v)) < ¢ - distyp (u, v)
for all u,v € Vy,.

Effective Resistance Analysis of the Rewired Graph. Theorem [4.2] show that the rewiring pro-
cess creates alternative pathways between distant nodes, significantly reducing effective resistance
and enabling better information flow.

Theorem 4.2 (Effective Resistance in Rewired Graph). In the rewired graph G™"%, the effective
resistance between nodes u,v € V;,, satisfies

R u,0) < min { BRI (), - Bl (6(u), 6(0) + = .

€

Sketch. The rewired graph can be viewed as an electric network where current can (i) route entirely
in the original Gi,, which gives Rl;; (ii) route via the I'-layer uses two connectors (each 1/¢) in
series with a I' path whose energy scales as Rl /; Thomson’s principle gives the second term.
Rayleigh monotonicity/Kron reduction also imply RIEd < R

Information Flow and Over-Squashing Mitigation. The connection between effective resistance
and information propagation in neural networks is well established. In message-passing networks,
the gradient flow between distant nodes is inversely proportional to their effective resistance.

Theorem 4.3 (Over-Squashing Mitigation). For nodes w,v € V;,, with large distance,

u,v) = 73&(%7)) max cit(1,v) - ¢
o) R (u,v) - {17R£H(¢(u)a¢(v))+2}.

When R;’} #(u,v) grows exponentially with distance, but Rgf 7(0(u), d(v)) < % remains bounded,

the improvement factor p(u, v) can be exponentially large.
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Table 1: Performance comparison of SCGR against baseline models across six standard benchmark

datasets.
Model Am. Comp. Am. Photo CiteS. Co.CS Cora PubMed
LogReg 0.6410 & 0.0570 0.7300 £ 0.0650 - 0.8640 % 0.0900 - -
MLP 0.4490 £ 0.0580 0.6960 + 0.0380 0.5880 £ 0.0220 0.8830 %+ 0.0070 0.5980 £ 0.0240 0.7010 & 0.0070
GAT 0.7800 = 0.1900 0.8570 % 0.2030 0.6890 4 0.0170 0.9050 + 0.0060  0.8080 +0.0160  0.7780 + 0.0210
GCN 0.8260 % 0.0240 0.9120 4 0.0120 0.6820 £ 0.0160 0.9111 £ 0.0050 0.7910 £ 0.0180 0.7880 % 0.0060
MoNET 0.8350 % 0.0220 0.9120 £ 0.0130 0.7120 = 0.0020 0.9080 =+ 0.0600 0.5980 £ 0.0080 0.7860 £ 0.0230
LabelProp 0.7080 % 0.0810 0.7260 + 0.0111 0.6780 & 0.0210 0.7360 % 0.0390 0.5050 £ 0.0150 0.7050 & 0.0530
LabelProp NL  0.7500 =+ 0.0390 0.8390 + 0.0270 0.6670 & 0.0220 0.7600 & 0.0140 0.5100 £ 0.0100 0.7230 & 0.0290
GS-mean 0.8240 £ 0.0180 0.9140 £ 0.0130 0.7160 £ 0.0190 0.9130 % 0.0280 0.5860 £ 0.0160 0.7740 £ 0.0220
GS-maxpool — 0.9040 + 0.0130 0.6750 & 0.0230 0.8500 + 0.0110 0.4700 £ 0.0150 0.7610 & 0.0230
GS-meanpool  0.8960 =+ 0.0090 0.9070 %+ 0.0160 0.6860 4 0.0240  0.8960 £ 0.00090  0.4050 & 0.0150 0.7650 & 0.0240
+SCGR 0.9031 +£0.0062 0.9400 £ 0.0026 0.6180 & 0.0215 0.9211 + 0.0022 0.7957 £+ 0.0058 0.7894 £+ 0.0097

Performance Guarantees. Combining the above results, we can establish comprehensive perfor-
mance bounds for the SCGR approach.

Theorem 4.4 (Performance Guarantees). Let Gy, be an input graph with diameter D and maximum
effective resistance R .. Using Schreier-guided rewiring with a Schreier graph U of spectral gap

(Z+2) }.

v > 0, the following holds:
e Forall u,v € Vi RT%%(u,v) < min {Ri” -
 Information can propagate between any nodes with resistance bounded by % (% + 2) .

max) e

in
Rty edy

* The over-squashing factor is reduced by at least S(hT2) -

These results make the impact of SCGR dimension-free and explicit: (i) the post-rewiring resistance
between all node pairs is uniformly bounded by a term depending only on the expander parameters
of I and the coupling ¢ (not on the input graph geometry), and (ii) the improvement factor scales as
0] (5 d- 'g;f), quantifying how SCGR collapses long-range bottlenecks that cause over-squashing.
Crucially, these gains come with near-linear overhead: the I'-overlay is constant-degree and tunable
via g, delivering provable long-range communication.

All proofs are provided in the Appendix.

5 EXPERIMENTS

The efficacy of SCGR is validated on diverse node and graph classification benchmarks. In addition,
we conduct experiments on stochastic block models with controllable modularity to demonstrating
SCGR’s behavior across different community structures.

5.1 NODE CLASSIFICATION

To predict the label of individual nodes given a graph, node features and a subset of labeled nodes.
The task assumes that labels are available only for a portion of the nodes, and the model must
leverage both local features and graph structures to infer the labels of remaining nodes. For Node
Classification, we use the following datasets: Amazon Computers & Photo, CoAuthor CS (Shchur
et al.l |2018),CiteSeer ,Cora & PubMed (Sen et al., [2008))

Each model is trained for 200 epochs using four layers and a dropout rate of 0.5, following the
hyperparameter settings from (Kipf & Welling| 2016)). All experiments are repeated 20 times to
ensure statistical robustness. Comparisons are made against standard baseline models including
LogReg (Chapelle et al.| 2009), MLP (Werbos, 1974), GAT (Velickovic et al.| [2017), and GCN
(Kipf & Welling, [2016). Given that the benchmark datasets exhibit balanced class distributions, test
accuracy is adopted as the primary evaluation metric, as reported in Table [T}

SCGR in Table [I) consistently enhances model performance across the node classification tasks. It
achieves the highest accuracies on four of the six benchmark datasets, particularly notable improve-
ments on Amazon Computers, Amazon Photo , Coauthor-CS and PubMed and competent in Cora.
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Table 2: Results of SCGR compared against multiple models. OOT indicates out-of-time and OOM
points to out-of-memory error. The colors highlight First, Second and positions respectively.

Model REDDIT-BINARY IMDB-BINARY MUTAG ENZYMES PROTEINS COLLAB
GCN 77.735 £+ 1.586 74.750 & 4.030 66.652 +£1.933  70.490 £ 1.628
+FA OOM 48.950 £1.652  70.250 £4.608  28.667 £3.693  71.071£1.506  72.039 £0.771
+ DIGL 77.350 & 1.206 49.600 +£2.435  70.500 £5.045  30.833 £ 1.537 56.470 & 0.865
+ SDRF 77.975 £ 1.479 59.000 £ 2.254  74.000 + 3.462  26.667 +£2.000  67.277 £2.170  71.330 & 0.807
+ FoSR 77.750 + 1.385 59.750 +2.357  75.250 £5.722  24.167 +£3.005  70.848 +£1.618  67.220 & 1.367
+ BORF ooT 48.900 £0.900  76.750 £0.037  27.833+0.029  67.411 £0.016 ooT
+GTR 60.700 £2.079  76.500 £4.189  25.333 £2.931  72.991 + 1.956

+ PANDA 87.275+1.033 68.350 +2.346  76.750 £5.531  30.667 +£2.019  70.134 +1.518  73.850 & 0.695
+EGP 67.550 &+ 1.200 59.700 £ 2.371  70.500 £4.738  27.583 £3.262  73.304 +£2.516  69.470 & 0.970
+ CGP 67.050 + 1.483 56.200 £ 1.825  83.750 + 3.597  31.000 +£2.397  73.036 £1.291  69.630 & 0.730
+SCGR 88.430 £ 2.0600 61.600 + 4.870 52.750 £ 7.800  72.590 +4.330  73.620 £ 1.620
GIN 80.500 +£5.143  35.667 +£2.803  70.312+1.749  71.490 & 0.746
+FA OOM 69.900 +2.332  80.250 £ 5.314 72.9024+1.419  72.740 £ 0.786
+ DIGL 84.575 + 1.265 52.650 +2.150  78.500 +4.189  41.500 + 3.063 57.620 + 1.010
+ SDRF 84.550 + 1.396 69.550 +£2.381  80.500 £4.177  37.167 £2.709  69.509 £1.709  72.958 + 0.419
+ FoSR 85.750 £ 1.099 69.250 £ 1.810  80.500 £4.738  28.083+£2.301  71.518 £1.767 71.720 4+ 0.892
+BORF ooT 70.700 £ 0.018  79.250 £ 0.038  34.167 £ 0.029  70.625 4+ 0.017 ooT
+GTR 85.474 + 0.826 69.550 £ 1.473  79.000 £3.847  31.750 £2.466  72.054 £1.510  71.849 £0.710
+ PANDA 90.325 + 0.867 68.350 +2.346  83.250 £3.262  42.167 £2.286  72.321 £ 1.786

+EGP 77.875 £ 1.563 68.250 +1.121  81.500 £4.696  40.667 +3.095  70.848 £1.568  72.330 & 0.954
+ CGP 78.225 + 1.268 71.650 +1.532  85.250 +3.200  50.083 +£2.242  73.080 £1.396  73.350 & 0.788
+SCGR 86.200 + 2.780 71.700 £ 4.450 58.300 4 6.9700  74.290 &+ 3.8600  67.8802.4100

The consistent performance gains across most datasets, combined with notably reduced variance
suggest that SCGR provides a robust enhancement to existing GNN architectures. The method’s
effectiveness is particularly pronounced on the Amazon datasets and Computer Science, where the
spectral properties and community structure align well with the Schreier-coset graph’s expander
properties, enabling more effective long-range information propagation during message passing

5.2 GRAPH CLASSIFICATION

Predicting a single label for an entire graph by leveraging its structural information and associated
node or edge features. For TU Dataset Morris et al.| (2020) comprises over 120 graph classifica-
tion and regression datasets. Representative datasets include chemical graphs (MUTAG), protein
structures (PROTEINS), social networks (IMDB-BINARY, REDDIT-BINARY), and research col-
laboration graphs (COLLAB). The topology of the graphs about the task is identified as requiring
long-range interactions. SCGR is compared against CGP [Wilson et al.| (2024)), EGP Deac et al.
(2022), FA|Alon & Milman|(1984)), DIGL|Gasteiger et al.|(2019), SDRF [Topping et al.[(2021)), FoSR
Karhadkar et al.[(2022), BORF |[Nguyen et al.| (2023) and GTR [Black et al.|(2023).

With train/val/test split of 80% /10 %/10 %, leveraging the parameters from [Karhadkar et al.[(2022),
the number of layers is fixed to 4 with a hidden dimension of 64 and a dropout of 50% with accuracy
being the primary metric.

SCGR consistently achieves strong performance across the TU Dataset in both GCN + SCGR and
GIN + SCGR configurations. Schreier-coset attains first place in five of the twelve configurations
and shows competitive scores in six datasets being in the top 3. Specifically in TU - Enzymes
dataset, it significantly outperforms all baselines with an accuracy leap of 20% in GCN + SCGR
and of 8% in GIN + SCGR. On TU - REDDIT BINARY, SCGR attains first places and second place
respectively while avoiding computation limitations faced by several methods. SCGR'’s strong per-
formance across diverse graphical datasets underscores its universal applicability.

Table [3| empirically validates consistent reductions in effective resistance across all benchmark
datasets. SCGR achieves the most substantial improvements on IMDB-BINARY: 41% reduction,
COLLAB: 23-30% reduction and MUTAG: 34% reduction, where long-range dependencies are
particularly critical. Even on datasets with inherently good connectivity like PROTEINS, SCGR
still provides meaningful improvements. These results confirm that SCGR successfully creates more
efficient information propagation pathways, directly addressing the over-squashing.
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Table 3: Effective Resistance on benchmark datasets

Model MUTAG PROTEINS IMDB-BINARY COLLAB ENZYMES
GCN 15243 £ 6229 13466 £ 3889 22156 £ 4841 4115 £ 1569 12330 £ 5596
GIN 19159 £ 4698 12609 + 1662 22540 &+ 7967 3566 £ 1404 13278 £+ 5662

GCN + SCGR 10035 £ 4339 12332 + 4662 13091 4 3324 3150 £ 1091 10385 £ 2963
GIN + SCGR 15072 £ 6654 11992 4+ 3384 14556 + 4448 2483 £ 983 11116 + 3647

Table 4: Performance comparison on OGBG-MOLHIV and OGBG-MOLPCBA.

Model OGBG-MOLHIV OGBG-MOLPCBA
Test ROC-AUC 1 Test AP 1

GCN

Baseline 0.7566 = 0.0104 0.2020 + 0.0024

+ Master Node 0.7531 +0.0128 -

+ FA 0.7628 £ 0.0191 -

+ FLAG - 0.2116 +0.0017

+ EGP 0.7731 = 0.0081 -

+ CGP 0.7794 + 0.0122 -

+ SCGR 0.7949 = 0.0342 0.2975 = 0.0628
GIN

Baseline 0.7678 = 0.0183 0.2266 = 0.0028

+ Master Node 0.7608 + 0.0134 -

+ FA 0.7718 = 0.0147 -

+ FLAG - 0.2395 + 0.0040

+ EGP 0.7537 £0.0076 -

+ CGP 0.7899 = 0.0090 -

+ SCGR 0.8044 + 0.0142 0.2061 = 0.0767

To extend the evaluation to a real-world molecular prediction task, SCGR is assessed on the OGBG-
MOLHIV and OGBG-MOLPCBA dataset|Hu et al.| (2020). The experimental protocol adheres to the
implementation and hyperparameter configuration specified by |[Hu et al.|(2020), with the number of
layers fixed to 5, hidden dimensions set to 300, a dropout rate of 0.5, and a batch size of 64.

Table [d] reports ROC-AUC% metrics on the OGBG-MOLHIV and Average Precision (AP) OGBG-
MOLPCBA dataset. SCGR exhibits robust predictive performance while maintaining high structural
fidelity. Schreier-coset in both configurations attains highest ROC-AUC score in MOLHIV dataset.
For the MOLPCBA dataset, GCN+SCGR attains the highest average precision, with GIN+SCGR
remaining competitive based on the inherent scale and structural complexity of MOLPCBA.

For PEPTIDES-STRUCT and PEPTIDES-FUNC datasets, from the Long Range Graph Benchamrk
suite presents challenging molecular property prediction tasks that specifically require modeling
long-range dependencies in graph structures. PEPTIDES-FUNC, is evaluated using Average Pre-
cision (AP). PEPTIDES-STRUCT is regression task that predicts functional properties of peptides,
measured by the mean absolute error.

Table[5]demonstrates SCGR’s superior performance across both peptide prediction tasks and achiev-
ing the highest scores in both parameters. Schreier Cosets delivered a substantial improvement
over the strongest baseline, with particularly notable gains when combined with GIN : +13.4% on
PEPTIDES-FUNC and a —9.2% error reduction on PEPTIDES-STRUCT. Even with GCN, SCGR
outperforms all competing rewiring methods. These consistent improvements across both archi-
tectures and tasks validate its effectiveness in enabling GNNs to capture the long-range molecular
interactions critical for accurate peptide property prediction, where traditional message passing ap-
proaches struggle due to limited receptive fields over-squashing bottlenecks.

5.3 GRAPH MODULARITY

Using the Stochastic Block Models (SBM) [Lee & Wilkinson| (2019) with 50 equal communities
(1000 nodes). Intra- and inter-community edge probabilities (p;y, Do) are varied to control mod-
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Table 5: Performance comparison on PEPTIDES-FUNC (Test AP 1) and PEPTIDES-STRUCT (Test
MAE |)

Model PEPTIDES-FUNC (Test AP 1) PEPTIDES-STRUCT (Test MAE |)

GCN 0.5029 + 0.0058 0.3587 + 0.0006
+ SDRF 0.5041 + 0.0026 0.3559 £ 0.0010
+ FoSR 0.4534 + 0.0090 0.3003 + 0.0007
+EGP 0.4972 +0.0023 0.3001 +0.0013
+ CGP 0.5106 + 0.0014 0.2931 + 0.0006
+SCGR 0.5301 + 0.0010 0.2886 + 0.0010

GIN 0.5124 + 0.0055 0.3544 +0.0014
+ SDRF 0.5122 + 0.0061 0.3515 +£0.0011
+ FoSR 0.4584 +0.0079 0.3008 + 0.0014
+ EGP 0.4926 + 0.0070 0.3034 + 0.0027
+ CGP 0.5159 +0.0059 0.2910 + 0.0011
+SCGR 0.5849 + 0.0110 0.2642 + 0.0020

ularity, with p;, > poy+ ensuring meaningful structure. This design enables systematic analysis of
SCGR performance in weak-to-strong community regimes. The classification task involves predict-
ing community membership, directly testing the model’s ability to capture long-range dependencies.

Table 6: GCN accuracy and effective resistance (ER) on SBM graphs.

Mod. Base Acc  SCGR Acc Ay | BaseER SCGRER Agg

Low (0.25-0.40) 0.4779 0.5140 +7.55% 0.582 0.341 -41.4%
Med (0.40-0.70) 0.8164 0.8219 +0.79% 0.405 0.245 -39.5%
High (0.70-0.85) 0.9681 0.9731 +0.20% 0.271 0.189 -30.3%

Table [6] reports an inverse correlation between graph modularity and SCGR improvements. The
largest gains occur in low-modularity graphs, where weak community structure induces connectiv-
ity bottlenecks with a reduction of 41.1% in effective resistance. Gains decrease with increasing
modularity (+0.79% medium, +0.20% high), as classification becomes dominated by local neigh-
borhood information. SCGR continues to provide a low resistance pathway. SCGR is most effective
in regimes requiring long-range information propagation, where standard message passing is limited
by over-squashing.

6 CONCLUSION

This work introduced Schreier-Coset Graph Rewiring (SCGR), a group-theoretic framework that
provably mitigates over-squashing in graph neural networks. Our theoretical analysis establishes a
uniform bound on effective resistance, Rl (u,v) < %, through the spectral properties of Schreier-

coset graphs derived from SL(2,Z,), where v > 0 denotes the spectral gap. Extending to the
rewired setting, Theorem 4.2 guarantees Reff™(u, v) < min{R™(u,v), %(% +2)}, yielding a re-

duction factor p(u,v) > % for distant nodes most affected by exponential information loss.

Empirical results across the benchmark configurations validate this bound, showing 15-40% reduc-
tions in effective resistance and accuracy gains that align with Corollary A.3.1: improvements are
most pronounced in low-modularity graphs +7.55% and remain consistent even in high-modularity
settings. Unlike heuristic rewiring, SCGR achieves these benefits with | F;,| + |V |complexity,
providing a theoretically principled and practically efficient solution to the fundamental bottleneck
of over-squashing.
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A APPENDIX

A.1 SUMMARY
The Appendix contains mathematical formulation of the Schreier-Coset Graphs.

1. Section A.2: Preliminaries and Notations.
2. Section A.3: Contains proofs for:

(a) Lemma 4.1 - Spectral Gap as A3.1, Lemma A.1

(b) Lemma 4.2 - Expander Mixing as A3.2, Lemma A.2

(c) Lemma 4.3 - Effective Resistance Bound as A3.3, Lemma A.3

(d) Theorem 4.1 - Lipschitz Type Locality as A3.4, Theorem A.2

(e) Theorem 4.2 - Effective Resistance in Rewired Graph I' as A3.5, Theorem A.2
(f) Theorem 4.3 - Over-squashing Mitigation as A3.5, A.2.1

A.2 PRELIMINARIES AND NOTATIONS

Let G be a finitely generated group with identity e, H C G a subgroup, and S C G a symmetric
generating set (s € S = s~ ! € S). The quotient space G/H = {gH : g € G} consists of right
cosets.

The Schreier-Coset Graph. The Schreier-coset graph I' = (Vr, Er) is defined by:

e Vr={gH :g€G}
« BEr ={{9H,(g9s)H} : gH € Vp,s € S}

T is d-regular with d = |S)|

Spectral Properties of the Schreier-Coset Graph Let Ar denote the adjacency matrix of T,
Dr = dI the degree matrix, Ly = Dr — Ar the Laplacian, and the transition matrix P = éAF.

A.3 THEORETICAL FORMULATION AND PROOFS

A.3.1 SPECTRAL GAP

Lemma A.1 (Spectral Gap). The Schreier-coset graph I has a spectral gap
7:1—)\2(13)>O,

where P is the transition matrix of the random walk on I.

Proof. Since T is connected and non-bipartite (containing odd cycles when S contains elements of
odd order), P is primitive and aperiodic. By the Perron-Frobenius theorem, P has a unique largest
eigenvalue \; = 1 with corresponding eigenvector 1. For the spectral gap, note that I is a Cayley
graph on the coset space. By Cayley graph theory, the eigenvalues of P are:

1
A= 2D xk(s) )
seS
where Yy are the irreducible characters of the representation of G on ¢?(G/H). The trivial repre-
sentation gives A\; = 1. For non-trivial representations, | s xx(s)| < d by the orthogonality
relations, yielding || < 1. The gap v = 1 — maxy>2 |A;| > O for a non-trivial generating set. [

A.3.2 EXPANDER MIXING
Lemma A.2 (Expander Mixing). For the random walk matrix P on I" and all t > 0,

(P1)iy — | < (1= ).

[Vr|

log(2|Vr|) t 1
Ift > % then (P*);, > STV
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Proof. Let P >k pYRTIRTAL  be the spectral decomposition with orthonormal eigenvectors uy. We
have uy = ——1 with A\; = 1. Thus:

\/\ Vol
[Vr|
P! mllT + Z Ay 2)
Therefore:
[Vrl
PY = Y 3
( |Vr + Z k(1) ug (v 3)
Using [A\g| <1 —~fork > 2and |ug(i)| < 1:
[Vrl
(P | < X el ) @
[Vr|
< (=)' Y lu(@)lux(v)] )
k=2
[Vrl [Vr|
Zuk > up(v)? (6)
k=2
< (-7 (7
where the last inequality uses ZL Fl‘ uy(i)? = 1 (orthonormality). O

A.3.3 EFFECTIVE RESISTANCE

Lemma A.3 (Effective Resistance Bound). For any vertices u,v € Vr,

2
Reg(u,v) < s

where d = S| is the degree and = is the spectral gap.

Proof. ForT', a d — regular graph with transition matrix P having spectral gap -, From|Cai et al.

(2023)) Lemma 2.2, Property 3 we have:

1 ( 1 1 1 1 1
e+ =) < Ra(u,v) € —=— - (o= + =) ®)
d(u)  d(v) Xo(Lg) \d(w) ' d(v)

where, L is the normalized Laplacian of G. Therefore, we have d(u) = d(v) = d for all vertices
u,v € V. Therefore:

2

1 2
- < < —
g < Balwr) < s ©)

Now, for a d — regular graph, the normalized Laplacian is L=1- P, vzhere P is a transition
matrix. Therefore, if A is an eigenvalue of P, then 1 — A is an eigenvalue of L. Specifically:

ceNM=1-)NP)=1-1=0
e Xo(L) =1— Xy (P)

Now, applying the spectral gap condition, Therefore:

ML) =1=Aa(P) 21— (1—7) =7 (10)
Substituting this lower bound to the inequality, we get:
2 2
Re(u,v) < —————— < — 11
a(u,v) dol) d- (11)

13
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Thus:

2
Reff(uav) < @ (12)

This bound is tight up to constants, as the effective resistance can indeed approach this upper bound

for pairs of vertices that are apart in the graph structure., particularly in expander graphs where the
spectral gap v is bounded away from zero. O

A.3.4 SPECTRAL MAPPING CONSTRUCTION

Let Gin, = (Vin, Ein) be the input graph. We construct a locality-preserving map ¢ : Vi, —
Vr, ¢(v) = g, H, as follows: Case (i) |Vi,| < |Vr|: Compute r leading eigenvectors of the Laplacian
Ly to obtain a spectral embedding ®r : Vpr — R”; likewise embed G;,, via L;, to ®;,,. Set ¢ by
solving:
Smin > distr(¢(u), ¢(v)) (13)
(u,v)EEin

with || @ (é(v)) — @i (v)||2 small. Case (ii) |Vin| > |[Vr|: Use disjoint copies TV, ..., T(@ or a
product I' x K, and apply (i) per block.
Bi-Lipschitz Embedding An embedding ® : (X,dx) — (Y,dy) is bi-Lipschitz with constants
(c1,¢) if:

crdx (w1, 72) < dy (®(z1), P(22)) < codx (w1, 72) (14)

for all z1, 29 € X.

Theorem A.1 (Lipschitz Locality). If ®;, and ®r are bi-Lipschitz on relevant scales, then there
exists ¢ > 1 such that

diStF(¢(u)7 ¢(U)) S c: diStin(ua U)
forall u,v € Vy,.
Proof. By the bi-Lipschitz property of ®;,, with constants (ci, ci):
e - distin (u,v) < || ®in(u) — Pin(v)]]2 < - distin (u, v) (15)

Similarly for ®r with constants (c}, c}):

& - distr(z,y) < ||[®r(z) — Or(y)|la < ¢ - distr(z, y) (16)
From the constraint ||®r(¢(v)) — @i, (v)|l2 < e:
[®r(o(u) = Pr(¢(v))ll2 < [|Pin(u) — Pin(v)[|2 + 2¢ (17)
< el distyy, (u, v) + 2 (18)
Therefore:
1
distr(¢(w), 9(v)) < 5l Pr(¢(u) — Sr(d(v))]2 (19)
1
< - - distiy (u, v) + T (20)

For ¢ sufficiently small relative to typical distances, we obtain the desired bound with ¢ = ¢l /c}.
O

A.3.5 EFFECTIVE RESISTANCE ANALYSIS OF REWIRED GRAPH

Augmented System The augmented system couples Gi, with I" via edges {(v, ¢(v))} of conduc-
tance € > 0. The augmented Laplacian is:

Lin + el —el

Lavg = —el eLp 4+ el @n

14
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Theorem A.2 (Effective Resistance in Rewired Graph). In the rewired graph G™%, the effective
resistance between nodes u,v € V;,, satisfies

R u,v) < win {Rif (u,0), > Rig(0(u),0(0)) + - .

Proof. We prove this using two methods:

Method 1 (Rayleigh-Thomson Principle): The effective resistance equals the minimum energy of
a unit current flow from u to v. Consider two routing strategies:

Route 1: Flow entirely through Giy, yielding energy R% (u,v).

Route 2: Flow from u to ¢(u) (resistance 1/¢), through T from ¢(u) to ¢(v) (resistance
R (o(u), ¢(v)) /e after scaling), then ¢(v) to v (resistance 1/¢).

Total energy: 2/e + Rl /e =~ Rl /e for small coupling.

Method 2 (Schur Complement): Write L, in block form with A = Li, + €I, B = eLr + €,
C = ¢l. The Schur complement gives:

Lg=A—-CB'CT = Liy + el —*(eLp +el)™? (22)
For any test vector x orthogonal to 1 with z,, = 1, x, = —1, and x,, = 0 elsewhere:
Ree(u,v) < & Lo 23)
]|
The minimum over all such x yields the bound. Since (Lt +¢I)~! < 711, we obtain:
Leg = Lin+el —el = Liy (24)

This implies Rz® < R%.. Similarly, by considering the alternative routing, R%g® < e 'Rl;. O

Corollary A.2.1 (Over-squashing Mitigation). For nodes u,v € Vi, with large effective resistance
R%:(u,v) > 1:

M lt) o {3, S el 0) 220 2 =

R (u,v) — R (u,v) " edy- Rp(u,v)

where the last inequality uses Theorem A.1.

Proof. The first inequality follows directly from Theorem A.3 For the second inequality, we use
that Rig(¢(u), ¢(v)) < 75 from Theorem A.1.

Remark A.3.1 The corollary shows that for node pairs with high resistance in the original graph
(which suffer from over-squashing), the augmented system provides exponential improvement when

in H 1
ofr (4, v) is large compared to .
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