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Abstract

Most existing multi-view clustering methods aim to generate a consensus partition
across all views, based on the assumption that all views share the same sample
arrangement. However, in real-world scenarios, the collected data across different
views is often unsynchronized, making it difficult to ensure consistent sample
correspondence between views. To address this issue, we propose a scalable
sample-alignment-based multi-view clustering method, referred to as SSA-MVC.
Specifically, we first employ a cluster-label matching (CLM) algorithm to select
the view whose clustering labels best match those of the others as the benchmark
view. Then, for each of the remaining views, we construct representations of non-
aligned samples by computing their similarities with aligned samples. Based on
these representations, we build a similarity graph between the non-aligned samples
of each view and those in the benchmark view, which serves as the alignment
criterion. This alignment criterion is then integrated into a late-fusion framework to
enable clustering without requiring aligned samples. Notably, the learned sample
alignment matrix can be used to enhance existing multi-view clustering methods
in scenarios where sample correspondence is unavailable. The effectiveness of
the proposed SSA-MVC algorithm is validated through extensive experiments
conducted on eight real-world multi-view datasets.

1 Introduction

Clustering aims to assign each sample to its corresponding class by leveraging the intrinsic similarities
within the original data [1]. With the rapid advancement of science and technology, data have become
increasingly diverse in their forms of representation. The same object can often be described from
multiple perspectives. For instance, video content can be represented through audio, visual, and
textual modalities. Such heterogeneous but complementary data representations are collectively
referred to as multi-view data [2, 3, 4, 5]. To fully exploit the rich semantic information embedded
in multi-view data, a variety of advanced multi-view clustering algorithms have been developed in
recent years [6, 7, 8, 9]. These methods have demonstrated promising performance across a wide
range of real-world applications by effectively integrating complementary information from multiple
views.

Despite the effectiveness of these approaches in integrating multi-view information, they typically rely
on the assumption of strict one-to-one correspondence among samples across different views, which
is an idealized condition in practical applications [10, 11, 12]. In real-world scenarios, variations in
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Figure 1: The flowchart of the proposed method. First, the baseline view is selected based on the
CLM criterion. Next, feature representations of the unaligned samples, denoted as {Wv}Vv=1, are
constructed. Subsequently, the cross-view similarity graphs {Sv}Vv=1 between the baseline view
and the other views are established. Finally, these cross-view similarity graphs serve as alignment
constraints within a late fusion multi-view clustering framework to obtain a unified partition matrix
F∗. The final clustering results are then derived by applying k-means clustering on F∗.

sample organization or ordering across views commonly lead to inconsistent or misaligned sample
correspondences. To this end, some studies attempt to achieve sample alignment jointly with the
learning of data representations. Given the effectiveness of the Hungarian algorithm in assignment
problems [13], Huang et al. [14] integrated it into their clustering framework to facilitate sample
alignment. However, due to semantic discrepancies between views and high intra-class similarity
within views, establishing strict one-to-one alignment based solely on sample similarity limits
tolerance to noise and misalignment. To address this, Yang et al. [15] proposed alignment at the class
level, reformulating it as a class identification problem and introducing a noise-robust contrastive
loss to improve robustness. Furthermore, Ren et al. [16] leveraged sample commonality and view
diversity to adaptively construct alignment matrices and designed an unsupervised data completion
mechanism to handle incomplete or unaligned data.

Although the aforementioned algorithms have shown promising performance in multi-view clustering
with sample alignment, they still face several limitations. (1) Due to semantic discrepancies across
views and the absence of supervision, establishing strict one-to-one correspondences is often difficult.
In real-world scenarios, the sample relationships of different views are typically many-to-many, and
enforcing strict matching may introduce noise and lead to sub-optimal alignment [17]. (2) While some
recent methods employ joint learning frameworks that integrate alignment with feature representation
to enhance performance, they often fail to model explicit alignment relationships, thus limiting their
scalability to other multi-view clustering methods that are not applicable in sample non-alignment
scenarios [18, 19]. (3) Clustering performance is heavily influenced by the choice of a benchmark
view, yet selecting an appropriate one remains an open challenge in current approaches [20].

Therefore, we propose a scalable multi-view clustering algorithm that integrates sample alignment into
a unified clustering framework. To mitigate the impact of structurally noisy or disordered views, we
first employ the CLM algorithm [21] to select the view that exhibits the highest structural consistency
with the underlying semantic labels, designating it as the baseline. Considering that samples within
the same subspace can be linearly reconstructed by their peers [22], we reformulate the alignment task
as a similarity-based reconstruction problem rather than relying on rigid one-to-one index matching.
Specifically, each view is structurally characterized by computing the similarity between unaligned
samples and the rest of the view. Then, an alignment relationship is established by comparing these

2



structural representations to that of the baseline view. Finally, the resulting alignment matrices are
incorporated into a late fusion clustering framework, enabling effective alignment without the need
for direct correspondence. Furthermore, the learned alignment relationship can be reused as auxiliary
information to enhance the performance of existing multi-view clustering methods under misaligned
conditions.

Overall, the main contributions of this paper are listed as follows:

• We propose to select the baseline view by measuring the similarity between sample cluster
distributions and their corresponding labels within each view, effectively minimizing the
impact of irrelevant or noisy structural information on the alignment process.

• We propose a structural representation for each view based on the correlation between non-
aligned and aligned samples. This representation guides cross-view alignment by integrating
sample-level features with intrinsic structural information.

• An alternating optimization algorithm is proposed to efficiently solve the model. Its effec-
tiveness is validated through extensive experiments on eight multi-view datasets.

2 Preliminaries

2.1 Adaptive Neighbor Graph Learning

Graph-based multi-view clustering algorithms have attracted considerable attention in recent years
due to their strong capability in capturing the intrinsic structural information embedded in the original
data [23, 24, 25, 26]. Based on the fact that samples within the same cluster or samples with smaller
pairwise distances tend to exhibit higher similarity than those from different clusters, Nie et al. [27]
proposed a clustering algorithm that constructs a nearest-neighbor graph to capture local structural
relationships. The objective function of this method is formulated as follows:

min
S

n∑
i=1

n∑
j=1

(
∥xi − xj∥22 · sij + βs2ij

)
s.t. s⊤i 1 = 1, 0 ≤ sij ≤ 1, (1)

where xi and xj denotes the i-th and j-th samples of the original data matrix X ∈ Rn×d, where n is
the total number of samples and d is the feature dimension. The variable sij indicates the similarity
between samples xi and xj . The parameter β is a regularization coefficient that balances the trade-off
between the similarity graph learning and the sparsity of the graph, and it can be adaptively tuned
during the optimization process. For a more detailed description of Eq. (1), please refer to [27].

2.2 Late Fusion based Multi-view Clustering

Given multi-view datasets Xv ∈ Rn×dv , where dv denotes the feature dimensionality of the v-th view,
late fusion-based multi-view clustering methods aim to extract partition-level clustering information
from each view. A unified partition matrix is then obtained by integrating the partition information
from all views. Specifically, assuming that the base partition matrices Fv ∈ Rn×du are obtained from
Xv via eigen-decomposition or other representation learning techniques, where du denotes the latent
feature dimension, the typical mathematical formulation can be expressed as follows [28]:

max
F∗

Φ(F∗,Fv) + λΨ(F∗), (2)

where Φ(·) denotes the partition fusion module, which integrates the base partitions into a unified
one, and Ψ(·) represents a regularization term designed to preserve desirable properties such as
smoothness [29], sparsity [30], or consistency across views [31, 32].

3 Proposed Method

3.1 Cross Sample Similarity Learning

Late fusion-based multi-view clustering algorithms have attracted substantial attention due to their
demonstrated effectiveness, and a variety of advanced methods have been proposed within this
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framework [33, 34, 35]. However, a common assumption in these algorithms is the existence of a
strict one-to-one correspondence between samples across all views during the fusion of partition
information. In practice, this assumption is often idealized. Due to temporal misalignment during
data acquisition or storage constraints, mismatches between samples across different views frequently
occur. Under such circumstances, directly fusion partition-level information without addressing the
cross-view sample alignment may introduce irrelevant or inconsistent structural information, thereby
degrading the quality of the unified partition and affecting the final clustering performance.

To overcome the limitations of traditional late fusion strategies, several algorithms have introduced
a sample alignment matrix jointly with view-specific representation learning, integrating the two
processes into a unified framework to enable mutual reinforcement [36, 37, 38]. In the context
of unsupervised learning, sample alignment is typically inferred by exploiting the intrinsic feature
similarities among data samples. However, due to the presence of substantial cross-view heterogeneity,
the assumption of semantic consistency across views is often difficult to capture using rigid one-to-
one matching strategies. Such hard alignment approaches fail to model potential one-to-many or
many-to-one semantic relationships across views, thereby overlooking alternative and potentially
meaningful alignment relationships. Moreover, although some methods attempt to embed the sample
alignment process into neural network-based representation learning, they often do not explicitly
model the alignment relationships themselves, which limits the scalability of these approaches.

In light of the above challenges, we propose a novel strategy that utilizes the correlation between un-
aligned and aligned samples within each view as a view-specific structural representation. Specifically,
given an unaligned multi-view dataset Xv = [Xv

1;X
v
2], where Xv

1 ∈ Rn1×dv and Xv
2 ∈ Rn2×dv

denote the aligned and unaligned samples in the v-th view, respectively, and where n1 and n2 are the
corresponding numbers of aligned and unaligned samples, we construct the structural representations
of the unaligned samples for each view based on Eq. (1), i.e.,

min
{Wv}V

v=1

V∑
v=1

n2∑
i=1

n1∑
j=1

∥∥∥Xv
1[i,:] −Xv

2[j,:]

∥∥∥2
2
wv

ij + β (wv
ij)

2 s.t. wv⊤
i 1 = 1, 0 ≤ wv

ij ≤ 1, (3)

where V denotes the total number of views. The matrix Wv ∈ Rn2×n1 represents the constructed
feature representation for the v-th view in the presence of sample non-alignment. It is worth noting
that the above construction of the feature representation for each view is not unique. Here we adopt
the formulation given in Eq. (1) for simplicity. Nevertheless, alternative learning mechanisms could
also be employed within our framework.

3.2 Cross View Similarity Learning

After obtaining the feature representations for all views, a key challenge lies in constructing a
reliable sample alignment across views. A straightforward approach is to randomly select one view
as the baseline and align the remaining views to it. However, due to inevitable noise introduced
during data collection, some views may contain structural information that does not reflect the true
underlying cluster distribution. To mitigate the impact of such irrelevant or misleading information
on the alignment process, we adopt the CLM algorithm to identify the most reliable baseline view.
Specifically, the view that exhibits the highest consistency between its sample distribution structure
and the semantic labels is selected as the baseline. The detailed selection process is defined as:

H(Y,X, d2) =
exp

(
1

σd2n

∑
x∈X d2(x, y)

)
exp

(
1

σd2n

∑k
i=1

∑
x∈Yi

d2(x, yi)
) ×

∑k
i=1 |Yi|d2(yi, y)
σd2 n (k − 1)

(4)

CLM(X) =
1

2
(
k
2

) ∑
G⊆Y
|G|=2

1

1 + exp
(
− δ ·H(G,X, d2)

) (5)

where Y = {Y1, Y2, · · · , Yk} denotes the ground-truth cluster assignment of the dataset X, and k
is the total number of clusters. Let yi = Yi denote the mean of the samples in the i-th cluster, and
c = X denote the mean of all samples. The function d2(·) represents the squared Euclidean distance,
and σd2 = std(d2(x, c)|x ∈ X) denotes the standard deviation of the distances between the original
data samples and the global centroid. The parameter δ is a pre-defined scaling factor. Based on
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the above formulation, we compute a matching score that quantifies the consistency between the
structural distribution of samples and the corresponding semantic clusters in each view. The view
with the highest matching score is then selected as the baseline. Accordingly, the cross-view structural
similarity graph Sv is constructed as follows:

min
Sv

V∑
v=1
v ̸=t

∥wt
i −wv

j ∥22svij + β(svij)
2 s.t. t = argmax

v
CLM(Xv), s⊤i 1 = 1, 0 ≤ svij ≤ 1, (6)

where Sv denotes the similarity graph that captures the structural correspondence between the
unaligned samples in the v-th view and those in the baseline view, denoted by t. As a special case,
when v = t, we define the similarity graph as the identity matrix, i.e., St = I.

3.3 Sample-Aligned Late Fusion Strategy

In general, a higher similarity between samples implies a greater likelihood of a semantic match.
Based on this intuition, we propose to capture the matching criterion between unaligned samples
across views by leveraging cross-view sample similarity. As discussed earlier, the ideal scenario
assumes a strict one-to-one correspondence between samples across views. However, in practice,
such hard 0-1 alignments are difficult to establish in the absence of external supervision, due to the
presence of noise and structurally irrelevant information in certain views.

To address this challenge, we reformulate the alignment problem by reconstructing unaligned samples
using samples within their corresponding subspace, rather than explicitly matching index positions
across views. In this way, the alignment is achieved in a soft and structure-preserving manner. By
integrating this alignment strategy with the late fusion-based multi-view clustering framework, we
formulate the final objective function as follows:

max
Rv,F∗,Mv,αv

Tr

(
F∗⊤

(
αtF

tRt +

V∑
v=1
v ̸=t

αv

[
I 0
0 Mv

]
FvRv

))
+ λ

V∑
v=1

Tr(Mv⊤Sv)

s.t. t = argmax
v

CLM(Xv),F∗⊤F∗ = I,Rv⊤Rv = I,

V∑
v=1

α2
v = 1,Mv⊤Mv = I,

(7)

where Mv denotes the sample realignment matrix that maps the unaligned samples in the v-th view
to those in the baseline view, while Rv represents the feature rotation matrix used to align the feature
space. The scalar αv indicates the weight assigned to the v-th view, and λ is a hyperparameter that
controls the trade-off between feature information and structural information.

4 Optimization

4.1 Optimization Algorithms

In this section, we develop an iterative optimization algorithm to solve the objective function in
Eq. (7) with respect to the variables Rv, F∗, Mv, and αv. The detailed optimization procedure is
described as follows:

Update F∗: When optimizing F∗ while keeping all other variables fixed, the objective function in
Eq. (7) can be equivalently reformulated as:

max
F∗

V∑
v=1

Tr
(
αvF

∗⊤
1 Fv

1R
v + αvF

∗⊤
2 MvFv

2R
v
)

s.t. F∗⊤F∗ = I,F∗ =

[
F∗

1

F∗
2

]
. (8)

Since F∗
1 and F∗

2 are independent of each other, they can be optimized separately to obtain the
complete solution for F∗. Specifically, when optimizing the variable F∗

1, the objective function in
Eq. (8) can be equivalently rewritten as:

max
F∗

1

V∑
v=1

Tr(F∗⊤
1 αvF

v
1R

v) s.t. F∗⊤
1 F∗

1 = I. (9)
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The optimal solution to Eq. (9) can be obtained by performing singular value decomposition (SVD)
on the matrix αvF

v
1R

v. Since the optimization of Fv
2 follows a procedure analogous to that of Fv

1 ,
we omit the details here for brevity. Once the optimal solutions for both Fv

1 and Fv
2 are obtained, the

final solution for F∗ is constructed by concatenating the two parts.

Update Rv: When all other variables are fixed, the optimization of Rv in Eq. (7) can be equivalently
reformulated as:

max
Rv

αv Tr

(
Rv⊤Fv⊤

[
I 0
0 Mv

]
F∗
)

s.t.Rv⊤Rv = I. (10)

Let Qv = αvF
v⊤
[

I 0
0 Mv

]
F∗, the optimal solution for the variable Rv can then be obtained

like that of F∗
1, specifically by performing singular value decomposition on Qv .

Update αv: By fixing other variables, the Eq. (7) can be formulated as:

max
α

V∑
v=1

αvγv s.t.

V∑
v=1

α2
v = 1, (11)

where γv = Tr(F∗⊤CvFvRv). According to the Cauchy inequality, the optimal solution to the
above optimization problem can be derived in closed form as:

αv =
γv√∑V
v=1 γ

2
v

. (12)

Update Mv: By fixing F∗, Rv , and αv , Mv can be optimized by solving the following subproblem:

max
Mv

αvTr
(
Mv⊤F∗

2R
v⊤Fv⊤

2

)
+ λTr

(
Mv⊤Sv

)
s.t.Mv⊤Mv = I. (13)

Let T = αvF
∗
2R

v⊤Fv⊤
2 + λSv . Following an optimization procedure similar to that for the variable

Mv , the optimal solution can be obtained by performing SVD on the matrix T.

In summary, the detailed procedure of the proposed method is described in the Appendix A.2.

4.2 Convergence Property

In the above optimization process, each subproblem is independent, and its corresponding optimal
solution can be obtained. Consequently, the proposed algorithm converges within a few iterations
according to Theorem 1. A detailed convergence proof is provided in the Appendix A.3.
Theorem 1. The proposed optimization algorithm is guaranteed to converge to a local optimum of
the SSA-MVC method.

4.3 Computational Complexity Analysis

In the proposed method, the primary computational complexity arises from three components:
cross-sample similarity learning, cross-view similarity learning, and sample-aligned late fusion.
Specifically, the computational cost for obtaining the feature representations {Wv}Vv=1 ∈ Rn2×n1

is O(V n2Kdmax), where K denotes the number of neighbors and dmax = max{d1, d2, · · · , dV }
represents the maximum feature dimension across all views. For the CLM algorithm, the complexity
is O(ndmax), while the construction of the cross-view similarity graph requires O(V n2n1K) opera-
tions. Finally, the computational cost of the late fusion step is O(n2), mainly due to the generation of
the partition matrix Fv . Consequently, the overall computational complexity is O(n2).

5 Experiments

5.1 Datasets

To further validate the effectiveness of the proposed method, we conduct experiments on eight
real-world multi-view datasets, including Yale, 3sources, MSRCV, 100leaves, HW, Scene, EMNIST,
and Hdigit. The detailed summary of them is provided in Appendix A.4.
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Table 1: ACC comparison of all methods with and without Hungarian alignment on eight multi-view
datasets under a sample alignment ratio ρ = 50%.

Method Yale 3sources MSRCV 100leaves HW Scene EMNIST Hdigit

EEOMVC 58.18±0.00 59.76±0.00 72.86±0.00 65.44±0.00 93.85±0.00 26.91±0.00 46.11±0.00 65.93±0.00
EEOMVC + Hungarian 52.73±0.00 48.52±0.00 71.90±0.00 67.19±0.00 67.30±0.00 26.00±0.00 44.24±0.00 62.28±0.00

DealMVC 33.94±0.00 31.01±0.00 28.10±0.00 7.69±0.00 47.94±0.00 22.54±0.00 45.62±0.00 65.66±0.00
DealMVC + Hungarian 24.85±0.00 29.11±0.00 28.29±0.00 9.34±0.00 39.97±0.00 21.86±0.00 37.83±0.00 82.72±0.98

MVCAN 32.48±2.50 31.12±2.31 58.14±1.76 49.51±1.24 50.62±0.42 33.30±0.41 45.06±1.02 65.50±2.98
MVCAN + Hungarian 33.09±1.56 49.37±4.60 51.20±2.80 40.71±1.53 47.08±3.56 29.75±0.54 49.56±9.49 57.37±3.76

EBMGC 39.39±0.00 38.46±0.00 42.86±0.00 33.94±0.00 56.75±0.00 21.58±0.00 33.50±0.00 50.91±0.00
EBMGC + Hungarian 32.73±0.00 40.24±0.00 47.14±0.00 33.94±0.00 51.70±0.00 26.33±0.00 41.00±0.00 59.46±0.00

Vsc_mH 53.94±0.00 62.13±0.00 64.29±0.00 38.56±0.00 42.50±0.00 28.03±0.00 46.47±0.00 65.19±0.00
OpVuC 53.94±0.00 57.40±0.00 30.00±0.00 53.13±0.00 30.10±0.00 31.82±0.00 51.09±0.00 62.90±0.00

DCMVC 27.15±1.01 46.51±4.52 45.71±2.29 48.83±0.83 69.34±1.01 26.02±0.60 59.55±3.60 65.74±2.31
DCMVC + Hungarian 23.88±1.19 35.15±1.10 44.57±2.46 39.34±0.95 50.47±0.99 24.07±0.45 40.11±1.28 35.80±0.99

LMTC 52.58±3.76 48.28±3.49 53.29±3.15 35.58±0.94 64.99±1.16 28.96±0.92 41.91±0.80 59.25±0.30
LMTC + Hungarian 54.61±4.74 48.05±1.18 55.43±3.29 35.30±1.45 54.24±2.72 28.53±0.86 41.69±0.70 55.46±2.13

TMSL 24.82±1.70 42.25±2.66 43.98±0.97 47.47±1.40 62.61±0.61 29.13±0.49 OOM OOM
TMSL + Hungarian 68.79±2.78 56.21±1.05 44.45±1.45 47.12±1.11 53.12±0.05 27.02±0.24 OOM OOM

DSTL 35.91±1.93 61.54±0.00 39.48±3.81 36.87±1.42 47.61±1.57 20.45±0.59 28.87±0.40 40.90±0.68
DSTL + Hungarian 37.73±2.76 59.76±0.19 43.71±1.43 30.57±1.03 43.33±0.51 19.31±0.79 30.36±0.33 50.09±0.00

Ours 64.24±3.62 64.44±1.29 83.52±0.39 70.63±1.29 96.55±0.00 35.91±0.27 77.38±3.14 71.78±1.26

Table 2: NMI comparison of all methods with and without Hungarian alignment on eight multi-view
datasets under a sample alignment ratio ρ = 50%.

Method Yale 3sources MSRCV 100leaves HW Scene EMNIST Hdigit

EEOMVC 62.23±0.00 39.32±0.00 56.08±0.00 75.62±0.00 88.20±0.00 16.59±0.00 32.54±0.00 70.96±0.00
EEOMVC + Hungarian 57.37±0.00 31.87±0.00 56.93±0.00 77.03±0.00 62.65±0.00 18.26±0.00 29.18±0.00 53.11±0.00

DealMVC 38.08±0.00 6.69±0.74 14.00±3.92 25.34±0.44 27.20±0.89 11.89±1.09 31.39±0.59 39.90±1.52
DealMVC + Hungarian 23.65±0.00 7.31±0.48 13.08±0.17 27.34±3.63 26.08±2.49 16.31±3.23 22.80±0.48 65.46±1.81

MVCAN 38.43±1.87 12.87±1.67 46.19±1.94 69.50±0.95 32.31±0.48 30.96±0.89 20.14±0.13 60.89±1.68
MVCAN + Hungarian 38.53±1.22 47.72±3.00 35.16±4.14 62.08±1.45 45.05±5.03 25.76±0.33 37.94±15.14 53.82±3.54

EBMGC 43.31±0.00 23.68±0.00 22.79±0.00 58.22±0.00 35.99±0.00 11.14±0.00 17.99±0.00 25.07±0.00
EBMGC + Hungarian 38.18±0.00 23.98±0.00 24.79±0.00 58.22±0.00 29.52±0.00 15.08±0.00 19.44±0.00 39.70±0.00

Vsc_mH 62.00±0.00 48.81±0.00 56.01±0.00 68.53±0.00 30.67±0.00 25.41±0.00 36.92±0.00 55.77±0.00
OpVuC 55.77±0.00 36.86±0.00 13.63±0.00 78.00±0.00 17.74±0.00 29.69±0.00 45.94±0.00 47.51±0.00

DCMVC 31.40±1.27 26.22±2.46 33.61±2.59 67.15±0.42 60.71±3.05 15.64±0.32 61.11±2.62 59.83±1.83
DCMVC + Hungarian 27.63±1.07 16.49±1.72 22.27±1.69 60.41±0.47 29.39±0.68 12.99±0.31 20.68±0.19 16.65±0.20

LMTC 57.39±2.89 40.01±4.69 33.29±3.81 58.75±0.55 45.75±0.55 23.24±0.45 24.01±0.25 47.31±0.25
LMTC + Hungarian 57.79±3.67 43.85±2.17 37.60±2.84 58.98±0.97 37.95±0.58 23.16±0.58 24.59±0.87 47.02±2.49

TMSL 28.68±1.25 12.02±1.10 23.71±1.08 69.33±0.61 48.62±0.54 21.34±0.36 OOM OOM
TMSL + Hungarian 68.40±1.91 31.68±0.92 25.28±0.81 69.46±0.58 28.16±0.07 19.77±0.27 OOM OOM

DSTL 39.59±1.18 37.00±0.00 23.41±1.99 60.53±0.55 29.05±0.50 15.54±0.33 11.64±0.22 20.40±0.15
DSTL + Hungarian 41.17±1.62 40.46±0.38 24.58±1.13 54.13±0.51 26.08±0.23 14.05±0.50 15.32±0.29 42.34±0.00

Ours 69.31±1.32 61.20±0.83 70.28±0.55 85.34±0.42 92.09±0.00 30.27±0.20 74.84±0.94 75.50±0.14

5.2 Compared Methods

Ten state-of-the-art MVC methods are selected as baselines for comparison, including EEOMVC [39],
DealMVC [40], MVCAN [41], EBMGC [42], Vsc_mH [43], OpVuC [44], DCMVC [45], LMTC
[46], TMSL [47], DSTL [48]. The detailed introductions of them are presented in Appendix A.5.

5.3 Experiments Setup

In the experiments, four widely used evaluation metrics are employed to assess the clustering
performance of all compared methods: Accuracy (ACC), Normalized Mutual Information (NMI),
Adjusted Rand Index (ARI), and F1score. For the proposed method, we conducted a grid search over
the set {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} to determine the best value for each dataset. The
unified latent feature dimension d is set to the number of clusters. Regarding the baseline methods,
parameters were tuned according to the ranges provided in their respective publicly available source
codes, and the best results were selected in the experiments. To mitigate the influence of randomness
on the experimental results, each experiment was repeated 20 times, and the mean and variance of
the results are reported. All experiments are conducted on a Windows 11 PC equipped with an Intel
Core i7-13700F CPU and 64GB RAM.

5.4 Results Analysis

To facilitate a fair comparison between the proposed method and existing approaches under the
sample non-alignment setting, we fix the sample alignment ratio ρ to 50% in the main experiments.
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Table 3: ARI comparison of all methods with and without Hungarian alignment on eight multi-view
datasets under a sample alignment ratio ρ = 50%.

Method Yale 3sources MSRCV 100leaves HW Scene EMNIST Hdigit

EEOMVC 38.19±0.00 29.79±0.00 46.02±0.00 37.47±0.00 86.99±0.00 7.76±0.00 18.37±0.00 53.61±0.00
EEOMVC + Hungarian 32.46±0.00 21.51±0.00 45.98±0.00 36.53±0.00 32.12±0.00 6.93±0.00 16.33±0.00 42.83±0.00

DealMVC 11.75±0.00 2.51±0.44 4.49±1.72 1.89±0.25 21.77±1.06 6.57±0.91 23.83±1.59 38.45±1.65
DealMVC + Hungarian 3.35±0.00 0.24±0.61 3.49±0.21 2.61±0.49 18.77±1.58 8.98±2.30 15.57±0.49 65.76±1.81

MVCAN 10.54±1.71 4.92±1.55 35.98±2.09 30.37±1.53 22.24±0.58 16.37±0.60 16.49±0.38 50.04±3.04
MVCAN + Hungarian 11.10±1.07 29.57±4.45 24.14±3.45 20.57±1.66 30.14±5.39 12.52±0.10 29.21±12.52 42.30±4.52

EBMGC 15.43±0.00 12.29±0.00 14.78±0.00 15.36±0.00 31.06±0.00 5.75±0.00 12.37±0.00 22.04±0.00
EBMGC + Hungarian 9.89±0.00 13.21±0.00 17.44±0.00 15.36±0.00 24.43±0.00 8.60±0.00 15.06±0.00 36.00±0.00

Vsc_mH 37.27±0.00 36.47±0.00 45.47±0.00 23.39±0.00 20.92±0.00 13.26±0.00 24.93±0.00 46.54±0.00
OpVuC 30.40±0.00 33.68±0.00 5.49±0.00 40.64±0.00 10.90±0.00 15.39±0.00 34.32±0.00 38.69±0.00

DCMVC 4.69±1.05 19.77±5.08 19.55±2.22 29.23±0.91 53.01±2.79 8.81±0.24 48.53±3.72 49.42±2.03
DCMVC + Hungarian 2.01±0.84 4.26±1.13 14.93±1.54 19.50±0.73 24.12±0.73 6.88±0.24 15.51±0.57 12.12±0.22

LMTC 32.32±3.88 28.15±4.27 24.59±3.88 17.24±0.81 39.20±0.97 11.48±0.43 15.42±0.64 40.59±0.35
LMTC + Hungarian 32.71±4.91 30.32±2.02 27.45±3.00 17.58±1.45 19.07±1.17 11.26±0.43 15.09±0.78 37.54±2.25

TMSL 2.64±1.05 8.57±1.75 15.62±0.83 31.41±1.15 37.67±0.77 10.85±0.31 OOM OOM
TMSL + Hungarian 47.94±3.13 32.77±1.34 16.48±0.77 31.38±1.02 23.93±0.06 9.99±0.21 OOM OOM

DSTL 11.47±1.26 24.19±0.00 12.68±2.02 18.49±0.77 20.12±0.37 6.11±0.20 7.25±0.22 15.17±0.08
DSTL + Hungarian 13.70±2.01 37.03±0.36 14.86±0.97 11.85±0.71 18.22±0.36 5.44±0.25 9.31±0.21 29.22±0.00

Ours 48.91±2.65 45.98±1.61 66.34±0.66 59.97±0.95 92.49±0.00 17.15±0.32 65.52±2.12 65.53±0.43

Table 4: F1score comparison of all methods with and without Hungarian alignment on eight multi-
view datasets under a sample alignment ratio ρ = 50%.

Method Yale 3sources MSRCV 100leaves HW Scene EMNIST Hdigit

EEOMVC 42.10±0.00 44.77±0.00 53.93±0.00 38.17±0.00 88.29±0.00 15.02±0.00 28.53±0.00 58.97±0.00
EEOMVC + Hungarian 36.75±0.00 36.99±0.00 53.83±0.00 37.28±0.00 41.02±0.00 14.41±0.00 26.56±0.00 49.21±0.00

DealMVC 25.78±0.00 31.29±1.10 26.27±2.57 6.68±0.15 32.01±0.87 14.88±0.95 32.84±1.17 44.73±1.50
DealMVC + Hungarian 23.89±0.00 30.27±2.35 25.19±1.20 7.66±1.06 30.95±1.94 18.86±1.72 27.34±0.04 69.41±1.61

MVCAN 25.09±1.61 29.14±1.02 47.00±1.67 37.49±1.29 34.95±0.45 22.78±0.41 25.18±0.26 57.33±1.99
MVCAN + Hungarian 25.35±1.43 54.48±2.79 37.97±2.34 28.31±1.85 39.76±3.43 19.98±0.15 37.12±11.11 49.72±3.79

EBMGC 20.59±0.00 29.02±0.00 26.60±0.00 16.16±0.00 37.92±0.00 12.13±0.00 21.13±0.00 29.84±0.00
EBMGC + Hungarian 15.38±0.00 29.77±0.00 28.90±0.00 16.16±0.00 31.95±0.00 14.80±0.00 23.55±0.00 42.40±0.00

Vsc_mH 41.70±0.00 52.20±0.00 53.91±0.00 24.41±0.00 29.42±0.00 20.55±0.00 32.83±0.00 51.99±0.00
OpVuC 34.92±0.00 46.62±0.00 20.44±0.00 41.36±0.00 20.65±0.00 21.59±0.00 41.09±0.00 44.99±0.00

DCMVC 19.48±0.98 41.10±2.31 35.18±1.69 35.08±0.61 59.95±3.01 15.57±0.23 55.15±3.28 56.02±2.45
DCMVC + Hungarian 17.08±0.81 36.92±1.97 30.19±1.32 25.58±0.63 33.17±0.62 13.94±0.19 25.51±0.33 21.22±0.23

LMTC 36.59±3.61 42.40±3.28 35.28±3.33 18.07±0.81 45.29±0.87 17.65±0.41 24.48±0.42 46.62±0.31
LMTC + Hungarian 36.95±4.57 43.81±1.57 37.70±2.54 18.41±1.43 29.32±0.89 17.43±0.40 24.34±0.42 43.94±2.04

TMSL 9.04±0.97 32.77±2.01 27.43±0.74 32.09±1.14 44.06±0.68 17.46±0.34 OOM OOM
TMSL + Hungarian 51.19±2.91 47.76±1.06 28.15±0.67 32.07±1.01 31.54±0.06 16.37±0.20 OOM OOM

DSTL 17.50±1.09 47.67±0.00 25.27±1.75 19.35±0.75 28.38±0.35 12.65±0.20 16.81±0.16 23.70±0.07
DSTL + Hungarian 19.25±1.87 51.00±0.28 26.87±0.84 12.79±0.71 26.72±0.34 12.06±0.24 18.65±0.22 37.49±0.00

Ours 52.17±2.43 56.59±1.34 71.03±0.57 60.37±0.94 93.24±0.00 22.94±0.29 69.12±1.85 69.16±0.37

Due to space constraints, results under other alignment ratios are provided in the Appendix and
can be found in Tables 7-8 for reference. Notably, some baselines are not directly applicable to the
non-aligned scenario. For fair evaluation, we apply the Hungarian algorithm to align the data before
using these methods. Clustering results under the four evaluation metrics are shown in Tables 1-4
with the best and the second results highlighted in bold and underlined respectively. Methods that
encounter memory overflow are marked as OOM. Based on the results reported in the Tables, several
key observations can be obtained:

(1) The proposed algorithm consistently outperforms most baseline methods, including those using
Hungarian-based sample alignment. For example, on the EMNIST and MSRCV datasets, it achieves
ACC improvements of 10.66% and 17.83% over the second-best methods, EEOMVC and DCMVC,
respectively. Similar gains are observed across other datasets, highlighting the method’s effectiveness
in capturing true cross-view sample correspondences and enhancing clustering performance.

(2) Our method is superior to existing methods such as Vsc_mH and OpVuC, which are designed for
non-aligned sample clustering. These two kind of methods rely on mining alignment relationships
directly from raw features without explicitly modeling the structural hierarchy within each view.
Moreover, they employ a hard matching strategy, determining class correspondences based on
pairwise sample similarity. Due to high intra-class similarity, this often results in unstable alignment
matrices, adversely affecting algorithm convergence and leading to performance fluctuations.

(3) Compared with deep clustering methods such as DealMVC, MVCAN, and DCMVC, the pro-
posed method demonstrates notable advantages. Although deep neural networks possess strong
representation capabilities, they often rely on the assumption of consistent semantic information
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(a) Yale (b) 3sources (c) MSRCV (d) 100leaves

(e) HW (f) Scene (g) EMNIST (h) Hdigit

Figure 2: The objective function values of the proposed method across iterations.

(a) Yale (b) 3sources (c) MSRCV (d) 100leaves

(e) HW (f) Scene (g) EMNIST (h) Hdigit

Figure 3: Clustering performance of the proposed method with varying values of the parameter λ.

across views. This assumption breaks down in the presence of sample misalignment, resulting
in inconsistent feature learning and diminished clustering performance. Moreover, the use of the
Hungarian algorithm for late fusion alignment does not consistently lead to performance gains and
can even degrade results. This may be due to incorrect alignments introducing noisy or misleading
information, ultimately impairing the effectiveness of the model.

5.5 Convergence and Parameter Sensitivity Analysis

In the previous section, we theoretically established that the proposed algorithm converges within a
finite number of iterations. In this section, we further verify the convergence behavior empirically.
The corresponding experimental results are illustrated in Fig. 2. As shown in the figure, the proposed
method typically converges within approximately 10 iterations across all datasets, which empirically
confirms its favorable convergence properties.

The results of our proposed method across varying λ values are presented in Fig. 3. Overall, the
method demonstrates strong robustness to λ, with stable performance on most datasets. Notably,
fluctuations on datasets like 3sources suggest higher sensitivity, may be can attributed to significant
semantic divergence among views, which underscores the importance of appropriately weighting
structural similarity.
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5.6 Ablation Studies

We conduct ablation studies to assess the contribution of the proposed cross-view structural similarity
module to clustering performance. Specifically, we denote the model without this module as SSA-
MVC w/o CVS. The results, shown in Fig. 4, indicate that incorporating the module consistently
improves sample alignment and clustering performance across most datasets. These findings highlight
the effectiveness of the module and its integral role in the overall framework.

(a) Yale (b) 3sources (c) MSRCV (d) 100leaves

(e) HW (f) Scene (g) EMNIST (h) Hdigit

Figure 4: Clustering performance of the proposed method and its variant on eight multi-view datasets.

5.7 Effectiveness of the Alignment Strategy

To evaluate the scalability of our proposed method, we assess its effectiveness on the clustering
algorithms that do not inherently handle sample misalignment. Specifically, under an alignment ratio
of ρ = 50%, we use M to realign the originally non-aligned 100leaves multi-view data and compare
the performance of several baseline algorithms on both the original and the realigned 100leaves.
As shown in Table 5, our method can benefit the clustering performance of these algorithms in the
non-aligned setting, demonstrating its effectiveness and potential for generalization to other methods.

Table 5: Results of competitors on the 100leaves under a sample alignment ratio of ρ = 50%.

Setting Metric DealMVC MVCAN EBMGC DCMVC LMTC TMSL DSTL

ACC Unaligned 7.69±0.00 49.51±1.24 33.94±0.00 48.83±0.83 35.58±0.94 47.47±1.40 36.87±1.42
Aligned+Ours 12.42±0.52 48.81±1.28 43.06±0.00 53.75±0.89 40.82±1.31 48.18±1.37 35.60±0.90

NMI Unaligned 25.34±0.44 69.50±0.95 58.22±0.00 67.15±0.42 58.75±0.55 69.33±0.61 60.53±0.55
Aligned+Ours 38.01±0.46 69.95±0.59 64.52±0.00 72.10±0.49 64.58±0.80 70.54±0.57 61.09±0.53

ARI Unaligned 1.89±0.25 30.37±1.53 15.36±0.00 29.23±0.91 17.24±0.81 31.41±1.15 18.49±0.77
Aligned+Ours 5.16±0.12 30.58±0.99 24.62±0.00 36.50±0.87 24.46±1.24 32.67±1.17 19.38±0.68

F1score Unaligned 6.68±0.15 37.49±1.29 16.16±0.00 35.08±0.61 18.07±0.81 32.09±1.14 19.35±0.75
Aligned+Ours 11.47±0.14 37.74±0.93 25.33±0.00 41.38±0.85 25.21±1.23 33.34±1.15 20.23±0.67

6 Conclusion

This paper proposes a scalable multi-view clustering algorithm to tackle sample non-alignment.
By selecting a baseline view via the CLM algorithm and leveraging structural similarities between
aligned and non-aligned samples, the method guides cross-view alignment and integrates the resulting
alignment matrix into a late fusion clustering framework. Experiments on eight benchmark datasets
validate the effectiveness of the proposed method.
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A Appendix

A.1 Limitations

As revealed by the construction process of the view-specific structural representations, the proposed
method exhibits certain limitations when applied to scenarios where samples across views are
completely unaligned. In such cases, a feasible approach is to explore the cross-view structural
correlations by computing similarities between all samples in the to-be-aligned view and those in
a designated baseline view. This cross-view relational information can then be integrated into the
overall clustering framework after the main convergence process. Accordingly, future research will
focus on designing multi-view clustering algorithms that are specifically tailored to handle fully
unaligned sample scenarios.

A.2 The Pseudo Code of the Proposed Method

The detailed algorithm optimization processes are presented in the following.

Algorithm 1 The Algorithm of SSA-MVC.
1: Input: Unaligned multi-view data {Xv}Vv=1, the number of clusters k, the unified feature

dimension d, and the hyper-parameter λ.
2: Construct the cross-view similarity graph {Sv}Vv=1 via Eqs. (3-(6)).
3: Initialize {Rv}Vv=1, {Mv}Vv=1, {αv}Vv=1.
4: while not converge do
5: Update F∗ via Eq. (8).
6: Update {Rv}Vv=1 via Eq. (10).
7: Update {αv}Vv=1 via Eq. (11).
8: Update {Mv}Vv=1 via Eq. (13).
9: end while

10: Conduct k-means clustering algorithm on the consensus partition F∗.
11: Output: Clustering results Y.

A.3 Proof of Theorem 1

Proof. The proof can be divided into two parts, i.e., the objective function is upper bounded, and it is
monotonically increasing.

1) The objective function is upper bounded.

Given that Mt = I, the overall objective function in Eq. (7) can be simplified as follows:

max
Rv,F∗,Mv,αv

V∑
v=1

Tr
(
F∗⊤αvC

vFvRv
)
+ λ

V∑
v=1

Tr
(
Mv⊤Sv

)
s.t. Cv =

[
I 0
0 Mv

]
,F∗⊤F∗ = I,Rv⊤Rv = I,

V∑
v=1

α2
v = 1,Mv⊤Mv = I.

(14)

For any two distinct views v and v′, where v ̸= v′, the following inequality holds:

Tr
(
(αvC

vFvRv)⊤(αv′Cv′
Fv′

Rv′
)
)

≤ Tr
(
(CvFvRv)⊤(Cv′

Fv′
Rv′

)
)

≤ 1

2

(
Tr
(
(CvFvRv)⊤(CvFvRv)

)
+Tr

(
(Cv′

Fv′
Rv′

)⊤(Cv′
Fv′

Rv′
)
))

= d

(15)
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Based on the above inequality, we can further derive that:

Tr

(
F∗⊤

V∑
v=1

αvC
vFvRv

)

≤ 1

2

Tr(F∗⊤F∗) + Tr

( V∑
v=1

αvC
vFvRv

)⊤( V∑
v′=1

αv′Cv′
Fv′

Rv′

)
≤ 1

2
(d+ dn2)

(16)

where d is the unified feature dimension, and n is the number of samples. Moreover, for the
regularization term, we have:

λTr(Mv⊤Sv) ≤ λ

2

(
Tr(Mv⊤Mv) + Tr(Sv⊤Sv)

)
=

λ

2

(
n2 +Tr(Sv⊤Sv)

)
(17)

where n2 is a number of unaligned samples. Since Tr(Sv⊤Sv) is a constant and λ is fixed, the term
λTr(Mv⊤Sv) is upper bounded.

Therefore, the overall objective function in Eq. (7) is guaranteed to be upper bounded.

2) The objective function is monotonically increasing.

In the aforementioned optimization procedure, it is apparent that the sub-problems involving the vari-
ables F∗, Rv , and Mv respectively, reduce to classical Orthogonal Procrustes Problems. Throughout
the iterative solution process, the objective function values associated with these variables exhibit a
monotonically non-decreasing trend. Additionally, the optimization with respect to the variable α
constitutes a standard linear objective maximization problem under quadratic constraints, which simi-
larly guarantees a monotonically non-decreasing progression of the objective value during updates.
Let Θ(F∗,Mv,Rv, αv) represent a simplified form of the objective function defined in Eq. (7). Thus,
the following inequalities hold:

Θ
(
{F∗}(p), {Mv}(p), {Rv}(p), {αv}(p)

)
≤ Θ

(
{F∗}(p+1), {Mv}(p+1), {Rv}(p+1), {αv}(p+1)

)
.

(18)
where the superscript (p) and (p+ 1) denote the number of iterations.

Therefore, based on the aforementioned properties, we can conclude that the proposed algorithm is
guaranteed to converge during the optimization process.

A.4 Datasets Description

In our experiments, eight multi-view benchmark datasets are used to verify the effectiveness of our
proposed method, including Yale2, 3sources3, MSRCV4, 100leaves5, HW6, Scene [49], EMNIST7,
and Hdigit8. In the following, we will give a detailed introduction to them.

Yale: This dataset comprises 165 samples distributed across 15 distinct classes. Each sample
is characterized by three heterogeneous feature sets: a 4096-dimensional Intensity descriptor, a
3304-dimensional Local Binary Pattern (LBP) descriptor, and a 6750-dimensional Gabor descriptor.

3sources: It comprises 169 samples collected from three distinct news media sources: BBC, Reuters,
and The Guardian. Each sample is represented by three views, corresponding to the textual content
extracted from each respective source. The feature dimensions for these views are 3560, 3631, and
3068 for BBC, Reuters, and The Guardian, respectively. All samples are annotated with one of six
semantic classes.

2https://vision.ucsd.edu/content/yale-face-database
3http://mlg.ucd.ie/datasets/3sources.html
4https://mldta.com/dataset/msrc-v1/
5https://archive.ics.uci.edu/ml/datasets/Onehundred+plant+species+leaves+data+set
6https://archive.ics.uci.edu/ml/datasets/Multiple+Features
7https://www.nist.gov/itl/products-and-services/emnist-dataset
8https://cs.nyu.edu/ roweis/data.html
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Table 6: Summary of eight benchmark multi-view datasets.

Datasets #Classes #Samples #Views #Feature Dimensionalities

Yale 15 165 3 4096; 3304; 6750
3sources 6 169 3 3560; 3631; 3068
MSRCV 7 210 5 24; 576; 512; 256; 254
100leaves 100 1600 3 64; 64; 64;

HW 10 2000 6 216; 76; 64; 6; 240; 47
Scene 15 4485 3 20; 59; 40

EMNIST 10 10000 4 576; 944; 512; 640
Hdigit 10 10000 2 784; 256

MSRCV: It comprises 210 image samples, each labeled with one of seven semantic classes. For
each sample, a five-view feature representation is provided to capture diverse visual characteristics.
Specifically, the dataset includes the following feature descriptors: 24-dimensional Color Moments
(CM), 576-dimensional Histogram of Oriented Gradients (HOG), 512-dimensional GIST, 256-
dimensional Local Binary Patterns (LBP), and 254-dimensional Gabor Energy-based Texture (GENT)
features.

100leaves: The dataset comprises 1600 samples distributed across 100 distinct leaf species. Each
sample is characterized by three complementary feature views: a 64-dimensional Texture Histogram
(TH), a 64-dimensional Fourier Shape-based Metric (FSM), and a 64-dimensional Statistical Descrip-
tor (SD). These multi-view features encapsulate diverse morphological and structural characteristics
of the leaves, rendering the dataset highly suitable for the evaluation of multi-view learning and
clustering algorithms.

HW: The dataset comprises 2000 samples, each annotated with one of ten distinct class labels.
It encompasses six heterogeneous views, each representing diverse feature modalities extracted
from the same set of samples. Specifically, these views include: 76-dimensional FOU features,
216-dimensional FAC features, 64-dimensional KAR features, 240-dimensional PIX features, 47-
dimensional ZER features, and 6-dimensional MOR features.

Scene: The dataset comprises 4485 samples distributed across 15 distinct scene categories. Each
sample is described by three complementary visual modalities: a 1800-dimensional GIST descrip-
tor capturing the global spatial layout, a 1180-dimensional PHOG feature encoding local shape
information, and a 1240-dimensional LBP representation characterizing texture patterns.

EMNIST: The dataset comprises 10000 samples distributed across 10 distinct classes. Each sample
is characterized by four heterogeneous views, each providing complementary information derived
from different feature sets. Specifically, the dimensionalities of the features corresponding to the four
views are 576, 944, 512, and 640, respectively.

Hdigit: The dataset comprises 5000 handwritten digit images, representing the ten classes from 0
to 9. These samples are drawn from two distinct sources: the MNIST and USPS digit datasets. By
integrating variations in handwriting styles and image resolutions inherent to both domains, the dataset
offers a comprehensive and challenging benchmark for evaluating digit recognition algorithms.

A.5 Compared Methods Introduction

In this section, the specific introduction of ten state-of-the-art multi-view clustering methods is
illustrated in the following.

EEOMVC (TNNLS 23) [39]: This method efficiently performs one-step multi-view clustering by
constructing anchor-based similarity graphs to learn unified latent partition representations, enabling
direct extraction of discrete clustering labels. By integrating latent information fusion and clustering
into a joint framework, it significantly reduces computational complexity while improving clustering
accuracy on large-scale datasets.

DealMVC(ACM MM 23) [40]: The proposed method addresses the limitation of existing multi-view
clustering models by aligning similar yet distinct samples across views through dual contrastive
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Table 7: Clustering performance of all compared methods on eight multi-view datasets under a
sample alignment ratio of ρ = 25%.

Dataset Metric EEOMVC DealMVC MVCAN EBMGC Vsc_mH OpVuC DCMVC LMTC TMSL DSTL Ours

Yale

ACC 47.88±0.00 10.30±0.00 26.18±1.94 27.27±0.00 43.64±0.00 24.24±0.00 22.91±1.04 47.55±3.35 22.21±1.13 30.27±1.45 63.70±2.15
NMI 52.06±0.00 8.90±0.00 33.85±2.67 33.22±0.00 48.62±0.00 27.76±0.00 27.42±1.11 53.72±2.81 26.70±1.08 35.32±1.33 66.45±1.30
ARI 27.86±0.00 0.00±0.00 5.96±1.82 5.51±0.00 20.60±0.00 2.12±0.00 1.71±0.70 27.03±3.46 0.93±0.68 7.68±1.12 45.33±2.21

F1score 32.37±0.00 15.60±0.00 20.39±1.50 11.27±0.00 25.61±0.00 8.83±0.00 16.61±0.60 31.64±3.24 7.18±0.63 13.72±1.06 48.75±2.06

3sources

ACC 53.25±0.00 31.48±0.95 28.69±1.26 33.14±0.00 53.85±0.00 44.38±0.00 33.73±2.97 45.62±3.68 36.42±1.74 43.28±0.29 62.31±0.79
NMI 29.93±0.00 4.76±0.17 9.24±2.28 13.84±0.00 33.23±0.00 25.19±0.00 15.43±2.18 33.76±5.62 5.84±0.73 20.33±0.56 55.65±0.18
ARI 26.50±0.00 0.04±0.53 1.20±1.28 4.96±0.00 22.59±0.00 25.16±0.00 5.30±3.33 23.78±5.21 1.04±0.94 14.00±0.82 41.89±0.69

F1score 41.65±0.00 31.68±0.90 27.21±1.47 23.09±0.00 46.29±0.00 40.12±0.00 34.09±3.03 38.77±4.29 30.37±1.17 40.04±0.16 53.24±0.58

MSRCV

ACC 60.95±0.00 33.62±2.48 49.62±6.05 26.67±0.00 55.24±0.00 26.67±0.00 39.95±2.33 47.40±2.12 32.29±0.63 35.88±3.02 80.12±0.43
NMI 47.27±0.00 13.07±1.64 39.58±6.76 10.62±0.00 44.69±0.00 7.59±0.00 30.36±1.89 33.35±2.18 11.74±0.72 18.68±1.59 66.45±0.94
ARI 37.21±0.00 6.00±2.03 25.61±5.75 3.37±0.00 33.00±0.00 3.21±0.00 15.15±1.82 21.43±1.78 5.04±0.33 9.57±1.38 61.49±0.83

F1score 46.16±0.00 23.55±1.19 40.02±5.38 16.78±0.00 42.50±0.00 18.14±0.00 31.63±1.36 32.47±1.46 18.52±0.28 22.32±1.23 66.87±0.71

100leaves

ACC 39.69±0.00 4.14±0.15 29.93±0.89 21.44±0.00 24.69±0.00 18.50±0.00 31.82±0.60 22.92±0.96 43.50±0.92 22.23±0.76 66.51±0.92
NMI 59.31±0.00 13.66±0.12 58.28±0.65 50.90±0.00 54.50±0.00 46.59±0.00 57.20±0.59 50.21±0.65 68.98±0.45 50.93±0.50 83.11±0.27
ARI 19.07±0.00 0.19±0.04 13.66±0.70 6.24±0.00 11.50±0.00 6.67±0.00 15.35±0.79 7.93±0.85 29.30±0.97 7.38±0.43 55.29±0.91

F1score 19.92±0.00 3.87±0.05 21.15±0.67 7.12±0.00 12.63±0.00 7.93±0.00 21.85±0.54 8.86±0.84 30.00±0.96 8.37±0.42 55.74±0.90

HW

ACC 92.05±0.00 27.58±0.84 28.55±0.03 20.80±0.00 19.25±0.00 19.20±0.00 75.25±1.67 45.59±2.36 60.67±0.48 31.56±0.66 96.35±0.00
NMI 83.78±0.00 7.85±0.28 8.70±0.05 6.75±0.00 10.27±0.00 4.44±0.00 73.09±0.88 29.00±1.70 47.52±0.26 16.38±0.39 91.59±0.00
ARI 83.22±0.00 4.96±0.54 5.06±0.03 3.37±0.00 1.55±0.00 1.85±0.00 65.60±1.36 21.06±1.75 37.85±0.40 9.85±0.30 92.08±0.00

F1score 84.89±0.00 16.40±0.10 15.58±0.02 12.99±0.00 17.32±0.00 12.53±0.00 70.78±1.28 29.00±1.57 44.07±0.35 18.92±0.28 92.87±0.00

Scene

ACC 23.90±0.00 15.04±0.37 26.77±0.37 14.25±0.00 29.68±0.00 15.92±0.00 17.08±0.19 26.99±0.55 25.56±0.70 16.60±0.47 32.95±0.78
NMI 16.45±0.00 3.48±0.13 30.82±0.62 3.76±0.00 28.68±0.00 6.26±0.00 5.64±0.26 22.17±0.39 18.65±0.49 10.07±0.22 27.79±0.32
ARI 7.24±0.00 1.45±0.06 14.49±0.33 1.44±0.00 15.06±0.00 2.25±0.00 2.47±0.14 10.65±0.36 9.03±0.52 3.66±0.15 14.36±0.32

F1score 14.41±0.00 10.70±0.21 21.28±0.27 8.12±0.00 21.56±0.00 10.48±0.00 9.72±0.14 16.87±0.34 15.81±0.54 10.52±0.16 20.35±0.29

EMNIST

ACC 36.53±0.00 43.29±1.86 26.72±0.48 17.46±0.00 47.66±0.00 46.69±0.00 59.61±3.04 30.30±0.43 OOM 19.69±0.18 75.43±4.25
NMI 17.58±0.00 30.64±3.19 5.79±0.10 3.64±0.00 39.73±0.00 41.04±0.00 60.23±3.14 10.11±0.27 OOM 4.33±0.07 70.66±1.87
ARI 11.10±0.00 22.02±2.45 3.91±0.12 1.90±0.00 27.02±0.00 28.33±0.00 48.39±3.30 6.99±0.20 OOM 2.28±0.05 61.67±3.56

F1score 21.17±0.00 32.39±1.43 13.74±0.09 11.70±0.00 34.59±0.00 35.65±0.00 55.20±3.29 16.32±0.18 OOM 12.30±0.07 65.65±3.13

Hdigit

ACC 64.76±0.00 41.34±1.18 60.24±6.04 20.82±0.00 58.38±0.00 24.09±0.00 57.54±2.22 53.64±1.48 OOM 30.10±0.06 71.65±4.61
NMI 71.68±0.00 15.96±1.27 55.53±3.46 5.09±0.00 48.48±0.00 6.22±0.00 55.37±0.97 45.56±2.18 OOM 11.77±0.05 74.87±1.00
ARI 53.06±0.00 13.21±1.27 43.99±5.45 2.93±0.00 39.14±0.00 3.89±0.00 42.73±0.81 34.89±1.42 OOM 8.02±0.03 63.35±3.00

F1score 58.55±0.00 21.94±1.09 51.04±4.18 12.63±0.00 45.36±0.00 13.71±0.00 50.69±1.05 41.56±1.29 OOM 17.26±0.03 67.28±2.59

calibration losses at both global and local levels. This approach effectively integrates cross-view
feature similarity and reliable class information, enhancing clustering performance and robustness.

MVCAN (CVPR 24) [41]: MVCAN is a theoretically grounded deep multi-view clustering method
designed to mitigate the impact of noisy views by allowing unshared parameters and inconsis-
tent clustering predictions across views. It employs a two-level iterative optimization to enhance
representation learning, achieving multi-view consistency, complementarity, and robustness to noise.

EBMGC (TPAMI 24) [42]: This method effectively leverages consistent neighbor information
across multiple views through a novel Cross-view Good Neighbors Voting module, while a balanced
regularization term based on the p-power function adapts clustering to diverse data distributions.
By incorporating graph coarsening and an accelerated coordinate descent algorithm, this method
achieves superior clustering performance with high efficiency.

Vsc_mH (Neural Networks 24) [43]: This method effectively addresses the View-shuffled Problem
by simultaneously establishing cross-view correspondences through a global alignment and modified
Hungarian algorithm, and performing clustering via matrix factorization. This integrated approach
enables robust clustering on shuffled multi-view data with varying alignment ratios, supported by
both theoretical convergence guarantees and strong empirical performance.

OpVuC (TMM 24) [44]: This method simultaneously addresses instance alignment and clustering
within a unified framework, effectively handling fully unaligned multi-view data without relying
on any pre-aligned samples. By leveraging a novel global-local alignment strategy grounded in
geometric invariance and a relaxed k-means clustering approach, OpVuC robustly processes data at
any alignment level, demonstrating superior performance across benchmark datasets.

DCMVC (TIP 24) [45]: This paper introduces a deep multi-view clustering network with a dual
contrastive mechanism that simultaneously enhances inter-cluster separation and within-cluster
compactness to learn clustering-friendly representations. By integrating dynamic cluster diffusion and
neighbor-guided positive alignment losses, it effectively fuses multi-view features into discriminative
consensus representations, achieving superior clustering performance.

LMTC (CVPR 25) [46]: This method removes the tensor rotation trick to avoid inadvertent label
information and introduces a large-scale multi-view tensor clustering approach that incorporates
pair-wise similarities via an implicit linear kernel. This results in an efficient, linear-complexity
algorithm that effectively improves clustering performance without relying on sequential data order.

TMSL (KBS 25) [47]: This method enhances traditional tensor-based multi-view clustering by
leveraging tensor low-rank representation to capture the intrinsic data structure, resulting in a more
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Table 8: Clustering performance of all compared methods on eight multi-view datasets under a
sample alignment ratio of ρ = 75%.

Dataset Metric EEOMVC DealMVC MVCAN EBMGC Vsc_mH OpVuC DCMVC LMTC TMSL DSTL Ours

Yale

ACC 58.79±0.00 35.76±0.00 47.27±0.77 47.88±0.00 56.36±0.00 47.27±0.00 41.03±1.72 60.03±4.15 33.97±2.32 46.30±2.62 63.91±2.99
NMI 61.44±0.00 41.67±0.00 51.80±1.08 51.58±0.00 58.05±0.00 49.86±0.00 45.07±1.46 62.21±3.24 39.04±1.76 49.02±1.63 67.88±1.77
ARI 38.57±0.00 17.33±0.00 24.80±1.31 24.29±0.00 32.25±0.00 23.35±0.00 18.16±1.75 40.19±4.51 11.37±1.75 22.57±2.26 47.71±2.28

F1score 42.49±0.00 30.62±0.00 37.90±0.62 28.92±0.00 36.94±0.00 28.43±0.00 32.71±1.65 43.94±4.21 17.35±1.67 27.71±2.03 51.02±2.12

3sources

ACC 65.09±0.00 30.30±0.24 43.59±2.54 42.60±0.00 63.31±0.00 53.25±0.00 63.31±5.91 50.33±1.44 52.60±2.17 54.44±0.00 65.24±0.26
NMI 49.55±0.00 5.23±0.92 28.13±3.29 28.48±0.00 55.46±0.00 38.55±0.00 44.27±4.34 46.97±2.71 30.84±1.01 39.62±0.00 61.18±0.10
ARI 42.19±0.00 0.63±0.32 15.37±3.61 14.74±0.00 45.45±0.00 34.65±0.00 43.53±7.34 33.37±2.94 20.06±0.98 22.53±0.00 48.46±0.30

F1score 54.26±0.00 30.16±2.44 40.04±1.96 31.01±0.00 56.91±0.00 47.46±0.00 55.81±3.44 46.54±2.30 40.42±1.60 43.93±0.00 58.51±0.25

MSRCV

ACC 78.57±0.00 45.05±0.57 68.52±1.29 64.29±0.00 70.48±0.00 27.62±0.00 46.62±0.65 75.29±2.81 58.14±2.75 45.50±2.72 84.60±0.28
NMI 65.84±0.00 34.36±1.00 51.18±1.30 49.27±0.00 59.39±0.00 9.97±0.00 40.64±1.09 58.63±2.83 42.54±1.89 30.44±1.18 75.16±0.60
ARI 56.66±0.00 20.28±0.86 42.01±1.78 41.03±0.00 48.87±0.00 3.69±0.00 26.50±1.03 52.50±3.48 31.99±2.56 19.22±1.29 70.05±0.54

F1score 62.92±0.00 39.20±0.57 53.13±1.40 49.21±0.00 56.35±0.00 19.06±0.00 40.23±1.02 59.15±2.99 41.62±2.17 30.88±1.08 74.25±0.46

100leaves

ACC 77.00±0.00 8.73±0.82 68.80±1.79 51.25±0.00 44.25±0.00 48.69±0.00 70.58±0.93 51.30±1.24 58.72±1.74 53.18±1.82 76.56±1.26
NMI 83.41±0.00 32.66±2.33 81.15±0.61 68.93±0.00 75.27±0.00 77.08±0.00 81.38±0.34 70.69±0.53 76.63±0.71 73.14±0.71 88.30±0.45
ARI 46.93±0.00 3.24±0.76 52.67±1.56 32.15±0.00 32.79±0.00 33.97±0.00 54.35±0.86 33.81±1.04 43.57±1.54 36.45±1.44 67.03±1.42

F1score 47.56±0.00 9.99±0.56 58.45±1.33 32.79±0.00 33.70±0.00 34.87±0.00 59.17±0.66 34.47±1.03 44.13±1.52 37.11±1.42 67.36±1.40

HW

ACC 95.30±0.00 63.59±0.38 71.24±0.34 76.25±0.00 34.10±0.00 34.95±0.00 69.37±1.37 76.77±0.63 74.85±0.24 57.91±2.11 96.43±0.03
NMI 90.30±0.00 51.73±0.10 56.46±0.52 61.10±0.00 24.75±0.00 14.90±0.00 58.26±0.65 60.76±1.37 54.29±0.21 43.45±0.84 91.84±0.05
ARI 89.97±0.00 45.74±0.05 49.02±0.45 58.38±0.00 12.59±0.00 8.73±0.00 51.46±1.00 51.84±2.50 52.16±0.32 34.34±1.37 92.21±0.06

F1score 90.96±0.00 53.09±0.34 57.57±0.51 62.53±0.00 23.01±0.00 18.59±0.00 58.38±0.58 56.98±2.06 56.93±0.29 40.98±1.24 92.99±0.06

Scene

ACC 32.69±0.00 27.42±1.38 37.77±0.68 33.65±0.00 30.35±0.00 30.84±0.00 35.59±0.48 32.70±1.60 33.96±0.01 25.94±0.57 37.52±0.87
NMI 27.97±0.00 22.36±0.19 34.47±0.55 25.00±0.00 28.94±0.00 28.94±0.00 29.52±1.06 27.54±0.76 24.54±0.07 21.28±0.23 32.89±0.35
ARI 12.97±0.00 11.28±0.87 19.40±0.46 15.36±0.00 14.79±0.00 14.82±0.00 18.55±0.84 14.74±0.62 14.68±0.07 9.69±0.21 18.18±0.53

F1score 20.18±0.00 22.56±0.40 26.77±0.52 21.10±0.00 21.27±0.00 21.20±0.00 24.44±0.88 20.68±0.58 20.56±0.07 15.96±0.20 23.92±0.49

EMNIST

ACC 58.45±0.00 58.19±2.26 63.43±0.44 70.05±0.00 47.38±0.00 47.74±0.00 58.13±2.17 52.81±2.09 OOM 35.63±0.79 80.96±3.20
NMI 50.65±0.00 42.51±0.43 43.23±0.96 51.38±0.00 38.72±0.00 42.64±0.00 59.26±1.65 36.67±0.32 OOM 21.03±0.70 77.94±1.29
ARI 33.56±0.00 34.24±0.42 38.62±0.52 47.83±0.00 26.36±0.00 30.39±0.00 46.13±2.30 28.90±0.50 OOM 13.45±0.80 70.46±3.06

F1score 41.32±0.00 42.58±0.29 45.48±0.63 53.05±0.00 34.07±0.00 37.58±0.00 53.66±1.97 36.11±0.44 OOM 22.43±0.66 73.48±2.69

Hdigit

ACC 67.76±0.00 75.68±5.89 78.29±4.98 97.62±0.00 62.80±0.00 50.65±0.00 81.65±4.55 67.61±0.90 OOM 54.84±1.14 78.80±0.05
NMI 76.06±0.00 65.64±3.31 67.74±5.71 93.35±0.00 52.86±0.00 39.47±0.00 74.01±2.32 58.01±0.31 OOM 34.71±0.33 81.67±0.01
ARI 58.19±0.00 62.98±5.52 62.55±6.30 94.78±0.00 43.47±0.00 29.69±0.00 68.76±4.81 51.71±0.57 OOM 28.86±0.59 73.73±0.01

F1score 62.99±0.00 67.83±4.48 67.27±5.45 95.30±0.00 49.25±0.00 36.81±0.00 73.23±3.77 56.64±0.50 OOM 36.01±0.53 76.50±0.01

reliable and robust multi-subspace representation. Integrated into a unified framework solved via the
augmented Lagrangian algorithm, TMSL can also serve as a versatile post-processing strategy to
improve the performance of various existing TMVC methods.

DSTL (TMM 25) [48]: This method efficiently captures high-order correlations among multi-view
latent semantic representations while disentangling semantic-related and unrelated components to
reduce feature redundancy. By aligning semantic-related features across views through a consensus
indicator, DSTL achieves scalable and robust multi-view clustering without relying on affinity graphs.

A.6 Experimental Results with Varying Sample Alignment Ratios

To further assess the effectiveness of the proposed algorithm under different sample alignment rates,
experiments were also conducted at 25% and 75% alignment rates, with detailed results shown
in Tables 7-8. The findings confirm that our proposed method consistently maintains superior
performance compared to other approaches. These results collectively validate the robustness and
effectiveness of our algorithm in handling sample misalignment scenarios.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The specific contributions of this paper can be found in the abstract and
introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this paper are presented in the Appendix A.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The detailed proof of Theorem 1 can refer to Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental results of all compared methods on eight multi-view datasets
are presented in the experiments section. Furthermore, the source code will be released after
the review.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The source code and data will be released after the whole double-blind review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details of our experimental settings about our proposed method and
competitors are described in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviations of the experimental results are reported in the Tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The specific computer resources are introduced in the experimental settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirmed that
our research satisfies its principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper aims to address the sample non-alignment problem in multi-view
clustering. By addressing this problem, the work can lead to more accurate and robust data
integration from diverse sources, which is beneficial in areas like healthcare, education, and
social research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the compared methods and uesed datasets are cited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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