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ABSTRACT

Universal dexterous grasping across diverse objects presents a fundamental yet
formidable challenge in robot learning. Existing approaches using reinforcement
learning (RL) to develop policies on extensive object datasets face critical limi-
tations, including complex curriculum design for multi-task learning and limited
generalization to unseen objects. To overcome these challenges, we introduce
ResDex, a novel approach that integrates residual policy learning with a mixture-
of-experts (MoE) framework. ResDex is distinguished by its use of geometry-
agnostic base policies that are efficiently acquired on individual objects and ca-
pable of generalizing across a wide range of unseen objects. Our MoE frame-
work incorporates several base policies to facilitate diverse grasping styles suitable
for various objects. By learning residual actions alongside weights that combine
these base policies, ResDex enables efficient multi-task RL for universal dexter-
ous grasping. ResDex achieves state-of-the-art performance on the DexGraspNet
dataset comprising 3,200 objects with an 88.8% success rate. It exhibits no gen-
eralization gap with unseen objects and demonstrates superior training efficiency,
mastering all tasks within only 12 hours on a single GPU.

1 INTRODUCTION

Dexterous robotic hands (Pons et al., 1999; Shaw et al., 2023) provide advanced capabilities for
complex grasping tasks, similar to those performed by human hands. However, achieving universal
dexterous grasping across a wide range of objects remains a significant challenge due to the high
degrees of freedom (DoFs) for dexterous hands and the high variability in object geometry in the real
world. Previous works (Qin et al., 2022a; Agarwal et al., 2023) develop dexterous grasping policies
using reinforcement learning (RL), but these policies are limited to a small range of objects that are
similar to the training objects. To improve the scalability of universal dexterous grasping, recent
studies (Chao et al., 2021; Wang et al., 2023; Hang et al., 2024) introduce datasets that contain
a wide variety of objects, each labeled with grasping poses. Xu et al. (2023); Wan et al. (2023);
Wu et al. (2024a) leveraged these datasets to learn universal grasping policies through a teacher-
student framework, which addresses the challenges of multi-task optimization. They first train state-
based policies using RL to master all objects within the dataset, and then distill these policies into a
universal vision-based policy.

However, these approaches exhibit certain limitations. UniDexGrasp (Xu et al., 2023) involves a
complicated curriculum learning design, requiring iterative training across an expanding set of ob-
jects, which significantly increases training time and necessitates careful design for the curriculum.
Similarly, UniDexGrasp++ (Wan et al., 2023) requires training various state-based policies on a
large number of object clusters. This not only consumes substantial training time but may also lead
to overfitting, as training is conducted individually on separate object groups. In this study, we in-
vestigate how to directly learn a multi-task dexterous grasping policy across thousands of objects,
which enables both efficient learning and enhanced generalization.

Residual policy learning (Silver et al., 2018; Johannink et al., 2019) offers an efficient approach to
learning challenging tasks by training a policy to output residual actions using RL, where a subopti-
mal base policy is provided. This approach has the potential to address the optimization challenges
in multi-task RL (Wu et al., 2024b), particularly when the base policy can effectively explore all
tasks. Motivated by this, we propose ResDex to train a residual multi-task policy for universal
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dexterous grasping. The key question then becomes, how to efficiently acquire a base policy that
possesses some generalizability to grasp a wide range of objects? Directly applying multi-task RL
to all objects leads to worse results due to multi-task gradient interference (Yu et al., 2020) and re-
quires extensive training time. Conversely, training a policy to grasp a specific object often results
in poor generalization to unseen objects.

Recent work (Agarwal et al., 2023) suggests that a blind grasping policy, relying solely on robot
proprioception, can robustly grasp unseen objects placed close to the palm. This is because the
policy does not overfit to specific object information, leveraging feedback from joint positions and
fingertip forces to adapt to various object geometries inherently. Given this insight, we propose
training geometry-agnostic base policies that only observe proprioception and the 3D positions of
objects to infer the object location. Experimental results demonstrate that our geometry-agnostic
policy, even trained on a single object, generalizes better to a broad range of objects compared to
policies with full object perception.

To enhance the diversity of grasping poses across various objects, we introduce a mixture-of-experts
(MoE) approach that learns multiple base policies to represent different grasping styles. We use
geometric clustering to categorize all objects and train a geometry-agnostic policy for each clus-
ter’s center. In our multi-task learning framework, we train a residual policy that not only outputs
residual actions but also assigns weight to each base policy. The final control action for the robot
is determined by a weighted sum of the base policies’ actions and the residual action. This method
effectively diversifies grasping poses by varying the weights for the base policies, thereby adapting
to different object geometries.

ResDex achieves state-of-the-art training performance and generalization capabilities, successfully
grasping 3,200 objects in DexGraspNet (Wang et al., 2023). It achieves a success rate of 88.8%
across all training objects and exhibits no generalization gap when applied to unseen objects and
categories. Additionally, ResDex demonstrates remarkable training efficiency, mastering such a
wide range of tasks in only 12 hours on a single NVIDIA RTX 4090 GPU. In our ablation study, we
highlight the critical roles of residual policy learning and geometry-agnostic experts in enhancing
multi-task learning efficiency and generalization. We also demonstrate the importance of the MoE
approach in achieving proper grasping poses.

Our main contributions can be summarized as follows:

• We introduce ResDex, a novel residual policy learning approach that significantly ad-
dresses the problem of efficient multi-task learning and generalization for universal dex-
terous grasping.

• Our technical contributions lie in the novel combination of residual multi-task reinforce-
ment learning, geometry-agnostic base policies, and a mixture of experts framework, which
together enable the development of a more generalizable and effective grasping policy.

• ResDex achieves state-of-the-art performance on the DexGraspNet dataset, demonstrat-
ing its superior training performance and generalization capabilities compared to existing
methods.

2 RELATED WORK

Dexterous Grasping (Pons et al., 1999; Kappassov et al., 2015) continues to be a formidable chal-
lenge, given the high degrees of freedom in multi-fingered robotic hands and the complex geome-
tries and physical properties of real-world objects. A fundamental task in dexterous grasping is
to generate grasping poses. Recent studies have employed various methods such as contact points
(Shao et al., 2020; Wu et al., 2022), affordance maps (Brahmbhatt et al., 2019; Jiang et al., 2021),
natural hand annotations (Wei et al., 2023; Hang et al., 2024), and grasping datasets (Chao et al.,
2021; Wang et al., 2023) to train models for synthesizing hand grasping poses. While generating
target grasping poses is crucial, successfully completing a grasp also requires close-loop policies
that can manage the entire trajectory. In learning dexterous grasping policies, both imitation learn-
ing (Qin et al., 2022b; Mandikal & Grauman, 2022) and reinforcement learning (RL) (Rajeswaran
et al., 2017; Wu et al., 2024b; Zhang et al., 2025) have shown promise. The latter offers scalable
advantages across a variety of objects due to its independence from human data collection and the
efficiency of simulation environments (Makoviychuk et al., 2021). Recent advancements in research
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explore universal dexterous grasping using RL for thousands of objects. UniDexGrasp (Xu et al.,
2023) and UniDexGrasp++ (Wan et al., 2023) introduce curriculum learning and a teacher-student
framework to enable training on numerous objects. UniDexFPM (Wu et al., 2024a) extends these
approaches to universal functional grasping tasks. In our study, we propose an improved RL method
for universal dexterous grasping that is more efficient and demonstrates superior performance and
generalizability.

Residual Policy Learning provides an effective approach to learn challenging RL tasks when a base
policy is available. In robotics, residual policy learning is extensively applied in both manipulation
(Alakuijala et al., 2021; Davchev et al., 2022; Schoettler et al., 2020) and navigation tasks (Rana
et al., 2020). Typically, the residual policy is constructed upon base policies that employ classical
model-based control methods (Johannink et al., 2019; Silver et al., 2018). Garcia-Hernando et al.
(2020) investigates residual policy learning based on human data. GraspGF (Wu et al., 2024b)
explores residual policy learning on a pre-trained score-based generative model (Vincent, 2011).
Zhang et al. (2023) and Jiang et al. (2024b) explore using residual policy learning to finetune RL
policies. Barekatain et al. (2019) extends residual policy learning to adaptively reweight multiple
expert policies. In our work, we adopt residual policy learning to tackle the challenges in universal
dexterous grasping. Our method, which integrates residual RL with a mixture of geometry-agnostic
experts, significantly improves multi-task learning to grasp diverse objects.

Mixture-of-Experts (MoE) is initially introduced by Jacobs et al. (1991); Jordan & Jacobs (1994)
and typically comprises a set of expert models alongside a gating network (Shazeer et al., 2017;
Fedus et al., 2022) that learns to weight the output of each expert. Recently, the MoE framework
has gained substantial interest in fields such as natural language processing (Jiang et al., 2024a) and
multi-modal learning (McKinzie et al., 2024). MoE has also been applied in RL policies (Doya
et al., 2002; Peng et al., 2019), where each expert policy learns a distinct probability distribution
that is subsequently integrated. Recent works (Cheng et al., 2023; Celik et al., 2024) use MoE to
enhance multi-task learning in robotics. In our research, we use the MoE framework to improve the
diversity of grasping poses in the multi-task learning of dexterous grasping policies. Each expert
within our framework is a geometry-agnostic policy, trained on an individual object to develop a
unique grasping style and achieve broad generalization across a variety of objects.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

We consider tabletop grasping tasks using a 5-fingered ShadowHand to grasp and lift objects initially
placed on a table. The hand features 18 DoFs that control a total of 22 joints, including 4 coupled
joints. Our goal is to enable grasping any object within a large object set, denoted as ω ∈ Ω. For
each object, the task is formulated as a Partially Observable Markov Decision Process (POMDP)
Mω = ⟨O,S,A, T ,R,U⟩, representing the observation space O, the state space S, the action
space A, the transition dynamics T (st+1|st, at), the reward function R(st, at), and the observation
emission function U(ot|st), respectively. At each timestep t, the agent observes ot ∈ O and takes
an action at ∈ A, then receives a reward rt = R(st, at). The environment then transitions to the
next state st+1 ∼ T (st+1|st, at). The agent’s objective is to maximize the expected return across
all objects

∑
ω∈Ω E

[∑T−1
t=0 γtrt

]
, where T is the time limit and γ is the discount factor.

For task learning in simulation, the observation o ∈ O includes: (1) Robot proprioception J ∈ R123,
including wrist position and orientation, joint positions of the hand, fingertip states and forces on
fingertip sensors; (2) Object pose, including position bp ∈ R3 and quaternion bq ∈ R4; (3) An
object code cω ∈ R64, representing the object geometry via a pre-trained PointNet (Qi et al., 2017).
In real-world settings, while precise object pose is unavailable, we opt to use the object point cloud
p ∈ RN×3, which contains N points captured by cameras. The action a ∈ A consists of target joint
positions of the hand and the 6D force applied at the wrist. Our aim is to learn a vision-based policy
πVθ (at|Jt,pt, at−1), parameterized by θ, to maximize the expected return across all objects.

DexGraspNet (Wang et al., 2023) provides a dataset that associates each object with grasping pro-
posals. Each grasping proposal is defined as a triplet g = (R, t, q), representing the wrist’s relative
rotation R ∈ SO(3) and position t ∈ R3 to the object and the hand’s joint positions q ∈ R22 for a
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successful grasp. Following Xu et al. (2023), these data can be integrated into the reward function
to facilitate policy learning:

rt = rtaskt + αrproposalt , (1)

rproposalt = −∥g − gt∥, (2)

where rtaskt is a predefined reward for the grasping tasks. The reward term rproposalt penalizes
the distance to the grasping proposal, where α is a hyperparameter adjusting its weight and gt =
(Rt, tt, qt) represents the current relative pose of the hand to the object. The full description of the
reward functions used in our framework is provided in Appendix A.2.

3.2 THE TEACHER-STUDENT FRAMEWORK FOR UNIVERSAL DEXTEROUS GRASPING

Directly optimizing the vision-based policy using RL faces challenges due to gradient interference
(Yu et al., 2020) in multi-task RL and the high dimensionality of point cloud observations. Recent
works (Xu et al., 2023; Wan et al., 2023; Wu et al., 2024a) have adopted a teacher-student framework
in two stages to address these issues. First, a state-based policy πSϕ (at|Jt, bpt , b

q
t , c

ω, at−1) is trained
using privileged object information to master all tasks. Then, this policy is distilled into a vision-
based policy using DAgger (Ross et al., 2011), an online imitation learning method.

To address the multi-task optimization challenge in learning the state-based policy, UniDexGrasp
(Xu et al., 2023) proposed a curriculum learning approach. The RL training starts with a single
object and, after a certain number of iterations, gradually includes more objects. This process con-
tinues until all objects are included and the policy achieves a high success rate. UniDexGrasp++
(Wan et al., 2023) introduced an improved method based on generalist-specialist learning (Jia et al.,
2022). The entire object set is divided into groups through geometry-aware clustering. Numerous
specialist state-based policies are then trained and subsequently distilled into a generalist state-based
policy, with iterative training implemented through a curriculum. These methods require meticulous
curriculum design and are time-consuming, as various policies are trained across different sets of
objects. Additionally, their learned vision-based policies exhibit a significant decrease of about 7%
in success rates when tested on unseen objects, indicating limited generalization capabilities.

4 METHOD

We propose ResDex, a framework that leverages residual policy learning combined with a mixture
of experts to provide an efficient approach for universal dexterous grasping, significantly enhancing
generalization capabilities. Figure 1 illustrates an overview of our framework.

4.1 LEARNING GEOMETRY-AGNOSTIC POLICIES

To enable efficient multi-task RL using residual policy learning, it is essential to build a base policy
that can effectively explore all the involved tasks. Training a base policy directly on a single type of
object often results in overfitting, which significantly decreases its generalizability to other objects.
Conversely, training a policy on all objects using RL presents unique challenges, as different tasks
can lead to gradient interference in the learning processes, making the training highly inefficient.

We propose to build base policies that can generalize effectively across a broad range of objects.
Each base policy is trained on a single object. Multiple base policies can then be combined as a
mixture-of-experts (MoE) to facilitate efficient multi-task learning.

Empirical insights from Agarwal et al. (2023) suggest that a blind grasping policy, trained solely on
robot proprioception without specific object information, can better generalize to unseen objects. We
hypothesize that limiting observations helps the policy avoid overfitting to specific object features.
When a policy does not have complete information about object poses and geometric features, it
tends to learn more generalizable grasping strategies and rely on the proprioceptive feedback to
adjust actions. Although we cannot use a fully blind policy in our setting – as the agent must know
the object’s location to approach it – we integrate this insight by proposing a geometry-agnostic
base policy, πBψ (at|Jt, bpt , at−1), which uses only robot proprioception J and the 3D position of
the object bp.
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1. Learning Geometry-unaware Experts 2. Residual Multi-Task RL with MoE
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Figure 1: We propose ResDex, an efficient learning framework for dexterous grasping across thou-
sands of objects. The learning process consists of two stages: (1) For each representative object
from the cluster center, we train a geometry-agnostic base policy, which provides weak generaliza-
tion across a broad range of objects. (2) To develop a universal policy applicable to all objects, we
use residual multi-task reinforcement learning (RL) to train a hyper-policy, incorporating the base
policies within a mixture-of-experts (MoE) framework. ResDex demonstrates efficient training and
robust generalization to unseen objects.

The grasping proposal reward rproposal inherently leaks the object’s geometric information, as the
target relative wrist pose specifies “where to grasp on the object”. To mitigate this unwanted infor-
mation leakage and enhance generalization, we replace this term with a pose reward:

rposet = −∥q − qt∥, (3)

where qt represents the current hand joint positions. This reward encourages the hand to reach the
target joint positions, focusing on the hand pose rather than the specific region to grasp on the object.

Experimental results (Section 5.3) show that our geometry-agnostic policy, trained on a single object,
demonstrates remarkable generalizability to unseen objects and significantly outperforms policies
that incorporate full observations or those trained using the full grasping proposal reward.

4.2 RESIDUAL MULTI-TASK REINFORCEMENT LEARNING

While the base policy trained on a single object offers some degree of generalizability across various
objects, it typically achieves a low overall success rate. To address this, we introduce residual policy
learning to develop a policy that masters all objects.

The state-based residual policy, denoted as πRϕ (at|Jt, bpt , b
q
t , c

ω, at−1), is parameterized by ϕ. It
utilizes all available state-based observations to better maximize performance in solving POMDPs.

Given the pre-trained base policy πBψ , at each timestep, the base policy uses the required observations
from the complete observations to compute a base action aBt = argmaxat π

B
ψ (at|Jt, bpt , at−1).

Simultaneously, the residual policy samples a residual action aRt ∼ πRϕ (at|Jt, bpt , b
q
t , c

ω, at−1),
and these actions are combined element-wise to form the final action at = aBt + aRt .

The generalizability of the base policy reduces the need for extensive exploration by the residual
policy across diverse object geometries, making it practical to train under multi-task settings. For
objects already successfully grasped by the base policy, the residual policy refines the grasping
process, enhancing the success rate. For objects not successfully grasped by the base policy, the
residual policy can efficiently explore in the residual action space, benefiting from the significant
exploration bias provided by the base policy. We train this residual policy across the entire object set
using RL, aiming to maximize the average return across all objects. Our experiments demonstrate
that a single base policy, when aided by the residual policy, can achieve high success rates across
thousands of objects.

4.3 INCORPORATING A MIXTURE OF EXPERTS

Utilizing diverse poses to grasp different objects is not only a crucial feature for dexterous hands but
also essential for post-grasping manipulations in real-world tasks. While residual policy learning
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based on a single base policy can achieve commendable success rates, it often struggles to perform
various grasping poses for different objects. This limitation arises because the base policy typically
provides only a single grasping pose for its training object, thus posing a significant challenge for
the residual policy to explore diverse grasping poses for certain objects.

To enhance the diversity of grasping poses, we propose a mixture-of-experts (MoE) approach. In this
setup, several base policies are trained, each capable of executing distinct grasping styles, and their
actions can be combined to generate a variety of novel grasping poses. To acquire base policies that
exhibit diverse behaviors and grasping poses, we use geometry-aware clustering (Wan et al., 2023)
to divide the object set into k clusters based on object shape representations. Objects at the cluster
centers are used to train the base policies {πBψi

}ki=1, leveraging their distinct and representative
shapes to foster diversified grasping styles.

In multi-task learning, to integrate the base policies while learning residual actions, we replace the
residual policy with a hyper-policy, denoted as πHϕ

(
aRt ,λt|Jt, b

p
t , b

q
t , c

ω, at−1

)
. This hyper-policy

predicts the residual action aRt ∈ A along with a weight λt ∈ Rk for the MoE. At each timestep, all
base policies predict base actions {aBt,i}ki=1 using partial observations, and the hyper-policy samples
the weights and the residual action. The final action is computed as follows:

at = aRt +
1

∥λt∥

k∑
i=1

λt,ia
B
t,i, (4)

using a normalized weighted sum of base actions in addition to the residual action. This hyper-
policy aims at efficiently learning diverse, natural grasping poses by adjusting the MoE weights and
enhancing multi-task performance through residual learning.

4.4 METHOD SUMMARY

Here, we outline the complete pipeline for training ResDex, which consists of three phases. The
pseudocode is provided in Appendix A.1.

Training Base Policies: Using the entire training set of objects, we apply K-Means clustering
(Lloyd, 1982) on the PointNet (Qi et al., 2017) features of objects to generate k clusters. From each
cluster, we select the object closest to the center and train a geometry-agnostic base policy for each
object using RL, as detailed in Section 4.1.

Training the Hyper-Policy: We train the hyper-policy across parallel environments that span all
objects in the training set, as described in Section 4.3. During the training process, the hyper-
policy is continually updated while the base policies remain fixed. To cultivate diverse and effective
grasping poses while maximizing success rates, we employ a two-stage reward function:

• First stage: We use the reward function that includes the grasping proposal reward: r =
rtask + rproposal. This reward function guides the policy to follow the reference grasping
poses provided by the dataset, resulting in more natural and human-like grasps.

• Second stage: We remove the grasping proposal term in the reward function and elim-
inate terms that encourage approaching the object within rtask, focusing solely on terms
related to object lifting and task completion. This adjustment further enhances the policy’s
performance by removing constraints imposed by these reward terms. Further details on
the reward functions are provided in Appendix A.2.

Vision-based Distillation: To learn a vision-based policy πVθ that operates without privileged
object information, we adopt the teacher-student framework. The state-based hyper-policy serves
as the teacher, and the vision-based policy to learn acts as the student. We use DAgger (Ross
et al., 2011) to train, which involves iteratively collecting trajectories with the student policy and
supervising it using the teacher policy.
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Table 1: Success rates of state-based policies. We evaluate our method on three different random
seeds. The hyper-policy is trained with four geometry-agnostic base policies. We present the success
rates after each multi-task training stage.

Method Train(%)
Test(%)

Uns. Obj. Uns. Cat.
Seen Cat.

UniDexGrasp 79.4 74.3 70.8
UniDexGrasp++ 87.9 84.3 83.1

ResDex (stage-1) 90.6±0.6 89.7±0.8 90.9±0.1
ResDex (stage-2) 94.6±1.6 94.4±1.7 95.4±1.0

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

We evaluate the effectiveness of our method on DexGraspNet (Wang et al., 2023), a large-scale
robotic dexterous grasping dataset for thousands of everyday objects. The dataset is split into one
training set and two test sets, including one that contains unseen objects in the seen categories and
the other that contains unseen objects in unseen categories. The training set includes 3,200 object
instances, while the test sets contain a total of 241 object instances.

To train RL policies, we set up parallel simulation environments using IsaacGym (Makoviychuk
et al., 2021). For vision-based distillation, we sample 512 points on each object’s mesh to provide
point cloud observations. We compare our ResDex with state-of-the-art methods including UniDex-
Grasp (Xu et al., 2023) and UniDexGrasp++ (Wan et al., 2023).

5.2 MAIN RESULTS

We compare our method with baseline methods using the hyper-policy trained with four geometry-
agnostic base policies, which is our best-performing policy. The ablation study on the number of
base policies used to train the hyper-policy is presented in Section 5.3.

Table 1 shows that our method outperforms UniDexGrasp++ by 6.7%, 10.1%, and 12.3% on the
training and test sets respectively. Unlike previous methods, our approach shows no generalization
gap, achieving consistent success rates on both the training and test sets. This consistency indicates
that our method can provide a grasping policy that is more robust and generalizable.

During distillation, we use the hyper-policy trained with four base policies as the teacher to learn
a vision-based policy. Performance of vision-based policies are presented in Table 2. Our vision-
based policy outperforms UniDexGrasp++ by 3.4%, 8.9% and 10.5% in success rates on the three
object sets respectively, demonstrating strong generalization capabilities to unseen objects.

Table 2: Success rates of vision-based policies.

Methods Train(%)
Test(%)

Uns. Obj. Uns. Cat.
Seen Cat.

UniDexGrasp 73.7 68.6 65.1
UniDexGrasp++ 85.4 79.6 76.7

ResDex 88.8 88.5 87.2
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Cell Phone Toy Figure Bottle

Video Game Console Toilet Paper Mug

Figure 2: Generalization performance to all objects using policies with different observations
and reward, each trained on a single object. Ours: Geometry-Agnostic policy. Full Obs: Policy
trained with the complete state-based observations. Full Pose: Policy trained using the reward
function that includes the full grasping proposal reward.

5.3 ABLATION STUDY

Geometry-Agnostic Experts. We compare generalizability between geometry-agnostic policies
and policies trained with full state-based observations. We train 3 types of policies on 6 objects,
including cell phone, toy figure, bottle, video game console, toilet paper and mug, and we eval-
uate their performance on the training set, which comprises more than 3000 objects. The results
are shown in Figure 2. Our geometry-agnostic policies achieve higher success rates compared to
other policies, achieving over 70% success rates when trained on some objects, which demonstrates
remarkable generalizability. Policies with the full observations or the full grasping proposal reward
demonstrate poor generalization when trained on some specific objects.

Table 3: Ablation study on residual reinforcement learning. We assess success rates of policies
on the training set. Method indicates the number of base policies used. MoE shows the results for
hyper-policies without residual actions, while MoE+Res shows the results for policies that output
both normalized weights for MoE and residual actions.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

MoE 61.4 71.1 79.4 80.3 72.1 81.6
MoE+Res 83.2 82.8 88.1 90.6 87.6 88.7

Residual Reinforcement Learning. To demonstrate the multi-task learning ability provided by
residual reinforcement learning, we implement an ablation method that combines base policies us-
ing a hyper-policy which only outputs the weights without residual actions. We evaluate the perfor-
mance on the training set. The results, as shown in Table 3, demonstrate that for different number
of base policies, the method with residual learning can notably boost the performance.

Mixture-of-Experts. We further demonstrate that a mixture of base policies can generate better
grasping poses. We assess the quality of the grasping poses executed by our policies by computing
D = −

∑T
t=1 r

proposal
t . The term rproposalt is a negative reward that punishes the difference between

the current grasping pose and the grasping proposal (R, t, q). Therefore, the higher the value of D,
the less natural the grasping poses executed by the policy. The results, as shown in Table 4, reveal
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k = 1 k = 2 k = 3 k = 4

Figure 3: Grasping poses achieved by hyper-policies trained with various numbers of base
policies. Each row displays grasping poses for a kettle, tape measure, mug, and headphone, respec-
tively. Columns show hyper-policies trained with 1, 2, 3, and 4 base policies, arranged from left to
right.

that for the hyper-policies trained over two stages, although their success rates are very close, those
with more base policies generally display better grasping poses.

Table 4: Quality of grasping poses achieved by different policies. We evaluate the D values of
ResDex policies with various k on the test set of unseen objects in unseen categories. The lower D
means the better grasping poses achieved.

Methods k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

D ↓ 223.6 174.5 194.3 176.3 204.6 176.1

Moreover, Figure 3 illustrates the various grasping poses executed by our policies with different
numbers of base policies on randomly selected objects (kettle, tape measure, mug and headphones).
We observe that ResDex trained with more base policies tends to learn grasping strategies that are
more appropriate and natural.

The Number of Base Policies. We investigate how k, the number of base policies used to train
the hyper-policy, affects the performance. Table 5 shows that ResDex with k > 2 consistently
outperforms all the baselines according to Table 1. Furthermore, we notice that there is a gap in
success rates between the configurations of k ≤ 2 and k > 2. This indicates that using a mixture
of base policies enables the hyper-policy to better align with the guidance provided by the grasping
proposal reward. Table 6 demonstrates that the second training stage significantly boosts the success
rates of our policy regardless of the value of k, highlighting the stability of our method.
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Table 5: Success rates of state-based policies after the first training stage. We evaluate our
method on three different random seeds. k denotes the number of geometry-agnostic base policies
used to train the hyper-policy.

Method Train(%)
Test(%)

Uns. Obj. Uns. Cat.
Seen Cat.

ResDex (k = 1) 83.2± 1.5 82.8±1.0 85.1±0.9
ResDex (k = 2) 82.8± 3.9 82.6±3.2 85.0±3.3
ResDex (k = 3) 88.1± 1.2 88.2±0.4 89.3±1.0
ResDex (k = 4) 90.6±0.6 89.7±0.8 90.9±0.1
ResDex (k = 5) 87.6± 0.5 87.3±0.8 88.1±0.2
ResDex (k = 6) 88.7± 0.6 87.8±0.5 88.8±1.1

Table 6: Success rates of state-based policies after the second training stage. We evaluate our
method on three different random seeds. k denotes the number of geometry-agnostic base policies
used to train the hyper-policy.

Method Train(%)
Test(%)

Uns. Obj. Uns. Cat.
Seen Cat.

ResDex (k = 1) 94.3±1.6 93.8±1.8 94.5±1.3
ResDex (k = 2) 94.5±0.9 94.3±1.1 95.2±1.0
ResDex (k = 3) 94.1±0.9 93.9±0.9 94.4±1.2
ResDex (k = 4) 94.6±1.6 94.4±1.7 95.4±1.0
ResDex (k = 5) 94.2±0.5 93.7±0.9 94.2±0.6
ResDex (k = 6) 93.9±1.3 93.6±1.6 94.5±1.1

6 CONCLUSION AND LIMITATIONS

We propose ResDex for universal dexterous grasping, a framework that effectively addresses the
challenges of training efficiency and generalization that are prevalent in existing methods. Our
technical contributions include a residual policy learning framework designed for efficient multi-task
reinforcement learning in dexterous grasping, a method to train geometry-agnostic base policies that
enhances generalization and facilitates exploration across multiple tasks, and an MoE framework
that enriches the diversity of the learned grasping poses. We demonstrate the superior performance
of ResDex compared to existing methods on the large-scale object dataset DexGraspNet, notably
achieving a zero generalization gap to unseen objects. The framework also showcases promising
simplicity and training efficiency, marking a significant step towards scaling up dexterous learning.

The limitations of our work include: (1) Although we incorporate a grasping proposal reward to
refine grasping poses, we have not yet considered the task as functional grasping. Future work could
extend our approach to functional grasping tasks to further enhance general robotic manipulation in
real-world settings. (2) We have not deployed the vision-based policy on hardware. Future efforts
should focus on this aspect and overcome the sim-to-real gap.

The failure cases of our method arise with objects of specific sizes and shapes. For example, some
large objects may unexpectedly collide with the dexterous hand upon initialization in the simulator,
leading to failures. Similarly, extremely small or thin objects, such as scissors and knives, pose chal-
lenges under the tabletop grasping setting. Additionally, the policy sometimes generates unstable
grasps that result in objects falling off the table before reaching the goal position. However, the
policy’s closed-loop nature allows itself to adapt to such cases by performing regrasping.
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A IMPLEMENTATION DETAILS

A.1 ALGORITHM SUMMARY

Algorithm 1 The Training Pipeline of ResDex

Input: Dataset D of objects and grasping proposals; Number of clusters k.

Preprocess:
Apply K-means to divide objects ω ∈ D into k clusters C1, C2, . . . , Ck based on PointNet fea-
tures.
for each cluster Ci, i = 1, 2, . . . , k do

Find the object ωi that is closest to the center of Ci.
end for

Training Base Policies:
for i = 1, . . . , k do

Train base policy πBψi
on ωi, maximizing reward r = rpose + rtask.

end for

Multi-Task Residual RL:
Train hyper-policy πHϕ with frozen base policies {πBψi

}ki=1 on all objects.
Training stage 1: maximize r = rtask + rproposal.
Training stage 2: maximize r = rtask − rreach.

Vision-based Distillation:
Train the vision-based policy πVθ on all objects using DAgger, with frozen πHϕ .

A.2 SIMULATION SETUP

We conduct all our experiments in IsaacGym (Makoviychuk et al., 2021), a GPU-accelerated plat-
form for physics simulation and reinforcement learning. Each environment features a table that is
60 cm tall, with an object initialized 10 cm above the tabletop, which then falls onto it. The shadow
hand is initialized 20 cm above the desktop. The task is to grasp the object and lift its center to 20
cm above the center of the tabletop.

The dataset is split into one training set and two test sets. The training set contains 3,200 object
instances. The test sets include 141 instances of unseen objects within seen categories from the
training set and 100 instances of unseen objects in unseen categories. For state-based policies, we
use PPO (Schulman et al., 2017) for training. For vision-based policies, we distill the state-based
expert policy into a vision-based policy using DAgger (Ross et al., 2011). Each geometry-agnostic
policy is trained with 4,096 environments in parallel for 5,000 iterations. The hyper policy is trained
with 11,000 environments in parallel for 20,000 iterations for every training stage. The vision-based
policy is trained with 11,000 environments in parallel for 8000 iterations.

Reward Function for Base Policy We use a modified goal-conditioned reward function to train
geometry-agnostic base policies. The reward function is defined as:

r = rpose + rtask

Xjoint denotes the joint positions. The rpose is defined as follows:
rpose = −0.05 ∗ ∥q −Xjoint∥1

rtask is defined as follows:
rtask = rreach + rlift + rmove + rbonus

The rreach encourages the hand to reach the object, as it penalizes the distance between the object
and different parts of the hand. Here, Xobj and Xhand denote the position of the object and the
hand, and Xfinger denotes positions of all the fingers. The rreach is defined as follows:

rreach = −1.0 ∗ ∥Xobj −Xhand∥2 − 0.5 ∗
∑

∥Xobj −Xfinger∥2
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The rlift encourages the hand to lift the object. It gives a positive reward when this condition can be
satisfied: f1 = 1 (

∑
∥Xobj −Xfinger∥2 ≤ 0.6) + 1 (∥Xobj −Xhand∥2 ≤ 0.12). az is the scaled

force applied to the hand root along the z-axis. The rlift is defined as follows:

rlift =

{
0.1 + 0.1 ∗ az if f1 = 2

0 otherwise

The rmove encourages the hand to move the object to the target position. Xtarget de-
notes the target position. It gives a positive reward when this condition is satisfied: f2 =
1 (

∑
∥Xobj −Xfinger∥2 ≤ 0.6) + 1 (∥Xobj −Xhand∥2 ≤ 0.12) + 1 (∥q −Xjoint∥1 ≤ 6). The

rmove is defined as follows:

rmove =

{
0.9− 2∥Xobj −Xtarget∥2 if f2 = 3

0 otherwise

The rbonus gives an extra reward when the object is close to the target position. We denote ∥Xobj −
Xtarget∥2 as dobj . The rbonus is defined as follows:

rbonus =

{
1

1+10∗dobj if dobj ≤ 0.05

0 otherwise

Reward Function for Hyper Policy At the first training stage for a hyper policy, we use the goal-
conditioned reward function exactly the same as the one proposed in UniDexGrasp(Xu et al., 2023).

At the second training stage for a hyper policy, we use a loosened reward function defined as follows:

r = rlift + rmove + rbonus

The definitions of rlift and rbonus are the same as those mentioned above. The rmove has loosened
its condition. It is defined as follows:

rmove =

{
0.9− 2∥Xobj −Xtarget∥2 if f1 = 2

0 otherwise

A.3 TRAINING DETAILS

Network Architecture We use a MLP architecture which consists of 4 layers (1024, 1024, 512,
512) for base policies and the hyper policy. For the vision-based policy, we use a simplified PointNet
(Qi et al., 2017) encoder to represent the object point cloud and apply MLPs with the same hidden
layer sizes for the actor and the critic. We use ELU (Clevert, 2015) as the activation function.

Training Device and Training Time All the state-based policies are trained on on a single NVIDIA
RTX 4090 GPU. Training a base policy takes about 20 minutes, while training a hyper-policy takes
about 11 hours. For the vision-based policy, we train on a single A800 GPU, taking about 16 hours.

Analysis of Training Efficiency To demonstrate the training efficiency of our method compared
with UniDexGrasp and UniDexGrasp++, we provide a comparative analysis based on the number
of training rounds, as detailed in their papers. UniDexGrasp implements a progressive training
strategy — starting with a single object, expanding to several objects within the same category,
and finally covering the full training set — requiring three multi-task training stages in practice.
UniDexGrasp++ is more complex, involving the training of 20 multi-task policies along with several
distillation stages. In contrast, our method only necessitates the training of a single multi-task policy
in one trial, using between one to six low-cost, single-task base policies. Our approach is not only
simpler but also efficient. As demonstrated in our experiments, our method achieves high success
rates even with just one base policy. Table 7 compares the training efficiency of different methods
in terms of the number of training rounds.

The hyperparameters of PPO and DAgger are described in Table 8 and Table 9.
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Table 7: Comparison of the number of training rounds required by different methods.

Method Rounds for Single-Object
Training (< 20 minutes)

Rounds for Multi-Task
Training (1 ∼ 10 hours)

UniDexGrasp 0 ≥ 3
UniDexGrasp++ 0 ≥ 20

ResDex 1 ∼ 6 1

Table 8: Hyperparameters of PPO.

Name Symbol Value

Episode length -- 200
Num. envs (base policy) -- 4096

Num. envs (hyper-policy) -- 11000
Parallel rollout steps per iteration -- 8

Training epochs per iteration -- 5
Num. minibatches per epoch -- 4

Optimizer -- Adam
Clip gradient norm -- 1.0

Initial noise std. -- 0.8
Clip observations -- 5.0

Clip actions -- 1.0
Learning rate η 3e-4

Discount factor γ 0.96
GAE lambda λ 0.95

Clip range ϵ 0.2

Table 9: Hyperparameters of DAgger.

Name Symbol Value

Episode length -- 200
Num. envs -- 11000

Parallel rollout steps per iteration -- 1
Training epochs per iteration -- 5
Num. minibatches per epoch -- 4

Optimizer -- Adam
Clip observations -- 5.0

Clip actions -- 1.0
Learning rate η 3e-4

Clip range ϵ 0.2
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B ADDITIONAL RESULTS

B.1 RESULTS ON YCB DATASET

To further demonstrate the generalizability of our method, we test the learned policy on the YCB
Dataset (Calli et al., 2017), which comproses 75 objects. We evaluate our vision-based policy,
trained on DexGraspNet, in a zero-shot manner. It achieves a success rate of 65.55%, which under-
scores the strong generalizability of our policy to unseen datasets. It is important to note that 30% of
YCB objects are very flat and thin, which significantly challenges tabletop grasping. Additionally,
because the models of YCB objects are scanned from real-world objects, they often feature irregular,
non-convex shapes. This leads to differences between visual observations and collision meshes in
IsaacGym, increasing the difficulty for the grasping policy, which relies on visual point clouds but
interacts with mismatched physical shapes.

B.2 RESULTS ON LEAP HAND

We additionally evaluate ResDex on the low-cost LEAP Hand, which is more accessible in labora-
tories. We implement a simulation setup for the LEAP Hand attached to a 6-DoF robot arm that is
fixed on a table. The action space includes PD control targets for both the hand joints and the six
arm joints. This setup enhances the practicability for sim-to-real deployment.

We train ResDex without modifying any hyperparameters and achieved an average success rate of
60.71% on the 3.2K objects in DexGraspNet. Several factors affect the LEAP Hand’s performance,
which is lower than that of the ShadowHand: (1) LEAP Hand is significantly larger and has thicker
fingertips, posing challenges for grasping small objects in DexGraspNet; (2) LEAP Hand policies are
trained without the grasping proposal reward due to the absence of corresponding data; (3) LEAP
Hand has fewer degrees of freedom compared to ShadowHand, which can limit its capabilities;
(4) The attachment to a robot arm reduces the effective workspace and alters the mechanism for
controlling wrist pose, potentially affecting training performance.

Figure 4 visualizes the setup for the simulation and the learned grasping poses of the LEAP Hand.

Fooditem Tank Bottle Marker

Figure 4: The learned grasping behaviors of the LEAP Hand for different objects. Using the
low-cost LEAP Hand attached to a robot arm, this configuration offers greater accessibility for sim-
to-real deployment.

B.3 DIVERSITY OF THE LEARNED MOE WEIGHTS

We demonstrate that the diversity of the learned λ correlates with the diversity of grasping styles, as
evidenced by Table 4. To further investigate the diversity of the normalized weights λ produced by
the hyper-policy, we calculate the sum of each dimension, which corresponds to each base policy,
throughout the evaluation process across the entire object set. The results are presented in Figure 5.

When k = 4 and k = 6, the hyper-policy can utilize different base policies. In contrast, it almost
exclusively selects one base policy when k = 5. The result is consistent with the result in Table 4,
which shows that the quality of grasping is relatively low for k = 5 compared to k = 4 and k = 6.
Since our reward functions have no limit on the diversity of λ, there could be many reasons for these
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(a) k = 4 (b) k = 5 (c) k = 6

Figure 5: Diversity of the learned λ. k denotes the number of geometry-agnostic base policies
used to train the hyper-policy. Each number on the x-axis corresponds to a specific base policy. The
height of each bar indicates the sum of weights for the corresponding base policy, with the largest
sum normalized to 1 and other bars adjusted proportionally.

results. We suggest that explicitly diversifying λ during the training process might lead to polices
that exhibit more natural grasping styles.

Furthermore, we demonstrate the variation of λ along the executed trajectories for different objects.
As shown in Figure 6, λ varies at different timesteps and the variation of λ follows distinct patterns
for different objects, which indicates that the hyper-policy leverages actions from different base
polices to grasp different objects. Instead of collapsing to one-hot vectors or constant vectors, λ
exhibits diversity both across different objects and different timesteps within a grasping trajectory.

(a) DrinkingUtensil (b) Mug (c) Pistol

Figure 6: The learned λ for different objects on their executed trajectories. The figures show the
variation of λ through grasping trajectories for different objects (drinking utensil, mug, and pistol)
when k = 6. Weights for each base policy are plotted using a distinct color.
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