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ABSTRACT

Spiking neural networks (SNNs) have received increasing attention due to its high
biological plausibility and energy efficiency. The binary spike-based information
propagation enables efficient sparse computation with event-based computer vi-
sion applications. Prior works investigated direct SNN training algorithm to over-
come the non-differentiability of spike generation. However, most of the exist-
ing works employ a fixed threshold value for the membrane potential throughout
the entire training process, which limits the dynamics of SNNs towards further
optimizing the performance. The adaptiveness in the membrane potential thresh-
old and the mismatched mechanism between SNN and biological nervous sys-
tem remain under-explored in prior works. In this work, we propose LT-SNN,
a novel SNN training algorithm with self-adaptive learnable potential threshold
to improve SNN performance. LT-SNN optimizes the layer-wise threshold value
throughout SNN training, imitating the self-adaptiveness of the biological nervous
system. To stabilize the SNN training even further, we propose separate surrogate
gradient path (SGP), a simple-yet-effective method that enables the smooth learn-
ing process of SNN training. We validate the proposed LT-SNN algorithm on
multiple event-based datasets, including both image classification and object de-
tection tasks. Equipped with high adaptiveness that fully captures the dynamics of
SNNs, LT-SNN achieves state-of-the-art performance with compact models. The
proposed LT-SNN based classification network surpasses SOTA methods where
we achieved 2.71% higher accuracy together with 10.48 x smaller model size. Ad-
ditionally, our LT-SNN-YOLOV2 object detection model demonstrates 0.11 mAP
improvement compared to the SOTA SNN-based object detection.

1 INTRODUCTION

In the biological nervous system, cortical neurons process information by encoding spatial-temporal
inputs into action potentials for spike generation. Inspired by that, spiking neural networks (SNNs)
accumulate the membrane potential by extracting information from the input features at each time
step, and the resultant binary spikes (0 and 1) provides a sparse and succinct information repre-
sentation. Such spatial-temporal computation promotes SNN as an attractive Al solution with both
biological plausibility and energy efficiency in comparison to the conventional artificial neural net-
works (ANNs) (He et al., 2016). Furthermore, layer-wise processing with binary spikes elevates the
computation efficiency, which benefits the energy-constrained applications such as edge computing.

Under the context of energy-efficient Al applications, the event-based camera or dynamic vision
sensors (DVS) have emerged as an attractive and feasible solution for computer vision applications.
Compared to the conventional frame-based camera, event cameras independently capture the abso-
lute illumination changes of pixels, resulting in the asynchronous binary stream of events (Gallego
et al., 2020). The captured event is characterized by binary pixels and temporal resolutions, lead-
ing to highly sparse and energy-efficient visual representations. Such binarized spatial-temporal
information naturally fits the computation mechanism of SNNs, bridging the gap between computer
vision and neuromorphic computing.
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Figure 1: DVS-CIFARIO classification accuracy of different SNN training methods. The proposed
LT-SNN training algorithm achieves the state-of-art accuracy with the compact VGG models.

One of the major bottlenecks of SNN training is the non-differentiability of the spike generation.
The infinite gradient of the step function impedes the gradient propagation during backward pass
in training. Early research works relied on the ANN-to-SNN conversion (Diehl et al., 2015; Han
et al., 2020) to obtain trained SNN models. However, additional training is required and sufficiently
high accuracy was not achievable. To that end, various direct training methods have been proposed
to obtain a SNN model with one-time training. Empowered by various surrogate gradient (SG)
functions (Lee et al., 2016; Wu et al., 2019; Deng et al., 2021), the inaccessible gradient of the spike
function is approximated and propagated during learning. However, the inaccurate approximation
and heuristic SG selection hurts the training stability with deep models (e.g., ResNet (He et al.,
2016)), which further motivated the temporal normalization method (Zheng et al., 2021) and output
regularization techniques (Guo et al., 2022; Deng et al., 2021) to smooth the loss.

As the major inspiration of deep learning, the intricate nervous system achieves remarkable per-
formance with a high degree of dynamics. Previous neuroscience works observed the location-
dependent potential threshold (Kole & Stuart, 2008) in nervous systems, implying the adaptive fir-
ing procedure within the mechanism of spike generation. Inspired by this, some recent works on
SNN training introduced the learning dynamics into the training process, albeit to a limited degree.
(Fang et al., 2021b) optimized the membrane time constant throughout training, with the require-
ments of large-sized models. DSR (Meng et al., 2022) proposed the threshold-associated spikes
with learnable potential threshold. However, the deterministic ratio between firing range and po-
tential threhsold of DSR limits the adaptiveness of SNN learning. (Sun et al., 2022) removes such
constraints by directly passing the gradient of potential threshold through the SG function. Neverthe-
less, the instability of the straight-through surrogate gradient still results in sub-optimal performance
compared to state-of-the-art (SOTA) SNN training with fixed threshold (Deng et al., 2021). Although
(Deng et al., 2021) achieved the SoTA performance among prior works, the fixed threshold made
the membrane potential to often overshoot, limiting the dynamics of SNNs. The limitations of all
prior works motivate us to investigate the following question: How can we optimize the potential
threshold of SNNs with high stability and superior accuracy?

To answer this question, we propose LT-SNN, a novel self-adaptive SNN training algorithm with
Learnable Threshold. Starting the training from scratch, LT-SNN fully optimizes the potential
threshold without introducing any additional scaling or firing constraints. To achieve highly-stable
training, we propose a simple-yet-effective technique, namely Separate Gradient Path (SGP). Com-
pared to prior works, the proposed LT-SNN algorithm fully unleashes the advantage of layer-wise
adaptive potential threshold, leading to superior performance compared to all prior SNN algorithms.
We validate LT-SNN on multiple event-based computer vision datasets with various model architec-
tures. LT-SNN achieves the new state-of-the-art performance with light-weight or quantized models,
as shown in Figure 1.
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2 RELATED WORK

ANN-to-SNN conversion Given the non-differentiability of SNN training, early research works
converted high-performance non-spiking ANN model into a spiking version (Diehl et al., 2015;
Rueckauer et al., 2016). The major drawbacks of the conversion-based method is high computation
latency (high number of time-steps) and the additional efforts for the overall training. Several meth-
ods have been proposed to improve the latency of the converted model (Han et al., 2020), but still
did not reach the high accuracy of direct SNN training methods.

Direct SNN training The expensive training effort and high latency of the conversion-based
schemes promotes the direct SNN training to be an attractive solution. BNTT (Neftci et al., 2019)
treats the spatial-temporal computation of SNN as a special version of a recurrent neural net-
work (RNN). The gradient of the spiking process is estimated by surrogate gradient (SG) functions in
backpropagation. Driven by accuracy and different model architectures, various SG functions have
been proposed, including but not limited to rectangle function (Wu et al., 2019), arctangent (Fang
et al., 2021b;a), or triangle functions (Deng et al., 2021). However, the difference between the ap-
proximated gradient and the exact gradient largely limits the training stability of SNN, especially for
the large-sized models. Motivated by that, tdBN (Zheng et al., 2021) introduces the batch-temporal
normalization for deep SNN training, and SEW-ResNet (Fang et al., 2021a) directly passes the gra-
dient via designed residual architecture. In addition to the architecture design, various regularization
techniques were presented to stabilize SNN training by rectification of the membrane potential dis-
tribution (Guo et al., 2022) and backpropagation with spatio-temporal adjustment (Shen et al., 2022).

Biological dynamics in SNN The biology-inspired SNN training methods are also highlighted in
recent research works. (Fang et al., 2021b) introduces the learnable time constant for direct SNN
training, but the employed large-sized SNN model and extensive training efforts are computation-
ally expensive. Recently proposed DSR (Meng et al., 2022) optimizes the potential threshold during
training by multiplying the binary output spike with the threshold value, where the relationship
between the firing range and threshold value is constrained by a deterministic ratio. However, op-
timizing the potential threshold value with such additional constraints limits the learnability of the
SNN model. Furthermore, the threshold-dependent binary spikes require layer-wise scaling opera-
tion, which deteriorates the hardware compatibility with expansive high-precision multiplication.

3  BASICS OF SPIKING NEURAL NETWORKS

Inspired by the biological nervous system, spiking neural networks process the spatial-temporal
information throughout layers. Mathematically, the widely-adopted Leaky Integrate-and-Fire (LIF)
model characterizes the membrane potential accumulation with the following ordinary differential
equation (ODE):
du(t)
dt

where u(t) represents the membrane potential at time ¢, V,..s¢: is the reset potential after the spike
operation, and I; is the synapse current at time t and 7 is the time constant. The ODE in Eq. 1 can
be resolved as:

= —(u(t) = Ureser) + 1(2), (D

dt dt
U1 = (1 — —)ug—1 + —1, )
T T

where [ is the pre-synaptic “current”, characterized by the layer-wise output features of SNN model.
Given the iteratively accumulated membrane potential, the binary spikes are generated by the step
function:

1 ifug > Vi,

Sy = 0(uy — Vin) = {0 otherwise

3)

Where 6 represents the Heaviside step function, and V;, represents the membrane potential threshold
for spiking neurons. In the forward pass of SNN, the binary post-synaptic spikes are generated when
the membrane potential exceeds the potential threshold V.
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Figure 2: Validation accuracy and potential threshold of direct training SNN on DVS-CIFAR10
dataset with (a) STSG and (b) the proposed separate gradient path (SGP) for LT-SNN.

As demonstrated by spatial-temporal backpropagation (STBP) (Wu et al., 2019), the backward prop-
agation of SNN is characterized as:
oL  OL 0Sy Ouy 014
ow 9S8, Ou; 01, OW
As mentioned earlier, the non-differentiable spike function ¢ impedes the gradient computation of

0S¢ /Ous. The directly-trained SNN incorporates the surrogate gradient function to approximate the
intangible Dirac function. In this work, we choose triangle function for gradient approximation:

08,
87t = 0'(us — Vi) = max(0, 1 — |u; — Vinl) ©)
Ut

4)

4 CHALLENGES OF LEARNING THE THRESHOLD OF MEMBRANE POTENTIAL

As described in Eq. 5, the non-differentiability between the output spike S and the membrane po-
tential u can be alleviated by the surrogate gradient approximation. Mathematically, the gradient of
the potential threshold can be approximated with a similar gradient surrogation:

oL oL 0S; oL

_ oL __ 9k
Wn 08, 0V 08,0 (W~ Vin) ©

The straight-through approximation in Eq. 6 is built upon the following hypothesis:

Hypothesis 1: The surrogate gradient of g—i’: and (?VS.:’ is transferrable, and the identical gradient

surrogation is suitable for separate loss landscape with respect to uy and Vyy,.

In this work, we falsify Hypothesis 1 by empirically demonstrating the learning instability caused
by the straight-through surrogate gradient (STSG). Figure 2(a) depicts the validation accuracy and
the layer-wise averaged potential threshold of the VGG-9 model which is trained from scratch with
STSG. The drastic change in potential threshold and exploding validation accuracy represents the
incompatibility of the STSG learning scheme. In summary, we have the following observation:

Observation 1: The gradient approximation with respect to membrane potential and potential
threshold is not interchangeable.

Different from the STSG scheme, the recent DSR (Meng et al., 2022) scheme computes the gradient
of potential threshold with the following threshold-associate firing procedure:

St = ‘/th X H(Ut — O“/th) (7)

Where the fixed parameter o € [0, 1] controls the threshold with respect to the firing range [0, V;3].
In other words, regardless of the threshold value, the membrane potential has to be a deterministic
portion of the total firing range. However, such constraints in the training process largely limits
the learnability of SNN. Based on the open-sourced implementation of DSR (Meng et al., 2022),
we unleash the optimization constraints of the potential threshold by setting & = 1.0. Please note
that, keeping the threshold and spike as identical values is commonly adopted in prior works (Deng
et al., 2021). As shown in Table 1, the freely-learned potential threshold (o« = 1.0) exhibits large
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Table 1: The performance of DSR (Meng et al., 2022) is largely impacted by the value of a. The
proposed LT-SNN outperforms DSR with 2.45% higher accuracy on DVS-CIFAR10 dataset.

Method Model Accuracy (%) «  True Binary Spike
DSR (Meng et al., 2022) VGG-11 77.19 0.3 X
DSR (Meng et al., 2022) VGG-11 75.29 1.0 X
This work VGG-9 80.04 - v

accuracy degradation compared to the constrained leanring (o« = 0.3), which implies the sub-optimal
performance of the DSR (Meng et al., 2022) when the potential threshold is unconstrained.

On the other hand, associating the threshold value with the neuron output disables the true binary
spikes (0 and 1) of SNN. Specifically, the output generated by Eq. 7 becomes (0, V;;,) instead of
a pure binary value (0,1). In the context of hardware computation, layer-wise varied spikes are
equivalent to the layer-wise scaling on top of the true binary output, which often requires high-
precision multipliers (Jacob et al., 2018) to maintain the accuracy. Unlike the conventional ANN
with one-time scaling operation, the temporal computation of SNN requires step-wise high-precision
multiplication, which could lead to increased energy and hardware resource consumption. The
instability of STSG and the imperfections of DSR (Meng et al., 2022) motivate us to investigate the
following question:

Question 1: How can we maximize the performance of SNN with the freely-optimized potential
threshold, while maintaining the training stability and hardware compatibility?

5 PROPOSED METHOD

To answer the question above, we propose LT-SNN, a novel SNN training algorithm that successfully
resolves the contradiction between threshold optimization, training stability, and hardware compati-
bility. LT-SNN optimizes the layer-wise potential threshold during training, maximizing the training
performance of SNNs without introducing any learning constraints. In the meantime, LT-SNN em-
braces the advantages of the adaptive potential threshold while maintaining the true binary spikes,
bridging the research gap between biological inspiration and practical Al applications.

5.1 SEPARATE GRADIENT PATH

As summarized in Observation 1, the incompatibility of STSG implies the distinct loss landscape
with respect to the gradient descent of the membrane potential and potential threshold. Motivated
by that, we propose Separate Gradient Path (SGP), which treats the gradient computation of u;
and V};, with dedicated gradient approximations. Specifically, SGP trains SNNs by introducing
the Gradient Penalty Window (GPW), a simple-yet-effective method that optimizes the potential
threshold without losing training stability. On top of the gradient approximation in Eq. 5, GPW is
characterized as a non-linear function o (-), which reshapes the surrogate gradient of the layer-wise
potential threshold V;;. Mathematically, the GPW-aided separate gradient path is characterized as:

a5,
5 = 0'(ur = Vi) = max(0, 1 — fuy = Vi) )
Ut
0S5, ,
avh =0 (Ut — ‘/th,)O'(U‘t - ‘/th) = - max((), 1- |ut - ‘/HLDU(IU% - ‘/th/) (9)
t
In this work, we choose the Sigmoid function as the gradient penalty window for potential threshold:
1
o(uy — Vi) = (10

1+ e (ue—Vin)
The choice of Sigmoid function is empirical as it produces the best results among different surrogate
functions. Performance comparison of different surrogate functions with LT-SNN is presented in
Appendix C, Table 11. For gradient computation of V;;, we accumulate the gradient computed in
Eq. 9 to avoid the dimensionality mismatch:

oL 0L 08, oL
A L )

OV = 95,0V 05,

(L{ue = Vin} x 0’ (ue — Vin)o(ug — Vin)) - (11)
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Figure 3: Implementation flow of LT-SNN.

Table 2: Training results of VGG-9 model on DVS-CIFAR10 dataset with different SG schemes.

Method Learnable Thre.  SG Func.  Top-1 Accuracy (%)
Fixed threshold Train. X Triangle 78.02
Penalty for all v GPW for all 76.40
This work v SGP 80.04

Since the unfired neurons have no contribution to the final loss, the indicator function 1{u; > V;,}
only keeps the gradient with respect to the active neurons in the forward pass.

We empirically prove the superiority of the proposed SGP algorithm based on different surrogate
gradient scenarios. Table 2 summarizes the performance of the directly trained VGG9-SNN on the
DVS-CIFARI10 dataset with different gradient computation paths. On top of that, we compare the
performance of SGP with non-unified learning rate based LT-SNN training. Table 8 in Appendix C
demonstrates the superiority of SGP over non-unified learning rate for LT-SNN. As shown in Ta-
ble 2, penalizing all the surrogate gradient with GPW leads to sub-optimal performance. On the
contrary, the proposed SGP algorithm achieves the best performance with distinct gradient compu-
tations. SGP exploits the optimal layer-wise potential threshold with the stabilized training process
and fast convergence. Empowered by the proposed SGP scheme, LT-SNN achieves >80% valida-
tion accuracy within 50 training epochs, as depicted in Figure 2(b). Compared to the SOTA SNN
training with fixed threshold (Deng et al., 2021), SGP embraces the advantage of the adaptive poten-
tial threshold learning and achieves superior accuracy. Furthermore, SGP preserves the true binary
spikes (0 and 1) in the resultant model, maximizing the hardware compatibility without introduc-
ing any high-precision scaling for spike generation (Meng et al., 2022). The complete flow of the
proposed SGP with GPW and output regularization is illustrated in Figure 3.
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gradient gradient of the membrane potential u;.
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5.2 SELF-ADAPTIVE SNN LEARNING

The proposed SGP algorithm improves the performance of SNN with the unconstrained optimiza-
tion of the potential threshold. However, the rationale behind the adaptiveness-induced optimal
performance remains unclear, which motivates us to investigate the following question:

Question 2: Why the adaptive potential threshold optimizes the performance of SNN model?

As shown in Eq. 5, the gradient with respect to the membrane potential u; is approximated based on
the surrogate function #’, which is characterized by the non-linearity of the function and the shifting
induced by the threshold V};. With the proposed LT-SNN scheme, the adaptive potential threshold
leads to the distinct surrogate gradient for membrane potential u; of each layer, as shown in Figure 4.
Compared to SNN training with fixed potential threshold, LT-SNN adjusts the layer-wise gradient
information with the adaptive potential threshold.

5.3 TEMPORAL AVERAGED L0OSS FUNCTION AND OUTPUT REGULARIZATION

We also adopt and customize the temporal efficient training (TET) loss function for output regular-
ization (Deng et al., 2021) to further improve the performance. We adopt the MSE regularization
loss from TET to improve the layer-wise spiking activity. On top of that, We have used the aver-
age learnable potential threshold of all the layers to compute the MSE loss between output spikes
and Vy;. The output of the LT-SNN will be regularized towards the averaged layer-wise potential
threshold €2:

T T
1 1
L=p= L 1-08)= MSE Q 12
BT ;:1 ce(0(t),y)+(1 - B)% ;:1 SE(O(t), ) (12)
TET Loss MSE regularizer
1 4
_ l
Where Q= 7 lg_l Vin (13)

Lcg is the cross-entropy loss between the predicted and target class, MSE is the mean square
difference between the network output and the regularization target 2, O(t) represents the output
spikes at the final layer, and 7" represents the simulation time steps of the input sample. While 3 and
Q) are the weights of the moving average and target value of regularization, respectively. We choose
) as the mean learnable threshold of the forward pass to regularize the output based on the layer-
wise learnable threshold, where £ represents the total number of layers in our SNN architecture.

6 EXPERIMENTAL RESULTS

In this section, we validate the proposed LT-SNN algorithm with multiple event-based com-
puter vision datasets, including DVS-CIFAR10 (Li et al., 2017), N-Cars (Sironi et al., 2018), N-
Caltech101 (Orchard et al., 2015) and Prophesee Automotive Genl (de Tournemire et al., 2020).
Unlike prior works that only employ large-sized VGG or ResNet models (>11M parameters), the
proposed algorithm is validated on compact VGG models (2.4-7.1M parameters) and light-weight
MobileNet-V1 model (1.5M parameters) (Howard et al., 2017). As mentioned earlier, our objective
is to achieve maximum SNN accuracy with the least model parameters. Table 3 summarizes the
architectures of the experimented models.

Table 3: Convolutional SNN model architectures for LT-SNN training. “C3”, “DW”, “MP2” , “AP2”
and “FC” represent 33 convolution layer, depth-wise separable block (Howard et al., 2017), 2x2
max-pooling, 2x?2 average-pooling, and fully connected layer, respectively.

Model Architecture

MobileNet-Light 32C3-64DW-64DW-AP2-128DW-128DW-AP2-256 DW-AP2-FC256-FC10
VGG-7 32C3-32C3-AP2-64C3-64C3-AP2-128C3-128C3-AP2-256C3-256C3-AP2-FC256-FC10
VGG-9 32C3-64C3-64C3-AP2-128C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-FC512-FC10

32C3-MP2-64C3-MP2-128C3-64C1-128C3-MP2-256C3-128C1-256C3-MP2-

Yolo-v2 512C3-256C1-512C3-256C1-MP2-1024C3-512C1-1024C3-AP2-FC512-FC576
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Table 4: Experimental results of the proposed LT-SNN on DVS-CIFAR10 and CIFAR-10 datasets.
Except “VGG-9 (4-bit)”, 32-bit precision is used for all results of prior works and this work.

Dataset Method Architecture Parameters Slgulatlon Accuracy(%)
ength
ASF-BP (Wu et al., 2021) VGG-Like 15.2M 50 62.50
tdBN (Zheng et al., 2021) ResNet-19 11.18M 10 67.80
ParamLIF (Fang et al., 2021b) VGG-Like 17.4M 20 74.30
RecDis (Guo et al., 2022) ResNet-19 11.18M 10 72.42
TET (Deng et al., 2021) VGG-Like 9.27M 10 77.33
DVS-CIFAR-10 DSR (Meng et al., 2022) VGG-11 9.34M 30 75.70
This work VGG-11 9.34M 30 79.51
This work MobileNet-V1 (light) 1.28M 30 75.70
This work VGG-7 1.91M 30 78.93
This work VGG-9 (4-bit) 7.07TM 30 80.04
This work VGG-9 7.07TM 10 79.10
This work VGG-9 7.07M 8 78.30
Hybrid (Rathi & Roy, 2020) ResNet-20 12.3M 10 92.54
tdBN (Zheng et al., 2021) ResNet-19 11.18M 6 93.16
CIFAR-10 DSR (Meng et al., 2022)! ResNet-18 11.18M 6 91.89
This work ResNet-19 11.18M 6 93.97

! The experiment is rigorously performed based on the open-sourced DSR implementation with 6 time steps.

Table 5: Experimental results of the proposed LT-SNN on N-Caltech101 and N-Cars datasets.

Dataset Method Representation Accuracy(%) Pretrain
YOLE (Cannici et al., 2019) Histogram 70.02 False
EST (Gehrig et al., 2019) Histogram 81.70 True
N-Caltech101  AsyNet (Messikommer et al., 2020) Histogram 76.10 False
AEGNN (Schaefer et al., 2022) Graph 66.80 False
This work Binary Spike 71.71 False
NDA (Li et al., 2022) Binary Spike 91.9 False
AsyNet (Messikommer et al., 2020) Histogram 94.4 False
N-Cars YOLE (Cannici et al., 2019) Histogram 92.7 False
AEGNN (Schaefer et al., 2022) Graph 94.5 False
Object (Cordone et al., 2022) Binary Spikes 92.4 False
This work Binary Spike 95.02 False

SNN Training for Full-/Low-Precision Inference We perform LT-SNN training to execute in-
ference with both full-precision and 4-bit precision. To train SNNs for low-precision inference, we
adopt the Statistic-Aware Weight Binning (SAWB) quantizer (Choi et al., 2019) to compress the
layer-wise weights of the LT-SNN-VGG-9 network down to 4-bit precision. We separately perform
and compare the full-precision and quantized-aware training of our SNN architectures using hyper-
parameters mentioned in Appendix A. Using our LT-SNN scheme, we achieve SoTA results for both
full-precision and low-precision SNNs, as reported in Table 4 and Table 5. Proposed LT-SNN and
DSR train the threshold in a layer-wise manner and the potential threshold for each layer is different.
The rest of the results reported from other SOTA employ fixed V};, for all the layers.

Image Classification Task We validate the proposed LT-SNN algorithm on both event-based im-
age classification datasets and conventional computer vision dataset with RGB images. The LT-SNN
models are directly trained from scratch, and the detailed input preprocessing and experimental setup
are summarized in Appendix A. Table 4 summarizes the performance of LT-SNN on DVS-CIFAR10
and CIFAR-10 (with RGB images) datasets. For DVS-CIFAR10 dataset, compared to the current
SoTA method (Deng et al., 2021), the 4-bit VGG-9 model trained by proposed LT-SNN algorithm
achieves 2.71% accuracy improvement with 1.31x less parameters and 10.48x model size reduc-
tion (MB). Furthermore, the proposed LT-SNN demonstrates consistently superior performance with
different simulation length (from 8 time steps to 30 time steps). For the conventional RGB CIFAR-
10 dataset, LT-SNN also achieves new SoTA performance with ResNet-19 architecture, where we
adopted the tdBN (Zheng et al., 2021) scheme to stabilize the direct SNN training process. Based
on the official implementation of DSR (Meng et al., 2022), we rigorously conduct the experiment
of DSR on CIFAR-10 dataset with 6 simulated time steps. Additionally, to demonstrate the effec-
tiveness of learnable threshold, we conduct more experiments using SGP with and without learnable
threshold. Proposed LT-SNN with SGP surpassed SNN implementations with the fixed threshold
for different compact networks reported in Appendix C, Table 9.

In addition to the CIFAR datasets (Li et al., 2017), we evaluate the proposed LT-SNN algorithm
on N-CalTech101 (Orchard et al., 2015) and N-Cars (Sironi et al., 2018) datasets. As shown in
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Table 5, the proposed LT-SNN achieves new SoTA performance on both datasets with 1.61% (N-
Caltech101, without pre-training) and 0.52% (N-Cars) accuracy improvements. Compared to the
conventional histogram-based computation (Messikommer et al., 2020; Cannici et al., 2019) that use
non-binary activations, the proposed LT-SNN enables end-to-end binary computation with binary
spikes throughout the entire SNN, achieving superior performance with high hardware compatibility.
Additional results comparing the baseline of LT-SNN with TET and DSR using DVS-CIFAR10
dataset are summarized in Appendix C, Table 7.

Impact of the Event Time Steps SNNs require iterative computation and membrane potential
accumulation, which motivated prior works to exploit the computation reduction with less number
of time steps to represent the incoming event. We also validated LT-SNN with different simulated
time steps on the DVS-CIFAR10 dataset. As shown in Table 4, the proposed LT-SNN manages
to achieve SoTA performance with reduced time steps and compact models, compared to the prior
works. With the same 10 time steps as TET Deng et al. (2021), LT-SNN achieves 1.77% accuracy
improvement, without using any data augmentation. With the extended 30 time steps, LT-SNN
achieves 80.04% SoTA accuracy on DVS-CIFAR10 dataset.

Object Detection Task In addition to the classification datasets, we validate the proposed LT-SNN
on large-sized Prophesee Automotive Genl dataset (de Tournemire et al., 2020) for object detection
task. With 228,123 bounding boxes for cars and 27,658 for pedestrians, the Gen1 dataset (de Tourne-
mire et al., 2020) is considered as the most complex event-based computer vision task.
Unlike the prior works use accumulated histogram (Mes- o .

sikommer et al., 2020; Cannici et al., 2020; Cordone
et al., 2022) or graph-based input representation (Schae-
fer et al., 2022), we translate DVS event to pure binary 100
frames and synchronize them with artificial actual ground
truths from (Perot et al., 2020) for network training. The
detailed data preprocessing setup is summarized in Ap- ,,,
pendix A. The binary input events and intermediate spikes B
enables the end-to-end binarized computing for LT-SNN, 250 {g5¢8
elevates the computation efficiency with simplified data
format. We develop LT-SNN-YoloV2 feature extraction
network followed by Yolo loss to localize the objects o 50 100 200 250 300 350 400
and compute mean average precision (mAP) for de?tect.ed Figure 5: Inference results of LT-SNN
bounding boxes against the ground truths as shown in Fig-
ure 5. Table 6 and Table 10 of Appendix C elucidate that,
in comparison to the current SNN-based SoTA with fixed potential threshold, our LT-SNN-custom-
Yolov2 records SOTA mAP of 0.298 on Prophesee Automotive Genl dataset.

on Prophesee Automotive Genl dataset.

Table 6: Experimental results of the proposed LT-SNN on Prophesee Automotive Genl dataset.

Method Model Architecture  Spiking Model mAP

Asynet (Messikommer et al., 2020) FB-Sparse No 0.145
MatrixLSTM (Cannici et al., 2020) ResNet-19 No 0.3
RED (Perot et al., 2020) RetinaNet No 0.41

VGG-11+SSD (Cordone et al., 2022) VGG+SSD-SNN Yes 0.187

This work Custom-YoloV2-SNN Yes 0.298

7 CONCLUSION

In this work, we propose a novel SNN training algorithm with learnable threshold (LT-SNN), which
optimizes the layer-wise threshold with direct SNN training. As one of the first studies on this topic,
the proposed LT-SNN unleashes the firing constraints that were imposed in prior works, without in-
troducing any additional high-precision scaling factor to the spike generation. The proposed method
with full and low-precision training has been verified on multiple event-based image classification
and object detection datasets. LT-SNN improves the state-of-the-art accuracy for DVS-CIFAR10
dataset by 2.8% together with 10.48 x smaller model size. For object detection on Prophesee Au-
tomotive Genl dataset, the LT-SNN outperforms SNN-based SOTA mAP by 0.11 with end-to-end
binary computation.
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A  DETAILED EXPERIMENTAL SETUP

Data Preprocessing To ensure hardware efficient LT-SNN based training, we convert DV S-events
to binary frames in the event pre-processing stage. For classification data, we perform sampling over
different time steps and transform events to binary tensors of shape [Batch, Time, Channels, Height,
Width]. Similarly, we follow the same convention to convert Prophesee Genl events to binary
frames. Then the generated binary frames are synchronized with artificial ground truth from (Perot
et al., 2020). Finally, the events and annotations are translated to the tensors of shape [Batch, Time,
Channels, Height, Width] and [Batch, Number of boxes, Bounding box] respectively.

Training Parameters We train our proposed LT-SNN based classification and object detection ar-
chitectures using PyTorch. Regarding hyperparameter selection, we use the Adam optimizer where
the learning rate is set to 0.001 and cross entropy loss plus mean square error is computed between
detected and target classes for back-propagation and output regularization. For output regularization,
the moving average weight /3 is set to 0.45 for both the full-precision and low-precision training. Fi-
nally, each LT-SNN based architecture from Table 3 was trained for 200 epochs and we observe
robust convergence of our proposed LT-SNN based architectures in less than 50 epochs.
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B ALGORITHM

Algorithm 1 LT-SNN Algorithm

Initialize: Input spike as SY ; Membrane potential as u}' ; Learnable potential threshold as V,9;
Output spike as OY and regularization ratio as 3
fort < 1t0T do
Forward Pass:
Compute u; , O} using Eq. 2
forn < 1to N do
Forward Pass:
Compute u3', O7 using Eq. 3
end
end
p = Prediction(Y, O})
Loss:
Compute 2 using Eq. 13 with detached V,.
Lirsny = Lep(Y,0F) 4+ (1 - B)MSE(O}, Q)
Backward Pass:
Initialize:
8LLT75NN/({‘)O,? +~— 0
fort < T toldo
OLrr_snn/OO} = Spatial Gradient(0Lcg /007 )+ Output_Regularization(0M SE /00O})
forn < N to1ldo
Compute gradient using Eq. 6
Compute 0Lcg/0Vy} using Eq. 9 and Eq. 10
Mask OL¢c g /0V;} with active pixel density using Eq. 11
end
end
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C ADDITIONAL EXPERIMENTAL RESULTS

we have trained the VGG-11 architecture reported by DSR and TET using the proposed SGP for
the layer-wise learnable threshold to present an apple-to-apple comparison of LT-SNN with DSR
and TET work. Table 4 elucidates that LT-SNN shows 3.81% and 2.18% accuracy improvement in
comparison to the DSR and TET respectively.

Table 7: Baseline comparison of proposed SGP with current SoTA.

Method  Architecture Threshold SG Func. Top-1 Accuracy (%)

TET [R3] VGG-11 Fixed Triangle 77.33
DSR [R4] VGG-11 Fixed STSG 75.70
This work VGG-11 Learnable SGP 79.51

To compare the performance of SGP with lower learning rate based SNN training, we have per-
formed extra experiments with VGG-9 using high Ir (0.1) for W and relatively low Ir (0.001) for
Vin. We observe that such high Ir value for W with ”Adam” optimizer didn’t help in model con-
vergence. We performed another experiment with Ir (0.001) for W and Ir (0.00001) for V;;,. The
Table 8 summarizes the experimental results, which show that the separate learning rate setting is
not sufficient to fully optimize the learnable potential threshold.

Table 8: Performance comparison of SGP and lower learning rate to balance out V;;, and W;; for
LT-SNN training.

Model WIr Vthlr SGP Accuracy (%) Converged

VGG-9 0.1 0.001 X 20.40 X
VGG-9 0.001 0.00001 X 77.20 v
VGG-9 0.001 0.001 v 80.04 v

We have conducted more experiments by disabling the learnable threshold to compare the perfor-
mance of fixed and learnable threshold with the identical setting. We have used DVS-CIFAR10 data
for the classification task and Prophesee Automotive Genl data for the object detection task. Table
9 and Table 10 demonstrate the superiority of our proposed layer-wise learnable potential threshold
scheme in comparison to the fixed potential threshold for all the layers. Proposed SGP for learnable
potential threshold increases SoTA accuracies by 2.02% and 1% with VGG-9 and MobileNet-v1
respectively and mAP by 0.176 with Custom-YoloV2-SNN.

Table 9: Performance comparison of learnable potential threshold and fixed potential threshold for
the classification networks.

Method Architecture Threshold SG Func. Top-1 Accuracy (%)
This work VGG-9 Fixed Triangle 78.02
This work VGG-9 Learnable SGP 80.04
This work ~ MobileNet-v1(Lite) Fixed Triangle 74.70
This work MobileNet-vl(Lite) Learnable SGP 75.70

Table 10: Performance comparison of learnable potential threshold and fixed potential threshold for
the object detection networks.

Method Architecture Threshold SG Func. mAP
This work  Custom-YoloV2-SNN Fixed Triangle  0.122
This work Custom-YoloV2-SNN Learnable SGP 0.298

We choose the sigmoid function for SGP based on the experimental results that we achieved by
setting up an ablation study. From Table 11, we could conclude that the sigmoid function is the best
choice to ensure stable training performance and high validation accuracy.
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Table 11: Comparison of different surrogate functions performance as SGP.

Model Epochs SGP Accuracy (%) Converged

VGG-9 200 ArcTan 77.81 v
VGG-9 200 Triangle 70.83 v
VGG-9 200 Piece-wise 78.81 v
VGG-9 200 Sigmoid 80.04 v

To ensure the training stability of the proposed SGP, we have trained VGG-9 for 200 epochs. From
Figure 6, we can observe that SGP for LT-SNN didn’t hurt the training stability for 200 epochs.
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Figure 6: Stable training process of the proposed LT-SNN algorithm with the extended training
effort on DVS-CIFAR10 dataset.
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