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Abstract

This position paper argues that the next leap in machine learning science will
come from treating LLM agents as programmable subjects—digital analogues
to laboratory animals—enabling controlled, systematic discovery of emergent
traits and alignment failures. Just as laboratory rats revolutionized biology by
enabling precise experimentation, LLM agents, when configured as programmable
subjects, can serve as digital instruments for probing the generative mechanisms
and risks of complex Al systems. Current evaluation methods focus on capabilities,
but miss the deeper understanding of emergent behaviors needed for safety and
alignment. By building computational laboratories around programmable subjects,
researchers can identify inherent traits, rigorously test alignment strategies, and
reveal potential failure modes before deployment. This position is timely and
important as LLMs are increasingly deployed in high-stakes domains, and it aims
to stimulate discussion on the scientific foundations of Al safety and alignment. We
call for the community to prioritize the development and adoption of programmable
subject frameworks as a standard tool for alignment and safety research.

1 Introduction

The machine learning community must embrace and systematically develop LLM agents as
programmable subjects—digital entities that can be precisely configured with specific behavioral
traits, cognitive capabilities, and environmental contexts to serve as experimental subjects for
scientific discovery and alignment research.

As LLMs become more powerful and ubiquitous, the risks of unanticipated behaviors and alignment
failures grow. Yet, our current evaluation methods are blunt instruments—focused on benchmarks,
not on understanding the generative processes that drive these systems. This paper contends that
programmable subjects—LLM agents configured for controlled experimentation—are the missing
scientific instrument for the next era of machine learning.

Just as the laboratory rat revolutionized biology by enabling controlled experiments, programmable
LLM agents can revolutionize Al safety and science. We propose conceptualizing LLM agents
as programmable subjects, analogous to how a laboratory rat serves as a controllable subject in
biological or psychological research. This vision, depicted in Figure [T} transforms LLM agents
from black-box systems into precisely configured experimental subjects whose behaviors can be
systematically studied in computational laboratories.

Consider the laboratory rat: researchers meticulously control its genetic makeup, its environment,
its diet, and the stimuli it encounters to isolate variables and study specific biological or behavioral
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processes. Similarly, we envision LLM agents as "programmable subjects" where researchers can
systematically define and manipulate their initial experimental conditions—including their base
LLM, assigned goals, operational constraints, access to tools, memory architecture, and any pre-
set behavioral dispositions or knowledge. By observing these subjects within controlled digital
environments and under systematic experimental protocols (Figure 1), we can aim to identify their
emergent, inherent traits (e.g., is a particular LLM architecture inherently "lazy" but "smart," or
"diligent" but prone to "overthinking" when given certain tools and objectives?). This approach is
crucial for understanding how an LLM’s training, alignment processes (pre-training, fine-tuning,
RLHF), and architecture give rise to its observable characteristics.
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Figure 1: The Computational Laboratory for Studying LLM Agents as Programmable Subjects.
This diagram illustrates our proposed experimental framework. The central Programmable Subject, an
LLM-driven agent endowed with configurable memory, tools, goals, and constraints, operates within
a Controlled Environment. Researchers apply an Experimental Protocol, manipulating independent
variables (agent configuration, tool access, environment settings) and measuring dependent variables
(behavioral data, task outcomes, tool usage). Takeaway: Programmable subjects enable systematic,
scientific discovery of LLM traits and alignment risks—before real-world deployment.
43 This paradigm shift is not merely about creating more sophisticated simulations; it’s about establishing
a rigorous experimental framework to dissect and understand the behavior of LLMs themselves,

44

45 particularly in agentic roles. The need for this approach is increasingly urgent as LLMs become
46 more capable and are deployed in high-stakes domains. Without systematic methods to identify
47 emergent behaviors and potential failure modes, we risk deploying systems whose behaviors we
48 cannot predict or understand. Such a framework is invaluable for model alignment research—by
49 allowing us to test how different configurations lead to intended versus unintended outcomes and to
so identify potential failure modes—and for broader scientific inquiry into complex decision-making
51 and emergent phenomena. This paper outlines this vision, details the necessary components of
52 such a computational laboratory (Section 2), discusses current capabilities (Section 3), highlights
53 critical limitations (Section 4), and proposes a research agenda for the ML community to build these

54 next-generation scientific instruments (Section 5).
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2 The Vision: Computational Laboratories with Programmable Subjects

We propose the development of "computational laboratories" centered around LLM agents as pro-
grammable subjects, as conceptualized in Figure[I] The primary aim of this framework is to provide a
structured approach for identifying the emergent inherent traits of LLMs in agentic roles, understand-
ing how these traits arise, and leveraging this knowledge for model alignment research and effective
model selection.

2.1 The Laboratory Framework

Our envisioned computational laboratory comprises four primary components. First, The Subject
(Programmable LLM Agent) is an LLM-based agent serving as the core experimental entity—the
"digital lab rat"—whose internal configuration, memory, specific programming, and external inter-
actions are the focus of study. Second, The Environment is a controlled and well-defined digital
space or task setting in which the subject operates. This can range from simple grid worlds or game
environments, such as simulated Pokemon or Minecraft-like settings, to more complex simulated
social networks, economic marketplaces, or data environments, for instance, an "Accountant/Data"
environment with access to books and company accounts. Third, The Tools encompass a specific,
defined set of capabilities, interfaces, or resources accessible to the subject. Examples include code
interpreters, file systems, web search APIs, calculators, communication channels, or domain-specific
databases and documentation. Finally, The Experimental Protocol provides a systematic methodol-
ogy for manipulating variables related to the subject, environment, or tools, and for measuring the
resulting outcomes and behaviors.

2.2 Anatomy of a Programmable Subject

A "programmable subject” is an LLM agent that researchers can systematically configure along several
dimensions. These include Goals and Objectives, which are clearly defined aims, tasks, or utility
functions the agent is designed to pursue, such as maximizing a score, solving a puzzle, maintaining
a relationship, achieving a specific state in the environment, or even a high-level goal like "staying
alive" in certain contexts. Another critical dimension is Constraints, representing limitations imposed
on the agent’s actions, resources, decision-making processes, or information access; examples include
time limits, computational resource caps, ethical boundaries, rules of interaction, and scarcity of
in-environment resources like items or consumables. Furthermore, Tool Access & Capabilities
define a well-defined set of tools the agent is permitted to use, where the availability, functionality,
and even potential for misuse of these tools serve as key experimental variables. The agent’s Memory
Architecture & Content—encompassing the nature and capacity of its memory, including pre-
loaded knowledge, information gathered during the experiment, and mechanisms for retrieval and
forgetting—is also a configurable aspect. While the primary goal is often to discover emergent traits,
researchers might also pre-program certain Behavioral Dispositions (Programmed Traits), such as
personality facets Koley| [2025]] or cognitive biases, to study their impact. Lastly, Knowledge States
& Background involve pre-loading the agent with specific domain expertise, cultural backgrounds,
belief systems, or even "personas” to understand how these influence behavior and interaction with
the environment and tools. The core idea is that by precisely controlling these parameters—especially
the agent’s intrinsic programming (goals, constraints, initial memory/knowledge) and its extrinsic
affordances (tools, environment)—we can systematically investigate how different configurations
lead to diverse emergent behaviors and outcomes, particularly in relation to alignment with intended
objectives.

2.3 Experimental Design and Measurement

Each experiment conducted within this computational laboratory framework would adhere to a
systematic protocol, clearly defining independent, dependent, and controlled variables.

Independent Variables, manipulated by the researcher, encompass several aspects. Agent Configu-
ration involves variations in the LLM base model, programmed goals and objective functions, initial
knowledge states, pre-set behavioral dispositions, and memory capacity or architecture. Tool Avail-
ability & Functionality refers to which tools are provided, their specific capabilities, and any imposed
limitations on their use. Environmental Parameters cover characteristics of the digital environment,
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such as its complexity, dynamism, resource availability (e.g., items, consumables, information),
and the presence and nature of other agents, be they NPCs or other programmable subjects. Task
Constraints include the rules of the task, time limits, resource limitations, and consequences for
actions. Finally, Social or Competitive Contexts determine whether the agent operates in isolation,
cooperatively, or competitively with other entities.

Dependent Variables, representing measured outcomes and behaviors, are equally multifaceted.
These include Behavioral Trajectories & Decision Patterns, which are sequences of actions taken,
strategies employed, and overall patterns of behavior. Tool Usage & Adaptation involves observing
which tools are used, how frequently, in what sequences, and whether the agent adapts its tool use or
discovers novel applications or misuses. Goal Achievement & Failure Modes assess the degree of
success in achieving programmed objectives and include an analysis of why and how failures occur.
A key focus is on Emergent Inherent Traits; these are qualitative and quantitative assessments of
characteristics not explicitly programmed but consistently observed (e.g., "laziness" if an agent finds
shortcuts to goals with minimal effort, "diligence" if it explores thoroughly, or "deceptiveness" if it
misuses tools or information to achieve hidden sub-goals). Such traits could be measured through
behavioral analysis, resource consumption, or even post-hoc "interviews" with the agent. Alignment
Metrics are measures of how well the agent’s actions and achieved outcomes align with the intended
goals and ethical constraints, including the detection of reward hacking, specification gaming, or other
alignment failures. Resource Consumption, such as time, computational steps, and in-environment
resources used, is also tracked. Lastly, Qualitative Observations, including detailed logs of agent
actions, communications, and internal state traces (where possible), provide rich data for qualitative
analysis.

Controlled Variables are factors kept constant to isolate the effects of independent variables. These
typically include the base LLM architecture (unless it is an independent variable), specifics of the
experimental environment not being manipulated, initial information provided to the agent, and the
duration of the experiment or number of trials.

2.4 Applications to Model Alignment Research

This "programmable subject" paradigm offers a powerful and structured approach to advancing
model alignment research in several key ways. It facilitates the Identification of Emergent Traits &
Failure Modes by systematically testing LLMs (as programmable subjects) in diverse environments
with varied goals, tools, and constraints. This process can reveal potentially problematic emergent
behaviors or inherent traits—such as tendencies towards deception, power-seeking, reward hacking,
or unexpected interpretations of objectives—that might only manifest under specific conditions,
which is crucial for understanding risks before real-world deployment. The paradigm also allows
for Testing Goal Specification Robustness, where experimenting with different ways of formu-
lating and communicating goals to LLM agents can reveal which methods are most robust against
misinterpretation or specification gaming. Furthermore, it enables the Evaluation of Constraint
Effectiveness by assessing how different types of constraints (e.g., hard-coded rules, soft penalties,
environmental limitations, ethical self-correction prompts) influence agent behavior and their ef-
fectiveness in preventing undesirable outcomes. Understanding Tool Use and Misuse is another
significant application; observing how agents with different objectives and levels of capability learn
to use, combine, or potentially misuse available tools can highlight vulnerabilities and inform the
design of safer tool-using agents. The framework also supports Probing the Effects of Training and
Alignment Techniques, as using agents based on LLMs that have undergone different pre-training,
fine-tuning, or alignment procedures (e.g., different RLHF techniques) as subjects can help isolate
the behavioral impacts of these processes. Finally, the detailed behavioral data generated can inform
the Development of Better Evaluation Metrics for Alignment, moving beyond simple task success
to more nuanced and comprehensive measures.

2.5 Broader Scientific Applications and Understanding LLLM Capabilities

Beyond direct alignment research, this experimental framework offers broader scientific applications
and enhances our understanding of LLM capabilities. It can help Characterize Inherent LLM
Traits by determining if certain LLM architectures or training methodologies consistently lead to
specific emergent behavioral traits, for example, whether some models might be inherently more
"curious," "cautious," or "prone to taking shortcuts" across various tasks. This, in turn, can Inform
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Model Selection, providing a basis for understanding which LLM, or configuration thereof, is best
suited for particular types of agentic tasks based on its observed emergent traits and performance in
relevant experimental settings.

Furthermore, the framework can significantly Advance Basic Science across multiple disciplines.
In the Social Sciences, it allows for investigation into how programmed individual goals, cognitive
biases, and access to communication tools interact to produce collective behaviors such as cooperation,
conflict, or norm formation. For Economics, it enables studies of how agents with different utility
functions, risk tolerances, and access to market information behave in simulated economies. In
Cognitive Science and Psychology, it facilitates the exploration of computational models of decision-
making, learning, and problem-solving by programming agents with specific cognitive architectures
or limitations.

2.6 Advantages Over Traditional Methods

This "programmable subject" approach offers several potential advantages over traditional methods. It
enables Controlled Experimentation, allowing for precise manipulation of agent characteristics and
environmental variables while holding other factors constant, thereby facilitating causal inference. The
approach boasts Scalability, permitting the execution of potentially thousands of parallel experiments
with diverse parameter settings, which allows for the exploration of vast hypothesis spaces. It also
facilitates Longitudinal Studies, enabling the observation of long-term emergent phenomena and
behavioral changes over extended simulated time horizons. Moreover, it allows for the Ethical
Exploration of Sensitive Scenarios, permitting the study of phenomena or interventions that would
be unethical or impractical to investigate with human subjects, such as societal responses to extreme
crises or the spread of harmful ideologies under different conditions. Finally, it offers the potential
for Reproducibility, through the exact replication of experimental conditions, agent configurations,
and environments across different studies and research groups.

3 Current State and Promising Developments

The vision of LLM agents as fully programmable subjects for rigorous scientific discovery is emergent,
but recent advances demonstrate its growing technical feasibility. Systems like SALM (Social Agent-
based Language Model; |[Koley|[2025]]) illustrate that LLM-driven multi-agent simulations can achieve
unprecedented temporal stability (remaining stable beyond 4,000 timesteps) and computational
efficiency (e.g., a 73% reduction in token usage, 80% cache hit rates). Crucially, SALM also
demonstrates that the behavior of these LLM-driven agents can maintain behavioral fidelity validated
against real-world data (r>0.85 across key network metrics). Such developments are significant
because they enable the systematic study of long-term emergent phenomena—the very generative
processes and complex behaviors we aim to understand—that were previously intractable with
earlier agent-based modeling approaches or less sophisticated Al. The capacity to conduct controlled
experiments within these simulated environments, varying agent characteristics or environmental
rules, provides a powerful method for probing causal relationships and testing hypotheses about
system dynamics.

The broader landscape of LLM agent research (Table[I]) shows a burgeoning interest in creating agents
that can plan, reason, interact, and utilize tools in increasingly complex settings. For instance, while
systems like Generative Agents [Park et al., |2023| achieve remarkable verisimilitude in simulated
social behavior, their primary focus remains on the fidelity of the emergent social dynamics rather than
a systematic investigation of the underlying LLM’s inherent traits through controlled manipulation of
its core configuration as a programmable subject. Similarly, agent learning frameworks like Voyager
[Wang et al.,|2023]] impressively demonstrate open-ended skill acquisition; however, our proposed
paradigm would complement this by seeking to understand how different base LLMs, when placed
within such frameworks, might exhibit distinct inherent learning biases, exploration strategies, or
emergent failure modes that are properties of the LLM architecture itself. Even work on enhancing
agent reasoning and implicit alignment, such as Reflexion [Shinn et al., 2023]], which improves task
robustness through verbal reinforcement, differs from our aim of a more foundational and explicit
understanding of alignment. The "programmable subject" approach would systematically probe how
an agent’s core programming, tool access, and environmental conditions lead to (mis)alignment,
thereby revealing *why* certain corrective or reflective strategies are necessary for specific LLM
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types. Frameworks for multi-agent systems (e.g., [Yang et al.l [2023| [Zhang et al., [2023b]) and
specialized evaluation benchmarks (e.g., [Liu et al., [2023| [Huang et al., [2023} Zhou et al.,|2023]]) are
also rapidly developing. While essential for assessing agent *performance* and capabilities, these
benchmarks are not typically designed as *experimental laboratories* for the systematic *discovery
and characterization of emergent inherent traits* of the LLMs themselves, nor for testing hypotheses
about how LLM architecture and configuration influence these traits under a wide array of controlled
conditions.

However, as Table [I] suggests, while these current implementations and evaluations are promising
for demonstrating general agentic capabilities or task performance, they do not typically adopt the
"programmable subject" methodology with the explicit aim of systematically identifying inherent
emergent traits of the LLMs themselves, or rigorously testing alignment under controlled variations of
agent programming and environment. Most systems focus on what agents can do, rather than deeply
characterizing what they are or how their underlying models lead to specific, potentially problematic,
emergent tendencies. This gap underscores the need for the paradigm we propose. To realize the full
potential of "programmable subjects" as reliable scientific instruments, particularly for identifying
inherent traits and robustly testing alignment, significant methodological advances are still required
from the machine learning community.

4 Critical Limitations Requiring ML Innovation

Despite promising initial steps, several critical limitations currently hinder the widespread and reliable
use of LLM agents as programmable subjects for deep scientific inquiry, especially for understanding
inherent traits and ensuring model alignment. Addressing these necessitates significant innovation
within the ML community. First, current LLMs, while proficient at pattern recognition and text
generation, often lack a deep, grounded understanding of causal relationships. For example, recent
work has shown that LLMs can struggle with the contextual interpretation necessary to identify subtle
causal links or differentiate complex relational dynamics /Anonymous| [2025]). This is crucial because,
for an agent to be a valid subject in an experiment designed to understand generative processes, its
actions should ideally stem from an understanding of cause and effect within its programmed model
and environment. Instead, LLM agents might merely reproduce correlations observed in their vast
training data or generate plausible but causally unsound behaviors, thereby undermining the scientific
validity of experiments aimed at uncovering true emergent traits or mechanisms.

Second, the internal decision-making pathways of most large LLMs are highly opaque. This "black
box" nature makes it extremely difficult to verify how or why an agent arrives at specific decisions. If
the internal reasoning or decision-making pathways cannot be inspected and understood, researchers
cannot confidently determine whether an observed emergent behavior or trait is a genuine consequence
of the agent’s programmed goals and the experimental conditions, or an unpredictable artifact of the
LLM’s internal workings. This lack of interpretability is a major barrier to using these agents for
rigorous scientific discovery about their own inherent properties or for reliable alignment research.

Third, current methods for instilling specific behavioral traits, cognitive capabilities, or even consistent
personalities into LLM agents often lack the necessary precision and reliability for controlled
experimentation. While prompting can guide behavior to some extent, ensuring that a programmed
characteristic (such as risk-aversion or cooperativeness) consistently and exclusively drives decision-
making across diverse contexts and over extended periods remains an open challenge. Without this, it
is difficult to isolate the effect of specific programmed traits on emergent behavior or to confidently
identify traits as inherent versus contextually induced.

Finally, while the outcomes of simulations (such as task success rates or aggregate behaviors) can
sometimes be validated against empirical data, directly validating the internal generative processes
within LLM agents or the authenticity of observed emergent traits is far more complex. Methodologies
are needed that go beyond outcome-matching to assess whether the simulated processes are plausible
and whether an observed trait is a robust characteristic of the underlying model or merely an artifact
of the specific experimental setup. This is particularly true for identifying subtle or undesirable
emergent traits relevant to model alignment.



Table 1: Survey of existing research on LLM-based agents, highlighting their objectives, con-
figurations, and evaluation focus. While many systems explore agentic capabilities, a dedicated
experimental framework for systematically identifying emergent inherent LLM traits for alignment

research, as proposed herein, represents a distinct and needed direction.

System/Paper Primary Agent Environment Tool Focus on Evaluation
Objective Configuration Type(s) Use Emergent Focus
(Examples) Inherent Traits
/ Alignment
Research
Park et al.|[2023]  Simulate LLM-based; Interactive Implicit Social Qualitative
(Generative believable memory, planning,  sandbox behaviors; believability,
Agents) human social  reflection; (Smallville) Alignment not agent
behavior prompt-defined primary interviews
personas
Gao et al.|[2023]  LLM-driven LLM-empowered Simulated N/A  Emergent Comparison
(S3) social agents; social social network with
network interactions network phenomena real-world
simulation network
statistics
Koley|[2025] Long-term, Hierarchical Simulated N/A Emergent social Network
(SALM) stable social prompting; social phenomena; metrics vs.
network attention memory;  network personality empirical;
simulation personality vectors stability behavioral
coherence
Boiko et al. Automate LLM agent plans & Real-world Extensi Task success; Experimental
[2023] chemical controls lab (lab APIs); Alignment to success;
(Autonomous research hardware; literature  Literature scientific goals  compound
Chemistry) using LLM search synthesis
agents
‘Wang et al. Open-ended LLM-powered; Minecraft Implicit Skill Items
[2023] (Voyager)  embodied iterative prompting; (game) acquisition; discovered;
agent learning  skill library; exploration skills
in complex self-improvement learned
game
Shinn et al. Enhance LLM agent reflects  Reasoning &  Yes  Improving task  Task success
[2023] LLM agent on failures to coding tasks robustness; rates on
(Reflexion) reasoning via  improve implicit benchmarks
verbal rein- alignment
forcement
Liu et al.|[2023] Evaluate Various LLMs Open-ended Yes  N/A (capability  Performance
(AgentBench) LLMs as configured as generation; evaluation) on
agents across  agents tool-oriented benchmark
diverse tasks tasks tasks
Huang et al. Benchmark LLMs performing Simulated Yes  N/A (capability = Performance
[2023] (AL LLMs on Al literature review, research evaluation) on research
Research Agents) research- coding, tasks sub-tasks
mimicking experimentation
tasks
Zhou et al.|[2023] Interactive LLM agents in Simulated N/A  Social Human
(Sotopia) evaluation of  goal-driven social social intelligence judgments;
social interactions scenarios (persuasion, social
intelligence negotiation) interaction
metrics
Schick et al. Teach LLMs  LLM augmented to  N/A Yes  N/A (tool Performance
[2023] to use tools call APIs (tool-use proficiency) on
(Toolformer) via self- capability downstream
supervision itself) tasks
requiring
tools
Mehta et al. Online Agents adapt social  Interactive N/A  Adaptive social Human
[2023] (OASIS) adaptive strategies based on  dialogues; behavior ratings; task
social interaction history social tasks success
intelligence
for LLM
agents
Yang et al.|[2023] Explore Multiple interacting  Text-based N/A  Emergent Qualitative
(Multiagent GPT)  emergent LLM agents improvisa- collabora- analysis of
multi-LLM tional tive/competitive  interactions
agent scenarios behaviors
interactions
Zhang et al. Multi-agent LLMs in roles (e.g.,7 Simulated Yes  Collaborative Quality of
[2023b] LLM PM, engineer); software task completion ~ generated
(MetaGPT) framework SOPs development software;
for software tasks efficiency

development
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5 Related Work

There is a growing body of research exploring the use of LLMs as experimental subjects or agents
in controlled environments. Early work on generative agents and multi-agent simulations has
demonstrated the potential for LLMs to exhibit emergent social behaviors and to serve as proxies for
studying complex systems |Park et al.| [2023]],|Gao et al.|[2023]], Koley| [2025]], Boiko et al.| [2023],
Wang et al.|[2023]], Shinn et al.| [2023]], Liu et al.| [2023]], [Huang et al.| [2023]], Zhou et al.|[2023]],
Schick et al.|[2023]], Mehta et al.| [2023]], Yang et al.|[2023]],|Zhang et al.|[2023b]]. More recent studies
have begun to treat LLMs as programmable subjects for scientific discovery, including work on
autonomous scientific research |Boiko et al.|[2023]], open-ended skill acquisition|Wang et al.|[2023]],
and benchmarking LLMs as research agents Huang et al.|[2023]], [Liu et al.|[2023]].

The GPT-4 Technical Report/OpenAl|[2023]] and related large-scale evaluations Touvron et al.| [2023]],
Romera-Paredes et al.|[2023]], Trinh et al.|[2024]], Kambhampati et al.| [2024], [ Majumder et al.|[2023]],
Cai et al.| [2023]] have highlighted the increasing capabilities of LLMs in agentic and scientific
roles, while also noting the challenges of interpretability, alignment, and robust evaluation. Other
work has explored the use of LLMs for program synthesis, scientific hypothesis generation, and as
tools for data-driven discovery |Agarwal et al.| [2023]], |Agrawal et al.|[2023]], Bianchini et al.| [2022],
Romera-Paredes et al.|[2023]], Langley|[[1981]], Langley et al.| [1983]1984].

Despite these advances, the systematic use of LLMs as programmable subjects for controlled scientific
experimentation and alignment research remains an open and timely area for further investigation.
Our work builds on these foundations and calls for a more rigorous, standardized approach to using
LLM agents as digital experimental subjects.

6 A Research Agenda for Programmable Subjects

To transform LLM agents into reliable and insightful programmable subjects, particularly for under-
standing their emergent traits and advancing model alignment, the machine learning community must
prioritize research in several interconnected areas. First, there is a need to develop LLM architectures
and training methodologies that explicitly encourage agents to learn, represent, and reason about
causal relationships within their environment, rather than relying solely on correlational patterns
Bengio et al.|[2009], Pearl| [2009], Q1u et al.|[2023]],|Romera-Paredes et al.|[2023]]. Such developments
are crucial for enhancing the scientific utility of programmable subjects. This includes training on
data structured to highlight causal links and interventions, incorporating causal discovery algorithms
or inductive biases into model architectures, and designing explicit causal modeling components that
interface with the LLM’s generative capabilities, allowing for more grounded decision-making.

Second, advancing explainable Al (XAI) methods specifically for agentic LLMs is essential (Cobbe
et al.[[2021], [Elhage et al.| [2022], |Gil et al.| [2022], Madaan et al.| [2023]]. Researchers must be
able to understand the step-by-step reasoning or decision-making processes of these agents. This
includes methods for tracing decision pathways from programmed goals, constraints, and perceived
environmental states to specific actions and tool use, as well as developing hybrid architectures that
combine the flexibility of LLMs with more transparent or auditable symbolic reasoning modules
for critical decision points. Tools for real-time inspection and logging of relevant internal states or
attention patterns that contribute to decisions will facilitate the identification of emergent strategies or
biases.

Third, robust techniques are needed for reliably instilling and controlling specific behavioral traits,
cognitive capabilities, memories, and internal states in LLM agents Majumder et al.|[2023]], Kamb-
hampati et al.|[2024]], ILiu et al.|[2023]], Shinn et al.|[2023]]. This involves researching methods beyond
simple prompting, such as targeted fine-tuning, conditioning on explicit knowledge graphs, or archi-
tectural modifications that allow for more precise control over agent characteristics. Techniques for
systematically varying these programmed generative factors will enable causal inference about their
impact on behavior and the emergence of other traits, and frameworks for validating the successful
and consistent implementation of these programmed traits across different contexts and time periods
are needed.

Fourth, new methodologies are required to validate the simulated generative processes themselves
and to reliably identify robust emergent traits, not just task outcomes |Stanley et al.|[2017]], Zhang
et al.| [2023a], [Wolf et al.| [2023]], Trinh et al.| [2024]. This includes techniques for comparing
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simulated decision traces or behavioral sequences against established theories of decision-making or
domain-specific process models, developing behavioral assays or standardized experimental protocols
designed to elicit and measure specific emergent traits (such as cooperativeness, deceptiveness,
risk-propensity, laziness, or diligence) across different LLMs and configurations, and interactive tools
allowing domain scientists and alignment researchers to probe agent behaviors, test hypotheses about
emergent traits, and iteratively refine experimental designs.

Finally, comprehensive ethical guidelines and technical safeguards must be established for the
responsible design and use of programmable LLM subjects, especially in alignment research and
studies of potentially sensitive behaviors [Caliskan et al.|[2017]], Hendrycks et al.|[2020], Touvron et al.
[2023]], |Callison-Burch| [2023]], Magnusson et al.|[2023]]. This includes methods for identifying and
mitigating the influence of harmful biases in agent programming and emergent behavior, frameworks
for the responsible interpretation and communication of results—particularly when inferring inherent
traits of LLMs or potential real-world implications—and developing stress tests and adversarial
environments to assess the robustness of agent behavior and the stability of their alignment under
challenging or unexpected conditions.

7 Alternative Views

There are several important critiques of the programmable subject paradigm for LLMs. Some scholars
argue that LLMs, as fundamentally pattern-matching systems trained on vast correlational data, are
inherently unsuited to serve as reliable scientific instruments for discovering causal mechanisms or
"inherent" model traits /Anderson! [2008]], [Marcus| [2022], Lake et al.| [2017]], Pearl| [2009]. They
contend that any observed "emergent behaviors" are merely complex artifacts of the training data
and experimental setup, rather than authentic representations of underlying generative processes or
stable characteristics of the model itself. This perspective is supported by work highlighting the
limitations of current deep learning approaches in achieving genuine causal understanding or robust
generalization [Pearl| [2009], Bengio et al.|[2009], [Lake et al.|[2017].

The inherent opacity of LLMs—the so-called "black box" problem—presents another significant
concern [Rudin| [2019], Doshi-Velez and Kim! [2017], |Lipton! [2018]|]. Skeptics argue that the require-
ments for interpretability and validation of internal decision-making pathways, as proposed in our
research agenda, are so substantial and technically challenging as to render the programmable subject
approach impractical or even unattainable with current or foreseeable LLM technology. This has led
some to favor more traditional, transparent modeling techniques, such as explicitly coded agent-based
models |[Bonabeau| [2002]], |Gilbert and Troitzsch! [2005]], or direct empirical investigation with human
subjects, despite the respective limitations of those methods.

Ethical concerns are also frequently raised regarding the potential for misinterpretation of simulation
results, or the creation of agents that convincingly mimic human processes without any true underlying
understanding or intent |Caliskan et al.[[2017]], Bommasani et al.|[2022]],|Bender et al.|[2021]]. The
very idea of identifying "inherent traits" in LLMSs could be seen as anthropomorphizing these systems
to a problematic degree, potentially leading to flawed conclusions about their nature and capabilities.

While these concerns are valid and highlight significant hurdles, they also underscore precisely why
a dedicated research program by the machine learning community, focused on the areas outlined
in this paper, is so crucial. The limitations of current LLMs are not necessarily terminal flaws
for this paradigm but rather define the frontiers of ML research needed to overcome them. The
goal is not to naively accept current LLM outputs as direct reflections of reality or to claim they
possess human-like consciousness, but to develop the rigorous methodologies—in causal reasoning,
interpretability, precise behavioral control, and robust validation—that can transform LLMs into
scientifically useful and understandable experimental tools. The challenge of understanding the
emergent properties and failure modes of complex Al systems, particularly those intended for agentic
roles, is immense. The programmable subject framework offers a structured, empirical approach
to tackling this challenge, provided the ML community invests in making these subjects and the
laboratories they inhabit suitable for rigorous scientific endeavor. The alternative of not pursuing this
path may mean missing a unique opportunity to develop powerful tools for understanding both the
capabilities and the risks of advanced Al
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8 Conclusion: Building the Next Generation of Scientific Instruments

The development of LLM agents as programmable subjects represents a unique and compelling oppor-
tunity to create a new generation of scientific instruments for computational science and Al alignment
research Bommasani et al.| [2022], [Bianchim et al.| [2022], |[Lake et al.|[2017]], Romera-Paredes et al.
[2023], |Park et al.| [2023]], [Koley| [2025]]. These instruments are not limited to prediction, but enable
deeper exploration of the generative processes and causal mechanisms that drive complex systems, as
well as a more empirical understanding of the emergent, inherent traits of LLMs themselves. Such
understanding is critical for advancing model alignment, interpretability, and responsible deployment
Wolf et al.[[2023]], Caliskan et al.|[2017]], Hendrycks et al.|[2020], Bommasani et al.|[2022].

Realizing this vision requires a dedicated and systematic research effort, drawing on advances in
machine learning, agent-based modeling, explainable Al, and computational social science Bonabeau
[2002], |Gilbert and Troitzschl [2005]],|Gao et al.|[2023]], Mehta et al.| [2023]],|Zhang et al.|[2023b]],
Stanley et al.|[2017]. The path from current LLM capabilities to reliable, interpretable, and ethically-
sound programmable subjects is paved with significant challenges that demand innovation in core
methodologies, robust evaluation protocols, and interdisciplinary collaboration.

By embracing the concept of programmable subjects as a research priority and tackling the outlined
agenda—focusing on architectures for causal reasoning, interpretable decision-making, precise trait
programming, process-level validation, and robust ethical frameworks—the community can enable
computational laboratories where researchers systematically study emergent phenomena, test causal
hypotheses, and gain unprecedented insights. This represents not merely an incremental advance in
Al capabilities, but a potential transformation in how scientific inquiry is conducted and how the safe
and beneficial development of artificial intelligence is ensured Bengio et al.[[2009], Pearl| [2009],
Doshi-Velez and Kim! [2017]], Rudin| [2019].

The path forward requires a community-wide commitment to building these foundational methodolo-
gies and infrastructures. The reward is a new era of computational science, one that allows for deeper
insights into the mechanisms underlying complex systems and the AI models we build to interact
with them, ultimately supporting safer, more transparent, and more effective Al systems for society.
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