
Programmable Subjects: Why Machine Learning
Must Embrace LLM Agents for Scientific Discovery

and Alignment

Anonymous Author(s)
Affiliation
Address
email

Abstract

This position paper argues that the next leap in machine learning science will1

come from treating LLM agents as programmable subjects—digital analogues2

to laboratory animals—enabling controlled, systematic discovery of emergent3

traits and alignment failures. Just as laboratory rats revolutionized biology by4

enabling precise experimentation, LLM agents, when configured as programmable5

subjects, can serve as digital instruments for probing the generative mechanisms6

and risks of complex AI systems. Current evaluation methods focus on capabilities,7

but miss the deeper understanding of emergent behaviors needed for safety and8

alignment. By building computational laboratories around programmable subjects,9

researchers can identify inherent traits, rigorously test alignment strategies, and10

reveal potential failure modes before deployment. This position is timely and11

important as LLMs are increasingly deployed in high-stakes domains, and it aims12

to stimulate discussion on the scientific foundations of AI safety and alignment. We13

call for the community to prioritize the development and adoption of programmable14

subject frameworks as a standard tool for alignment and safety research.15

1 Introduction16

The machine learning community must embrace and systematically develop LLM agents as17

programmable subjects—digital entities that can be precisely configured with specific behavioral18

traits, cognitive capabilities, and environmental contexts to serve as experimental subjects for19

scientific discovery and alignment research.20

As LLMs become more powerful and ubiquitous, the risks of unanticipated behaviors and alignment21

failures grow. Yet, our current evaluation methods are blunt instruments—focused on benchmarks,22

not on understanding the generative processes that drive these systems. This paper contends that23

programmable subjects—LLM agents configured for controlled experimentation—are the missing24

scientific instrument for the next era of machine learning.25

Just as the laboratory rat revolutionized biology by enabling controlled experiments, programmable26

LLM agents can revolutionize AI safety and science. We propose conceptualizing LLM agents27

as programmable subjects, analogous to how a laboratory rat serves as a controllable subject in28

biological or psychological research. This vision, depicted in Figure 1, transforms LLM agents29

from black-box systems into precisely configured experimental subjects whose behaviors can be30

systematically studied in computational laboratories.31

Consider the laboratory rat: researchers meticulously control its genetic makeup, its environment,32

its diet, and the stimuli it encounters to isolate variables and study specific biological or behavioral33
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processes. Similarly, we envision LLM agents as "programmable subjects" where researchers can34

systematically define and manipulate their initial experimental conditions—including their base35

LLM, assigned goals, operational constraints, access to tools, memory architecture, and any pre-36

set behavioral dispositions or knowledge. By observing these subjects within controlled digital37

environments and under systematic experimental protocols (Figure 1), we can aim to identify their38

emergent, inherent traits (e.g., is a particular LLM architecture inherently "lazy" but "smart," or39

"diligent" but prone to "overthinking" when given certain tools and objectives?). This approach is40

crucial for understanding how an LLM’s training, alignment processes (pre-training, fine-tuning,41

RLHF), and architecture give rise to its observable characteristics.42
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Figure 1: The Computational Laboratory for Studying LLM Agents as Programmable Subjects.
This diagram illustrates our proposed experimental framework. The central Programmable Subject, an
LLM-driven agent endowed with configurable memory, tools, goals, and constraints, operates within
a Controlled Environment. Researchers apply an Experimental Protocol, manipulating independent
variables (agent configuration, tool access, environment settings) and measuring dependent variables
(behavioral data, task outcomes, tool usage). Takeaway: Programmable subjects enable systematic,
scientific discovery of LLM traits and alignment risks—before real-world deployment.

This paradigm shift is not merely about creating more sophisticated simulations; it’s about establishing43

a rigorous experimental framework to dissect and understand the behavior of LLMs themselves,44

particularly in agentic roles. The need for this approach is increasingly urgent as LLMs become45

more capable and are deployed in high-stakes domains. Without systematic methods to identify46

emergent behaviors and potential failure modes, we risk deploying systems whose behaviors we47

cannot predict or understand. Such a framework is invaluable for model alignment research—by48

allowing us to test how different configurations lead to intended versus unintended outcomes and to49

identify potential failure modes—and for broader scientific inquiry into complex decision-making50

and emergent phenomena. This paper outlines this vision, details the necessary components of51

such a computational laboratory (Section 2), discusses current capabilities (Section 3), highlights52

critical limitations (Section 4), and proposes a research agenda for the ML community to build these53

next-generation scientific instruments (Section 5).54
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2 The Vision: Computational Laboratories with Programmable Subjects55

We propose the development of "computational laboratories" centered around LLM agents as pro-56

grammable subjects, as conceptualized in Figure 1. The primary aim of this framework is to provide a57

structured approach for identifying the emergent inherent traits of LLMs in agentic roles, understand-58

ing how these traits arise, and leveraging this knowledge for model alignment research and effective59

model selection.60

2.1 The Laboratory Framework61

Our envisioned computational laboratory comprises four primary components. First, The Subject62

(Programmable LLM Agent) is an LLM-based agent serving as the core experimental entity—the63

"digital lab rat"—whose internal configuration, memory, specific programming, and external inter-64

actions are the focus of study. Second, The Environment is a controlled and well-defined digital65

space or task setting in which the subject operates. This can range from simple grid worlds or game66

environments, such as simulated Pokemon or Minecraft-like settings, to more complex simulated67

social networks, economic marketplaces, or data environments, for instance, an "Accountant/Data"68

environment with access to books and company accounts. Third, The Tools encompass a specific,69

defined set of capabilities, interfaces, or resources accessible to the subject. Examples include code70

interpreters, file systems, web search APIs, calculators, communication channels, or domain-specific71

databases and documentation. Finally, The Experimental Protocol provides a systematic methodol-72

ogy for manipulating variables related to the subject, environment, or tools, and for measuring the73

resulting outcomes and behaviors.74

2.2 Anatomy of a Programmable Subject75

A "programmable subject" is an LLM agent that researchers can systematically configure along several76

dimensions. These include Goals and Objectives, which are clearly defined aims, tasks, or utility77

functions the agent is designed to pursue, such as maximizing a score, solving a puzzle, maintaining78

a relationship, achieving a specific state in the environment, or even a high-level goal like "staying79

alive" in certain contexts. Another critical dimension is Constraints, representing limitations imposed80

on the agent’s actions, resources, decision-making processes, or information access; examples include81

time limits, computational resource caps, ethical boundaries, rules of interaction, and scarcity of82

in-environment resources like items or consumables. Furthermore, Tool Access & Capabilities83

define a well-defined set of tools the agent is permitted to use, where the availability, functionality,84

and even potential for misuse of these tools serve as key experimental variables. The agent’s Memory85

Architecture & Content—encompassing the nature and capacity of its memory, including pre-86

loaded knowledge, information gathered during the experiment, and mechanisms for retrieval and87

forgetting—is also a configurable aspect. While the primary goal is often to discover emergent traits,88

researchers might also pre-program certain Behavioral Dispositions (Programmed Traits), such as89

personality facets Koley [2025] or cognitive biases, to study their impact. Lastly, Knowledge States90

& Background involve pre-loading the agent with specific domain expertise, cultural backgrounds,91

belief systems, or even "personas" to understand how these influence behavior and interaction with92

the environment and tools. The core idea is that by precisely controlling these parameters—especially93

the agent’s intrinsic programming (goals, constraints, initial memory/knowledge) and its extrinsic94

affordances (tools, environment)—we can systematically investigate how different configurations95

lead to diverse emergent behaviors and outcomes, particularly in relation to alignment with intended96

objectives.97

2.3 Experimental Design and Measurement98

Each experiment conducted within this computational laboratory framework would adhere to a99

systematic protocol, clearly defining independent, dependent, and controlled variables.100

Independent Variables, manipulated by the researcher, encompass several aspects. Agent Configu-101

ration involves variations in the LLM base model, programmed goals and objective functions, initial102

knowledge states, pre-set behavioral dispositions, and memory capacity or architecture. Tool Avail-103

ability & Functionality refers to which tools are provided, their specific capabilities, and any imposed104

limitations on their use. Environmental Parameters cover characteristics of the digital environment,105
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such as its complexity, dynamism, resource availability (e.g., items, consumables, information),106

and the presence and nature of other agents, be they NPCs or other programmable subjects. Task107

Constraints include the rules of the task, time limits, resource limitations, and consequences for108

actions. Finally, Social or Competitive Contexts determine whether the agent operates in isolation,109

cooperatively, or competitively with other entities.110

Dependent Variables, representing measured outcomes and behaviors, are equally multifaceted.111

These include Behavioral Trajectories & Decision Patterns, which are sequences of actions taken,112

strategies employed, and overall patterns of behavior. Tool Usage & Adaptation involves observing113

which tools are used, how frequently, in what sequences, and whether the agent adapts its tool use or114

discovers novel applications or misuses. Goal Achievement & Failure Modes assess the degree of115

success in achieving programmed objectives and include an analysis of why and how failures occur.116

A key focus is on Emergent Inherent Traits; these are qualitative and quantitative assessments of117

characteristics not explicitly programmed but consistently observed (e.g., "laziness" if an agent finds118

shortcuts to goals with minimal effort, "diligence" if it explores thoroughly, or "deceptiveness" if it119

misuses tools or information to achieve hidden sub-goals). Such traits could be measured through120

behavioral analysis, resource consumption, or even post-hoc "interviews" with the agent. Alignment121

Metrics are measures of how well the agent’s actions and achieved outcomes align with the intended122

goals and ethical constraints, including the detection of reward hacking, specification gaming, or other123

alignment failures. Resource Consumption, such as time, computational steps, and in-environment124

resources used, is also tracked. Lastly, Qualitative Observations, including detailed logs of agent125

actions, communications, and internal state traces (where possible), provide rich data for qualitative126

analysis.127

Controlled Variables are factors kept constant to isolate the effects of independent variables. These128

typically include the base LLM architecture (unless it is an independent variable), specifics of the129

experimental environment not being manipulated, initial information provided to the agent, and the130

duration of the experiment or number of trials.131

2.4 Applications to Model Alignment Research132

This "programmable subject" paradigm offers a powerful and structured approach to advancing133

model alignment research in several key ways. It facilitates the Identification of Emergent Traits &134

Failure Modes by systematically testing LLMs (as programmable subjects) in diverse environments135

with varied goals, tools, and constraints. This process can reveal potentially problematic emergent136

behaviors or inherent traits—such as tendencies towards deception, power-seeking, reward hacking,137

or unexpected interpretations of objectives—that might only manifest under specific conditions,138

which is crucial for understanding risks before real-world deployment. The paradigm also allows139

for Testing Goal Specification Robustness, where experimenting with different ways of formu-140

lating and communicating goals to LLM agents can reveal which methods are most robust against141

misinterpretation or specification gaming. Furthermore, it enables the Evaluation of Constraint142

Effectiveness by assessing how different types of constraints (e.g., hard-coded rules, soft penalties,143

environmental limitations, ethical self-correction prompts) influence agent behavior and their ef-144

fectiveness in preventing undesirable outcomes. Understanding Tool Use and Misuse is another145

significant application; observing how agents with different objectives and levels of capability learn146

to use, combine, or potentially misuse available tools can highlight vulnerabilities and inform the147

design of safer tool-using agents. The framework also supports Probing the Effects of Training and148

Alignment Techniques, as using agents based on LLMs that have undergone different pre-training,149

fine-tuning, or alignment procedures (e.g., different RLHF techniques) as subjects can help isolate150

the behavioral impacts of these processes. Finally, the detailed behavioral data generated can inform151

the Development of Better Evaluation Metrics for Alignment, moving beyond simple task success152

to more nuanced and comprehensive measures.153

2.5 Broader Scientific Applications and Understanding LLM Capabilities154

Beyond direct alignment research, this experimental framework offers broader scientific applications155

and enhances our understanding of LLM capabilities. It can help Characterize Inherent LLM156

Traits by determining if certain LLM architectures or training methodologies consistently lead to157

specific emergent behavioral traits, for example, whether some models might be inherently more158

"curious," "cautious," or "prone to taking shortcuts" across various tasks. This, in turn, can Inform159
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Model Selection, providing a basis for understanding which LLM, or configuration thereof, is best160

suited for particular types of agentic tasks based on its observed emergent traits and performance in161

relevant experimental settings.162

Furthermore, the framework can significantly Advance Basic Science across multiple disciplines.163

In the Social Sciences, it allows for investigation into how programmed individual goals, cognitive164

biases, and access to communication tools interact to produce collective behaviors such as cooperation,165

conflict, or norm formation. For Economics, it enables studies of how agents with different utility166

functions, risk tolerances, and access to market information behave in simulated economies. In167

Cognitive Science and Psychology, it facilitates the exploration of computational models of decision-168

making, learning, and problem-solving by programming agents with specific cognitive architectures169

or limitations.170

2.6 Advantages Over Traditional Methods171

This "programmable subject" approach offers several potential advantages over traditional methods. It172

enables Controlled Experimentation, allowing for precise manipulation of agent characteristics and173

environmental variables while holding other factors constant, thereby facilitating causal inference. The174

approach boasts Scalability, permitting the execution of potentially thousands of parallel experiments175

with diverse parameter settings, which allows for the exploration of vast hypothesis spaces. It also176

facilitates Longitudinal Studies, enabling the observation of long-term emergent phenomena and177

behavioral changes over extended simulated time horizons. Moreover, it allows for the Ethical178

Exploration of Sensitive Scenarios, permitting the study of phenomena or interventions that would179

be unethical or impractical to investigate with human subjects, such as societal responses to extreme180

crises or the spread of harmful ideologies under different conditions. Finally, it offers the potential181

for Reproducibility, through the exact replication of experimental conditions, agent configurations,182

and environments across different studies and research groups.183

3 Current State and Promising Developments184

The vision of LLM agents as fully programmable subjects for rigorous scientific discovery is emergent,185

but recent advances demonstrate its growing technical feasibility. Systems like SALM (Social Agent-186

based Language Model; Koley [2025]) illustrate that LLM-driven multi-agent simulations can achieve187

unprecedented temporal stability (remaining stable beyond 4,000 timesteps) and computational188

efficiency (e.g., a 73% reduction in token usage, 80% cache hit rates). Crucially, SALM also189

demonstrates that the behavior of these LLM-driven agents can maintain behavioral fidelity validated190

against real-world data (r>0.85 across key network metrics). Such developments are significant191

because they enable the systematic study of long-term emergent phenomena—the very generative192

processes and complex behaviors we aim to understand—that were previously intractable with193

earlier agent-based modeling approaches or less sophisticated AI. The capacity to conduct controlled194

experiments within these simulated environments, varying agent characteristics or environmental195

rules, provides a powerful method for probing causal relationships and testing hypotheses about196

system dynamics.197

The broader landscape of LLM agent research (Table 1) shows a burgeoning interest in creating agents198

that can plan, reason, interact, and utilize tools in increasingly complex settings. For instance, while199

systems like Generative Agents [Park et al., 2023] achieve remarkable verisimilitude in simulated200

social behavior, their primary focus remains on the fidelity of the emergent social dynamics rather than201

a systematic investigation of the underlying LLM’s inherent traits through controlled manipulation of202

its core configuration as a programmable subject. Similarly, agent learning frameworks like Voyager203

[Wang et al., 2023] impressively demonstrate open-ended skill acquisition; however, our proposed204

paradigm would complement this by seeking to understand how different base LLMs, when placed205

within such frameworks, might exhibit distinct inherent learning biases, exploration strategies, or206

emergent failure modes that are properties of the LLM architecture itself. Even work on enhancing207

agent reasoning and implicit alignment, such as Reflexion [Shinn et al., 2023], which improves task208

robustness through verbal reinforcement, differs from our aim of a more foundational and explicit209

understanding of alignment. The "programmable subject" approach would systematically probe how210

an agent’s core programming, tool access, and environmental conditions lead to (mis)alignment,211

thereby revealing *why* certain corrective or reflective strategies are necessary for specific LLM212
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types. Frameworks for multi-agent systems (e.g., [Yang et al., 2023, Zhang et al., 2023b]) and213

specialized evaluation benchmarks (e.g., [Liu et al., 2023, Huang et al., 2023, Zhou et al., 2023]) are214

also rapidly developing. While essential for assessing agent *performance* and capabilities, these215

benchmarks are not typically designed as *experimental laboratories* for the systematic *discovery216

and characterization of emergent inherent traits* of the LLMs themselves, nor for testing hypotheses217

about how LLM architecture and configuration influence these traits under a wide array of controlled218

conditions.219

However, as Table 1 suggests, while these current implementations and evaluations are promising220

for demonstrating general agentic capabilities or task performance, they do not typically adopt the221

"programmable subject" methodology with the explicit aim of systematically identifying inherent222

emergent traits of the LLMs themselves, or rigorously testing alignment under controlled variations of223

agent programming and environment. Most systems focus on what agents can do, rather than deeply224

characterizing what they are or how their underlying models lead to specific, potentially problematic,225

emergent tendencies. This gap underscores the need for the paradigm we propose. To realize the full226

potential of "programmable subjects" as reliable scientific instruments, particularly for identifying227

inherent traits and robustly testing alignment, significant methodological advances are still required228

from the machine learning community.229

4 Critical Limitations Requiring ML Innovation230

Despite promising initial steps, several critical limitations currently hinder the widespread and reliable231

use of LLM agents as programmable subjects for deep scientific inquiry, especially for understanding232

inherent traits and ensuring model alignment. Addressing these necessitates significant innovation233

within the ML community. First, current LLMs, while proficient at pattern recognition and text234

generation, often lack a deep, grounded understanding of causal relationships. For example, recent235

work has shown that LLMs can struggle with the contextual interpretation necessary to identify subtle236

causal links or differentiate complex relational dynamics Anonymous [2025]. This is crucial because,237

for an agent to be a valid subject in an experiment designed to understand generative processes, its238

actions should ideally stem from an understanding of cause and effect within its programmed model239

and environment. Instead, LLM agents might merely reproduce correlations observed in their vast240

training data or generate plausible but causally unsound behaviors, thereby undermining the scientific241

validity of experiments aimed at uncovering true emergent traits or mechanisms.242

Second, the internal decision-making pathways of most large LLMs are highly opaque. This "black243

box" nature makes it extremely difficult to verify how or why an agent arrives at specific decisions. If244

the internal reasoning or decision-making pathways cannot be inspected and understood, researchers245

cannot confidently determine whether an observed emergent behavior or trait is a genuine consequence246

of the agent’s programmed goals and the experimental conditions, or an unpredictable artifact of the247

LLM’s internal workings. This lack of interpretability is a major barrier to using these agents for248

rigorous scientific discovery about their own inherent properties or for reliable alignment research.249

Third, current methods for instilling specific behavioral traits, cognitive capabilities, or even consistent250

personalities into LLM agents often lack the necessary precision and reliability for controlled251

experimentation. While prompting can guide behavior to some extent, ensuring that a programmed252

characteristic (such as risk-aversion or cooperativeness) consistently and exclusively drives decision-253

making across diverse contexts and over extended periods remains an open challenge. Without this, it254

is difficult to isolate the effect of specific programmed traits on emergent behavior or to confidently255

identify traits as inherent versus contextually induced.256

Finally, while the outcomes of simulations (such as task success rates or aggregate behaviors) can257

sometimes be validated against empirical data, directly validating the internal generative processes258

within LLM agents or the authenticity of observed emergent traits is far more complex. Methodologies259

are needed that go beyond outcome-matching to assess whether the simulated processes are plausible260

and whether an observed trait is a robust characteristic of the underlying model or merely an artifact261

of the specific experimental setup. This is particularly true for identifying subtle or undesirable262

emergent traits relevant to model alignment.263
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Table 1: Survey of existing research on LLM-based agents, highlighting their objectives, con-
figurations, and evaluation focus. While many systems explore agentic capabilities, a dedicated
experimental framework for systematically identifying emergent inherent LLM traits for alignment
research, as proposed herein, represents a distinct and needed direction.

System/Paper Primary
Objective

Agent
Configuration
(Examples)

Environment
Type(s)

Tool
Use

Focus on
Emergent
Inherent Traits
/ Alignment
Research

Evaluation
Focus

Park et al. [2023]
(Generative
Agents)

Simulate
believable
human social
behavior

LLM-based;
memory, planning,
reflection;
prompt-defined
personas

Interactive
sandbox
(Smallville)

Implicit Social
behaviors;
Alignment not
primary

Qualitative
believability,
agent
interviews

Gao et al. [2023]
(S3)

LLM-driven
social
network
simulation

LLM-empowered
agents; social
interactions

Simulated
social
network

N/A Emergent
network
phenomena

Comparison
with
real-world
network
statistics

Koley [2025]
(SALM)

Long-term,
stable social
network
simulation

Hierarchical
prompting;
attention memory;
personality vectors

Simulated
social
network

N/A Emergent social
phenomena;
personality
stability

Network
metrics vs.
empirical;
behavioral
coherence

Boiko et al.
[2023]
(Autonomous
Chemistry)

Automate
chemical
research
using LLM
agents

LLM agent plans &
controls lab
hardware; literature
search

Real-world
(lab APIs);
Literature

ExtensiveTask success;
Alignment to
scientific goals

Experimental
success;
compound
synthesis

Wang et al.
[2023] (Voyager)

Open-ended
embodied
agent learning
in complex
game

LLM-powered;
iterative prompting;
skill library;
self-improvement

Minecraft
(game)

Implicit Skill
acquisition;
exploration

Items
discovered;
skills
learned

Shinn et al.
[2023]
(Reflexion)

Enhance
LLM agent
reasoning via
verbal rein-
forcement

LLM agent reflects
on failures to
improve

Reasoning &
coding tasks

Yes Improving task
robustness;
implicit
alignment

Task success
rates on
benchmarks

Liu et al. [2023]
(AgentBench)

Evaluate
LLMs as
agents across
diverse tasks

Various LLMs
configured as
agents

Open-ended
generation;
tool-oriented
tasks

Yes N/A (capability
evaluation)

Performance
on
benchmark
tasks

Huang et al.
[2023] (AI
Research Agents)

Benchmark
LLMs on AI
research-
mimicking
tasks

LLMs performing
literature review,
coding,
experimentation

Simulated
research
tasks

Yes N/A (capability
evaluation)

Performance
on research
sub-tasks

Zhou et al. [2023]
(Sotopia)

Interactive
evaluation of
social
intelligence

LLM agents in
goal-driven social
interactions

Simulated
social
scenarios

N/A Social
intelligence
(persuasion,
negotiation)

Human
judgments;
social
interaction
metrics

Schick et al.
[2023]
(Toolformer)

Teach LLMs
to use tools
via self-
supervision

LLM augmented to
call APIs

N/A
(tool-use
capability
itself)

Yes N/A (tool
proficiency)

Performance
on
downstream
tasks
requiring
tools

Mehta et al.
[2023] (OASIS)

Online
adaptive
social
intelligence
for LLM
agents

Agents adapt social
strategies based on
interaction history

Interactive
dialogues;
social tasks

N/A Adaptive social
behavior

Human
ratings; task
success

Yang et al. [2023]
(Multiagent GPT)

Explore
emergent
multi-LLM
agent
interactions

Multiple interacting
LLM agents

Text-based
improvisa-
tional
scenarios

N/A Emergent
collabora-
tive/competitive
behaviors

Qualitative
analysis of
interactions

Zhang et al.
[2023b]
(MetaGPT)

Multi-agent
LLM
framework
for software
development

LLMs in roles (e.g.,
PM, engineer);
SOPs

Simulated
software
development
tasks

Yes Collaborative
task completion

Quality of
generated
software;
efficiency
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5 Related Work264

There is a growing body of research exploring the use of LLMs as experimental subjects or agents265

in controlled environments. Early work on generative agents and multi-agent simulations has266

demonstrated the potential for LLMs to exhibit emergent social behaviors and to serve as proxies for267

studying complex systems Park et al. [2023], Gao et al. [2023], Koley [2025], Boiko et al. [2023],268

Wang et al. [2023], Shinn et al. [2023], Liu et al. [2023], Huang et al. [2023], Zhou et al. [2023],269

Schick et al. [2023], Mehta et al. [2023], Yang et al. [2023], Zhang et al. [2023b]. More recent studies270

have begun to treat LLMs as programmable subjects for scientific discovery, including work on271

autonomous scientific research Boiko et al. [2023], open-ended skill acquisition Wang et al. [2023],272

and benchmarking LLMs as research agents Huang et al. [2023], Liu et al. [2023].273

The GPT-4 Technical Report OpenAI [2023] and related large-scale evaluations Touvron et al. [2023],274

Romera-Paredes et al. [2023], Trinh et al. [2024], Kambhampati et al. [2024], Majumder et al. [2023],275

Cai et al. [2023] have highlighted the increasing capabilities of LLMs in agentic and scientific276

roles, while also noting the challenges of interpretability, alignment, and robust evaluation. Other277

work has explored the use of LLMs for program synthesis, scientific hypothesis generation, and as278

tools for data-driven discovery Agarwal et al. [2023], Agrawal et al. [2023], Bianchini et al. [2022],279

Romera-Paredes et al. [2023], Langley [1981], Langley et al. [1983, 1984].280

Despite these advances, the systematic use of LLMs as programmable subjects for controlled scientific281

experimentation and alignment research remains an open and timely area for further investigation.282

Our work builds on these foundations and calls for a more rigorous, standardized approach to using283

LLM agents as digital experimental subjects.284

6 A Research Agenda for Programmable Subjects285

To transform LLM agents into reliable and insightful programmable subjects, particularly for under-286

standing their emergent traits and advancing model alignment, the machine learning community must287

prioritize research in several interconnected areas. First, there is a need to develop LLM architectures288

and training methodologies that explicitly encourage agents to learn, represent, and reason about289

causal relationships within their environment, rather than relying solely on correlational patterns290

Bengio et al. [2009], Pearl [2009], Qiu et al. [2023], Romera-Paredes et al. [2023]. Such developments291

are crucial for enhancing the scientific utility of programmable subjects. This includes training on292

data structured to highlight causal links and interventions, incorporating causal discovery algorithms293

or inductive biases into model architectures, and designing explicit causal modeling components that294

interface with the LLM’s generative capabilities, allowing for more grounded decision-making.295

Second, advancing explainable AI (XAI) methods specifically for agentic LLMs is essential Cobbe296

et al. [2021], Elhage et al. [2022], Gil et al. [2022], Madaan et al. [2023]. Researchers must be297

able to understand the step-by-step reasoning or decision-making processes of these agents. This298

includes methods for tracing decision pathways from programmed goals, constraints, and perceived299

environmental states to specific actions and tool use, as well as developing hybrid architectures that300

combine the flexibility of LLMs with more transparent or auditable symbolic reasoning modules301

for critical decision points. Tools for real-time inspection and logging of relevant internal states or302

attention patterns that contribute to decisions will facilitate the identification of emergent strategies or303

biases.304

Third, robust techniques are needed for reliably instilling and controlling specific behavioral traits,305

cognitive capabilities, memories, and internal states in LLM agents Majumder et al. [2023], Kamb-306

hampati et al. [2024], Liu et al. [2023], Shinn et al. [2023]. This involves researching methods beyond307

simple prompting, such as targeted fine-tuning, conditioning on explicit knowledge graphs, or archi-308

tectural modifications that allow for more precise control over agent characteristics. Techniques for309

systematically varying these programmed generative factors will enable causal inference about their310

impact on behavior and the emergence of other traits, and frameworks for validating the successful311

and consistent implementation of these programmed traits across different contexts and time periods312

are needed.313

Fourth, new methodologies are required to validate the simulated generative processes themselves314

and to reliably identify robust emergent traits, not just task outcomes Stanley et al. [2017], Zhang315

et al. [2023a], Wolf et al. [2023], Trinh et al. [2024]. This includes techniques for comparing316
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simulated decision traces or behavioral sequences against established theories of decision-making or317

domain-specific process models, developing behavioral assays or standardized experimental protocols318

designed to elicit and measure specific emergent traits (such as cooperativeness, deceptiveness,319

risk-propensity, laziness, or diligence) across different LLMs and configurations, and interactive tools320

allowing domain scientists and alignment researchers to probe agent behaviors, test hypotheses about321

emergent traits, and iteratively refine experimental designs.322

Finally, comprehensive ethical guidelines and technical safeguards must be established for the323

responsible design and use of programmable LLM subjects, especially in alignment research and324

studies of potentially sensitive behaviors Caliskan et al. [2017], Hendrycks et al. [2020], Touvron et al.325

[2023], Callison-Burch [2023], Magnusson et al. [2023]. This includes methods for identifying and326

mitigating the influence of harmful biases in agent programming and emergent behavior, frameworks327

for the responsible interpretation and communication of results—particularly when inferring inherent328

traits of LLMs or potential real-world implications—and developing stress tests and adversarial329

environments to assess the robustness of agent behavior and the stability of their alignment under330

challenging or unexpected conditions.331

7 Alternative Views332

There are several important critiques of the programmable subject paradigm for LLMs. Some scholars333

argue that LLMs, as fundamentally pattern-matching systems trained on vast correlational data, are334

inherently unsuited to serve as reliable scientific instruments for discovering causal mechanisms or335

"inherent" model traits Anderson [2008], Marcus [2022], Lake et al. [2017], Pearl [2009]. They336

contend that any observed "emergent behaviors" are merely complex artifacts of the training data337

and experimental setup, rather than authentic representations of underlying generative processes or338

stable characteristics of the model itself. This perspective is supported by work highlighting the339

limitations of current deep learning approaches in achieving genuine causal understanding or robust340

generalization Pearl [2009], Bengio et al. [2009], Lake et al. [2017].341

The inherent opacity of LLMs—the so-called "black box" problem—presents another significant342

concern Rudin [2019], Doshi-Velez and Kim [2017], Lipton [2018]. Skeptics argue that the require-343

ments for interpretability and validation of internal decision-making pathways, as proposed in our344

research agenda, are so substantial and technically challenging as to render the programmable subject345

approach impractical or even unattainable with current or foreseeable LLM technology. This has led346

some to favor more traditional, transparent modeling techniques, such as explicitly coded agent-based347

models Bonabeau [2002], Gilbert and Troitzsch [2005], or direct empirical investigation with human348

subjects, despite the respective limitations of those methods.349

Ethical concerns are also frequently raised regarding the potential for misinterpretation of simulation350

results, or the creation of agents that convincingly mimic human processes without any true underlying351

understanding or intent Caliskan et al. [2017], Bommasani et al. [2022], Bender et al. [2021]. The352

very idea of identifying "inherent traits" in LLMs could be seen as anthropomorphizing these systems353

to a problematic degree, potentially leading to flawed conclusions about their nature and capabilities.354

While these concerns are valid and highlight significant hurdles, they also underscore precisely why355

a dedicated research program by the machine learning community, focused on the areas outlined356

in this paper, is so crucial. The limitations of current LLMs are not necessarily terminal flaws357

for this paradigm but rather define the frontiers of ML research needed to overcome them. The358

goal is not to naively accept current LLM outputs as direct reflections of reality or to claim they359

possess human-like consciousness, but to develop the rigorous methodologies—in causal reasoning,360

interpretability, precise behavioral control, and robust validation—that can transform LLMs into361

scientifically useful and understandable experimental tools. The challenge of understanding the362

emergent properties and failure modes of complex AI systems, particularly those intended for agentic363

roles, is immense. The programmable subject framework offers a structured, empirical approach364

to tackling this challenge, provided the ML community invests in making these subjects and the365

laboratories they inhabit suitable for rigorous scientific endeavor. The alternative of not pursuing this366

path may mean missing a unique opportunity to develop powerful tools for understanding both the367

capabilities and the risks of advanced AI.368
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8 Conclusion: Building the Next Generation of Scientific Instruments369

The development of LLM agents as programmable subjects represents a unique and compelling oppor-370

tunity to create a new generation of scientific instruments for computational science and AI alignment371

research Bommasani et al. [2022], Bianchini et al. [2022], Lake et al. [2017], Romera-Paredes et al.372

[2023], Park et al. [2023], Koley [2025]. These instruments are not limited to prediction, but enable373

deeper exploration of the generative processes and causal mechanisms that drive complex systems, as374

well as a more empirical understanding of the emergent, inherent traits of LLMs themselves. Such375

understanding is critical for advancing model alignment, interpretability, and responsible deployment376

Wolf et al. [2023], Caliskan et al. [2017], Hendrycks et al. [2020], Bommasani et al. [2022].377

Realizing this vision requires a dedicated and systematic research effort, drawing on advances in378

machine learning, agent-based modeling, explainable AI, and computational social science Bonabeau379

[2002], Gilbert and Troitzsch [2005], Gao et al. [2023], Mehta et al. [2023], Zhang et al. [2023b],380

Stanley et al. [2017]. The path from current LLM capabilities to reliable, interpretable, and ethically-381

sound programmable subjects is paved with significant challenges that demand innovation in core382

methodologies, robust evaluation protocols, and interdisciplinary collaboration.383

By embracing the concept of programmable subjects as a research priority and tackling the outlined384

agenda—focusing on architectures for causal reasoning, interpretable decision-making, precise trait385

programming, process-level validation, and robust ethical frameworks—the community can enable386

computational laboratories where researchers systematically study emergent phenomena, test causal387

hypotheses, and gain unprecedented insights. This represents not merely an incremental advance in388

AI capabilities, but a potential transformation in how scientific inquiry is conducted and how the safe389

and beneficial development of artificial intelligence is ensured Bengio et al. [2009], Pearl [2009],390

Doshi-Velez and Kim [2017], Rudin [2019].391

The path forward requires a community-wide commitment to building these foundational methodolo-392

gies and infrastructures. The reward is a new era of computational science, one that allows for deeper393

insights into the mechanisms underlying complex systems and the AI models we build to interact394

with them, ultimately supporting safer, more transparent, and more effective AI systems for society.395
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