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Abstract

Most existing methods for conditional average treatment effect estimation are
designed to estimate the effect of a single cause — only one variable can be
intervened on at one time. However, many applications involve simultaneous
intervention on multiple variables, which leads to multi-cause treatment effect
problems. The multi-cause problem is challenging because one needs to overcome
the confounding bias for a large number of treatment groups, each with a different
cause combination. The combinatorial nature of the problem also leads to severe
data scarcity — we only observe one factual outcome out of many potential out-
comes. In this work, we propose Single-cause Perturbation (SCP), a novel two-step
procedure to estimate the multi-cause treatment effect. SCP starts by augmenting
the observational dataset with the estimated potential outcomes under single-cause
interventions. It then performs covariate adjustment on the augmented dataset to
obtain the estimator. SCP is agnostic to the exact choice of algorithm in either step.
We show formally that the procedure is valid under standard assumptions in causal
inference. We demonstrate the performance gain of SCP on extensive synthetic
and semi-synthetic experiments.

1 Introduction

Estimating treatment effects from observational data is a central problem in causal inference and has
many applications such as precision medicine [11]. In this work, we focus on estimating conditional
average treatment effects (CATE) to reflect the heterogeneity within a population [1]. The vast
majority of the CATE estimation methods consider the single-cause setting, where only one variable
can be intervened on, e.g. the decision to give (or not to give) a particular drug. However, in many
applications it is necessary to intervene on multiple variables simultaneously to achieve the desired
outcome (the multi-cause setting). For example, multiple drugs are needed to treat patients with
comorbid chronic diseases or systemic diseases such as cancer [21]. However, finding the best
drug combination for each patient is very challenging and the current clinical practice is clearly
sub-optimal [30]; studies have shown that nearly 50% of the elderly population in developed countries
take one or more drugs that are not medically necessary [39]. Similar examples are abundant in the
medical literature and beyond (Appendix A.5), which calls for a new methodology to estimate the
combined effect of multiple causes (drugs), a challenge we undertake in this work.

We make a distinction between the terminology cause and treatment. We refer to a cause as an atomic
variable that can be intervened on, and a treatment as a configuration of all causes. Therefore, if the
problem involves K causes and each cause is a binary variable, there will be 2K possible treatments.
The key objective of causal inference is to overcome the confounding bias in treatment assignment.
This is challenging in the multi-cause setting because a large number of treatment groups need to be
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Figure 1: (A) Illustration of the data scarcity challenge. A1: K = 3 causes and A2: the single-cause setting.
Each row contains one observation. Three green cells in each row will be filled in by SCP’s first step to form the
augmented dataset. (B) Interventions on an illustrative DAG. B1: observational data (no intervention), B2:
intervening on both causes, B3: intervening on A1 only. In B3, the intervention on A1 generates an effect on the
outcome and the cause A2. The covariate X is greyed out for visual clarity.

balanced. (In contrast, one only needs to balance two treatment groups in the single-cause setting.)
Furthermore, the combinatorial treatment also leads to data scarcity — we can only observe the
outcome under the treatment that was given (factual outcome), but not the potential outcomes (PO)
under all other treatments (2K − 1 in total, as illustrated in Figure 1 A). As the number of causes
increases, the fraction of observed outcomes decreases exponentially, which challenges the reliable
estimation of CATE.

Most single-cause methods consider only two treatments (treated or untreated). In fact, many
popular architectures and regularization methods aimed to overcome confounding do not scale
computationally to large treatment spaces [57, 73, 58, 38]. As a remedy, one may make additional
assumptions on the data generating process (DGP), for instance, assuming a linear model generates
the outcome [29] or a low-dimensional latent variable generates the treatment [75]. However, such
assumptions may limit the scope of application.

In this work, we take a different direction: instead of making additional assumptions on the functional
form or latent variable structure, we exploit the connection between a single-cause intervention and a
multi-cause intervention (Figure 1 B1-3). We establish that, under standard assumptions in causal
inference, the single and multi-cause potential outcomes are equal in expectation under appropriate
conditioning.

Based on this finding, we propose single-cause perturbation (SCP), a novel two-step procedure to
estimate CATE in the multi-cause setting. In the first step, SCP generates K additional datasets by
predicting the potential outcomes resulting from perturbing each of the K causes to their opposite
value. It then performs covariate adjustment on the combined dataset. By deliberately perturbing
the causes, the treatment assignment in the augmented dataset would be more balanced than the
observational data, thereby reducing the confounding bias. SCP is agnostic to the exact choice of
algorithm in either step and the user can choose the algorithms based on the application.

Contributions. We present SCP, a two-step multi-cause CATE estimator that leverages the connection
between single and multi-cause interventions. SCP overcomes confounding bias by using single-cause
CATE estimators to augment the observational data with the estimated potential outcomes. Compared
with existing works, SCP does not make assumptions about the distributional or functional form of
the DGP, making it suitable for complex problems in healthcare. We demonstrate and analyze the
performance gain of SCP via extensive experiments.

2 Problem formulation and notations

In this work, we focus on the CATE estimation problem with K binary causes.1 Let the causes
A = (A1, . . . , AK) be a multi-dimensional random variable with sample space Ω = {0, 1}K , where
Ak is the kth cause. Let A−k ∈ Ω−k = {0, 1}K−1 be the collection of all but the kth cause. Let
X ∈ RD and Y ∈ R be the covariates and observed outcomes respectively. The causal relationship

1SCP also applies to multi-level categorical causes, i.e. Ak ∈ {0, 1, . . . , L}, L ∈ N+ and multi-dimensional
outcomes, i.e. Y ∈ RM . Here, we use the current setting for illustration.
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Figure 2: Illustrative causal graphs. (A) Intervention on all causes A. (B) Intervention on the single cause Ak.
The other causes are partitioned into descendants A↓−k and non-descendants A↑−k. Purple edges: confounding
to treatment assignment. Brown edges: effects on the (combined) outcomes. Some less important edges are
greyed out for visual clarity.

between these variables is illustrated in Figure 2 A, which is a direct generalization of the single
cause setting [56]. We have access to an observational dataset D0 = {xi, yi,ai}i∈[N0] with N0

independent samples from the random variables defined above. Throughout the text we use capital
letters for random variables and lower case letters for fixed constants. We use boldface for vectors
or multi-dimensional random variables. When the context is clear, we will simplify the conditional
expressions, e.g. P(Y |X) := P(Y |X = x).

2.1 Multi-cause intervention

We formulate the CATE estimation problem using the potential outcome (PO) framework [56].2
Let Y (a) ∈ R denote the potential outcome in a world where the treatment a ∈ Ω was given. We
would like to estimate the CATE between any two treatments given the covariates i.e. τ(a,a′,x) =
E[Y (a)− Y (a′)|X = x], ∀a,a′ ∈ Ω, x ∈ RD. We can estimate CATE by estimating all potential
outcomes E[Y (a)|X], ∀a ∈ Ω.

The following three assumptions have been proposed to identify the multi-cause PO [56, 24]. (1)
Consistency : ∀a ∈ Ω if A = a, Y (a) = Y . (2) Weak unconfoundedness: Y (a) ⊥⊥ A |X, ∀a ∈ Ω.
(3) Overlap: P(A = a|X) > 0, ∀a ∈ Ω, if P(X) > 0. The assumptions stated above allow the
expectation of multi-cause PO to be estimated from observational data: ∀a ∈ Ω, ∀x ∈ RD:

E[Y (a)|X = x] = E[Y |X = x,A = a] (1)

2.2 Single-cause intervention

Here we consider the intervention on a single-cause, e.g. adding a new drug A1 to the existing
medications. Such intervention may affect the outcome and the other causes. For example, the
inclusion of drug A1 may promote the usage of another drug A2 because A2 can mitigate the side
effects of A1 [48].

We denote Y (ak) ∈ R as the potential outcome where the cause Ak is set to be ak. We refer to Y (ak)
as the single-cause PO. Note that the single-cause PO Y (ak) is different from the multi-cause PO
Y (a) because the latter refers to a potential world where all causes are intervened on. We sometimes
denote the multi-cause PO as Y (a) := Y (ak,a−k).

We assume that, based on domain knowledge, we can partition the rest of the causes A−k into
Ak’s causal descendants A↓−k and its non-descendants A↑−k as illustrated in Figure 2 B [45]. We
denote A−k(ak), A↓−k(ak) and A↑−k(ak) as their potential outcomes respectively. By definition, the
non-descendants should be unaffected by the intervention:

A↑−k(0) = A↑−k(1) = A↑−k. (2)

As shown in Figure 2 B, it is convenient to aggregate all the variables affected by Ak into a combined
outcome Y′k, and aggregate all the variables confounding Ak as a combined confounder X′k:

Y′k := (Y,A↓−k); Y′k(ak) := (Y (ak),A↓−k(ak)); X′k := (X,A↑−k) (3)

2In Appendix A.4, we present an alternative formalism using do-operation [46]. We show that the same SCP
algorithm can be derived using either formalism.
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Table 1: Summary of the data augmentation task in SCP’s first step.

Equation Target Input Covariates Estimated Value Algorithm

Eq. 2 A↑−k(a
′
k) - a↑−k(a

′
k) = a↑−k -

Eq. 4 A↓−k(a
′
k) X′k a↓−k(a

′
k) ∼ P(A↓−k|X

′
k, Ak) DR-CFR

Eq. 4 Y (a′k) X′k,A
↓
−k y(a′k) = E(Y |X′k,A↓−k, Ak) DR-CFR

To identify the combined PO Y′k(ak), we make the standard assumptions using Ak, Y′k, and X′k:
(4) Single-cause Consistency : ∀k ≤ K, ∀a ∈ {0, 1} if Ak = ak, Y′k(ak) = Y′k. (5) Single-cause
Unconfoundedness: Y′k(ak) ⊥⊥ Ak |X′k, ∀ak ∈ {0, 1}, ∀k ≤ K. The multi-cause overlap (Section
2.1) implies single-cause overlap, but the multi-cause consistency and unconfoundedness do not
imply the single-cause counterparts (Appendix A.3). Appendix A.1 Proposition 2 shows that, under
these assumptions, we can identify Y′k(ak) from observational data as: ∀k ≤ K, ∀ak ∈ {0, 1},

P(Y′k(ak)|X′k) = P(A↓−k|X
′
k, Ak = ak) · P(Y |X′k,A

↓
−k, Ak = ak). (4)

Discussion on partitioning the causes. We can always partition the causes into descendants and
non-decadents as long as the structure between the causes follows a DAG (hence no cycles). In
practice, such structural knowledge is often available, e.g. we can use the clinical guidelines to
identify the drugs whose prescription will be influenced by the usage of another drug. Note that
we do not need to specify the causal graph of all individual variables (e.g. the link between two
covariates Xi, Xj). However, when the full causal graph is available, we can adapt SCP to make
use of the additional structural knowledge as discussed in Appendix A.6. On the other hand, we
show empirically that SCP is not sensitive to misspecified partitioning (Section 5.1). Appendix A.3
contains an extended discussion on all our assumptions.

3 Single Cause Perturbation

3.1 The algorithm

In this section, we introduce our proposed method – single cause perturbation (SCP). Given an
observational dataset D0 with N0 data points: D0 = {xi, yi,ai}i∈[N0], SCP proceeds in two steps:
it first fits a set of models that can predict the effects of changing a single cause, and uses them to
create K additional data sets Dk = {xi, ỹki , ãki }

N0
i=1, for k ∈ [K], each corresponding to the potential

scenario of perturbing a single cause. It then fits a final model on this enlarged dataset, which is used
to estimate the multi-cause CATE. The pseudocode is detailed in Appendix A.7 Algorithm 1.

Training single-cause models. Based on Equation 4, we will train two separate models to estimate
the combined PO Y′k(ak): one for A↓−k(ak) and one for Y (ak). Note that for CATE estimation, we
only need to estimate the expectation E(Y |X′k,A

↓
−k, Ak) rather than the full probability distribution.

The models are trained on the observational data D0. We can use any single-cause CATE estimator
for this purpose since only one cause is intervened on.

We choose to use the state of the art single-cause CATE estimator, Disentangled Representations for
Counterfactual Regression algorithm (DR-CFR) [22]. DR-CFR achieves higher estimation accuracy
by learning to distinguish between true confounders, adjustment variables and instruments contained
in X′k. We provide a self-contained description of DR-CFR in Appendix A.8.

Data augmentation. As illustrated in Table 1, once the single-cause models are fitted, sampling
perturbed data points from observations (x, y,a) ∈ D0 involves three steps: (1) obtain a↑−k(a′k)

directly from the observations, (2) sample a↓−k(a′k) ∼ P(A↓−k(a′k)|X′k), and (3) obtain y(a′k) :=
E(Y (a′k)|X′k,A−k(a′k)). Here a′k = 1 − ak corresponds to perturbing the cause Ak (recall that
ak ∈ {0, 1}). Note that in step two we sample the new causes a↓−k(a′k) from the distribution in order
to keep them as binary variables. To generate a new data point (x, ỹk, ãk), we define ỹk := y(a′k)

and ãk := (a′k,a−k(a′k)). Denote Dk = {xi, ỹki , ãki }
N0
i=1 as the perturbed data for Ak. We combine

all perturbed datasets Dk, k ∈ [K] and the original dataset D0 to create the augmented training data
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DTr = {Dk}k∈[0,K]. For each unique x, DTr contains K + 1 different treatments a, ãk, . . . , ãK
and their corresponding outcomes.

Covariate adjustment on augmented data. We can estimate CATE by learning the conditional
expectation in Equation 1 using the augmented data DTr. We use a standard feed-forward neural
network, fθ : RD × Ω→ R with trainable weights θ.

3.2 Validity of SCP: linking single and multi-cause PO

One may wonder why the augmented data points (single-cause POs) would help estimate the multi-
cause PO: they correspond to different interventions, i.e. intervention on a single cause versus
intervention on all causes simultaneously. Proposition 1 shows that given our assumptions the single
and multi-cause POs are equal in expectation under appropriate conditioning – therefore, (imputed)
single cause POs can be used for multi-cause estimation. The proof is shown in A.1.

Proposition 1 (Equivalence of the single and multi-cause PO’s conditional expectation). Under the
sequential ignorability assumption [53], ∀k ≤ K,

E(Y (ak,a−k)|X) = E(Y (ak)|X,A−k(ak) = a−k). (5)

Note that the Y (ak) and A−k(ak) on the right hand side (RHS) is precisely what we estimated
and added to the augmented dataset Dk in the first step. Thus if we train a supervised learning
model on Dk to estimate the RHS, the trained model can also estimate the multi-cause PO on the
LHS. Moreover, since the relationship in Equation 5 holds for all k, we can pool all the augmented
datasets into one training dataset DTr, which is K + 1 times the size of the observational data i.e.
|DTr| = (K + 1)|D0|. The increased sample size mitigates the data scarcity issue and allows the
estimator to generalize better.

Proposition 1 also highlights the necessity of estimating A−k(ak) in addition to Y (ak) in the first
step. This is because Equation 5 is conditioned on A−k(ak) rather than the observed cause A−k.
Note that A−k(ak) = A−k, ∀ak ∈ {0, 1} only when Ak has no descendants.

3.3 SCP creates a more balanced dataset via data augmentation

In addition to increased sample size, there is also a less obvious (but equally important) reason
why SCP would achieve performance gain: the augmented data tend to be more balanced than the
observational data. This is because SCP perturbs every single cause of all the observations. For
instance, by combining D0 and D1, the empirical distribution P̂(A1|X = xi) = 0.5, ∀xi ∈ D0.
Balancing is important because prior research has shown that CATE estimators trained on a balanced
dataset tend to generalize better [57]. In fact, many existing causal inference methods employ
balancing techniques to improve performance (see Section 4). In Section 5.1, we demonstrate
experimentally that SCP consistently improves the balancing of the observational dataset.

3.4 Trade off between sample size, balancing, and first step error

SCP’s data augmentation increases sample size and improves balancing, both of which are beneficial
to CATE estimation. However, there is a caveat: the augmented dataset will also carry the finite-
sample estimation error made in the first step. There is a risk that this additional source of noise will
reduce or even cancel out the benefits of data augmentation.

In the simulation study in Section 5.1 we investigate this empirically, and observe that SCP’s actual
error in the first step is usually much smaller than the error required to offset the benefits of data
augmentation. We conjecture that this is because SCP only perturbs one cause at a time. The effect
of such a localized perturbation can be efficiently estimated by the existing methods tailored for the
single-cause setting.

One can envision an alternative way where we bundle together any two (or even more) causes Aj and
Ak and perturb both of them simultaneously. This will further increase the sample size and improve
the balancing, but the first step error will also increase because the effect of a joint perturbation is
harder to estimate. After all, if we were able to do this well, there is no need for data augmentation in
the first place.
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Table 2: Comparison with the related works. The ATE methods are listed for completeness.

Method Ref Estimand Balancing method Sample size Intermediate estimand

SCP This work CATE Data augmentation ↑↑ E(Y′k(a′k)|X′)
Cov. Adjustment [32] CATE None = P(Y|X,A)
VSR [75] CATE Weighting = P(A|Z), P(Z|X)
Deconfounder [72] CATE None = P(Y|Z,A)
Weighting [34] ATE Weighting = P(A|X)
Matching [37] ATE Matching ↓↓ P(A|X)
G computation [54] ATE Marginalization NA P(Y|X,A)

A complete theoretical analysis of the trade off is challenging because all three interacting factors
contribute to the overall estimation error. Moreover, an important feature of SCP is that it does
not make any assumption about the DGP (functional form or error distribution). However, such
assumptions are usually necessary to establish statistical efficiency bounds [44]. For these reasons,
we will defer the theoretical analysis of the trade off to future works.

4 Related works

4.1 Multi-cause and single-cause CATE estimation

Table 2 summarizes the causal inference methods related to SCP. The covariate adjustment method
uses supervised learning to estimate the PO from the “feature vector” (x,a) by Equation 1 [60, 26].

In the single-cause setting, recent works have proposed various architectures and regularization
methods [57, 38, 2, 73, 58, 74, 22]. Unfortunately, these methods often fail to scale with the number
of treatments. For instance, the popular multi-head neural network architecture requires one output
head for each of the 2K treatment levels [57], which will be infeasible even with moderate-sized K.

In the multi-cause setting, Variational Sample Re-weighting (VSR) [75] and Deconfounder [72]
improve estimation accuracy under additional assumptions about the DGP. Both methods assume
that the propensity score (PS) is determined by low-dimensional latent variables Z, i.e. P(A|X) =∑

Z P(A|Z)P(Z|X). This assumption also makes Deconfounder robust to a certain type of hidden
confounders [72]. In comparison, SCP does not make this assumption and it improves balancing
by data augmentation as discussed in Section 3.3. Other existing methods assume the outcome is
generated from a linear model [43]; SCP does not make any assumption on the function form.

4.2 Multi-cause average treatment effect (ATE) estimation

The methods for multi-cause ATE estimation broadly fall into two categories: weighting and matching
[25, 37]. The weighting methods assign an importance weight to each data point in order to create
a balanced dataset for ATE estimation [15, 34]. To adapt these methods for CATE estimation, we
could perform covariate adjustment on the weighted data. In comparison, matching methods achieve
balancing by removing unmatched data points and will end up with a smaller dataset [37, 7, 62].
Since CATE is a much more complex estimand than ATE (and thus requires more samples), matching
methods designed for ATE are unlikely to achieve good performance for multi-cause CATE estimation.

G-Computation is also a technique for ATE estimation [54, 8]. To compute the average effect,
G-computation marginalizes over the confounders X. The standard implementation estimates the
covariate distribution P(X) and uses Monte Carlo sampling for marginalization [52, 63]. This makes
G-computation conceptually very different from SCP because SCP’s data augmentation is unrelated
to marginalization – its purpose is to increase sample size and balancing for covariate adjustment.
We discuss several other less related works in Appendix A.9.

4.3 Causal data augmentation

Causal data augmentation uses known or learned causal structure to generate augmented datasets (in
contrast to heuristic data augmentation [59, 36]). Several recent works apply this approach to domain
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Identity output function
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Figure 3: Simulation Results (best viewed in color). RMSE is plotted with the 95% confidence interval
shaded (the lower the better). Algorithms include NN, NN-IPW, OP, DEC, VSR and SCP. CFR and DR-CFR’s
RMSE is an order of magnitude bigger and is shown in Appendix A.10 separately.

adaptation [64, 27], robustness [35, 65] and reinforcement learning [47]. To our knowledge, SCP is
the first method that applies causal data augmentation to multi-cause CATE estimation.

5 Experiments

5.1 Simulation study

Dataset.3 We created a range of synthetic datasets to examine the performance of SCP under different
scenarios. Each dataset contains N0 samples for training, 200 samples for validation and 4000 for
testing. The training and validation sets contain observations (xi, yi,ai) whereas the testing set
contains (xi, yi(a)), ∀a ∈ Ω. To generate an observation, we first sampleD covariates independently:
∀d ≤ D,xid∼N(0, 1). Then we obtain the causes aik,∀k ≤ K and the outcome yi:

aik ∼ B
[
σ(

D∑
m=1

vmxim +

k−1∑
n=1

unain + εik)
]
; yi = φ(

L∑
l=1

slx
′
il +

L∑
l=1

L∑
j=l

dljx
′
ilx
′
ij + εi), (6)

where x′i = (xi,ai, 1) ∈ RL, v, u, s, d are weights, B[·] denotes a Bernoulli random variable, σ
denotes the sigmoid function, φ is either identity or the sigmoid function depending on the simulation
setting. To generate various response surfaces, only a fraction ps of the weights s are non-zero and
sampled i.i.d from N(0, 1), resulting in not all covariates and causes contributing to the outcome.
The weights d are generated in the same way with the sparsity controlled by pd, resulting in varying
degrees of interaction between covariates and causes. The weights v, u’s are obtained similarly
with sparsity pv = pu = 0.3. ε and ε are white noises sampled from N(0, 0.01). We evaluate the
models using the Root Mean Squared Error (RMSE) on all potential outcomes, which is defined

as
√

1
Nt

∑Nt

i=1

∑
ai∈Ω(E[Y (ai)|Xi]− ŷ(ai))2. The simulation parameters of all the experiments

below are listed in Appendix A.10 Table 5.

Benchmarks. We included seven benchmarks to compare with SCP. As a baseline, we used covariate
adjustment with feed-forward neural networks (NN). We compared with VSR and Deconfounder
(DEC), the SOTA methods in multi-cause CATE estimation [75, 72]. For completeness, we also
included Counterfactual Regression (CFR) and DR-CFR from the single-cause CATE literature
[57, 22] as well as the propensity score (NN-IPW) and overlap score (OP) methods from the ATE
literature [25, 34]. Appendix A.10 describes training and hyper-parameter tuning procedure in detail.

Main results. In total, we performed 168 simulations with different sets of parameters. The main
results are presented in Figure 3 (additional results in Appendix A.12). In each panel, one simulation
parameter is varied while the rest are fixed (see Appendix A.10). SCP consistently outperforms

3The implementation of SCP and the experiment code are available at https://github.com/
ZhaozhiQIAN/Single-Cause-Perturbation-NeurIPS-2021 or https://github.com/orgs/
vanderschaarlab/repositories
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Figure 4: The inclusion of augmented data points reduces error. RMSE as more datasets Dk are added to
DTr or more models are added to the NN ensemble. In total, there are K = 10 causes in this simulation.

(B)(A)

Figure 5: (A): SCP consistently improves the balancing of the observational data. Error bars represent the
standard deviation of five runs. (B): Relationship between the step one and the final prediction error. A first
step error of 0.4 will degrade SCP’s overall performance to the NN baseline (dotted horizontal line). However,
the actual step one error is only half of that value (around 0.2).

the benchmarks across different number of causes K, covariate dimensionality D, sample sizes
N0, and sparsity of the causal structure ps, pd. The performance gain becomes more pronounced
as the number of causes increase, e.g. K = 10. Note that VSR and DEC’s DGP assumption is
approximately valid here because the vm and un that govern treatment assignment are sparse vectors
(Equation 6).

Why is SCP working? SCP’s performance gain roots from the increase in sample size and the
improvement in balancing. In Figure 4, we show that SCP’s prediction accuracy improves consistently
as each augmented dataset Dk, k ∈ [0,K] is added to the training data DTr (this simulation involves
K = 10 causes). The benchmark NN ensemble refers to an ensemble of NN models trained using
the bootstrapped observational data D0 [50]. The performance improvements of NN ensemble is
much slower and smaller than SCP because it only bootstraps D0 without augmenting it with new
data points. The other benchmarks in the figure will be discussed later.

To measure the improvements in balancing, we use the sum of the distributional distances between the
treatment groups, i.e. b =

∑
a∈Ω MMD(P(X|A = a),P(X|A 6= a)), where MMD is the maximum

mean discrepancy [4]. The value b appears in the generalization bound of a CATE estimator [57]
(also see Appendix A.2). Hence, achieving smaller b (more balancing) is highly desirable. We
generated a range of observational datasets with varying confounding levels, and use SCP to augment
each dataset (the confounding level is controlled by the vm in Equation 6). Figure 5 (A) shows that
SCP’s augmented data is consistently more balanced than the observational data (the improvements
in RMSE is shown in Appendix A.12).

Relationship between step one error and overall error. Next, we study how the step one error
affects the overall error. We set the augmented data points to be the true expected PO corrupted by
Gaussian noise: ỹk = E(Y (a′k)|X′k,A

↓
−k) + ξ. The standard deviation of ξ is a proxy for step one

error. As expected, Figure 5 B shows that the overall error increases with the step one error. SCP’s
performance becomes similar to the NN baseline (black line) when the step one error reaches 0.4,
which is twice as much as SCP’s actual step one error 0.2 (dotted orange line).
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Table 3: Results of the semi-synthetic data experiment using different data sizes N0.

RMSE Ranking Error
Method N0 =500 1000 1500 N0 =500 1000 1500

NN 1.257 (.004) 1.383 (.006) 1.116 (.004) 282.3 (0.9) 321.6 (1.0) 228.1 (1.5)
VSR 1.246 (.004) 1.186 (.004) 1.140 (.005) 270.3 (1.2) 253.4 (1.4) 233.6 (1.6)
DEC 1.268 (.004) 1.200 (.004) 1.118 (.005) 283.9 (0.8) 259.1 (1.3) 236.4 (1.5)
CFR 2.028 (.006) 1.924 (.007) 1.856 (.008) 393.2 (1.0) 380.8 (1.1) 335.4 (1.3)
DR-CFR 2.118 (.006) 2.005 (.008) 1.929 (.008) 401.1 (1.0) 391.2 (1.1) 379.6 (1.4)
NN-IPW 1.354 (.005) 1.244 (.003) 1.123 (.004) 295.4 (0.8) 253.0 (1.0) 225.9 (1.4)
OP 1.365 (.005) 1.426 (.006) 1.215 (.005) 287.8 (0.8) 316.1 (1.0) 238.1 (1.4)
SCP 1.117 (.004) 1.098 (.004) 1.044 (.004) 230.5 (1.3) 221.3 (1.4) 217.9 (1.4)

Sensitivity to mis-specified partitioning and step one error. To better understand the sensitivity,
we compare the SCP with an ablated version (Ablation) where there is no prior knowledge about the
non-descendants of a single cause, i.e. A↑−k = ∅. As a reference, we also consider Oracle PO, a
SCP with error-free data augmentation step. Figure 4 shows that the correct partitioning of causes
is indeed important because the ablation incurred noticeable performance loss compared with other
SCP versions. However, even the ablated version consistently outperforms the ensemble of NN. This
suggests that the increase in sample size and balancing tend to bring more benefit than the noise
introduced in the first step. In fact, the Oracle PO achieves more than 60% performance improvement
over the NN, which gives a wide “safety margin” for step one error.

Further experiments. In Appendix A.12, we present additional simulation studies that further
illustrate SCP’s source of performance gain under different settings. Our results consistently suggest
that the increase in sample size and the improvement in balancing are the two key drivers of the gain.

5.2 Semi-synthetic experiment

Dataset. We used the de-identified COVID-19 Hospitalization in England Surveillance System
(CHESS) data, which contains individual-level risk factors, treatments and outcomes of N = 3, 090
ICU patients admitted during the first peak of the pandemic. Based on the prior research on COVID-
19 [20, 49], we extracted D = 17 covariates X (e.g. age and multi-morbidity) and K = 5 causes A
(e.g. ventilation and anti-viral treatments). The full list of covariates, causes and the assumed causal
structure are shown in Appendix A.11. The outcome of interest is the patient’s length of stay (LoS) in
ICU [51]. Achieving shorter LoS is crucial for handling the large influx of patients during the peak of
pandemic. We simulate the potential LoS for all treatments based on the state-of-the-art LoS model
proposed in [70], which is a generalized linear model with interactions:

logY (a) =
∑

j,k∈[D+K+1]

βjkx
′
jx
′
k + ξ, (7)

where x′ = (x,a,1) is the concatenation of the covariates, causes and a vector of ones, βij is the
coefficient sampled from N(0, 0.5) and ξ is white noise N(0, 0.1).

Training and evaluation. We use the same benchmarks as in the simulation study. After sorting
the data chronologically according to the date of admission, we train and tune the algorithms on the
first N0 patients, and perform evaluation on the rest of the patients. Compared with random splitting,
this evaluation strategy preserves the temporality of the data and better mimics the actual training
and deployment of the algorithm. For decision support, we would like the CATE estimator to rank
higher the treatments that lead to better potential outcomes. Therefore, in addition to RMSE, we
also report the ranking error, measured by the Spearman’s Footrule distance between the treatment
rankings induced by the true and the estimated POs [31]. A detailed explanation of the distance is
given in Appendix A.11.

Results. The experimental results are presented in Table 3. We find that SCP consistently outperforms
the benchmarks in both evaluation metrics. Achieving smaller ranking error means that SCP is better
at creating a short list of plausible treatment plans for the clinicians to choose from. In practice,
narrowing down the large number of treatments into a short list might help streamline the clinician’s
decision process and improve efficiency. Moreover, SCP also consistently achieves the best accuracy
in terms of RMSE and its performance is relatively stable and improving when N0 increases.
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It is worth highlighting that SCP is more data efficient than the benchmarks: it achieves better RMSE
with N0 = 500 samples than the benchmarks trained with N0 = 1500 samples. Being data efficient
is crucial for urgent applications such as pandemic control, where the practitioners would like to
perform inference with limited amount of data.

6 Discussion on failure modes and usage guidelines

From our analysis and experiments, we have identified two major failure modes of SCP: (1) the
violation of the causal assumptions, and (2) the failure of the step one CATE estimator. However,
the causal assumptions as well as the step one CATE estimation error are not empirically verifiable
/ measurable. Hence, as a practical guideline, we would recommend the analyst to start from the
single-cause estimation problem (this is essentially the one-factor-at-a-time principle for scientific
discovery [16, 10]).

Suppose the analyst believes that a certain single-cause CATE estimator would perform well in the
application. Then, SCP can build upon that estimator to tackle the multi-cause problem (given that the
causal assumptions hold). If the analyst believes that no single-cause estimator can perform well in
the application, SCP (or other algorithms) are not expected to perform well in the (more challenging)
multi-cause setting. If the analyst instantiates SCP with a poorly performing single-cause estimator
(Figure 5 B), the procedure may fail due to excessive step one error.

7 Conclusion and future works

SCP is a principled way to leverage existing single cause CATE estimation algorithms in the multi-
cause setting. It increases sample size and balancing by augmenting the observational dataset with
the estimated potential outcomes. In principle, SCP may be used jointly with other data augmentation
procedures in the first step to produce an even richer training dataset [67]. Although we make the
unconfoundedness assumption in this work, it may also be possible to modify SCP to overcome
certain types of hidden confounders [72]. We will leave these extensions to future works.
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