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ABSTRACT

Lung cancer is the most prevalent cancer worldwide with
about 230,000 new cases every year. Most cases go undiag-
nosed until it’s too late, especially in developing countries
and remote areas. Early detection is key to beating cancer.
Towards this end, the work presented here proposes an au-
tomated pipeline for lung tumor detection and segmentation
from 3D lung CT scans from the NSCLC-Radiomics Dataset.
It also presents a new dilated hybrid-3D convolutional neural
network architecture for tumor segmentation. First, a binary
classifier chooses CT scan slices that may contain parts of a
tumor. To segment the tumors, the selected slices are passed
to the segmentation model which extracts feature maps from
each 2D slice using dilated convolutions and then fuses the
stacked maps through 3D convolutions - incorporating the 3D
structural information present in the CT scan volume into the
output. Lastly, the segmentation masks are passed through
a post-processing block which cleans them up through mor-
phological operations. The proposed segmentation model
outperformed other contemporary models like LungNet and
U-Net. The average and median dice coefficient on the test set
for the proposed model were 65.7% and 70.39% respectively.
The next best model, LungNet had dice scores of 62.67% and
66.78%.

Index Terms— Radiomics, Segmentation, CT Scan,
Lung Tumor, Deep Learning

1. INTRODUCTION

Lung Cancer is the leading cause of cancer-related deaths
worldwide. Most lung cancers are diagnosed too late during
the advanced stages where chances of survival are minimal at
best [1]. This is especially true for developing countries and
remote areas where doctors and equipment are scarce. How-
ever, state-of-the-art computer vision techniques and deep
learning have provided an opportunity to build automated
early screening systems, giving more people a greater chance
of beating cancer. To this end, we explore different neural
network model configurations and propose a pipeline for the
detection and segmentation of Non-Small Cell Lung Cancer
in this paper. We used 3D CT scan data from the NSCLC-

Radiomics dataset [2, 3, 4] for our experiments. Our ap-
proach consists of a binary classifier for detecting tumors and
a hybrid-3D dilated fully convolutional neural network for
segmenting potential tumor regions. Our proposed pipeline
outperforms established segmentation networks [5, 6] which
have been traditionally based on 2D slices.

2. RELATED WORK

There has been a significant amount of research related to ra-
diomics and biomedical image processing utilizing computer
vision and data driven algorithms in recent times [3, 7, 8].
With the availability of large volumes of data of medical im-
age data as well as technological improvements, deep learn-
ing based approaches have taken the lead in most biomed-
ical image processing applications [9, 6, 5]. Regarding tu-
mor segmentation, there have been works incorporating a de-
formable model with machine learning to perform the delin-
eation of tumor boundaries [10]. Recurrent Neural Networks
(RNN) alongside the more traditional Convolutional Neural
Networks (CNN) for segmentation of the pancreas from CT
and MRI scans were investigated by [9]. Ronneberger et al.
[6] set a new benchmark in the segmentation domain by in-
troducing a encoder-decoder convolutional neural network ar-
chitecture called U-Net. Their network bested all previous
state-of-the-art segmentation techniques based on CNN and
pixel-wise classification. More recently Anthimopoulus et
al. introduced a fully convolutional neural network using di-
lated convolutions for the semantic segmentation of intersti-
tial lung diseases from thoracic CT scans [5]. Their experi-
mental results showed that their architecture outperformed all
other models including U-Net.

3. METHODOLOGY

3.1. Data Preparation

The dataset used in this work consists of samples taken from
300 patients from the NSCLC-Radiomics dataset [2, 3, 4]. A
scanned 3D volume of the chest region containing the lungs,
heart etc. was available for each patient. For all patient cases,
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512×512 slices were provided in the traditional DICOM for-
mat. Each CT scan had annotated regions made by an ex-
pert radiologist. These 300 were divided randomly into two
groups - training (260) and test (40). The total number of CT
scan slices (axial) available in each group is shown in Table
1.

Table 1. Number of axial CT scan slices in dataset.
Set Total Patients Tumor Non Tumor

Train 260 4296 26951
Test 40 848 3630

The Houndsfield Unit (HU) values for all slices were
clipped to 0-1800 and then mapped to values between 0 and
1. A large portion of each slice was empty space (outside of
the patient’s body). Analyzing the locations of patient bodies
in the training set, we decided on a suitable crop range to
exclude a significant portion of the empty space. We found
this range to be from 74 to 426 along both the x and y axis,
resulting in 352 × 352 slices. Each slice was then resized to
224 × 224 using cubic interpolation. The number of training
slices was increased 7 fold using a combination of rotations,
flips and elastic transformations which have become com-
monplace among biomedical image augmentation techniques
[11, 12, 13]. As shown in Table 1, a large percentage of the
training CT scan slices (86%) did not contain any part of the
tumors. This class imbalance, if left unchecked, would tend
to skew the pipeline towards producing many false negatives.
In order to combat this, we sampled the training slices into
two subsets; one with all tumor containing slices only (sub-
set A), and the other with tumor containing slices plus 10
random non tumor slices from each patient data (subset B).
This selective sampling combined with multi-phase training
(described below) helped overcome any issues arising from
the class imbalance. A subset C was also created where each
entry consisted of a 3D stack containing 9 consecutive slices.
The use of this subset is described in the following section.
Lastly, 10% of each of the subsets A, B and C were held off
as validation datasets.

3.2. Segmentation Model

In this paper, we present a new hybrid-3D dilated fully con-
volutional neural network based on the LungNet architecture
proposed by [5], for the problem of segmenting tumor re-
gions. The network architecture is shown in Fig. 1. The
original LungNet was made for 2D slices of the CT Scan.
This meant the information present in the 3D structure of the
scans were not utilized by the network. To take advantage
of this, we added 3D convolutional blocks to our model, as
shown in Fig. 2. The model utilizes the original 2D LungNet
to produce 2D feature maps from individual 2D slices. These
feature maps are then stacked and fused through the 3D con-
volutions which allow encoding of information along the z

axis of the CT scans as well as that along the x-y axes into the
output.

Fig. 1. LungNet feature extraction block.

The model is fed mini-stacks of 9 consecutive CT scan
slices. The number of slices in a stack was limited by the
computational memory available to us. Each slice is denoted
by si where i is the slice index corresponding to the depth of
the slice in the CT scan. First, 2D feature maps from each
of these slices are extracted separately as follows: 10 dilated
convolutional blocks with 3 × 3 kernels and 32 filters each,
are applied sequentially on si. The dilation rates for each
convolution layer are 1,1,2,3,5,8,11,13,34 and 55 along both
the x and y axes. The outputs from each block as well as
si are concatenated in to a single tensor and passed through
a bottleneck (1 × 1 convolution) layer with 128 output fil-
ters. We denote the output of the bottleneck as fi. Thus we
have features {f1, f2, . . . , f9} corresponding to input slices
{s1, s2, . . . , s9}. The fi are stacked to create a 3D feature
volume, which is passed through two 3D non-dilated con-
volutional blocks, with 64 and 32 filters respectively and
3× 3× 3 kernels. These convolutions along all 3 axis incor-
porate the structural information available along the z-axis
from all 9 slices. Finally, one last 3D convolution with a
1 × 1 × 1 kernel is applied to produce 9 single-channel
masks {m1,m2, . . . ,m9} corresponding to the respective
input slices. Each convolution described above except the
final layer is followed by a batch normalization layer [14].
The final output layer uses Sigmoid activation while all other
layers use ReLU activation [15]. Thus the pixels in the output
of the final layer have floating values between 0 and 1, which
represent the probability of that pixel being inside of a tumor
region.

The proposed model was trained in two phases - I and
II. During phase I, only the feature extractor block, that is
2D LungNet, was trained independently to output single 2D
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Fig. 2. Proposed model - 3D LungNet.

masks for single 2D input slices. In phase II, the final 3 convo-
lutions were changed to 3D convolutions and the model was
trained end-to-end using the mini-stacks to output 9 masks
for 9 input slices. Training the full model with random ini-
tialization of weights, in a single phase proved difficult in
terms of convergence and computational memory. Splitting
the training like this allowed the model to converge approx-
imately 4 times faster and improved the overall performance
as well. The negative log of the 2D dice coefficient between
each ground truth segmentation mask (X) and each predicted
mask (Y ) was used as the loss functionL{X,Y } during train-
ing. This loss function proved to be more robust against the
class imbalance (tumor region vs. non tumor region) com-
pared to both binary cross-entropy and mean squared error.
In phase II, the loss function was averaged over each slice in
the mini-stack.

L{X,Y } = −log
(
2 ∗ |X ∪ Y |+ 1

|X|+ |Y |+ 1

)
(1)

We utilized the Adam optimizer [16] with an initial learn-
ing rate of 0.001 and batch size of 10 for phase I, while in
phase II, learning rate and batch size was set to 0.0001 and 2
respectively. In phase I, training was first done using subset A.
When the validation loss function plateaued, the model was
adapted for non-tumor slices by training with subset B with a
decimated learning rate. Solely being trained on subset A, the
model produced a lot of false positives - a non empty segmen-
tation mask even though no tumor was present. Again, if only
trained on subset B, the model was biased to produce false
negatives - empty segmentation mask even though tumor was
present). The aforementioned strategy reduced the bias of the
model. For phase II, subset C was used to train model when
3D convolution layers were added.

In the test phase, for a single CT scan, we produced mini-
stacks from consecutive overlapping sequences of slices. The

output sequences were averaged where they overlapped, thus
providing an ”ensemble” effect, improving the accuracy of
segmentation. The overlapping sequences were formed as
follows. If a tumor was detected between slices with index
i = a and i = b where a < b, the first mini-stack consisted
of sa, 4 slices above and 4 slices below sa respectively ar-
ranged in order of slice index. That is, the mini-stack con-
tained {sa−4, sa−3, . . . , sa, . . . , sa+3, sa+4}. The next mini-
stack had all indexes shifted up by 1. This was done until
the last slice in a mini-stack was sb+4. The mini-stacks were
padded with the nearest slice if we hit the top/bottom slice of
the CT scan.

3.3. Binary Classifier

A vast majority of slices in the training set did not contain
any part of the tumor. We therefore implemented a frontend
binary classifier, shown in Fig. 3, to detect tumor containing
slices and only pass those to the segmentation model. Sim-
ilar to the segmentation model, features were extracted us-
ing the already trained feature extraction block and then a bi-
nary decision was made through fully connected dense layers.
To boost the recall of the binary classifier, when a slice was
predicted to contain a tumor, 8 neighboring slices along the
±z directions were also automatically labeled as having parts
of the tumor. Each slice represented a real world thickness
of 3 mm as per the settings of CT Scanner. So, labelling 8
neighboring slices as tumor containing meant labelling a re-
gion spanning of 2 × 8 × 3 mm = 48 mm along the z axis
to be tumor containing. This made all but the largest tumors
fall into the range of slices we would be looking to segment.
Following this scheme the binary classifier had only 40 false
negatives and 1158 false positives for the test set. Most of the
false positives, however, were weeded out by the segmenta-
tion model and post processing.

Fig. 3. Tumor detection model.

3.4. Post Processing

The masks generated by the segmentation model were padded
(to compensate for the cropped regions) and resized back to
the original resolution of 512 × 512. An optimum threshold
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Fig. 4. Training curve for feature extractor.

value was determined from the Receiver Operating Charac-
teristic (ROC) curve generated from the validation data, and
applied on the masks - values below it were relegated to 0,
while those above were made 1. The value for the proposed
model was found to be 0.75. To remove noisy specks and
small patches, we applied a sequence of dilation and erosion
operations with elliptical and cross shaping kernels. We also
applied an area-based threshold for the predicted tumor re-
gions. Regions smaller than the threshold (25 px2 was found
to be the smallest tumor region in the training set), were rela-
beled to be non-tumor. These post processing steps reduced
false positives by more than 50%. The post-processing steps
were applied to the output of all the tested segmentation mod-
els to enable a fair comparison of the performance of the seg-
mentation models.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Training and Evaluation

We implemented our models using the Tensorflow frame-
work by Google [17] running behind the wrapper library
Keras [18]. Pre and post processing algorithms were imple-
mented using functions from OpenCV and Scipy libraries for
python [19, 20]. By following the training scheme described
in section 3.2, we obtained the training curve shown in Fig.
4 for the Segmentation model in phase I. The sudden rise in
dice coefficient of the model corresponds to the time when
training on subset B started. It is seen that the model gen-
eralizes well and does not overfit. The final validation dice
coefficient averaged over each patient case was 62.7%. For
phase II, the model was trained on subset C for 6 epochs at
which it reached peak validation dice coefficient.

4.2. Results

The proposed segmentation model was compared against the
2D LungNet and U-Net architecture based on the 2D dice co-
efficient. The dice coefficient was calculated for each tumor
containing slice and then averaged for all cases in the test set.
These results are presented in Table 2. The average values
of the dice coefficient were calculated for only slices having

Table 2. Results summary on test set.

Model Total Params. Mean Dice Median Dice
Arch. (×105) (%) (%)
U-Net 310 58.48 62.29

LungNet 1.30 62.67 66.78
Proposed 4.03 65.77 70.39

tumors as indicated by the ground truth annotation. That is,
false positives were ignored in the average. It is seen that
the proposed model obtained a much higher dice coefficient.
The high median dice score also indicates that the proposed
model performed better on edge cases, where the other mod-
els failed. Some of the generated masks from the test set are
shown in Fig. 5. It is seen that visually the proposed model
produces a less spiky, more encompassing mask of the tumor
region, owing to the incorporation of the 3D structural fea-
tures.

Fig. 5. Segmentation boundaries produced by the pipeline
using different models. The blue outline represents the pre-
dicted mask while the red outline indicates the ground truth.

5. CONCLUSIONS

The proposed segmentation model was seen to perform bet-
ter by almost 3% in terms of dice coefficient compared to
the next best implemented model. It was able to take advan-
tage of the 3D information present within CT scan volumes.
We also emphasize on the fact that the hybrid-training of the
feature pooling LungNets ensures an effective yet less com-
putationally expensive architecture compared to end-to-end
3D convolutional model based pipelines. As reported in [21]
an earlier version of the proposed pipeline outperformed all
other such approaches in the IEEE VIP CUP 2018 Lung Tu-
mor Segmentation Challenge. Further works planned com-
prise of training the pipeline with deeper stacks of slices and
training the binary classifier and segmentation model jointly.
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