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Abstract

Deep learning applications in surgery are heavily reliant on large-scale datasets with high-
quality annotations, which are costly and time-consuming to obtain. Self-supervised learn-
ing (SSL) has shown significant potential for reducing reliance on labelled data. This work
investigates the use of SSL for semantic segmentation in laparoscopic cholecystectomy (LC)
surgery. Through evaluation of existing SSL methods, we find that pixel-level objectives
enable the most effective representation learning for laparoscopic imaging, characterised
by highly variable and deformable anatomy. Building on this insight, we develop a tai-
lored masked denoising autoencoder with a carefully optimised masking ratio and patch
size for semantic segmentation. Our method achieves state-of-the-art performance across
three LC datasets. Of note, it significantly improves segmentation accuracy for critical
anatomical structures that are under-represented in training datasets. Furthermore, our
approach achieves generalisability, with pre-trained representations performing effectively
across fine-tuning datasets from different institutions.

Keywords: Self-supervised learning, laparoscopic imaging, semantic segmentation

1. Introduction

Deep learning-based precise surgical scene interpretation, such as semantic segmentation, is
a crucial component of Al-based intraoperative guidance tools designed to enhance surgical
safety. The training of deep neural networks (DNNs) for semantic segmentation requires
large-scale datasets with meticulous pixel-level annotations, that are costly and labour-
intensive to produce. The development of medical image segmentation datasets includes
two major challenges: i) significant variations in the appearance of anatomical structures
and surgical instruments, and ii) class imbalance in under-represented structures. These
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challenges have impaired the accuracy of surgical image neural networks, limiting the po-
tential for real world clinical application (Tokuyasu et al.; Magbool et al., 2020; Silva et al.,
2022; Yoon et al., 2022).

Recently, self-supervised learning (SSL) approaches have been employed in surgical
computer vision applications to leverage high volume unlabelled data to enhance the per-
formance of DNNs, mitigating the challenges of developing sufficiently large annotated
datasets. SSL involves training models on carefully designed pretext tasks using unlabelled
data. This pre-trained model can then be fine-tuned on downstream tasks, progressively
improving the performance compared to simply training a model on labelled datasets (Chen
et al., 2020).

While a recent advancement leverages optical flow for contrastive pre-training on un-
labeled laparoscopic data and achieves competitive performance when fine-tuned on less
than 10% of annotated samples for semantic segmentation (Moens et al., 2024), most exist-
ing studies on SSL focus on classifying structures in surgical imaging (Kletz et al., 2019b;
Twinanda et al., 2016; Jin et al., 2018; Mishra et al., 2017; Hashimoto et al., 2019; Kitaguchi
et al., 2020). The use of SSL for anatomical and instrument segmentation in surgery remains
largely unexplored.
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Figure 1: Ilustration of two-stage training frameworks for semantic segmentation with
three types of pre-training strategies. From top to bottom: no pre-training, supervised pre-
training, and our Surgical Semi-supervised Segmentation (SurgicalSemiSeg) framework with
tailored denoising autoencoder designs as pre-training. CNN colours indicate the adoption
of pre-trained parameters from corresponding architectures for initialising fine-tuning.

In this paper, we evaluate common pretext tasks for static images such as random
rotation (Gidaris et al., 2018), colourisation (Zhang et al., 2016), autoencoder (Hinton
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and Salakhutdinov, 2006), and denoising autoencoder (Vincent et al., 2008), alongside ad-
vanced methods like contrastive learning (SimCLR) (Chen et al., 2020), masked autoen-
coder (MAE) (He et al., 2022), and a recent contrastive method tailored for LC segmenta-
tion (DDA) (Zhou et al., 2024). Through extensive evaluation, we observe that pixel-level
generation tasks are effective for segmentation due to their alignment with pixel-level objec-
tives. Building on this observation, we propose our Surgical Semi-supervised Segmentation
framework (SurgicalSemiSeg). Figure 1 demonstrates the framekwork schematic. This
framework involves a denoising autoencoder for self-supervised pre-training, and a super-
vised fine-tuning step.

Specifically, we introduce four masking parameters for the denoising autoencoder, each
for a distinct input corruption strategy. These parameters provide flexibility in the masking
process, allowing it to operate independently of specific token positions as in a masked
autoencoder. Additionally, unlike image-level pre-training approaches that disregard the
decoder during fine-tuning (Chen et al., 2020), the pixel-level pre-training objective in
SurgicalSemiSeg enables full preservation of the pre-trained model. Only the final layer
of the decoder is modified to map class predictions during fine-tuning initialisation. This
approach ensures that the understanding capability gained by both the encoder and decoder
during pre-training is largely retained, maximising the utilisation of unlabelled data to
improve segmentation performance in the downstream task.

In summary, the contributions of this paper are as follows:

o We identify that self-supervised objectives at the pixel level are the most effective for
segmentation tasks in surgical contexts.

e We propose a masked denoising autoencoder as a pre-training objective to address
the unique challenges of surgical imaging. Our analysis shows that varying mask size
significantly impacts downstream performance.

e Leveraging the masked denoising autoencoder, we introduce a two-stage Surgical Semi-
supervised Segmentation framework (SurgicalSemiSeg). SurgicalSemiSeg outperforms
baseline SSL methods across three downstream datasets and significantly improves the
recognition of under-represented yet clinically important classes.

2. Surgical semi-supervised framework

We propose a masked-corrupted denoising autoencoder as a pre-training objective con-
sidering the unique challenges of surgical images in Section 2.1, and then introduce the
SurgicalSemiSeg framework in Section 2.2.

2.1. Mask-corrupted denoising objective

Surgical image segmentation poses unique challenges: (i) hard-to-delineate anatomies (Fer-
guson et al., 1992; Asbun et al., 1993), (ii) predominantly reddish contents in the surgical
view, and (iil) significant perspective and image quality variations due to different opera-
tive approaches and settings. These challenges result in highly similar nearby pixel values
within the same frame. Conventional denoising autoencoders apply Gaussian noise to input
pixels, with the model inferring corrupted pixels based on surrounding values. However,
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the high pixel similarity in surgical images limits representation learning, making it diffi-
cult for the model to distinguish object boundaries between anatomies with similar colour
characteristics in downstream segmentation tasks.

Inspired by He et al. (2022), which demonstrated exceptional representation learning
by reconstructing large missing input patches, we hypothesise that denoising autoencoders
can similarly benefit from carefully designed patch-based noise. Corrupting larger image
regions rather than scattered pixels increases reconstruction difficulty, requiring the model
to infer missing structures or even entire objects from masked-out areas. Furthermore,
unlike MAE (He et al., 2022), where masked patch locations are constrained by the grid
design in the ViT architecture (Dosovitskiy et al., 2021), denoising autoencoders with CNNs
allow flexible placement and sizing of masked patches. This introduces additional challenges
to the self-supervised objective, further enhancing representation learning.

This paper proposes a mask-corrupted denoising autoencoder designed explicitly for
surgical segmentation. Despite the unique representations and challenges in surgical images,
no studies have explored the optimal mask design for improving segmentation performance,
particularly for underrepresented yet safety-critical anatomical structures. To address this
gap, we introduce four key parameters in the mask design to enable robust and effective
representation learning to overcome the challenges of surgical image segmentation.

Given an input image x € R¥*"*3 and a binary mask m € {0,1}**", a masked
transformation function, t(, v with four parameters on the input image, is defined as
' =tx) =x©m+ (1 —m)©®J, where ® is element-wise multiplication applied to
each red-green-blue (RGB) channel, and § has matching dimensions with & and contains
the replacement value for each masked pixel (default is 0). Four masking parameters are
described as follows:

e p € [0%,90%]: the ratio of masked pixels, or pixels with 0 values in m, among the
total pixels in the input. p = 0% simplifies the masked pre-training to an autoencoder.

e N € [8,256]: the side length of an individual square mask patch or the diameter
length of a circle mask.

e s: the mask component shape. For simplicity we focus on square and circle masks.

e c: the replacing value in 4, also known as mask colour. We adopted black or random
colours in the masks for every pixel or mask component.

An illustration of different masking parameters is provoded in Figure 2. x € RW*hx3
denotes an input image of width w and height h in the RGB space. A DNN model, fy = hog,
is assumed to be a CNN with an encoder-decoder architecture, parameterized by 6. The
encoder, h, maps the input, &, to a set of deep (or latent) features in the high (C’ > 3)
dimensional space, z = h(x), where z € R *h'xC" " conventionally w > w’, h > h/, while
C’" > C. The decoder, g, generates z to the desired output according to the objective and
makes the final predictions through its last layer.

The mask-corrupted input ¢(x) and the clean input @ as input-reference pairs are then
feed into the CNN training in a self-supervised fashion. The encoder extracts deep repre-
sentations of the whole () with mask corruption as z’ = h(t(x)). The decoder g then
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Figure 2: Ilustration of mask design parameters on a single example, from top to bottom
row, shows the masks, masked images, and reconstructed images under different mask
settings (p for masking ratio and N for mask size): A. no mask, B. p = 10%, N = 64, C.
p=90%,N =64, D. p=40%, N =8, E. p =40%, N = 256, F. p = 40%, N = 64 (optimal
mask settings), G. p = 40%, N = 64 in circle masks, H. p = 40%, N = 64 in coloured masks.

transforms the deep representations of the unmasked input regions (entangled with mask-
corrupted noise) back into the input space, as g(2z') € R¥*"*3, We adopt the optimisation
objective below to minimise the pixel-wise reconstruction differences:

h—1w-—1

. 1
argminEevp, g >3 Molt(@))is — @yl e

i=0 j=0

Unlike image-level self-supervised objectives, our mask-corrupted denoising objective
requires a decoder during pre-training. The decoder learns to capture semantic and spatial
relationships between pixels based on the encoder’s representation. Pre-training under
this objective enables the model to recognise pixels within objects and distinguish them
from those between objects within the same image, thereby facilitating accurate pixel-wise
classification when fine-tuned on labelled data.

2.2. Surgical Semi-supervised Segmentation

We present a simple yet versatile two-stage semi-supervised learning framework named
SurgicalSemiSeg, designed to exploit unlabelled surgical images to improve segmentation
performance maximally. Figure 1 illustrates the difference between three types of training
frameworks for semantic segmentation, including no pre-training, supervised pre-training,
and the proposed SurgicalSemiSeg with the tailored mask-corrupted denoising autoencoder
as the pre-training objective.

Given a dataset, D consisting of an unlabelled subset for pre-training, D,,, and a la-
belled subset for fine-tuning, D;, we define D = D, U Dy, such that {mm}gz:1 € D, and
{(mn,yn)}gz1 € D;. Here, m and n denote the sample sizes of the unlabeled and labeled
subsets, respectively, with m > n in typical scenarios. An input image is represented as
x € RW>*h>3 while its corresponding pixel-wise labels belong to y € R K where K is
the number of classes.

In the self-supervised pre-training stage, the model is optimised on D, following the
masked-corrupted denoising objective equation 1.

During supervised fine-tuning, the entire pre-trained model is fine-tuned on D;. Since
the objective shifts from predicting 3-channel RGB values to class probabilities, the output
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of the final convolutional layer in the decoder g is adjusted from 3 to K, resulting in g(z’) €
Rw*hxK The fine-tuning process is formulated as the following optimisation problem:

arg;ninEwNDl'c(fG(x)a y)v (2)

where L is the Cross-Entropy function that measures the discrepancy between predictions
and ground truth labels.

The fine-tuning process transfers representations learned during pre-training on large-
scale unlabeled surgical video frames to a smaller-scale annotated segmentation dataset. In
this study, we focus on static image pretext tasks within this scope. Existing image-level
pre-training approaches (Hinton and Salakhutdinov, 2006; Gidaris et al., 2018; Chen et al.,
2020) typically re-use only encoder weights during fine-tuning.

SurgicalSemiSeg maximises the retention of self-supervised pre-trained representations
by reinitialising only the final layer weights during fine-tuning. This ensures that the se-
mantic and spatial knowledge acquired during pre-training is largely preserved. Equipped
with a masked-corrupted denoising autoencoder, SurgicalSemiSeg fully leverages pixel-level
self-supervised representation learning for segmentation tasks. With pixel-level objectives
in both stages, our framework supports the flexible integration of any segmentation model
with an encoder-decoder architecture, making it highly adaptable to various applications.
We adopt a CNN in this study due to its flexibility across different input resolutions.

3. Experiments

3.1. Datasets description
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Figure 3: Class distribution of pixels in three LC segmentation datasets, A:In-house Seg
B:CholecSeg8k C:M2caiSeg.

We conduct our experiments on 3 public and 2 private datasets. For pre-training, we use
public Cholec80 (Twinanda et al., 2016) and private in-house Unlabelled datasets collected
from St Vincent’s Hospital Melbourne (private and public) and Epworth Healthcare. Our
private dataset consists of 300,000 frames at 1920x 1080 resolution, collected from 50 LC
recordings. For evaluation of the representation quality, we use 3 LC segmentation datasets:
an in-house segmentation dataset (in-house Seg) collected from 20 LC recordings from the
same hospitals while distinct from those included in in-house Unlabelled, and two public
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datasets, CholecSeg8k (Hong et al., 2020) and m2caiSeg (Magbool et al., 2020). The class
distribution statistics of these datasets are shown in Figure 3, with a detailed dataset
description provided in Appendix A. All datasets are carefully examined to ensure there is
no data leakage between the training set and test set.

3.2. Experiment settings

DeepLabV3+ (Chen et al., 2018) with ResNet101 (He et al., 2016) backbone is adopted
as the default model. For each pre-training, the model was trained for 20 epochs with 16
(SimCLR with 128) as batch size, AdamW (Loshchilov and Hutter, 2019) as the optimiser,
0.001 as learning rate, and 0.01 weight decay. All fine-tuning processes apply the same
parameters, except adjusting the learning rate to 0.005. For computational efficiency, we
resized the in-house images to 960 x 540 and followed the original resolutions for public
datasets. Augmentations of 10 degrees of rotation, horizontal flipping, and colour jittering
(with brightness 0.25, contrast 0.25, saturation 0.25, and hue 0.0) were applied. Experi-
ments were conducted on 4 A100 GPUs with PyTorch implementations. Performance is
evaluated under class-wise Intersection over Union (IoU) and the mean over all classes
(mIoU). Additionally, Dice score is also provided in the appendix. Our implementation is
available in this code repository: https://github.com/JoJoNing25/SurgicalSemiSeg.
Pre-training: We use the in-house Unlabelled dataset as the default pre-training dataset.
A model is pre-trained for each baseline self-supervised strategy on this dataset. Addition-
ally, to explore the optimal masked denoising autoencoder design, we perform a grid-search
over different mask parameter settings, leading to 34 pre-trained models. The searching
process is illustrated in Figure 4.

Fine-tuning: To evaluate the effectiveness of different SSL strategies, we fine-tune the pre-
trained models across three LC segmentation datasets. For our mask-corrupted denoising
autoencoder, we adopt the optimal mask parameters (the searching process is illustrated in
Figure 4, and further described in Section 3.3) searched under In-house datasets as default
settings. In-house Seg is split into a training set that contains 3,740 frames from 16 videos,
and a representative test set with 392 frames from 4 videos which are carefully selected
by surgeons to ensure all classes are presented. For the public benchmarks, we follow the
experimental settings of (Silva et al., 2022) and (Magbool et al., 2020) for class definitions
and train-test splits in CholecSeg8k and M2caiSeg.

Transferability: To further validate the generalisation ability of SurgicalSemiSeg under its
optimal mask settings, we pre-train another model on Cholec80 and evaluate its performance
across three segmentation datasets. Results are reported in the last column of Table 1 and
the discussion in Section 3.5.

3.3. Masked denoising autoencoder designs

To reduce computation cost, we first search for the optimal masking ratio with a fixed N
as illustrated in Figure 4(a), and then fix the optimal p and investigate N as in Figure
4(b). For in-house Seg, the optimal performance is reached when masking 40% with fixed
N to 64, and the performance is relatively stable between 30% and 60%. Varying N has
a more significant influence on downstream performance, which peaked at N = 64 when
p = 40%. We further conducted a grid search with p and N in a similar performance
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Figure 4: Influence of varying mask parameters on In-house Seg. Results are reported as
mloU (in percentage). Curves with filling show the mean and standard deviation over 5
random seeds. Darker colour in (c) indicated better performance. Acronyms in (d): sg-
square mask, cr-circle mask, b-black mask, c¢(pizel)-random colour on mask pixels

range and confirmed that the optimal setting for in-house Seg is p = 40% and N = 64 in
Figure 4(c). On this optimal setting, results in Figure 4(d) show the black square mask is
preferable. Unless explicitly stated, we use p = 40% and N = 64 with the black square mask
as the default setting in following sections for In-house Seg based on these observations.

For public datasets, increasing masking ratio and patch size also results in upward
parabola in segmentation performance as illustrated in Appendix B. M2caiSeg is less sen-
sitive to ratio changes, but demonstrates higher performance variance across different run-
nings of the models under the same mask settings, which is a common challenge in deep
learning with small dataset. On CholecSeg8k, the optimal p is 20% and N at 32.

3.4. Comparison with existing pre-text tasks

Table 1: Performance of different pre-training strategies on three validation datasets. mloU
is reported in percentage. RI denoted random initialisation. The best results are in bold.

Fine-tunine Classes Pre-training strategies and datasets
da‘r:seltls & All Under-rept. RI | Supervised | Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours Ours
T (<1%) N/A | ImageNet In-house Unlabelled Cholec80
20 56.03 59.16 56.20 59.15 50.37 58.57 61.63 58.44 62.26 60.71
In-house Seg ; ) . .
11 42.23 45.94 43.01 45.92 37.79 45.10 44.73  48.72 50.67 48.48
7 57.49 61.59 55.33 64.52 56.71 57.87 61.18 61.71 66.90 64.11
CholecSeg8k e . af a
1 41.85 33.29 44.50 28.33 22.64 34.63 45.51 40.98 58.71 47.40
M2caiSe 19 67.23 77.21 72.63 72.61 70.85 77.00 72.01 85.37 81.45 78.43
& 12 55.30 68.16 62.32 61.81 62.26 67.51 61.74 78.60 73.61 69.69

The results, summarised in Table 1, show the average performance of all classes and
specifically for under-represented classes, defined as those comprising less than 1% of the
pixel distribution (see 3 in Section 3.1). Except for M2caiSeg, which is a very small dataset,
pixel-level pretext tasks generally outperform image-level ones. Our method notably im-
proves prediction accuracy, especially for under-represented classes.

We further report the class-wise IoU of different pre-training methods on In-house Seg
in Table 2. For critical anatomical structures for safety, such as the common bile duct and
omentum, our method improves the baselines by 5.27% and 4.36%. It also significantly
improves the recognition of scissors (7.61%), a challenging class easily confused with other
instruments (Kletz et al., 2019a; Jaafari et al., 2021; Namazi et al., 2022).
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Table 2: Class-wise performance of different pre-training strategies on In-house Seg. In-
house Unlabelled is adopted as the default self-supervised dataset. IoU and mloU is re-
ported in percentage. RI denoted random initialisation. The best results are in bold.

Pre-training Strategies

Categories Class Names RI  Supervised Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours

N/A background 97.56 97.87 97.36 97.87 89.67 98.00 98.08 97.68 97.96
cholangiogram catheter 63.76 74.80 69.02 71.16 61.24 76.36 75.86 73.50 76.97
clip applicator 49.96 60.73 45.39 53.78 39.10 48.68 60.52 47.72  58.01
diathermy hook shaft 71.52 73.54 71.75 72.49 64.22 72.13 81.39 73.36 73.69
diathermy hook tip 81.59 84.15 83.39 84.49 80.33 84.12 87.17 81.73 85.19

Instruments grasper shaft 76.34 78.89 76.00 79.06 64.86 79.21 80.35 78.88 80.21
grasper tip 57.50 64.38 54.70 64.00 53.70 65.18 64.35 61.61 67.24
scissors shaft 7.60 5.93 5.20 1.54 7.70 6.06 19.11 11.66 12.27
scissors tip 25.36 27.67 36.11 27.75 34.03 24.33 59.47 2391 45.27
sucker irrigator 55.76 63.38 52.53 62.21 45.06 62.83 64.43 63.27 65.63
abdomen wall 36.16 41.44 34.71 41.20 12.81 39.23 39.73 42.55 41.06
common bile duct 55.59 50.95 57.60 59.67 45.35 56.44 59.561  56.76  56.89
cystic artery 27.58 25.08 27.86 32.51 24.94 28.65 33.75 25.46  33.20
cystic duct 49.79 50.46 48.78 50.38 46.68 50.36 51.13  51.08 52.96

Anatomies duodenum 13.75 25.69 18.75 24.86 17.32 25.11 20.54  23.46 28.38
gallbladder 80.26 81.85 79.95 82.52 78.19 82.76 81.78 81.40 82.34
liver 84.96 87.01 84.58 86.50 79.61 85.82 85.50 85.53 87.79
omentum 87.49 87.53 87.76 88.61 72.09 88.88 88.96 88.55 88.82
rouviere’s sulcus 17.26 18.70 12.90 20.10 11.95 16.35 0.00 11.83 26.85
segment iv 80.89 83.26 79.64 82.29 78.57 80.88 81.02 83.84 84.38

Mean 56.03 59.16 56.20 59.15 50.37 58.57 61.63 58.44 62.26

3.5. Generalised representations across institutions

The last two columns in Table 1 further demonstrate that our method achieves the best
performance when the pre-training and fine-tuning datasets are collected from the same
institution, where there is less variation between surgical equipments and operative tech-
niques. Furthermore, the results indicate that representation learning from similar oper-
ations, in this case, LC, generalise well across data from different institutions. This find-
ing highlights the potential and effectiveness of leveraging unlabelled surgical recordings
to enhance deep learning applications in surgery. While our results specifically validate
the method in LC, the approach is likely to perform well across other surgical proce-
dures. Our pre-trained models on Cholec80 is publicly available in this code repository:
https://github.com/JoJoNing25/SurgicalSemiSeg.

4. Conclusion

In this paper, we conduct an extensive evaluation of self-supervised learning on static image
for LC segmentation. Based on our findings that aligned objectives of pre-training and fine-
tuning enable the most effective representation learning, we propose SurgicalSemiSeg, a
semi-supervised framework with a tailored masked denoising autoencoder for laparoscopic
images and provide comprehensive design guidelines. Our method significantly enhances the
recognition of under-represented classes that are safety related. This simple yet powerful
method offers valuable insights into leveraging unlabelled data for computer-assisted surgery
applications. Furthermore, our generalisable and open-sourced pre-trained model serves as
a valuable resource for the community, facilitating the development of LC segmentation
applications.
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Appendix A. Dataset description (cont.)

The 5 datasets are comprehensively described in this section, including two unlabelled
datasets for pre-training and three labelled datasets for fine-tuning. The collection process
are the same with (Zhou et al., 2024)

The two unlabelled datasets adopted for elf-supervised pre-training are described as
follows:

e In-house Unlabelled contains 300,000 frames at 4 fps from the other 50 videos
to avoid data leakage. It is the default unlabelled dataset used for self-supervised
pre-training.

e Cholec80 (Unlabelled)(Twinanda et al., 2016) is a publicly available classification
dataset with tool presence and surgical phase annotations. It contains 80 videos in
480 x 854, where each video denotes an individual patient. We only make use of the
frames for self-supervised pre-training and disregard the annotations. To avoid data
leakage, we also discard the mutual videos in CholecSeg8k and m2caiSeg, which are
two subsets of Cholec80 with semantic segmentation annotations. In this way, the
adopted unlabeled Cholec80 dataset ends up with 63 videos, which generated 400,000
frames at 2 fps.

The three labelled datasets and their usage are described as below, with the statistics
of their class distributions are displayed in Figure 3.

e In-house Seg contains frames selected from 20 videos. The individual frames in in
32fps target clips were first pulled out, following by a pixel-wise threshold selection
which compares the consecutive frames with the anchor frame and select the next
frame if only its pixel difference exceed the threshold. This yielded 4,136 frames in
total, where the training set contains 3,740 frames from 16 videos, and the test set
contains 392 frames from 4 videos that are unseen in the training set. The dataset was
annotated and validated by our surgeons. To evaluate the pre-training strategies and
DNNSs structure recognition effectiveness in the real-world surgical context, we explic-
itly defined the semantic class and include 9 surgical instruments and 10 anatomical
structures shown up during the interested surgical phases. The fine-grained class
definition cause the data distribution extremely skewed, which well-represented the
real-world challenge.

e CholecSeg8k (Hong et al., 2020) is a labeled subset of Cholec80 which contains 8,080
frames of 480 x 854 at 25 fps from 17 videos in Cholec80. Following (Silva et al., 2022),
we merge the 13 semantic classes into 8 classes under the same train-test split.

e M2caiSeg (Magbool et al., 2020) is a labelled subset of the MICCAI 2016 Surgical
Tool Detection dataset (Twinanda et al., 2016), which contains videos from Cholec80.
It contains 307 frames in 596 x 334 from 2 videos annotated with 19 classes. We follow
the same train-test split of the original dataset.
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Table 3: Class description and their colour encoding in R, G, B of In-house Seg.

Class name Description Colour code (RGB)
abdominal wall abdominal wall 100, 20, 80
background black background beyond circular visual field 200, 200, 200
cholangiogram catheter —instrument to apply dye-enhanced imaging for bile ducts visulization (includes shaft, trip and catheter) 0, 130, 170
clip applicator instrument to apply clips to close cystic artery and duct (includes shaft, trip and catheter) 130, 130, 0
common bile duct bile duct drain from hepatic ducts to duodenum 0, 250, 200
cystic artery blood supply to the gallbladder 255, 255, 0
cystic duct duct draining bile from gallbladder to common bile duct 64, 255, 50
diathermy hook shaft diathermy hook instrument - shaft 49,249,166
diathermy hook tip diathermy hook instrument - tip 0, 190, 80
duodenum dection of gastrointestinal tract where common bile duct drains, distal to stomach 20, 102, 73
gallbladder gallbladder 50, 255, 255
grasper shaft grasping instrument of any kind - shaft 50, 193, 255
grasper tip grasping instrument of any kind - tip 50, 132, 255
liver all other liver segments 255, 0, 0
omentum intra-abdominal fat, includes small bowel 255, 197, 50
rouviere’s sulcus cleft on the right side of the liver; important landmark 255, 182, 193
scissors shaft instrument to cut tissues and structures 180, 50, 255
scissors tip instrument to cut tissues and structures 214, 50, 255
segment iv segment of liver to the patient left side of gallbladder 165, 42, 42
sucker irrigator cylindrical instrument for suction and irrigation 100, 0, 130

background

sucker
irrigator

bile duct

Figure 5: Examples of annotated frames in In-house Seg overlaid with the class colour mask
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Appendix B. Additional results

This section first presents the investigation of the influence of varying the masking ratio and
patch size of the denoising masked modelling design on two public datasets, CholecSeg8k
and M2caiSeg in Figure 6.
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Figure 6: Influence of varying mask parameters on CholecSeg8k and M2caiSeg. Results
are reported as mloU (in percentage). Curves with filling show the mean and standard
deviation over 5 random seeds. Darker colour in (c) indicated better performance.

It then presents the evaluation results from Table 1 using the Dice score in Table 4 and
from Table 2 using the Dice score in Table 5. It also reports the class-wise performance of
different pre-training strategies (pre-trained on the in-house Unlabeled dataset) on Cholec-
Seg8k in Table 6 and on M2caiSeg in Table 7. Furthermore, it provides a comparison based
on the results reported on same classes on CholecSeg8k by Moens et al. (2024) in Table 8.

Table 4: Performance of different pre-training strategies on three validation datasets. In-
house Unlabelled is adopted as the default self-supervised dataset. Dice is reported in
percentage. RI denoted random initialisation. The best results are in bold.

Fine-tuning Classes Pre-training strategies and datasets

datasets All Under-repr. RI | Supervised | Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours Ours
R (<1%) N/A | ImageNet In-house Unlabelled Cholec80

In-house Seg 20 73.24 74.81 71.69 75.82 67.03 74.66 76.44 76.12 77.50 76.85
11 64.94 66.38 62.68 68.19 59.23 66.72 69.70 68.51 71.61 70.22
CholecSeask 8 7247 76.51 66.43 78.60 71.88 75.56 7429 7238 79.13 79.10
© 1 57.54 53.28 60.35 47.40 58.87 52.30 67.82 61.16 67.88 59.69
M2caiSes 19 77.87 86.97 81.17 88.97 85.34 89.33 80.13 91.67 89.91 90.47
12 68.45 80.92 72.86 84.02 78.81 84.44 71.83 87.71 85.29 86.12
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Table 5: Class-wise performance of different pre-training strategies on In-house Seg. In-
house Unlabelled is adopted as the default self-supervised dataset. Dice score is reported
in percentage. RI denoted random initialisation. The best results are in bold.

Pre-training Strategies

Categories Class Names RI  Supervised Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours

N/A background 98.76 98.92 98.66 98.92 94.76 98.99 99.02 98.79 98.97
cholangiogram catheter 79.49 85.69 81.32 84.07 77.74 86.99 86.63 84.36 87.08
clip applicator 66.58 78.25 64.04 70.85 57.14 66.07 77.84 65.15 77.73
diathermy hook shaft 86.11 87.47 86.31 97.03 82.49 86.32 90.44 87.55 87.58
diathermy hook tip 89.85 91.37 91.15 91.57 89.32 91.38 93.15 89.90 92.06
Instruments grasper shaft 86.37 87.99 86.23 88.10 79.66 88.22 89.14 88.25 88.81
grasper tip 72.58 78.00 71.25 77.56 70.41 78.85 78.31 76.77 80.24
scissors shaft 49.00 23.84 20.96 43.42 28.31 41.07 70.06 46.27 42.31
scissors tip 61.36 58.30 58.73 59.06 59.33 48.96 76.67 5842  65.96
sucker irrigator 71.55 77.38 69.02 76.48 64.22 76.66 7826 7723 78.79
abdomen wall 56.32 61.91 52.77 60.89 17.86 56.54 58.44 66.55 62.46
common bile duct 70.79 65.52 72.15 75.00 60.09 73.49 7498 7180 71.81
cystic artery 58.07 55.90 56.36 60.52 50.67 58.11 57.27 56.48  59.79
cystic duct 69.63 68.77 68.09 70.42 66.35 67.36 67.53 70.05 70.81
Anatomies duodenum 39.70 59.14 49.88 57.97 47.28 63.82 65.45 63.60 66.30
gallbladder 88.82 89.82 88.65 90.25 87.63 90.45 89.81 89.62 90.14
liver 91.92 93.07 91.68 92.76 89.09 92.44 92.28 9214 93.51
omentum 93.28 93.37 93.44 93.95 85.72 94.05 94.12 93.93 94.06
rouviere’s sulcus 45.36 50.74 44.72 47.54 44.62 44.18 0.0 54.59 50.19
segment iv 89.29 90.75 88.51 90.15 87.88 89.29 89.36  91.13 91.41
Mean 73.24 74.81 71.69 75.82 67.03 74.66 76.44 76.12 77.50

Table 6: Class-wise performance of different pre-training strategies on CholecSeg8k. In-
house Unlabelled is adopted as the default self-supervised dataset. IoU and mloU is re-
ported in percentage. RI denoted random initialisation. The best results are in bold.

Pre-training Strategies
RI  Supervised Rotation Colourisation Autoencoder SimCLR MAE  Ours

Categories ~ Class Names

N/A Background 97.26 97.88 97.45 97.92 97.65 97.77 97.66 97.94
Instruments Instruments 59.71 60.39 41.74 69.41 49.58 59.14 57.88 69.97
Abdomen Wall 76.23 83.77 78.90 81.54 79.34 81.70 84.31 80.77
Fat 81.47 86.40 81.17 83.85 85.15 79.31 88.23 87.11
Anatomies Gallbladder 32.60 37.36 34.47 48.51 36.14 34.38 31.81 41.26
Gastrointestinal Tract 41.85 33.29 44.50 28.33 22.64 34.63 45.51 58.71
Liver 67.13 87.53 63.92 73.25 68.13 74.18 75.02 71.04
Misc 3.65 17.94 0.46 33.38 15.05 1.83 9.00 28.43
Mean 57.49 61.59 55.33 64.52 56.71 57.87 61.18 66.90
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Table 7: Class-wise performance of different pre-training strategies on m2caiSeg. In-house
Unlabelled is adopted as the default self-supervised dataset. IoU and mloU is reported in
percentage. RI denoted random initialisation. The best results are in bold.

Pre-training Strategies
RI  Supervised Rotation Colourisation Autoencoder SimCLR MAE  Ours

Categories  Class Names

N/A Black 96.10 96.77 96.56 95.71 97.26 96.54 97.30 97.46
Bipolar 82.22 93.08 86.19 80.50 74.47 79.98 87.87  88.56
Clip 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.88
Clipper 89.66 95.98 93.64 94.68 84.50 95.31 94.31 96.34
Grasper 82.78 89.80 83.92 88.55 84.06 88.37 82.16 90.71
Instruments Hook 90.52 93.84 93.66 92.80 92.60 94.81 94.36  96.30
Irrigator 52.88 67.34 68.47 57.35 55.64 76.82 56.99 77.30
Scissors 0.00 0.00 0.00 0.00 0.00 2.53 0.00 2.58
Specimen-bag  58.57 88.74 86.94 86.07 84.69 89.27 81.66 92.39
Trocars 89.97 90.37 81.64 86.20 88.72 90.00 89.03 94.32
Artery 52.28 65.08 64.03 69.65 55.71 75.37 59.71 82.93
Bile 57.39 68.30 66.82 50 55 68.58 56.18 66.70 80.37
Blood 53.69 76.67 71.19 73.38 66.54 75.84 73.59 87.71
Fat 81.89 89.06 87.89 82.72 80.81 90.40 87.79 92 95
Anatomies  Gallbladder 83.09 89.93 87.75 90.17 85.20 91.87 88.56 94.11
Intestine 54.40 94.23 51.73 64.64 64.40 93.62 49.05  91.24
Liver 92.12 96.22 92.95 96.18 93.80 96.68 93.78 97.37
Unknown 72.63 78.07 77.23 78.72 79.86 75.23 82.06 79.69
Upperwall 87.17 93.55 89.32 91.66 89.24 94.15 83.27 95.44
Mean 67.23 77.21 72.63 72.61 70.85 77.00 72.01 81.45

Table 8: Class-wise performance on 4 classes on CholecSeg8k following 5 baselines reported
by Moens et al. (2024). Dice is reported in percentage. The best results are in bold.

Method Fat Ins Gb Bkg
LSSL Cholec80 pretrain (16 fine-tune images) (Moens et al., 2024) 86 76 62 89
Laparoflow-SSL (245 fine-tune images) (Moens et al., 2024) 84 64 58 86
U-Net++ (Zhou et al., 2018) 91 61 63 -
UNETR (Hatamizadeh et al., 2022) 88 71 42 -
DeepLabV3+ (Chen et al., 2018) 86 62 60 -
Ours (Cholec80 pretrain) 93 86 50 99
Ours (In-house Unlabelled pretrain) 93 82 56 99
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Appendix C. Dataset granularity

In this section, we explore the effectiveness of our pre-training on the same dataset with
different class definitions. Due to the annotation difficulty, it is infeasible for institutions to
extensively labelled everything appeared during the surgical procedure. Based on different
clinical focus, we defined our extensively labelled dataset with 4 different kinds of granularity
of class definitions, with their class distributions illustrated in Figure 7.

o Only Easy Anatomies includes 4 anatomies, duodenum, gallbladder, liver, and seg-
ment iv. They have relatively larger volume compared to other anatomies and easier
to recognse boundaries and appearance.

Only Instrument includes 6 commonly seen instruments in the duration of the proce-
dure we focus, including the cholangiogram catheter, clip applicator, diathermy hook,
grasper, sciscissors,nd sucker irrigator. Since it is common in robotic surgery dataset
that the surgical tool tips and shafts are annotated separately for precise tool motion
tracking, we separate the shaft and tip for three of the most frequently occurring
instruments that could possibly cause tissue or organ damage, the diathermy hook,
grasper, and scissors.

Only Critical Anatomies includes 5 anatomical structures related mainly to dissec-
tion, namely cystic artery, cystic duct, duodenum, gallbladder and Rouvieres sulcus.
Within them, the cystic artery and the cystic duct are the two critical structures
for dissection. Duodenum is regarded as the danger zone in dissection located below
cystic artery, cystic duct. It should be never approached to during the dissection.
Rouvieres sulcus is an rarely appeared landmark structure. With its occurrence, the
surgical instruments for dissection, like the diathermy hook or scissors, should never
operate on any anatomical structures below it.

Explicit Classes consist of 28 classes including the background, surgical instruments
and anatomical structures that occurred during the focused operation period. Due to
its fine granularity, the class distribution is extremely skewed with 11 classes having
fewer than 1% pixels among the entire dataset.

Pixel (%)

background

Pixel (%)
Pixel (%)
Pixel (%)

cystic artery
I

gallbladder
me
d
background
gallbladder
ystic duct

Figure 7: Class distribution of In-house Seg datasets with four kinds of class granularity.
A.Only Easy Anatomies, B.Only Instrument, C.Only Critical Anatomies, D. Explicit Classes
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Table 9: Comparison of pre-training strategies on In-house Seg with different class granu-
larity. IoU is reported in percentage. The best results are in bold.

Class definition Class numbers Performance
Only Instruments 10 67.46
Only Critical Anatomies 6 65.07
Only Easy Anatomies 5 71.82
Explicit Classes 28 44.80
Major Classes 20 62.26

From Table 9, we observe that performance tends to decline as the number of classes
in a dataset increases. Intuitively, defining more classes leads to finer-grained segmenta-
tion, which introduces greater semantic complexity, such as smaller structural regions and
more rigid boundaries. This suggests that dataset construction should carefully balance
annotation cost against the desired level of performance.

Appendix D. Visualisation on public datasets

image RI IN p=40%,N =32 ground truth

Figure 8: Predictions on three sample images from CholecSeg8k. From left to right shows
the original images (image), predictions from no pre-training (RI: random initialisation),
supervised pre-training (IN: ImageNet pre-trained), our method (p = 40%, N = 32), and
the ground truth segmentation masks (ground truth). The colour code follows the original
dataset.

Figures 8 and 9 present qualitative comparisons of segmentation performance on the
CholecSeg8k and m2caiSeg datasets, respectively. Each row shows predictions from different
methods: from left to right, the original laparoscopic image, segmentation results from
models trained with random initialisation (RI), supervised pre-training (IN), the proposed
method with p = 40% and N = 32, and the ground truth mask.

In Figure 8, predictions from RI show noisy and inconsistent boundaries, failing to
segment anatomical regions accurately. Supervised pre-training improves structural aware-
ness but still exhibits visible errors in fine-grained details. The proposed method produces
cleaner masks with sharper boundaries and greater alignment with the ground truth, espe-
cially in complex regions with overlapping instruments and tissues.
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In Figure 9, RI again results in coarse, error-prone predictions, while IN shows slightly
improved consistency. The proposed method demonstrates clearly improved segmentation,
particularly in preserving small structures and achieving better boundary precision. Its
outputs closely match the ground truth annotations across all examples.

Overall, these figures show that the proposed semi-supervised pixel-level pre-training
method consistently outperforms models trained from scratch or with standard pre-training,
particularly in producing reliable and anatomically meaningful segmentations under limited
supervision.

image RI IN p=40%,N =32 ground truth

Figure 9: Predictions on three sample images from m2caiSeg. From left to right shows
the original images (image), predictions from no pre-training (RI: random initialisation),
supervised pre-training (IN: ImageNet pre-trained), our method (p = 40%, N = 32), and
the ground truth segmentation masks (ground truth). The colour code follows the original
dataset.
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