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Abstract

Deep learning applications in surgery are heavily reliant on large-scale datasets with high-
quality annotations, which are costly and time-consuming to obtain. Self-supervised learn-
ing (SSL) has shown significant potential for reducing reliance on labelled data. This work
investigates the use of SSL for semantic segmentation in laparoscopic cholecystectomy (LC)
surgery. Through evaluation of existing SSL. methods, we find that pixel-level objectives
enable the most effective representation learning for laparoscopic imaging, characterised
by highly variable and deformable anatomy. Building on this insight, we develop a tai-
lored masked denoising autoencoder with a carefully optimised masking ratio and patch
size for semantic segmentation. Our method achieves state-of-the-art performance across
three LC datasets. Of note, it significantly improves segmentation accuracy for critical
anatomical structures that are under-represented in training datasets. Furthermore, our
approach achieves generalisability, with pre-trained representations performing effectively
across fine-tuning datasets from different LC datasets.

Keywords: Self-supervised learning, laparoscopic imaging, semantic segmentation

1. Introduction

Deep learning-based precise surgical scene interpretation, such as semantic segmentation, is
a crucial component of Al based intraoperative guidance tools designed to enhance surgical
safety. The training of deep neural networks (DNNs) for semantic segmentation requires
large-scale datasets with meticulous pixel-level annotations, that are costly and labour-
intensive to produce. The development of medical image segmentation datasets includes
two major challenges: i) significant variations in the appearance of anatomical structures
and surgical instruments, and ii) class imbalance in under-represented structures. These
challenges have impaired the accuracy of surgical image neural networks, limiting the po-
tential for real world clinical application (Tokuyasu et al.; Magbool et al., 2020; Silva et al.,
2022; Yoon et al., 2022).
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Recently, self-supervised learning (SSL) approaches have been employed in surgical
computer vision applications to leverage high volume unlabelled data to enhance the per-
formance of DNNs, mitigating the challenges of developing sufficiently large annotated
datasets. SSL involves training models on carefully designed pretext tasks using unlabelled
data. This pre-trained model can then be fine-tuned on downstream tasks, progressively
improving the performance compared to simply training a model on labelled datasets (Chen
et al., 2020). While SSL has been employed in the literature for classification of structures
on surgical images and videos (Kletz et al., 2019b; Twinanda et al., 2016; Jin et al., 2018;
Mishra et al., 2017; Hashimoto et al., 2019; Kitaguchi et al., 2020), its use for segmentation
of anatomy and instruments in surgery has not been widely investigated.
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Figure 1: Ilustration of two-stage training frameworks for semantic segmentation with
three types of pre-training strategies. From top to bottom: no pre-training, supervised
pre-training, and our Surgical Semi-supervised Segmentation (SurgicalSemiSeg) framework
with tailored denoising autoencoder designs as pre-training. CNNs colours indicate re-used
parameters from pre-training.

In this paper, we evaluate common pretext tasks for static images such as random
rotation (Gidaris et al., 2018), colourisation (Zhang et al., 2016), autoencoder (Hinton
and Salakhutdinov, 2006), and denoising autoencoder (Vincent et al., 2008), alongside ad-
vanced methods like contrastive learning (SimCLR) (Chen et al., 2020), masked autoen-
coder (MAE) (He et al., 2022), and a recent contrastive method tailored for LC segmenta-
tion (DDA) (Zhou et al., 2024). Through extensive evaluation, we observe that pixel-level
generation tasks are effective for segmentation due to their alignment with pixel-level objec-
tives. Building on this observation, we propose our Surgical Semi-supervised Segmentation
framework (SurgicalSemiSeg). Figure 1 demonstrates the framekwork schematic. This
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framework involves a denoising autoencoder for self-supervised pre-training, and a super-
vised fine-tuning step. Specifically, we introduce four masking parameters for the denoising
autoencoder, each for a distinct input corruption strategy. These parameters provide flexi-
bility in the masking process, allowing it to operate independently of specific token positions
as in a masked autoencoder. Additionally, unlike image-level pre-training approaches that
disregard the decoder during fine-tuning (Chen et al., 2020), the pixel-level pre-training ob-
jective allows SurgicalSemiSeg to fully preserve the pre-trained model while modifying only
the decoder’s final layer during fine-tuning. This approach ensures that the understanding
capability gained by both the encoder and decoder during pre-training is largely retained,
maximising the utilisation of unlabelled data to improve segmentation performance in the
downstream task.
In summary, the contributions of this paper are as follows:

o We identify that self-supervised objectives at the pixel level are the most effective for
segmentation tasks in surgical contexts.

e We present a two-stage Surgical Semi-supervised Segmentation framework (Surgi-
calSemiSeg). It allows easy plug-in and play with different datasets and deep learning
architectures, while maximising the preservation of pre-trained representations.

e We propose a tailored denoising autoencoder with optimal mask designs as a pre-
training objective in SurgicalSemiSeg, which significantly improves the segmentation
accuracy of under-represented but clinically important classes.

e SurgicalSemiSeg outperforms other baseline SSL methods across three downstream
datasets and demonstrates robust and transferable representations across different
institutions.

2. Preliminaries

Given a dataset, D, comprised of an unlabelled subset for pre-training, D,, and a la-
belled subset for fine-tuning, D;, we define D = D, U D, such that {z;}!_; € D, and
{(mj,yj)}gzl € Dy, with p, ¢ denoting the samples sizes in the unlabelled and labelled

subsets respectively. In a typical scenario, p > q. © € R¥*"*3 denotes an input image of
width w and height A in the red-green-blue (RGB) space, and y denotes the corresponding
(pixel) labels.

A DNN model, fy = hog, is assumed to be a CNN with an encoder-decoder architecture,
parameterized by 6. The encoder, h, maps input, x, to a set of deep (or latent) features
in the high (C’ > 3) dimensional space, z = h(z), where z € R¥*"*¢  The input
spatial resolution gradually decreases while the number of channels (features) increases
when passing an input through multiple convolutional layers in the encoder. Thus, v’ <
w,h’ < h. The decoder, g, generates z to the desired output according to the objective
and makes the final predictions via its last layer.

In supervised learning, DNN training can be formulated as the following optimisation
problem:

arg;ninEwNDlﬁ(fG(w)a y)? (1)
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where £ is the objective function (e.g., cross-entropy) calculating the difference between
model prediction and the ground truth label.

In self-supervised learning, the ground truth is generated from the input data «, here
noted as «’. In this case, self-supervised training can be formulated as the following opti-
misation problem:

arg minEmelﬁ(fg(m), 33,), (2)
0

where L is the objective function (e.g., Euclidean distance) calculating the difference be-
tween model prediction and the generated ground truth.

3. Surgical semi-supervised framework

We provide an overview of our surgical semi-supervised framework in Section 3.1, and
propose the masked-corrupted denoising autoencoder pre-training objective in Section 3.2.

3.1. Two-stage framework

We present a simple yet versatile two-stage semi-supervised learning framework, name Sur-
gicalSemiSeg, designed to maximally exploit unlabelled surgical images to improve segmen-
tation performance. Figure 1 illustrates the difference of three types of training frameworks
for semantic segmentation, including no pre-training, supervised pre-training, and the pro-
posed SurgicalSemiSeg with a tailored mask-corrupted denoising autoencoder as the pre-
training objective, which will be explained in Section 3.2. With the pixel-level objectives
in both stages, our framework allows flexible integration of any segmentation model with
encoder-decoder architecture, making it highly adaptable for different applications. For this
study, we adopt a CNN for its flexibility on different input resolutions.

Additionally, SurgicalSemiSeg allows the maximal preservation of self-supervised pre-
trained representations by reinitialising the final layer weights during fine-tuning. To assess
pre-trained representation quality, pre-trained models require fine-tuning on a target an-
notated dataset. This process transfers the representations learned during the first stage
(pre-training on large-scale unlabelled surgical video frames, here we only focus on static
image pretext tasks in the scope of our paper) to a smaller-scale annotated segmentation
dataset. Existing image-level pre-training (Hinton and Salakhutdinov, 2006; Gidaris et al.,
2018; Chen et al., 2020) usually re-uses only encoder weights in fine-tuning. Our framework
benefits from the semantic understanding and spatial reconstruction ability from the pre-
trained decoder by modifying its last layer only. This design ensures a seamless transition
from pre-training to fine-tuning, requiring adjustments only to the dataset and learning
objective, while maintaining the integrity of the pre-trained representations.

3.2. Mask-corrupted denoising objective

Segmentation of surgical images poses unique challenges, including i) eztreme class im-
balance due to varying class size, appearance and occurrence, ii) hard-to-delineate objects
with overlap (Ferguson et al., 1992; Asbun et al., 1993), iii) predominantly reddish content
in both the background and foreground of surgical images, and iv) significant variation in
perspective due laparoscope movement, lighting variation and difference operative aproach.
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Conventional denoising autoencoders apply Gaussian noise to the input pixels, with the
model inferring the corrupted pixels based solely on the surrounding pixel values. In surgi-
cal views, the challenges mentioned above cause nearby pixel values within the same frame
to be highly similar. This similarity restricts the quality of representation learning, as it
becomes difficult for the model to distinguish between anatomies that share similar color
characteristics. As a result, this approach may fail to capture generalised and meaningful
representations for segmentation tasks.

To address these challenges and learn generalised representations, we propose a specially
designed mask-corrupted denoising autoencoder tailored specifically for surgical segmenta-
tion. Inspired by He et al. (2022), which has demonstrated exceptional representation learn-
ing capabilities by generating large portions of missing input patches, we hypothesise that
denoising autoencoders can similarly benefit from patch-based noise. By corrupting larger
regions of the image, reconstruction becomes more challenging, since the model requires to
infer missing parts of structures or even entire objects from masked-out areas.

To facilitate accurate pixel-class predictions, the pre-trained model can benefit from
recognising pixels within objects and differentiate them from those between objects. We
propose a novel mask design with four parameters to enable the application of patch-based
masks with varying sizes and masking ratios across the entire image. This mask-design
noise enables the model to learn generalised representations that remain consistent despite
variation in object appearance, occlusions, perspective changes, thus addressing the unique
challenges of surgical image segmentation.

Given an input image x € R¥*"*3 and a binary mask m € {0,1}**", a masked
transformation function, t(, v} with four parameters on the input image, is defined as
' =t(x)=x®m+ (1 —m)©®J, where ® is element-wise multiplication applied to each
RGB channel, and § has matching dimensions with  and contains the replacement value
for each masked pixel (default is 0). Four masking parameters are described as follows:

e p € [0%,90%]: the ratio of masked pixels, or pixels with 0 values in m, among the
total pixels in the input. p = 0% simplifies the masked pre-training to an autoencoder.

e N € [8,256]: the side length of an individual square mask patch or the diameter
length of a circle mask.

e s: the mask component shape. For simplicity we focus on square and circle masks.

e c: the replacing value in §, also known as mask colour. We adopted black or random
colours in the masks for every pixel or mask component.

An illustration of different masking parameters is provoded in Figure 2. The mask-
corrupted input ¢(x) and the clean input @ as input-reference pairs are then input into a
CNN with encoder-decoder architecture. The encoder extracts deep representations of the
whole t(x) with mask corruption as z’ = h(t(x)). The decoder g then transforms the deep
representations of the unmasked input regions (entangled with mask-corrupted noise) back
into the input space, as g(z') € R**"*3. We adopt the optimisation objective below to
minimise the pixel-wise reconstruction differences:

h—1w-—1

1
argemin]E“’ND“m SO lfa(t(@))ij — i) (3)

i=0 j=0



7ZHOU BADGERY READ BAILEY DAVEY

Figure 2: Ilustration of mask design parameters on a single example, from top to bottom
row, shows the masks, masked images, and reconstructed images under different mask
settings (p for masking ratio and N for mask size): A. no mask, B. p = 10%, N = 64, C.
p=90%,N =64, D. p=40%, N =8, E. p =40%, N = 256, F. p = 40%, N = 64 (optimal
mask settings), G. p = 40%, N = 64 in circle masks, H. p = 40%, N = 64 in coloured masks.

SurgicalSemiSeg maximises preservation of the entire pre-trained model developed on
the unlabelled dataset. Unlike image-level pretext tasks that lack a decoder, our method
includes a pre-trained decoder that has learned to resolve semantic and spatial relation-
ships between pixels from the encoder representation during pre-training. This design en-
sures that the semantic and spatial knowledge acquired in pre-training is largely retained
during fine-tuning. By preserving meaningful structural and contextual information, Sur-
gicalSemiSeg with the masked-corrupted denoising autoencoder fully exploits the potential
of pixel-level self-supervised representation learning for segmentation tasks.

4. Experiments

4.1. Experiment settings

DeepLabV3+ (Chen et al., 2018) with ResNet101 (He et al., 2016) backbone is adopted
as the default model. For each pre-training, the model was trained for 20 epochs with 16
as batch size, AdamW (Loshchilov and Hutter, 2019) as the optimiser, 0.001 as learning
rate, and 0.01 weight decay. All fine-tuning applies the same parameters, except changing
the learning rate to 0.005. For computational efficiency, we resized the in-house images to
960 x 540 and followed the original resolutions for public datasets. Augmentations of 10
degrees of rotation, horizontal flipping, and colour jittering (with brightness 0.25, contrast
0.25, saturation 0.25, and hue 0.0) applied. Experiments were conducted on 4 A100 GPUs
with PyTorch implementations.

As mentioned datasets can be easily plugged-in and play in our framework, therefore,
we validate the transferability of representation learned between different institutions. We
used an in-house LC dataset as well as a public LC datasets (Twinanda et al., 2016) for
pre-training, and validated the pre-training methods on our in-house dataset and two public
datasets (Hong et al., 2020; Maqgbool et al., 2020). The dataset descriptions are explained
in Appendix A.

4.2. Comparison with existing pre-text tasks

We evaluate the effectiveness of different pre-training strategies on under-represented classes
across three datasets. For our mask-corrupted denoising autoencoder, we adopt the optimal
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Table 1: Performance of different pre-training strategies on three validation datasets. IoU
is reported in percentage. The best results are in bold.

Datasets All Under Number Pre-training Strategies
represented N/A  Supervised Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours
M2caiSeg v 19 68.37 80.46 73.87 79.60 76.32 81.79  72.04 85.37 82.38
v 12 56.40 72.07 63.67 70.55 66.37 73.76  61.81 78.60 74.55
CholecSegsk v 8 57.49 61.59 55.33 64.52 56.71 56.35 57.94 61.71 66.05
v 1 1.85 33.29 44.50 28.33 22.64 3548 3329 40.98 59.15
20 56.03 59.16 56.20 59.15 50.37 58.567  61.63 58.44 62.26

In-house Seg v 11 4223 4594 43.01 45.92 37.79 4510 4473 48.72  50.67

Table 2: Class-wise performance of different pre-training strategies on In-house Seg. IoU is
reported in percentage. The best results are in bold.

Pre-training Strategies

N/A  Supervised Rotation Colourisation Autoencoder SimCLR MAE DDA  Ours

Class Names

N/A background 97.56 97.87 97.36 97.87 89.67 98.00 98.08 97.68 97.96
cholangiogram catheter 63.76 74.80 69.02 71.16 61.24 76.36 75.86 73.50 76.97
clip applicator 49.96 60.73 45.39 53.78 39.10 48.68 60.52 47.72  58.01
diathermy hook shaft 71.52 73.54 71.75 72.49 64.22 72.13 81.39 7336 73.69
diathermy hook tip 81.59 84.15 83.39 84.49 80.33 84.12 87.17 81.73 85.19

Instruments grasper shaft 76.34 78.89 76.00 79.06 64.86 79.21 80.35 78.88 80.21
grasper tip 57.50 64.38 54.70 64.00 53.70 65.18 64.35 61.61 67.24
scissors shaft 7.60 5.93 5.20 1.54 7.70 6.06 19.11 11.66 12.27
scissors tip 25.36 27.67 36.11 27.75 34.03 24.33 59.47 2391 45.27
sucker irrigator 55.76 63.38 52.53 62.21 45.06 62.83 64.43 63.27 65.63
abdomen wall 36.16 41.44 34.71 41.20 12.81 39.23 39.73  42.55 41.06
common bile duct 55.59 50.95 57.60 59.67 45.35 56.44 59.51  56.76  56.89
cystic artery 27.58 25.08 27.86 32.51 24.94 28.65 33.75 25.46  33.20
cystic duct 49.79 50.46 48.78 50.38 46.68 50.36 51.13 51.08 52.96

Anatomies duodenum 13.75 25.69 18.75 24.86 17.32 25.11 20.54 23.46 28.38
gallbladder 80.26 81.85 79.95 82.52 78.19 82.76 81.78 81.40 82.34
liver 84.96 87.01 84.58 86.50 79.61 85.82 85.50 85.53 87.79
omentum 87.49 87.53 87.76 88.61 72.09 88.88 88.96 88.55 88.82
rouviere’s sulcus 17.26 18.70 12.90 20.10 11.95 16.35 0.00 11.83 26.85
segment iv 80.89 83.26 79.64 82.29 78.57 80.88 81.02 83.84 84.38

Mean 56.03 59.16 56.20 59.15 50.37 58.57 61.63 58.44 62.26

mask parameters (the searching process is illustrated in Figure 3, and further described in
Section B) searched under In-house datasets as default settings. The results, summarised in
Table 1, show the average performance of all classes and specifically for under-represented
classes, defined as those comprising less than 1% of the pixel distribution. Except for
M2caiSeg, which is a very small dataset, pixel-level pretext tasks generally outperform
image-level ones. Our method notably improves prediction accuracy, especially for under-
represented classes.

We further report the class-wise loU of different pre-training methods on In-house Seg in
Table 2. For critical anatomical structures forerative safety, such as the common bile duct
and omentum, our method improves the baselines by 5.27% and 4.36%. It also significantly
improves the recognition of scissors (7.61%), a challenging class easily confused with other
instruments (Kletz et al., 2019a; Jaafari et al., 2021; Namazi et al., 2022).
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Figure 3: Influence of varying mask parameters on In-house Seg (in mloU). Results are
reported as mIoU (in percentage). Curves with filling show the mean and standard deviation
over 5 random seeds. Darker colour in (c) indicated better performance.

Table 3: Comparison of different pre-training dataset on three downstream datasets. IoU
is reported in percentage. The best results are in bold.

Pre-training Datasets

Inhouse Unlabelled  Cholec80

Fine-tuning Datasets

M2caiSeg 82.38 83.31
Cholecseg8k 66.05 68.23
In-house Seg 62.26 60.71

4.3. Generalised representations across institutions

Table 3 demonstrates that our method achieves the best performance when the pre-training
and fine-tuning datasets are collected from the same institution, where there is less variation
between surgical equipments and operative techniques. Furthermore, the results indicate
that representation learning from similar operations, in this case, LC, generalise well across
different institutional datasets. This finding highlights the potential and effectiveness of
leveraging unlabelled surgical recordings to enhance deep learning applications in surgery.
While our results specifically validate the method in LC, the approach is likely to perform
well across other surgical procedures. Our pre-trained models on Cholec80 will be made
publicly available.

5. Conclusion

In this paper, we conduct an extensive evaluation of self-supervised learning on static image
for LC segmentation. Based on our findings that aligned objectives of pre-training and fine-
tuning enable the most effective representation learning, we propose SurgicalSemiSeg, a
semi-supervised framework with a tailored masked denoising autoencoder for laparoscopic
images and provide comprehensive design guidelines. Our method significantly enhances the
recognition of under-represented classes that are safety related. This simple yet powerful
method offers valuable insights into leveraging unlabelled data for computer-assisted surgery
applications. Furthermore, our generalisable and open-sourced pre-trained model serves as
a valuable resource for the community, facilitating the development of LC segmentation
applications.
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Appendix A. Datasets description

The 5 datasets are comprehensively described in this section, including two unlabelled
datasets for pre-training and three labelled datasets for fine-tuning. The collection process
are the same with (Zhou et al., 2024)

The two unlabelled datasets adopted for elf-supervised pre-training are described as
follows:

e In-house Unlabelled contains 300,000 frames at 4 fps from the other 50 videos
to avoid data leakage. It is the default unlabelled dataset used for self-supervised
pre-training.

e Cholec80 (Unlabelled)(Twinanda et al., 2016) is a publicly available classification
dataset with tool presence and surgical phase annotations. It contains 80 videos in
480 x 854, where each video denotes an individual patient. We only make use of the
frames for self-supervised pre-training and disregard the annotations. To avoid data
leakage, we also discard the mutual videos in CholecSeg8k and m2caiSeg, which are
two subsets of Cholec80 with semantic segmentation annotations. In this way, the
adopted unlabeled Cholec80 dataset ends up with 63 videos, which generated 400,000
frames at 2 fps.
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Figure 4: Class distribution of pixels in three LC segmentation datasets, A:In-house Seg
B:CholecSeg8k C:M2caiSeg.

The three labelled datasets and their usage are described as below, with the statistics
of their class distributions are displayed in Figure 6.

e In-house Seg contains frames selected from 20 videos. The individual frames in in
32fps target clips were first pulled out, following by a pixel-wise threshold selection
which compares the concecutive frames with the anchor frame and select the next
frame if only its pixel difference exceed the threshold. This yielded 4,136 frames in
total, where the training set contains 3,740 frames from 16 videos, and the test set
contains 392 frames from 4 videos that are unseen in the training set. The dataset was
annotated and validated by our surgeons. To evaluate the pre-training strategies and
DNNs structure recognition effectiveness in the real-world surgical context, we explic-
itly defined the semantic class and include 9 surgical instruments and 10 anatomical

12



SURGICALSEMISEG

structures shown up during the interested surgical phases. The fine-grained class
definition cause the data distribution extremely skewed, which well-represented the
real-world challenge.

e CholecSeg8k (Hong et al., 2020) is a labeled subset of Cholec80 which contains 8,080
frames of 480 x 854 at 25 fps from 17 videos in Cholec80. Following (Silva et al., 2022),
we merge the 13 semantic classes into 8 classes under the same train-test split.

e M2caiSeg (Magbool et al., 2020) is a labelled subset of the MICCAI 2016 Surgical
Tool Detection dataset (Twinanda et al., 2016), which contains videos from Cholec80.
It contains 307 frames in 596 x 334 from 2 videos annotated with 19 classes.

Table 4: Class description and their colour encoding in R, G, B of In-house Seg.

Class name Description Colour code (RGB)
abdominal wall abdominal wall 100, 20, 80
background black background beyond circular visual field 200, 200, 200
cholangiogram catheter —instrument to apply dye-enhanced imaging for bile ducts visulization (includes shaft, trip and catheter) 0, 130, 170
clip applicator instrument to apply clips to close cystic artery and duct (includes shaft, trip and catheter) 130, 130, 0
common bile duct bile duct drain from hepatic ducts to duodenum 0, 250, 200
cystic artery blood supply to the gallbladder 255, 255, 0
cystic duct duct draining bile from gallbladder to common bile duct 64, 255, 50
diathermy hook shaft diathermy hook instrument - shaft 49,249,166
diathermy hook tip diathermy hook instrument - tip 0, 190, 80
duodenum dection of gastrointestinal tract where common bile duct drains, distal to stomach 20, 102, 73
gallbladder gallbladder 50, 255, 255
grasper shaft grasping instrument of any kind - shaft 50, 193, 255
grasper tip grasping instrument of any kind - tip 50, 132, 255
liver all other liver segments 255, 0,0
omentum intra-abdominal fat, includes small bowel 255, 197, 50
rouviere’s sulcus cleft on the right side of the liver; important landmark 255, 182, 193
scissors shaft instrument to cut tissues and structures 180, 50, 255
scissors tip instrument to cut tissues and structures 214, 50, 255
segment iv segment of liver to the patient left side of gallbladder 165, 42, 42
sucker irrigator cylindrical instrument for suction and irrigation 100, 0, 130

P |
‘
diathermy
:

- " 2 segment iv

-\,

Figure 5: Examples of annotated frames in In-house Seg overlaid with the class colour mask
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Appendix B. Masked denoising autoencoder designs

To reduce computation cost, we first search for the optimal masking ratio with a fixed N,
and then fix the optimal p and investigate N. For in-house Seg, the optimal performance
is reached when masking 40% with fixed N to 64, and the performance is relatively stable
between 30% and 60%. Varying N has a more significant influence on downstream perfor-
mance, which peaked at N = 64 when p = 40%. We further conducted a grid search with p
and N in a similar performance range and confirmed that the optimal setting for in-house
Seg is p = 40% and N = 64 in Figure 3(¢). On this optimal setting, results in Figure 3(d)
show the black square mask is preferable. Unless explicitly stated, we use p = 40% and
N = 64 with the black square mask as the default setting in following sections for In-house
Seg based on this observation.

For the two public datasets, increasing masking ratio and patch size also results in
upward parabola in segmentation performance. m2caiSeg is less sensitive to ratio changes,
but demonstrates higher performance variance across different runnings of the models under
the same mask settings, which is a common challenge in deep learning with small dataset.
On CholecSeg8k, the optimal p is observed at 20% and N at 32.

Appendix C. Dataset granularity

In this section, we explore the effectiveness of our pre-training on the same dataset with
different class definitions. Due to the dataset annotation difficulty, it is infeasible for institu-
tions to extensivelly labelled everything appeared during the surgical procudure. Based on
different clinical focus, we defined our extensively labelled dataset with 4 different number
and granularity of class difinitions.

e Only Instrument includes 6 commonly seen instruments in the duration of procedure
we are focusing on, including the cholangiogram catheter, clip applicator, diathermy
hook, grasper, scissors and sucker irrigator. Since it is common in robotic surgery
dataset that the surgical tool tips and shafts are annotated seperately for precise tool
motion tracking, we seperate the shaft and tip for three of the most frequently occured
instruments that could possibly cause tissue or organ damage, the diathermy hook,
grasper and scissors.

e Only Critical Anatomies includes 5 anatomical structures related mainly to the dissec-
tion, namely cystic artery, cystic duct, duodenum, gallbladder, and rouvieres sulcus.
Within them, cystic artery, cystic duct are the two critical structures for dissection.
Duodenum is regarded as the danger zone in dissectoin located below cystic artery,
cystic duct. It should be never approached to during the dissection. Rouvieres sulcus
is an rarely appeared landmark structure. With its occurrence, the surgical instru-
ments for dissection, like the diathermy hook or scissors, should never operate on any
anatomical structures below it.

e Only Fasy Anatomies includes 4 anatomies, duodenum, gallbladder, liver, and seg-
ment iv. They have relatively larger volume compared to other anatomies and easier
to recognize boundaries and appearance.
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e FaxplicitClasses consist of 28 classes including the blackground, surgical instruments
and anatomical structures that occurred during the focued operation period. Due to
its fine granularity, the class distribution is extremely skewed with 11 classes having
less than 1% pixels among the entire datasets.
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cholangiogram catheter
clip applicator
scissors tip

scissors shaft
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cystic duct
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Figure 6: Class distribution of In-house Seg datasets with three different class granularity.

Table 5: Comparison of pre-training strategies on In-house Seg with different class granu-
larity. IoU is reported in percentage. The best results are in bold.

Class definition Class numbers Performance
Only Instruments 10 67.46
Only Critical Anatomies 6 65.07
Only Easy Anatomies 5 71.82
Explicit Classes 28 44.80
Major Classes 20 62.26

From Table 5, we can observe that our method performs the best on Only easy anatomies,
and the worst on Explicit classes. Intuitively, with more

Appendix D. Visualisation on public datasets
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image RI IN p=40%, N =32 ground truth

Figure 7: Predictions on three sample images from CholecSeg8k. From left to right shows
the original images, predictions from no pre-training, supervised pre-training, our method,
and the ground truth segmentation masks. The colour code follows the original dataset.

image RI IN p=40%,N =32 ground truth

Figure 8: Predictions on three sample images from m2caiSeg. From left to right shows the
original images, predictions from no pre-training, supervised pre-training, our method, and
the ground truth segmentation masks. The colour code follows the original dataset.
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