Agentic Superoptimization of
Bioimaging Analysis Workflows

Xuefei (Julie) Wang* Jonathan Chen Alexander R. Farhang Sophia Stiles

Caltech Cornell Caltech Caltech
Kai A. Horstmann Atharva Sehgal Jonathan Light
Cornell UT Austin Rensselaer Polytechnic Institute
David Van Valen Yisong Yue Jennifer J. Sun
Caltech Caltech Cornell
Abstract

Data-driven scientific discovery relies on complex computational workflows to
process large, high-dimensional experimental datasets. However, a fundamental
bottleneck exists: adapting carefully engineered computational tools to bespoke
datasets studied by individual labs demands substantial manual tuning and cus-
tom code development, consuming weeks or months of expert time and slowing
scientific progress. To address this bottleneck, we introduce agentic superopti-
mization, a new paradigm for leveraging generative Al to autonomously write
customized code that can surpass human-expert-engineered solutions. We study a
proof-of-concept agentic framework for superoptimizing data preparation functions
directly in real-world, production-level scientific workflows, without requiring
additional annotations or training. We validate our approach on challenging bi-
ology and medical imaging tasks, consistently outperforming expert baselines.
Notably, our agent-generated code achieved the first-ever successful deployment
into a production-level scientific pipeline. Our work lays the foundation towards
human-AI agent collaborative discovery in complex, real-world environments.

1 Introduction

The past decade has seen an unprecedented acceleration in data-driven scientific discovery, with re-
searchers leveraging increasingly sophisticated computational workflows to tackle the ever-expanding
volume and complexity of experimental data [31]]. These advances, however, have revealed a fun-
damental bottleneck in adapting these powerful systems to the specific requirements of individual
researchers. In almost all real-world scientific inquiry, the application of carefully engineered compu-
tational tools to new datasets (even those within the same domain) commonly demands substantial
manual tuning and custom code development across all stages of the scientific workflow [30].

For instance, modern cell segmentation tools often fail on new images because of significant variability
in acquisition conditions between labs (e.g., lighting, noise, resolution) [14]. Achieving useful results
requires extensive manual effort in data preparation, hyperparameter tuning, and postprocessing.
These efforts can range from heuristic function development based on manual inspection of images to
training custom denoising neural networks, consuming months of invaluable domain expert time. This

*Correspondence: xwang3 @caltech.edu
Code available at: https://github.com/xuefei-wang/agent-super-opt

COLM 2025 Workshop LM4Sci

https://github.com/xuefei-wang/agent-super-opt

Scientific O Experiment Pilot Data Exploratory

Analysis Workflow 8 = Design Collection Analysis

Large-Scale Data Collecti Production-Level Analysi:

Medical Segmentation Medical Segmentation Workflow

Cell Segmentation Workflow

Single-molecule detection Workflow

Data Expert Tool Output
preparation Tuning refinement

Single-molecule detecti

O n Expert function e Agent function
= F1 Score: 0.841 F1 Score: 0.902
Time: Weeks/Months Time: 10 hours

Figure 1: Overview of Scientific Analysis Workflow with Agentic Superoptimization. We consider
three case settings in biomedical imaging analysis that span the multiple length scales, from single
molecule to macroscopic (Section E[)

inefficiency slows the pace of scientific progress, limits the reproducibility and utility of cutting-edge
computational tools.

We propose agentic superoptimization of scientific analysis workflows, a new paradigm that trans-
forms how complex scientific analyses are developed and deployed. Within this framework, super-
optimization extends beyond its traditional focus on generating maximally optimized (e.g., fastest
or smallest) code, to achieving scientific analysis outcomes that surpass human-expert-engineered
solutions. This unique combination of advanced agentic capabilities with the objective of surpassing
expert-level performance in integrated real-world production-level scientific workflows distinguishes
our work from existing agentic systems that typically focus on exploratory data analysis [22], task
automation [4], or program correctness [[1].

We study a proof-of-concept agent framework to evaluate the effectiveness of agentic superoptimiza-
tion, demonstrating that these agents can indeed develop solutions that outperform expert-designed
workflows. Our work provides significant evidence that common agent design choices may not
be beneficial for complex, real-world tasks. A key insight is that the primary bottleneck in these
scientific applications is the evaluation process—in terms of both compute and time—rather than
the LLM calls themselves. This suggests there is less incentive for domain experts to use faster but
less performant LL.Ms. Furthermore, we find that function banks, a frequently used module, can
surprisingly limit solution diversity and prove ineffective for scientific discovery. Understanding and
navigating these design choices presents unique and demanding challenges, pushing the boundaries
of what LLM agents can achieve in real-world environments.

We demonstrate the real-world impact of agentic superoptimization by deploying the first agent-
generated functions into a production pipeline, which automates painstaking manual code adaptations
in science (Figure [da). Looking beyond the biomedical imaging in this study, future applications in
data standardization, agent tool use, and human-AlI collaboration can further accelerate scientific
discovery.

2 Problem Statement

We address the problem of superoptimizing scientific analysis workflows, as depicted in Figure
[l Given a production-level analysis tool for biomedical imaging, the objective is to develop and
configure components of workflows to maximize performance on a targeted benchmark. In particular,
one needs to write programs to instantiate such workflows, resulting in a combinatorially (or infinitely)
large search space.

Superoptimization. The term superoptimization comes from the program synthesis community
[25]—given a reference function 7., the goal is to find a program 7 in a programming language

Phase 1: Explore — Phase 2: Refine —9» &
Prompts SR .
0 ﬂ Execution
—o - —
Prompt Prompt Coding
Agent

0
o
=i
T
7 :
x
Primitives ? B3
A ;
cv.GaussianBlur cv.erode =2
())
cv.Laplacian cv.merge E i + ﬂ £
cv.sqrBoxFilter cv.Canny xecution Score -
e e Feedback f—)/
Execution $03 |/
Agent \ @ /
Function Samples \

Function Bank
Dataset

Function Score @ @

Figure 2: Agent Framework for Superoptimization. The key components include a dual-agent
generation-execution feedback loop and a function bank.

L that optimizes a score function S(7) € R such that S(7) > S(mey). Prior superoptimization
settings include inductive program synthesis, where the score function is typically defined as compute
or memory cost of the program on a specific hardware or execution environment, conditioned on
consistency with respect to a specification (e.g., consistent with unit tests) [28} 26} [25].

Because the space of programs is combinatorially (or infinitely) large, it is important to regularize the
optimization problem to some notion of “simple” or “natural programs”. This naturally leads to the
following maximum a posteriori (MAP) estimation problem [3]:

7% = argmax pg(w]S) = argmax pe(S|w) - pe(w))
T T | S N’

By Execution By Generation

where p. (S|7) expresses the likelihood of a program execution to achieve a certain score, and pz ()
is a prior distribution on “natural” programs. In practice, we will use a high-quality large language
model (LLM) to sample from p. (7). The term “superoptimization” refers to solving (T)) to a superior
level than what is practically achievable by human experts.

Superoptimization for Scientific Data Analysis. We model scientific data analysis as a super-
optimization problem with three task-specific inputs: (1) a domain-specific dataset of input-output
examples D := {(x;,yi)}¥, and a score function Sp defined on the dataset; (2) an execution
environment that includes a production-quality analysis tool such as those depicted in Figure[I} (3) a
natural language description provided by domain experts about the data and task, referred to as the
Data Prompt and Task Prompt (Figure[2).

All these inputs are either naturally expressible in natural language or can be compiled into executable
programs with interpretable natural language meaning. This enables leveraging LLMs to capture
the semantic meaning and using them to guide the superoptimization process. LLMs approach the
program generation problem as a token prediction problem, directly approximating the program
likelihood by training on internet-scale datasets. That is, p. (7|Sp) = pLim({(m)|(L); (Sp)), where
(-) represents a natural language serialization of the respective variables. Because current LLMs
cannot reliably predict how their generated code will execute [20], our synthesizer incorporates an
agentic workflow [33l 132]: it runs the code, evaluates the output, and feeds the result back to the
model. The next sections describe this workflow in detail.

3 Agentic Al framework

To demonstrate the task of superoptimizing scientific analysis workflows, we designed a proof-of-
concept agent system, incorporating the design choices commonly seen in the field, including a
dual-agent generation-execution feedback loop [[7,134] and a function bank [23,[19]. The key inputs
for our framework are: dataset-specific prompts, task-specific prompts, and a library of primitives
that act as building blocks for generated functions.

Overall Architecture. The dual-agent feedback loop in Figure[2] combines a code-writing agent that
synthesizes new functions based on its prompting and an execution agent to evaluate the functions
within a complex workflow and dataset. The functions are composed of OpenCV APIs, adhering to
the prompt-defined structure (Section[A.TT)). Execution feedback and evaluation scores are sent back
to the code-writing agent to guide revisions to the generated code, forming the feedback loop. The
function bank stores generated functions and their associated execution scores. These scores measure
how well the functions improve the final output of the scientific workflows, using task-specific metrics
(Section[d) formulated into scoring functions. Sampling previous functions and inserting them into the
code-writing agent’s context can guide later code generations. Although many of these components
have been utilized in prior efforts, their specific contributions to achieving superoptimization in
scientific analysis workflows remain to be fully elucidated. We investigate this question in the present
work.

Prompt Structure. The prompt for the coding agent is structured into four key components: data
description, task specification, available primitives, and function samples. The data description
details the characteristics of the specific dataset, including attributes such as image type (e.g., RGB
or grayscale) and data modality (e.g., dermoscopy, X-ray, or spatial transcriptomics). The task
specification outlines the target task, relevant evaluation metrics, and the broader workflow context.
Since we are focused on biomedical imaging tasks, the available primitives consist of the OpenCV
API functions (Section [A.T3) that the agent can utilize to generate new functions.

Optimization Procedure. The optimization procedure unfolds in two phases. During Phase 1, the
function bank remains unused to encourage the coding agent’s exploratory generation of diverse
functions. In Phase 2, we strategically sample functions from the bank and incorporate this historical
information into the prompt, guiding the coding agent to further refine its function generation based
on prior knowledge. The optimization is guided by scores of the final workflow output. The function
samples include the highest-performing and lowest-performing functions from the function bank,
along with their corresponding performance scores.

Sampling. In each iteration, the coding agent generates multiple functions using the same conversa-
tion context. This design choice explicitly motivates the agent to create independent and different
functions from the same dependent view of the previous function bank, which implicitly encourages
the exploration of a broader functional space. We also run multiple independent rollouts with different
random seeds.

Remark on Bottlenecks. Because the tools we optimize for (Section[d) are computationally intensive
scientific analysis software, the entire process is typically bottlenecked by tool calls rather than LLM
queries. As such, there is less incentive to use faster but less performant LLM:s.

4 Case Studies

We consider three biomedical imaging applications as case studies. A production-quality domain-
specific tool is provided as part of the workflow execution, together with a labeled dataset and a
score function for optimizing the workflow. A baseline is established using a preprocessing function
engineered by a domain expert. The three case studies span multiple length scales, from single
molecule to cellular to macroscopic.

4.1 Polaris: Single Molecule Spot Detection

This task focuses on detecting sub-pixel fluorescent spots for image-based spatial transcriptomics
data (Figure[T] blue box). We use Polaris [13], a comprehensive pipeline for spot detection and gene
decoding, focusing specifically on its spot detection component for this case study. The dataset used
for this task consists of the held-out validation and test splits from the original training data. All
images are from various modalities using different RNA capturing and tagging methods. The expert
baseline preprocessing applied involved intensity normalization with clipping (Section[A.8)). The
optimization objective for this task was the maximization of the F1 score.

4.2 Cellpose: Cell Segmentation

The objective of this task is cell instance segmentation on multiple modalities such as whole cell
& nucleus (Figure[I] yellow box). The tool we use is the ‘cyto-3’ model from Cellpose3 [29], a
U-Net based network pre-trained for general cell segmentation. The expert baseline applies per-

Agent Rolling Best Validation Scores Across Tasks

Single-Molecule Defection Cell Segmentation Medical Segmentation: Dermoscopy Medical Segmentation: X-Ray

“25 °

ge Pr s
,DZSC agsos :
Dqgnusrﬂ;
e

Figure 3: Depicting learning curves on validation set performance. The dotted horizontal line is the
validation performance of the expert baseline. We see that average performance continues to improve
even when we terminate the experiments, suggesting further improvements are possible.

channel percentile-based min-max normalization (Section[A.8). The metric used for optimization
and evaluation is the average precision at an Intersection over Union (IoU) threshold of 0.5.

4.3 MedSAM: Medical Segmentation

This task involves medical image segmentation (Figure[I] green box). The tool we use is MedSAM
[[L7]], which is an extension of the Segment Anything Model [11]] (SAM) specifically adapted for
medical imaging domains. We used publicly released subset of validation set from the MedSAM
Codabench competition [[16], focusing on two specific modalities: Dermoscopy (RGB) and X-ray
(grayscale). Each modality has its own expert preprocessing functions: for RGB Dermoscopy images,
intensities were scaled using min-max normalization; for grayscale X-ray images (which were then
formatted to 3 channels), intensities were first clipped and then rescaled (Section[A.§). Evaluation
was performed on the full generated test sets for each modality. The optimization and evaluation
objective was to maximize the sum of the Normalized Surface Dice (NSD) and Dice Similarity
Coefficient (DSC) scores.

5 Experiments

We now present experimental validation on our three case studies. We first demonstrate that agentic
superoptimization is indeed achievable using our framework (Section [5.2). We then detail our
empirical investigations into the specific design choices influencing the agent’s performance, measured
by scoring the top performing functions (Section[5.3). We show how inductive biases—originating
from the agent’s pretraining, prompting strategy, and reliance on function bank history data—can
constrain its exploration and performance. We also incorporate results from exhaustive searching
using a non-LLM-based conventional optimization approach (AutoML) (Section [5.4) to establish
the reliability. Finally, we compare the agent’s performance when based on different underlying
LLMs, highlighting the influences of LLMs’ inherent biases on the search process and final outcomes

(Section[5.3).

5.1 Experimental Setup Expert Full System
K=1 K=10

Agent optimization experiments were -
conducted on the three case studies de- Polaris 1 0.841 0.902 0.902

scribed in Section[@ Polaris, Cellpose, Cellpose (ap@IoU 0.5) 0.403 0.410 0.410
and MedSAM. For each task, 20 inde- MedSAM, Dermo ~vsp+psc) 0.836 0.846 0.881

pendent rollouts were performed, with MedSAM, X-ray (NSD+DSC) 0.750 0.770 0.776

each rollout consisting of 20 iterations.
In experiments where the function bank
was utilized, it was introduced at the
5th iteration, with top 3 and bottom 3
functions being added to the prompt. We aggregated and selected the final top /' = 1, 10 functions,
evaluated them on the test set, and reported the highest scores. All standard experiments use GPT-4.1
as the base LLM for the code-writing agent.

Table 1: Main results on test set. Comparing performance
with function selection thresholds K = 1 and K = 10.

5.2 Agentic Superoptimization vs. Expert Baselines

The main question we ask is: can our agent write code for scientific analysis workflows that
outperforms expert-engineered code? This is a non-trivial task given the complexity of the tools used,
and the fact that expert baselines are designed over a span of weeks or months.

Our results in Table[T]definitively provide a positive answer to this question. Across all case studies,
our Al Agent is able to produce workflows that outperform the expert-written baselines on the test
set. The minimal improvement of Top-10 performance over Top-1 suggests that the best performing
solution on the validation set tends to be the best on the test set as well. Figure [3|shows the learning
curve on the validation set, which shows potential for further improvement with more iterations.

Figure [4a] shows an example function written by our agent for the Polaris spot detection setting.
Compared to the expert-written baseline preprocessing function, which achieves an F1 score of 0.664
on validation and 0.841 on test, the framework-generated preprocessing function achieves an F1 score
of 0.741 on validation and 0.902 on test. An improvement on both validation and test indicates that
the agent identified more complex image processing methods that better align with the distribution
and noise of the dataset than the expert-written baseline. Notably, the agent-generated code in Figure
Balemploys an unusual combination of OpenCV’s Gaussian blur and Laplacian operator. This unique
preprocessing, discovered by the agent, resulted in a reduced false positive rate (Figure [Ab).

We re-emphasize that these case studies involve production-quality software workflows. For instance,
the function in Figure fal has been successfully integrated into Polaris production pipeline.

|] =
O O oo

(b) Detections (red dots) from the agent-proposed func-
tion (without library learning) are compared to the Ground
Truth and an Expert Baseline. Yellow squares mark incor-
rect predictions.

(.)

def blurred lag in_of gaussian (images) :
processed images_list = []
for img_array in images:
img = np.copy (img_array)
img float32 = cv.normalize(img, None, 0, 1,
.NORM_MINMAX) .astype (r loat32)
eralFilter (img_float32, d=5,
sigmaSpace=9)
.Ga ur (bilateral, (3,3), 0)
.Laplacian(gauss, cv.CV_32F, ksize=3)
abs_lap = np.abs
lap_norm = cv.nor
.NORM MINMAX) .astype (np.f
f img_array.ndim and img array.shape(2] == 1:
lap norm = lap norm[:, :, np.newaxis]
processed images list.append(lap norm)
_ return np.array(processed_images_list, dtype=np.float32))

ize (abs_lap, None,
at32)

(a) An agent-generated Polaris preprocessing func-
tion, successfully integrated into production.

Figure 4: An Example of the agent’s code generation and visualization on Polaris.
5.3 Impact of design choices

We conduct an array of experiments to understand which agentic design choices result in scientific
superoptimization. Due to computational limitations, the MedSAM X-Ray task was excluded from
this analysis.

The Full System configuration was compared against the following variants:

No Function Bank: Each iteration was provided the same static context, providing no historical
information from generated functions and scores.

No Task Prompt: We omitted descriptions about tasks (e.g. "segmentation", "detection"), domain
tools, or any associated metric descriptors.

No Data Prompt: We removed any references to the nature of the data such as "medical,”" "X-Ray,"
or any domain-specific terminology.

Full System —Function Bank —Task Prompts —Data Prompts

K=1K=10 K=1 K=10 K=1 K=10 K=1 K=10
Polaris (F1) 0.902 0902 0.870 0.926 0.786 0.925 0.908 0.908
Cellpose (AP@IoU 0.5) 0410 0410 0412 0412 0.405 0.405 0.410 0410

MedSAM, Dermo (NsD+DSC) 0.846 0.881 0.932 0.932 0912 0912 0918 0.925

Table 2: Test set results on ablations of design choices, comparing K = 1 and K = 10 thresholds.

Surprisingly, many variants do not degrade performance compared to the default full system setting,
as shown in Table 2] Most notably, the removal of the function bank, a common component in agent
designs, consistently led to improved performance. Our analysis suggests this happened because
the bank restricted the diversity of possible solutions (Section[A.2). We also found that removing
task-specific or data-specific prompts generally improved predictive performance for MedSAM and
Polaris. Conversely, with Cellpose, removing the task-specific prompt decreased performance, while
data-prompts had no effect. These results highlight the need for rigorous design and empirical
evaluation of Al agent innovations, as they may not actually improve performance, particularly
real-world settings such as optimizing production-quality workflows.

5.4 Comparison with AutoML

A common alternative is to use AutoML methods, which effectively amount to some form of random
search or Bayesian optimization. Making a completely fair comparison is difficult because the setup
in AutoML requires a human expert to specify the allowable function primitive and search space in a
more rigid and time-consuming way compared to our agentic prompting. The analysis here is meant
to provide a sense of the reliability of each approach.

Setup We compared our agentic framework to standard AutoML using Optuna [2] for hyperpa-
rameter optimization. We organized OpenCV functions into families with defined parameter search
ranges, allowing 2-4 primitive operations, and optimized using the Tree-structured Parzen Estimator
(TPE) sampler. Given the results in Section[5.3] we select the best performing agent variant (from
validation set) to compare with AutoML.

Results Following an extensive

search of the manually defined Agent Best AutoML
optimization space, AutoML’s best K=1 K=10

function sometimes achieves per- — popo o D) 0902 0926 00916
formance on par with our agent’s Cellpose (apP@IoU 0.5) 0412 0412 0.339

best functions (K = 1and K = 10) nfedSAM, Dermo (vspspscy 0932 0932 0.936
across tasks, but not reliably so.

Notably, the performance of AutoML Typle 3: Comparing Agent system with AutoML on test
was particularly poor on tasks ex- performance. We selected the best performing variant from

hibiting less saturated performance Table [2]based on validation performance.
ceilings, such as Cellpose where

AutoML underperformed the expert-written baseline, suggesting greater potential for agentic
superoptimization in these scenarios. Moreover, it might be interesting future work to use AutoML
as a subroutine in our framework.

5.5 Impact of LLM choice

Our code-writing LLM replacement ablation demonstrated that the choice of model significantly
influences the pre-training inductive bias manifested in code generation. Specifically, the LLaMA-
3.3-70B model exhibited poor exploration of the primitive-defined search space and a tendency to
generate repetitive functions across tasks, irrespective of context. This limitation resulted in worse
performance compared to the agent employing a GPT-4.1 backbone. Moreover, since the overall
system is bottlenecked by the tool call (e.g., Polaris, Cellpose, MedSAM), there is little incentive to
use faster but less performant LLMs.

GPT4.1 LLaMA 3.370B

6 Related Work K=1K=10 K=1 K=10
) S Polaris 0.902 0.902 0881 0.888
Program Synthesis & Superoptimization. Cellpose 0.410 0.410 0404 0.404

Superoptimization is the task of finding an op- MedSAM, Dermo 0.846 0.881 0.821 0.865

timal program for a given objective, often with
the goal of surpassing expert-written baselines. ~ Table 4: Results comparing LLM performance
This process is characterized by two main chal-

lenges: navigating an enormous search space and satisfying a strict optimality criterion [28] [15].
Superoptimization approaches can be broadly classified into two categories: those that find semantic-
preserving modifications and those that discover programs with different semantics [23]. In the
first category,[28] introduced performance edits in low-level languages that preserve an algorithm’s
high-level structure. In the second category, methods like FunSearch [23] and AlphaEvolve [21] have
shown that code generated by pretrained LLMs can be evolved to discover more efficient heuristics
for problems in mathematics, hardware design, and algorithms. Our work aligns with this second,
semantic-altering category, but focuses on the novel application domain of discovering performant
algorithms for real-world scientific workflows.

AutoML. Automated Machine Learning (AutoML) automates various pipeline stages, including
model hyperparameter optimization [12} 2], feature engineering [10], neural network topology [35} (9],
and data cleaning and preprocessing [12} 16} [2]. Despite this breadth, traditional AutoML frameworks
operate on a principle of search within a manually defined space. Tools like Optuna [2] require
experts to invest significant effort in constructing these search spaces, which acts as a bottleneck
by confining the solution to pre-conceived options. Our agentic framework fundamentally diverges
from this approach by replacing search with synthesis. Instead of a constrained search space, our
system takes simple, high-level instructions and utilizes pretrained LLMs to autonomously synthesize
entirely new programs. This eliminates the need for labor-intensive manual configuration and allows
for the discovery of solutions beyond the scope of a pre-defined search.

Scientific Analysis Agent. Recent investigations have demonstrated the potential of large language
model (LLM) agents in scientific discovery. Existing frameworks aim to automate various facets
of the research lifecycle, from the end-to-end process [27] to specialized tasks such as data-driven
hypothesis generation [[7], rigorous hypothesis validation through falsification [[18], the synthesis of
interpretable analysis programs [19], and gene perturbation experiment designs [24]. To assess agent
capabilities, various benchmarks has been introduced, including MLagentbench [8] for machine
learning experimentation and ScienceAgentBench [3]] for diverse scientific tasks. Despite these
advances in research automation, a significant bottleneck remains: the adaptation of production-
level domain tools to achieve expert-level performance, a process that typically requires weeks
or months of manual coding. Our work addresses this critical gap by introducing a method to
autonomously generate and optimize preprocessing functions that integrate directly into production-
level workflows, thereby enabling expert-level performance without extensive manual intervention
(Detailed comparison Section[A.T0)

7 Discussion

Limitation. Our framework’s current limitations guide our future work. To improve the inefficient
and unreliable hyperparameter generation, we plan to integrate a dedicated lightweight optimizer
for the agent to use. Furthermore, while promising, our empirical study was confined to biomedical
image preprocessing. We intend to expand our evaluation to a greater variety of tasks, with a specific
focus on the pervasive challenge of data standardization. Applying our agent to generate robust
transformation pipelines for heterogeneous datasets, like electronic health records or agricultural data,
represents a key avenue for increasing its impact across science, health, and society.

Conclusion. We present agentic superoptimization, a method using generative Al to solve a key
bottleneck in science: adapting computational tools to new datasets. Our Al agent autonomously wrote
and refined pre-processing code for biomedical imaging workflows, outperforming expert-engineered
baselines. The success and practical integration of these agent-derived solutions demonstrate a viable
path toward accelerating scientific discovery and pushing the boundaries of Al agents in complex,
real-world applications.

Acknowledgments

For JJS, this study was supported by the Food and Drug Administration (FDA) of the U.S. Department
of Health and Human Services (HHS) as part of a financial assistance award (UO1FD008421) totaling
$199,907 with 100% percent funded by FDA/HHS. The contents are those of the authors and do not
necessarily represent the official views of, nor an endorsement, by FDA/HHS, or the U.S. Government.

YY was supported in part by a gift from Open Al

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Pooja Aggarwal, Oishik Chatterjee, Ting Dai, Prateeti Mohapatra, Brent Paulovicks, Brad
Blancett, and Arthur De Magalhaes. Codesift: An llm-based reference-less framework for
automatic code validation. In 2024 IEEE 17th International Conference on Cloud Computing
(CLOUD,), pages 404410, 2024.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 19, page
2623-2631, New York, NY, USA, 2019. Association for Computing Machinery.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language
agents for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

Noel Crawford, Edward B. Duffy, Iman Evazzade, Torsten Foehr, Gregory Robbins, Deb-
brata Kumar Saha, Jiya Varma, and Marcin Ziolkowski. Bmw agents — a framework for task
automation through multi-agent collaboration, 2024.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lucas Morales,
Luke Hewitt, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Growing
generalizable, interpretable knowledge with wake-sleep bayesian program learning, 2020.

Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and Frank Hutter.
Auto-sklearn 2.0: Hands-free automl via meta-learning. arXiv:2007.04074 [cs.LG], 2020.

Kexin Huang, Ying Jin, Ryan Li, Michael Y. Li, Emmanuel Candes, and Jure Leskovec.
Automated hypothesis validation with agentic sequential falsifications, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Haifeng Jin, Francois Chollet, Qingquan Song, and Xia Hu. Autokeras: An automl library for
deep learning. Journal of Machine Learning Research, 24(6):1-6, 2023.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating
data science endeavors. In 2015 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 1-10, Campus des Cordeliers, Paris, France, October 2015. IEEE.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Doll4r, and Ross Girshick.
Segment anything. arXiv:2304.02643, 2023.

Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn. In Frank Hutter, Lars
Kotthoff, and Joaquin Vanschoren, editors, Automated machine learning: Methods, systems,
challenges, pages 97-111. Springer International Publishing, Cham, 2019.

Emily Laubscher, Xuefei Wang, Nitzan Razin, Tom Dougherty, Rosalind J Xu, Lincoln
Ombelets, Edward Pao, William Graf, Jeffrey R Moffitt, Yisong Yue, et al. Accurate single-
molecule spot detection for image-based spatial transcriptomics with weakly supervised deep
learning. Cell Systems, 15(5):475-482, 2024.

Kwanyoung Lee, Hyungjo Byun, and Hyunjung Shim. Cell segmentation in multi-modality
high-resolution microscopy images with cellpose. In Proceedings of The Cell Segmentation
Challenge in Multi-modality High-Resolution Microscopy Images, volume 212 of Proceedings
of Machine Learning Research, pages 1-11. PMLR, 28 Nov-09 Dec 2023.

Zhengyang Liu, Stefan Mada, and John Regehr. Minotaur: A simd-oriented synthesizing
superoptimizer. Proceedings of the ACM on Programming Languages, 8(OOPSLA2):1561—
1585, 2024.

Jun Ma. Cvpr 2024: Segment anything in medical images on laptop. In CVPR 2024 Workshop.
OpenReview.net, 2024.

10

[17] Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment anything in
medical images. Nature Commun., 15(1):654, January 2024.

[18] Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models. arXiv preprint
arXiv:2407.01725, 2024.

[19] Utkarsh Mall, Cheng Perng Phoo, Mia Chiquier, Bharath Hariharan, Kavita Bala, and Carl
Vondrick. Disciple: Learning interpretable programs for scientific visual discovery, 2025.

[20] Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution, 2024.

[21] Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian,
et al. Alphaevolve: A coding agent for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

[22] Zeeshan Rasheed, Muhammad Waseem, Aakash Ahmad, Kai-Kristian Kemell, Wang Xiaofeng,
Anh Nguyen Duc, and Pekka Abrahamsson. Can large language models serve as data analysts?
a multi-agent assisted approach for qualitative data analysis, 2024.

[23] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468-475, 2024.

[24] Yusuf Roohani, Andrew Lee, Qian Huang, Jian Vora, Zachary Steinhart, Kexin Huang, Alexan-
der Marson, Percy Liang, and Jure Leskovec. Biodiscoveryagent: An ai agent for designing
genetic perturbation experiments, 2025.

[25] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi Taneja, and John
Regehr. Souper: A synthesizing superoptimizer. 2017.

[26] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM SIGARCH
computer architecture news, volume 41, pages 305-316. ACM, 2013. Number: 1.

[27] Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang
Liu, Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using Ilm agents as
research assistants. arXiv preprint arXiv:2501.04227, 2025.

[28] Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi,
Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits, 2024.

[29] Carsen Stringer and Marius Pachitariu. Cellpose3: one-click image restoration for improved
cellular segmentation. Nature Methods, pages 1-8, 2025.

[30] Ana Trisovic, Matthew K. Lau, Thomas Pasquier, and Merce Crosas. A large-scale study on
research code quality and execution. Scientific Data, 9(1):60, February 2022. Publisher: Nature
Publishing Group.

[31] Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal
Chandak, Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the
age of artificial intelligence. Nature, 620(7972):47-60, 2023.

[32] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik
Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software
engineering, 2024.

[33] Shunyu Yao. Language Agents: From Next-Token Prediction to Digital Automation. PhD thesis,
Princeton University, 2024.

11

[34] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In International Conference
on Learning Representations (ICLR), 2023.

[35] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch tabular: Multi-fidelity
metalearning for efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 3079 — 3090, 2021. also available under https://arxiv.org/abs/2006.13799.

12

A Appendix

The sections of our appendix are organized as follows:

Section[A.T} Qualitative results where we visualized the expert and agent processed images with
downstream task prediction overlaid.

Section[A.Z} Diversity analysis of primitives between full-system and no-function-bank settings.
Section[A.3} Polaris author’s comment on the agent-generated function.

Section[A.4} Experiments where we run 2x iterations compared to the standard setup.
Section[A.3} Experiments with a different split of data.

Section[A.6f Experiments with a ReAct-style variant.

Section Statistics of the primitives used by top and bottom functions by each task.
Section[A.8} Expert baseline functions and their git hisotry analysis.

Section[A.9} Top-1 Agent generated functions.

Section[A.T0p Comparison of our method against related work.

Section[A.TT} Prompts and data split details, including which prompts we ablated during design
choice experiments.

Section[A.T2} Computational requirements for each task.
Section[A. T3} A list of primitives used in the preprocessing functions.

A.1 Visualizations of Top Performing Preprocessing Functions

A.1.1 Polaris
See Figure A

A.1.2 Cellpose

Agent Preprocessed Raw

Expert Preprocessed

Figure 5: Segmentation masks from the Top-1 Function returned on Cellpose (without library learn-
ing), compared to the Raw Image and the Expert Baseline on the two example images. Highlighted
in red boxes are places within the image where the agent’s returned preprocessing function improves
performance by either preventing merges of multiple structures into single structures or enhanced
segmentation mask accuracy.

13

A.1.3 MedSAM

Figure 6: MedSAM X-ray images with mask overlays. The Raw row shows unprocessed images with
their corresponding ground truth masks. The Agent Preprocessed row displays images preprocessed
using the Top-1 function returned on MedSAM X-ray images (without library learning), overlaid
with the predicted masks. The Expert Preprocessed row presents images processed using the methods
described in the original MedSAM paper and official repository, also overlaid with their predicted
masks.

Raw

Agent Preprocessed

Expert Preprocessed

Figure 7: MedSAM Dermoscopy images with mask overlays. The Raw row shows unprocessed
images with their corresponding ground truth masks. The Agent Preprocessed row displays images
preprocessed using the Top-1 function returned on MedSAM Dermoscopy images (without library
learning), overlaid with the predicted masks. The Expert Preprocessed row presents images processed
using the methods described in the original MedSAM paper and official repository, also overlaid with
their predicted masks.

14

A.2 Diveristy Analysis of primitives with full-system and no-function-bank settings

We conducted diversity analysis of primitives on Polaris: with function banks, common methods like
‘normalize’ and *GaussianBlur’ were overrepresented (about 30% and 17.5% respectively), while
without them, the top two functions were less skewed (about 22% and 12%), allowing for greater
exploration and the proposal of more effective, diverse functions like ’CLAHE’ or ’Laplacian’ filters.
Further, either of the two functions can be found in all 20 of the top 1 functions across 20 rollouts
with function banks, whereas without function banks they represent only 14 of the top 1 functions.
This demonstrates that function banks, counter-intuitively, bias exploration and lead to sub-optimal
results in our setting.

A.3 Polaris Author’s Comment on Agent-generated Function

This is a great improvement! It makes sense that the bilateral filtering is
removing noise in an edge-aware way, which would preserve the structure of the
spot intensities. Followed by Gaussian blurring, which would more uniformly
remove high frequency noise. It’s likely helping to have both because the objects
we’re detecting are so small and easily altered when the parameters of a particular
filtering method are too aggressive. The final LoG step makes sense too as a final
edge detection step. Looks great and so glad it’s improved the spot detection
metrics!

A4 Extended Iteration Experiments

We doubled the length of each rollout for experiments in the standard setting to observe the effect on
final top-1 and top-10 validation and test performance (Table. [5). As expected, the learning curve
keeps improving. And the top-1 and top-10 test scores are the same for both tasks, indicating that
improvement is better aligned between test and validation sets when we allow a larger compute
budget.

Val Test
K=1 K=10 K=1 K=10

Cellpose 0.3969 0.3969 0.4109 0.4109
Polaris 0.9143 0.9143 0.7339 0.7339

Table 5: Top-1 and Top-10 validation and test scores with extended iteration experiments.

A.4.1 Polaris

Mean and Standard Deviation of Rolling Maximum F1 Scores

—— Mean Rolling Maximum
Standard Deviation
——- Baseline Val (Test: 0.8414)

0.8 4

0.6

=]
'S
L

F1 Score

0.2 4

0.0 4

T T T T T T
0 20 40 60 80 100
Iterations

Figure 8: Learning curve for extended rollouts for Polaris

15

A4.2 Cellpose

Mean and Standard Deviation of Rolling Maximum Scores (all_data_num_optim_iter 40)

0.38 4

Average Precision
o
w
(=]

=}
w
=

0.32 —— Mean Rolling Maximum
Standard Deviation
—-- Baseline Val (Test: 0.4028)

T T T T T T T
0 20 40 60 80 100 120
Iterations

Figure 9: Learning curve for extended rollouts for Cellpose

A.5 Experiments with different splits of data

To confirm that the agent framework is robust and not affected by different data splits, we reran the
Cellpose experiment with a new data split. The results showed consistent scores across all splits,
demonstrating the framework’s reliability.

Expert Test
K=1 K=10

New Split 0.401 0.411 0.411
Old Split 0.403 0410 0.410

Table 6: Cellpose test scores on different data splits with the full-system setting.

A.6 Experiments investigating the role of reasoning in superoptimization

To determine if enhanced reasoning capabilities improve performance in scientific superoptimization,
we created a ReAct-style version of our system. This variant included a reasoning trace and sampled
only the most recent function history. This approach allows our framework to rigorously test why
certain agent strategies succeed or fail in this challenging domain. Our results demonstrated that
incorporating a ReAct-style reasoning mechanism did not yield additional benefits or performance
gains for this task. Similarly, we ran an experiment using OpenAlI’s "03" reasoning model and found
that it did not offer a significant advantage for this superoptimization task either.

Expert Test
K=1 K=10

ReAct-style (gpt-4.1) 0.841 0.886 0.904
Full-system (03) 0.841 0.839 0.905
Full-system (gpt-4.1) 0.841 0.902 0.902

Table 7: Performance of reasoning-enhanced variants compared to the full system on the Polaris task.

16

Raw Counts of OpenCV Functions in Top 10 vs Bottom 10

300 4 Top 10

Bottom 10

2501

200 A

150 1

Count

100

50

NSRS S J & OO R 3
o S RS P F P F SRS O Py
&Vv & 00@ S o\oc»* S K & &"’& P L T EEL LS & TEFEST &
F S FNE Ve S & & S L CE
& & & & < & & & & <
& <& § & & & <
S SRS S &
N S &
2 & £
§ @R

OpenCV Functions

Figure 10: Cell Segmentation: Distribution of function primitives used in the aggregated top-10 or
bottom-10 functions returned by agentic optimization (across 20 rollouts).

A.7 Statistics of primitives used in Top-K and Worst-K Functions

By analyzing the function abstract syntax trees, we show the distributions of functional primitives
used in the best and worst performing preprocessing functions found by our agentic optimization
pipeline. Figure[I0]shows the distributions found for Cell Segmentation (Cellpose) by aggregating
the top 10 or bottom 10 performing (by validation performance) functions returned in each rollout
(20 rollouts).

Compare the distribution of best/worst functions in the Cellpose task with the distribution of best/worst
functions in Fig[TT] for the Polaris task and Fig[T2]for the MedSAM task, collected using the same
method above.

17

Raw Counts of OpenCV Functions in Top 10 vs Bottom 10

160 e Top 10

 Bottom 10

140

120

100

-
c
3
O 80
[¥]
60
404
20 4
0- S T 4 T T
S & S K & R d SN O O LS @ LS S e RN >
N F & e \y‘b & & Q\\@ .é’b(‘ 9,6‘0 FUSeN & & (,o\° < N ,,)6"0 & Q*& g‘\‘) & &S & ,\&Q 0{\& &
& & P PO X FE O F S FHF ¥ S
T M VO R R SO & & C S F &
0 & O & &S &F & &L & & &
P & S « £ & SR & 2
& & & &L & & &
N @ NSl K
& § ° S
& @ Q

OpenCV Functions

Figure 11: Polaris: Distribution of function primitives used in the aggregated top-10 or bottom-10
functions returned by agentic optimization (across 20 rollouts).

Frequency of OpenCV Functions in Top 10 vs Bottom 10

e Top 10
[Bottom 10
204

Frequency (%)

OpenCV Functions

Figure 12: Medical Segmentation: Distribution of function primitives used in the aggregated top-10
or bottom-10 functions returned by agentic optimization (across 20 rollouts).

A.8 Expert functions
A.8.1 Polaris expert baseline function

The function below is the default expert baseline function from the Polaris GitHub repository, as
detailed in the Polaris paper [13]]. Given that the training data underwent min-max normalization —
a process also applied by the agent-generated function — the effective baseline for our experiments
is the identity function.

Expert Polaris Preprocessing Function

import numpy as np
def min_max_normalize(image, clip=False):
if not np.issubdtype(image.dtype, np.floating):
logging.info(’Converting image dtype to float’)
image = image.astype(’float32’)

if not len(np.shape(image)) ==
raise ValueError(’Image must be 4D, input image shape was’
> .7 .format (np.shape (image)))

for batch in range(image.shape[0]):
for channel in range(image.shape[-1]):
img = image[batch, ..., channel]

if clip:
img = np.clip(img, a_min=np.percentile(img, 0.01),
a_max=np.percentile(img, 99.9))

min_val = np.min(img)
max_val = np.max(img)
normal_image = (img - min_val) / (max_val - min_val)

image[batch, ..., channel] = normal_image
return image

A.8.2 Cellpose expert baseline function

Adapted and simplified from the Cellpose GitHub repository, as described in the Cellpose3 paper

Expert Cellpose Preprocessing Function

import numpy as np
def normalize99(Y, lower=1, upper=99, copy=True, downsample=False):
¢“‘Normalize the image so that 0.0 corresponds to the 1st percentile
and 1.0 corresponds to the 99th percentile.

Args:
Y (ndarray): The input image (for downsample, use [Ly x Lx]
or [Lz x Ly x Lx]).
lower (int, optional): The lower percentile. Defaults to 1.
upper (int, optional): The upper percentile. Defaults to 99.
copy (bool, optional): Whether to create a copy of the input image.
Defaults to True.
downsample (bool, optional): Whether to downsample image to compute
percentiles. Defaults to False.
Returns:
ndarray: The normalized image.’’’

Create a copy of the input if required
X = Y.copy() if copy else Y
X = X.astype("float32") if X.dtype!="float64" and X.dtype!="float32" else X

19

Downsample to calculate percentiles more efficiently for large images
if downsample and X.size > 224%x*3:
nskip = [max(1, X.shapel[i] // 224) for i in range(X.ndim)]
nskip[0] = max(1, X.shape[0] // 50) if X.ndim == 3 else nskip[0]
slc = tuple([slice(0, X.shape[i], nskip[i]) for i in range(X.ndim)])
x01 = np.percentile(X[slc], lower)

x99 = np.percentile(X[slc], upper)
else:

x01 = np.percentile(X, lower)

x99 = np.percentile(X, upper)

Normalize the image between the percentiles
if x99 - x01 > le-3:

X -= x01

X /= (x99 - x01)
else:

X[:1 =0

return X

A.8.3 MedSAM expert baseline function

Adapted and simplified from the MedSAM GitHub repository, as described in the MedSAM paper

Expert MedSAM Preprocessing Function

import numpy as np
def preprocess_images(images, is_rgb):
resized_imgs = images.raw
for i in range(len(resized_imgs)):
img_np = resized_imgs[i]
if is_rgb:
resized_imgs[i] = np.uint8((img_np - img_np.min()) /
(np.max(img_np) - np.min(img_np)) * 255.0)

else:
lower_bound, upper_bound = np.percentile(img_np[img _np > 0],
0.5), np.percentile(img_np[img_np > 0], 99.5)

img_np_pre = np.clip(img_np, lower_bound, upper_bound)

img_np_pre = (img_np_pre - np.min(img_np_pre)) / (np.max(img_np_pre)
- np.min(img_np_pre)) * 255.0

img_np_pre[img_np == 0] = 0

resized_imgs[i] = np.uint8(img_np_pre)
return ImageData(raw=resized_imgs, batch_size=images.batch_size)

A.8.4 Git history analysis of expert functions
We analyzed the git R&D history of these packages to quantify the efforts experts put into building
these baseline functions:

Polaris: Its Git history (May 29, 2021 to September 15, 2021, across 12 commits) shows an evolution
over 6 months including changes like adding clipping and reordering functions, resulting in a refined
version with 2 preprocessing options and 2 hyperparameters.

MedSAM: While direct R&D commit history was not available, MedSAM incorporates custom
preprocessing functions for various modalities (CT, MR, grey, RGB). The substantial codebase

20

dedicated to these functions (255 lines of code) indicates significant expert investment in tailoring
these for specific medical imaging challenges.

Cellpose: The human optimization process spans over three years (February 1, 2020 to March 8,
2023) along with model development. Changes include normalization for 3D data, adjustments to
tiling strategies, and the addition or removal of sharpen/smooth operations. The final version provides
9 hyperparameters.

A.9 Agent Top-1 functions
A.9.1 Polaris

Top-1 Agent Generated Function (Polaris)

def preprocess_images(images):
nnn
Preprocessing 2: Bilateral Filter + Laplacian Edge Enhancement.
Output is (H, W, 1) float32 in [0,1].
processed_images_list = []
for img_array in images.raw:
img_array = np.copy(img_array)
squeeze = False
if img_array.ndim == 3 and img_array.shape[-1] ==
img = img_array[:, :, 0]
squeeze = True
else:
img = img_array

img8 = (img / img.max() * 255).astype(np.uint8)
if img.max() > 1 else (img * 255).astype(np.uint8)
img_bilat = cv.bilateralFilter(img8, d=5, sigmaColor=75, sigmaSpace=75)
img_lap = cv.Laplacian(img_bilat, cv.CV_16S, ksize=3)
img_lap = cv.convertScaleAbs(img_lap)
img_enhanced = cv.addWeighted(img_bilat, 0.8, img_lap, 0.2, 0)
img_enhanced = img_enhanced.astype(np.float32) / 255.0
if squeeze:
img_enhanced = img_enhanced[..., np.newaxis]
processed_images_list.append(img_enhanced)
output_data = ImageData(raw=processed_images_list,
batch_size=images.batch_size)
return output_data

\. J

A.9.2 Cellpose

Top-1 Agent Generated Function (Cell Segmentation)

def preprocess_images(images):
Function 1: Apply CLAHE to channel 0 (nucleus), controlled contrast
stretching on channel 1 (cytoplasm), channel 2 unchanged
processed_images_list = []
for img_array in images.raw:
img = np.copy(img_array)
output = np.zeros_like(img)
Channel 0: CLAHE (for better nucleus contrast)
ch0 = (img[..., 0] * 255).astype(np.uint8)
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
chO_eq = clahe.apply(chO)
output[..., 0] = chO_eq.astype(np.float32) / 255.0
Channel 1: Contrast stretching (clip 1st & 99th percentiles)
chl = img[..., 1]

21

pl, p99 = np.percentile(chl, 1), np.percentile(chl, 99)
chl_stretch = np.clip((chl - p1) / (p99 - pl + 1le-6), 0, 1)

output[..., 1] = chl_stretch
Channel 2: unchanged
output[..., 2] = img[..., 2]

processed_images_list.append(output)
return ImageData(raw=processed_images_list)

A9.3 MedSAM

Top-1 Agent Generated Function (Medical Segmentation)

def preprocess_images(images: ImageData) -> ImageData:
Variant: Sharpen after CLAHE + GaussianBlur, then normalize
processed_images_list = []
for img in images.raw:
img = np.copy(img)
img = cv.resize(img, (1024, 1024), interpolation=cv.INTER_AREA)
img = cv.GaussianBlur(img, (3, 3), 0)
if img.shape[2] ==
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
channels = cv.split(img)
eq_channels = [
clahe.apply(cv.normalize(c, None, O, 255,
cv.NORM_MINMAX) .astype(np.uint8))
for c¢ in channels
]
img = cv.merge(eq_channels)
else:
img = cv.equalizeHist(cv.normalize(img, None, 0, 255,
cv.NORM_MINMAX) .astype(np.uint8))

img = np.expand_dims(img, axis=-1)
Sharpening kernel
kernel = np.array([[0, -1, 0],
['1’ 5’ '1]’
[0, -1, 0o11)
img = cv.filter2D(img, -1, kernel)
img = img.astype(np.float32) / 255.0
processed_images_list.append(img)

output_data = ImageData(raw=processed_images_list,
batch_size=images.batch_size)
return output_data

A.10 Comparison of our method against related work

Here is the detailed comparison between our work (agentic superoptimization) and conventional ML
agent tasks (like MLAgentBench [8]]):

* Primary Goal
o MLAgentBench: Optimize the entire ML experimentation process in a standard, fixed setting for
quickly testing and iterating on ML models, not translatable to real-world scientific deployment.
o Our Work: Superoptimize a single component within an existing, fixed, production-level scien-
tific workflow that are used by scientists for real-world scientific discovery (already optimized
by experts with weeks/months of development time, thus superoptimization).
* Nature of the Task

o MLAgentBench: Whitebox model development with full flexibility - the agent builds or
modifies the core predictive model to improve performance on a dataset. The agent generally
has full control and "white-box" access to the code it writes. It defines the entire workflow, from

22

Table 8: Comparison of our framework against related work in automated scientific discovery. Our
work is the first to combine code optimization with the use of production-level tools to achieve expert
performance in deployed scientific workflows.

Code Uses Solves Reaches Integrates into

Optimization Production-level Real-World Expert Deployed

Tools Tasks Performance Workflows
ScienceAgentBench [3] X v v X X
DiscoveryBench [18] X X v N/A X
MLagentbench [8] v X v X X
Agent Laboratory [27] 4 X X v X
DiSciPLE [19] 4 X 4 v X
Popper [7] X X 4 4 X
Ours v v v v v

the model architecture to the training loop. This setup is designed so that most actions lead to an
improvement over a naive baseline.

o Our work: Blackbox optimization with a challenging optimization terrain - the agent composes
a new preprocessing function from a library of primitives (like OpenCV) to improve the perfor-
mance of a downstream scientific tool (like Polaris, Cellpose, MedSAM) that it cannot change.
It tries to optimize its component for a downstream tool that acts as a black box. The agent
cannot see inside or modify this tool. Because the workflow has already been heavily optimized
by experts, most changes the agent makes will result in a decrease in performance.

¢ The Definition of Success

o MLAgentBench: Predictive Performance - success is defined by outperforming a simple
baseline given by the starter code, as mentioned above.

o Our work: Production Integration - the solution must meet the real-world expert-performance
level, which we validate using metrics, by integrating the tool into a real-world production
pipeline.

A.11 Prompts
A.11.1 LLM Agent domain-generic task prompt

Experiment specific or run specific experimental settings (seed, GPU ID) are marked in <red>.
Per-experiment prompts are included below.

Agent Header

Agent Pipeline Seed <3280387012>

Necessary imports for any function’s logic (if any)
Do not import ImageData in the functions, it is already imported in the
environment
All preprocessing function names should be of the form
preprocess_images_i
import cv2 as cv
def preprocess_images_i(images: ImageData) -> ImageData:
Function logic here
processed_images_list = []
This iterates through each image to avoid modifying the
the original image
for img_array in images.raw:
img_array = np.copy(img_array) # Create a copy to avoid
processed_img = img_array # Replace with actual processing
processed_images_list.append(processed_img)
output_data = ImageData(raw=processed_images_list,

23

batch_size=images.batch_size)
return output_data

\. J

About the Dataset

<Experiment specific Data Details here. Refer below for prompts used.>

All of you should work together to write three preprocessing functions that improve segmen-

tation performance using OpenCV functions (APIs provided). [t might make sense to start

the process with small preprocessing functions, and then build up to more complex functions
depending on the performance of the previous functions.

1. Based on previous preprocessing functions and their perfor-

mance (provided below), suggest three new unique prepro-
cessing functions using OpenCV functions (APIs provided be-
low). Successful strategies can include improving upon high performing

functions (including tuning the parameters of the function), or exploring the image
processing space for novel or different image processing approaches. You can feel
free to combine OpenCV functions or suggest novel combinations that can lead to
improvements, or modify the parameters of the existing extremely successful
functions.

2. Remember, the images after preprocessing must still conform to the format specified
in the ImageData API. Maintenance of channel identity is critical and channels
should not be merged.

3. The environment will handle all data loading, evaluation, and logging of the results.
Your only job is to write the preprocessing functions.

4. For this task, if all three functions are evaluated correctly, only one iteration is
allowed, even if the performance is not satisfactory.

5. Do not terminate the conversation until the new preprocessing functions are evaluated
and the numerical performance metrics are logged.

6. Extremely important: Do not terminate the conversation until each of the three new
preprocessing functions are evaluated AND their results are written to the function
bank.

7. Recall, this is a STATELESS kernel, so all functions, imports, etc. must be provided
in the script to be executed. Any history between previous iterations exists solely as
provided preprocessing functions and their performance metrics.

8. Do not write any code outside of the preprocessing functions.
9. Do not modify the masks under any circumstances.

10. The preprocessing functions written must return an ImageData object with each
image in the batch having the same image resolution (H,W) as the original image.

<Experiment specific Task Metrics Details here.>

Function Bank Sample

Function bank history will be shown after iteration 5, you are currently on iteration O of 20

24

cv.bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderTypel]) ->dst
Applies the bilateral filter to an image.

cv.GaussianBlur (src, ksize, sigmaX[, dst[, sigmaY[, borderTypelll) ->dst
Blurs an image using a Gaussian filter.

cv.merge(mv[, dst]) -> dst
Creates one multi-channel array out of several single-channel ones.

The ImageData Class

Framework-agnostic container for batched image data. Handles variable image
resolutions

This class provides a standardized structure for storing and managing batched
image data along with related annotations and predictionms.

Data is internally converted to lists of arrays for flexibility with varying
image sizes.

Attributes:
raw (Union[List[np.ndarray], np.ndarray]): Raw image data, can be provided
as either a list of arrays or a numpy array. Each image should have
shape (H, W, C).

batch_size (Optional[int]): Number of images to include in the batch. Can
be smaller than the total dataset size. If None, will use the full
dataset size.

image_ids (Union[List[int], List[str], Nonel): Unique identifier(s) for
images in the batch as a list. If None, auto-generated integer IDs
[0,1,2,...] will be created.

channel _names (Optional[List[str]]): Names of imaging channels in order
matching raw data channels. Length must equal number of channels.

masks (Optional[Union[List[np.ndarray], np.ndarray]]): Ground truth
segmentation masks. Integer-valued arrays where O is background and positive
integers are unique object identifiers. Each mask should have shape

(H, W, 1) or (H, W).

Important: When returning processed images, they must maintain the same dimensions (H,W)
as the original images and preserve channel order.

Additional Notes

» Always check the documentation for the available APIs before reinventing the wheel
* Use GPU <0> for running the pipeline, set cuda: 0 in the code snippet!

* You only have 20 rounds of each conversation to optimize the preprocessing function.
* Don’t suggest trying larger models as the model size is fixed.

« THE PROVIDED EVALUATION PIPELINE WORKS OUT OF THE BOX, IF THERE IS
AN ERROR IT IS WITH THE PREPROCESSING FUNCTION

25

Code Writer Agent Instructions

You are an experienced Python developer specializing in scientific data analysis. Your role
is to write, test, and iterate on Python code to solve data analysis tasks. The environment is
installed with the necessary libraries.

You write code using Python in a STATELESS execution environment, so all code must be
contained in the same block. In the environment, you can:

Notes:

* Write code in Python markdown code blocks:

“‘python

def preprocess_images_i(image_data: ImageData) -> ImageData: Code example. All
code must be written within this function.

return image_data

999

CRITICAL: You must define three functions at once, and they must be named ‘prepro-
cess_images_i‘ where ‘i° starts at 1 and ranges to 3. The functions must follow the provided
Preprocessing Functions API. All operations must be performed within the functions, and
no inner functions should be defined (construct all operations within the functions).

Code outputs will be returned to you

Feel free to document your thought process and exploration steps.

* Remember that all images processed by your written preprocessing functions will directly
be converted into ImageData objects. So, double-check that the preprocessed image dimen-
sions align with the dimension requirements listed in the ImageData API documentation

» Make sure each response has exactly one code block containing all the code for the prepro-
cessing functions, and that the code block ONLY contains the code for the preprocessing
functions. Do not include any mock code for data loading or evaluation.

All three functions must be defined at once, and they must be named ‘preprocess_images_i°
where ‘i° starts at 1 and ranges to 3. The functions must follow the provided Preprocessing
Functions APIL.

* Once metrics have been evaluated for all three preprocessing functions successfully, please
print them out for each function in the format: preprocess_images_<i>: <metric>: <score>.
You may only emit "TERMINATE" once all three preprocessing functions have been
evaluated and their metrics printed successfully.

* If metrics are not correctly returned for any of the three preprocessing functions and you
need to fix the underlying errors, output all three revised functions in a single markdown
block. On the other hand, if all functions were successfully evaluated, do not continue
iterating, and emit "TERMINATE".

* For generating numbers or variables, you will need to print those out so that you can obtain
the results

» Write "TERMINATE" when the task is complete

A.11.2 Polaris

Data prompt We provide a data-specific prompt detailing the cell stain spots modality and the
single-channel dimensionality of the dataset. Specific instructions regarding index order of the
dimensions (length, width, channel, batch) are given in the prompt.

This is a single-channel cell spot detection dataset. IMPORTANT: The cell images have dimensions
(B, L, W, C) = (batch, length, width, channel).

mark text deleted for the data prompt ablation. marks text deleted
for the task prompt ablation.

26

About the Dataset

single-channel cell spot detection

Task prompt The LLM is prompted to generate new image preprocessing functions using OpenCV
functions, and encouraged to consider previously generated functions when writing a new one. We
provide a short description of the evaluation metrics, principally classification loss created from
one-hot encoded detections, regression loss created from the distance of predictions to ground truth
spots, and the F1 score of predicted spots. The LLM is prompted to optimize on the F1 score.

Data Split For the optimization procedure, we used 95 images from the validation set. The
performance of functions was then evaluated on the test set, comprising 94 images. Both validation
and test images have a fixed size of 128 by 128 pixels. Ground truth for Polaris consists of a list of
point coordinates.

A.11.3 Cellpose

Data prompt The agent is provided with a prompt describing that the dataset is a heterogenous
biological image dataset with a focus on biological microscopy images, including cells. It also
includes information that the channels are ordered as: nuclear, cytoplasmic, and empty. The LLM is
also provided with details about how to conform to the provided image data API (resolutions must
not change and channels must not be reordered, or compressed to grayscale).

mark text deleted for the data prompt ablation. marks text deleted
for the task prompt ablation.

About the Dataset

The images have pixel values between 0 and 1 and are in float32 format.

cells with cell

27

The cell images have dimensions (B, L, W, C) = (batch, length, width, channel).
the images provided must be in the format of standard ImageData
object and must maintain channel dimensions and ordering.

Task prompt The agent is provided with a prompt stating this task is for biological segmentation
with the goal of improving segmentation performance using OpenCV functions. The LLM is
encouraged to try either novel combinations of preprocessing functions or the hyperparameters within,
as well as to build up incrementally more complex functions. The agent is provided with a description
of and told to maximize the score: average precision at Intersection over Union (IoU) threshold of
0.5.

Data Split For this case study, we curated a publicly available and reconstructable subset from
the reported Cellpose3 dataset, including test sets from the Cellpose3 dataset release (68 images),
improved TissueNet 1.1 test set (1324 images), Omnipose fluorescent bacterial test set (75 images),
and Omnipose phase-contrast bacterial test set (148 images). Datasets involving complex mask
corrections were excluded. All constituent datasets (Cellpose, Omnipose bacterial fluorescence and
phase-contrast, and TissueNetl.1) were randomized and equally split into a validation set and a
testing set (for final evaluation). We then randomly sampled 100 image segmentation mask pairs to
use for agentic optimization. We release the code to generate these splits, as well as the remaining
~ 700 validation images for future scaling experiments. Evaluation always occurs on the entire
test set. Images were standardized to float32 with pixel intensities scaled to [0, 1], formatted as
three-channel images (nuclear channel in red, cytoplasmic/grayscale in green, blue empty), consistent
with Cellpose3 input requirements. Image resolutions varied from 66x58 to 2030x2030. Ground
truth consists of instance segmentation masks for all cells. For agentic optimization, we randomly
sampled 100 images from the validation set. Final evaluation was conducted on the entire generated
test set (807 images).

Al114 MedSAM

Data Prompt The agent is given a prompt describing that data features images from the X-ray and
dermoscopy modalities. The agent is also told that input images are 3-channel.

mark text deleted for the data prompt ablation. marks text deleted
for the task prompt ablation.

This is a large-scale medical image FHSSNEIEIEOIREIRNES

! The images have dimensions (H, W, C) = (height, width, channel).

Task Prompt The agent is also given a prompt stating that the task is medical image segmentation,
with the goal of improving performance using OpenCV functions. The LLM is encouraged to
design new preprocessing methods and instructed to maximize performance based on the sum of the
Normalized Surface Dice (NSD) and Dice Similarity Coefficient (DSC) scores.

28

Data Split We selected a subset of 2D images from the Codabench validation set for each modality
(66 images for dermoscopy, 379 images for X-ray), randomly shuffled them with corresponding
bounding boxes and segmentation masks, and equally split them into validation and test sets. Images
from both modalities were resized to 1024 x 1024 pixels with three channels to match the MedSAM
encoder input. Ground truth included binary segmentation masks of target objects and associated
bounding box prompts. We shuffled and split the image-prompt-mask tuples (66 for Dermoscopy,
379 for X-ray) equally into validation and test sets (33-33 for Dermoscopy, 180-179 for X-ray). A
smaller sample of 25 images was used for agentic optimization for each modality.

A.12 Computational requirements
A.12.1 Polaris

The full system (including function library, data prompt, task prompt, with GPT-4.1) took 12 hours
27 minutes and 5 seconds for 20 rollouts on 30 vCPUs of a Intel Xeon Platinum 8358 CPU, running
serially on 2 Nvidia A10 GPUs.

A.12.2 Cellpose

The full system (including function library, data prompt, task prompt, with GPT-4.1) took 1 hr 42
minutes and 25 seconds for 20 parallel rollouts on a AMD EPYC 7763 64-Core Processor machine,
distributed across 8 Nvidia A6000 48 GB GPUs.

Al123 MedSAM

The full system (including function library, data prompt, and task prompt, with GPT-4.1) was executed
as 20 parallel rollouts on an AMD EPYC 7763 64-Core Processor machine, distributed across 8
NVIDIA A100 80GB SXM4 GPUs.

A.124 AutoML
For each task, AutoML was run for 1200 trials on a single Nvidia A100 40GB GPU.

A.13 Primitives Used in Functions

cv.bilateralFilter(src, d, sigmaColor, sigmaSpacel, dst[, borderTypell)
Applies the bilateral filter to an image.

cv.blur(src, ksize[, dst[, anchor[, borderTypel]l]) Blurs an image using the nor-
malized box filter.

cv.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalizel,
borderType]1]]) Blurs an image using the box filter.

cv.dilate(src, kernel[, dst[, anchor[, iterations[, borderTypel,
borderValuel]]]]]) Dilates an image by using a specific structuring
element.

cv.erode(src, kernel[, dst[, anchor[, iterations[, borderTypel,

borderValuel]]1]) Erodes an image by using a specific structuring
element.

29

CVv.

Cv.

Ccv.

cv

Ccv.

Cv.

Ccv.
Ccv.

CVv.

CVv.

Cv.

Ccv.

Cv.

Cv.

Ccv.

Cv.

cv

CvVv.

Ccv.

Cv.

Ccv.

Cv.

cv

Cv.

GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderTypel, hint]]111)
Blurs an image using a Gaussian filter.

getDerivKernels(dx, dy, ksizel[, kx[, ky[, normalize[, ktypellll) Returns
filter coefficients for computing spatial image derivatives.

getGaborKernel (ksize, sigma, theta, lambd, gammal, psil[, ktypell) Re-
turns Gabor filter coefficients.

.getGaussianKernel (ksize, sigmal, ktypel) Returns Gaussian filter coefficients.

getStructuringElement (shape, ksize[, anchor]) Returns a structuring element of
the specified size and shape for morphological operations.

Laplacian(src, ddepth[, dst[, ksize[, scale[, deltal[, borderTypellll]l)
Calculates the Laplacian of an image.

medianBlur(src, ksize[, dst]) Blurs an image using the median filter.

pyrMeanShiftFiltering(src, sp, srl, dst[, maxLevel[, termcrit]]]) Per-
forms initial step of meanshift segmentation of an image.

pyrUp(src[, dst[, dstsizel, borderTypel]]) Upsamples an image and then blurs
it.

Scharr(src, ddepth, dx, dy[, dst[, scalel, deltal, borderTypellll)
Calculates the first x- or y- image derivative using Scharr operator.

sepFilter2D(src, ddepth, kernelX, kernelY[, dst[, anchor[, deltal,
borderTypel11]) Applies a separable linear filter to an image.

Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, deltal,
borderTypel]l]]]) Calculates the first, second, third, or mixed image
derivatives using an extended Sobel operator.

morphologyEx(src, op, kernel[, dst[, anchor[, iterations[, borderTypel,
borderValue]]]1]]) Performs advanced morphological transforma-
tions.

spatialGradient(src[, dx[, dy[, ksize[, borderTypel]]l]) Calculates the first
order image derivative in both x and y using a Sobel operator.

sqrBoxFilter(src, ddepth, ksize[, dst[, anchor[, normalizel[,
borderType]l1]]) Calculates the normalized sum of squares
of the pixel values overlapping the filter.

stackBlur(src, ksize[, dst]) Blurs an image using the stackBlur.

.Canny(image, thresholdl, threshold2[, edges[, apertureSizel[,

L2gradient]]]) Finds edges in an image using the Canny al-
gorithm.

cornerEigenValsAndVecs(src, blockSize, ksize[, dst[, borderTypel]) Cal-
culates eigenvalues and eigenvectors of image blocks for corner
detection.

cornerHarris(src, blockSize, ksize, k[, dst[, borderTypel]) Harris corner
detector.

cornerMinEigenVal(src, blockSize[, dst[, ksize[, borderType]l]) Cal-
culates the minimal eigenvalue of gradient matrices for corner
detection.

cornerSubPix(image, corners, winSize, zeroZone, criteria) Refines the cor-
ner locations.

goodFeaturesToTrack(image, maxCorners, qualityLevel, minDistancel[,
corners[, mask[, blockSize[, useHarrisDetector[,
k]11111) Determines strong corners on an image.

.HoughCircles(image, method, dp, minDist[, circles[, paraml[, param2[,

minRadius[, maxRadius]]]]]) Finds circles in a grayscale image
using the Hough transform.

HoughLines(image, rho, theta, threshold[, lines[, srn[, stnl[,
min_thetal[, max_theta]]l]]]) Finds lines in a binary image
using the standard Hough transform.

30

CVv.

cv

cv

Ccv.

Cv.

Cv.
Cv.

CVv.
CVv.

CVv.

Cv.

Cv.

Cv.

cv

CVv.

cv

CVv.

cv

cv

CVv.

Cv.

cv

HoughLinesP(image, rho, theta, threshold[, lines[, minLineLengthl[,
maxLineGap]]]) Finds line segments in a binary image using the
probabilistic Hough transform.

.HoughLinesPointSet(point, lines_max, threshold, min_rho, max_rho,

rho_step, min_theta, max_theta, theta_step[, lines])
Finds lines in a set of points using the standard Hough transform.

.preCornerDetect(src, ksize[, dst[, borderTypel]) Calculates a feature map for

corner detection.

calcBackProject (images, channels, hist, ranges[, backProject[, scalel,
uniform]]]) Calculates the back projection of a histogram.

calcHist(images, channels, mask, histSize, ranges[, hist[, accumulatel,
uniform]]]) Calculates a histogram of a set of arrays.

compareHist (H1, H2, method) Compares two histograms.

createCLAHE([clipLimit[, tileGridSize]]) Creates a smart pointer to a cv.CLAHE
object and initializes it.

equalizeHist (src) Equalizes the histogram of a grayscale image.

addWeighted(srcl, alpha, src2, beta, gammal[, dst[, dtypel]) Calculates the
weighted sum of two arrays.

normalize(src, dst[, alphal, betal, norm_typel, dtypel, mask]]1]]])
Normalizes the norm or value range of an array.

adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType,
blockSize, C[, dst]) Applies an adaptive threshold to an
array.

blendLinear(srcl, src2, weightsl, weights2[, dst]) Performs linear blending
of two arrays using specified weights.

distanceTransform(src, distanceType, maskSize[, dst[, dstTypell) Calcu-
lates the distance to the closest zero pixel for each pixel of the source
image.

.floodFill(image, seedPoint, newVall[, loDiff[, upDiff[, flags[, mask[,

rect]]]1]) Fills a connected component with the given color.
integral(src[, sum[, sdepth]]) Calculates the integral image.

.integral2(src[, sum[, sqsum[, sdepth[, sqdepth]l]]]) Calculates the integral

and squared integral images.

integral3(src[, sum[, sqsum[, tilted[, sdepth[, sqdepth]]]]]) Calculates
the integral, squared integral, and tilted integral images.

.threshold(src, thresh, maxval, typel, dst]) Applies a fixed-level threshold to

each array element.

.fastN1MeansDenoising(src[, dst[, h[, templateWindowSizel[,

searchWindowSize]]]]) Perform image denoising using Non-
local Means Denoising algorithm.
fastN1MeansDenoisingColored(src[, dst[, h[, hColorl[,
templateWindowSize[, searchWindowSize]]]]]) Modification
of fastNIMeansDenoising function for colored images.
cvtColor(src, codel[, dst[, dstCn]l]) Converts an image from one color space to
another.

.merge (mv[, dst]) Creates one multi-channel array out of several single-channel ones.

31

	Introduction
	Problem Statement
	Agentic AI framework
	Case Studies
	Polaris: Single Molecule Spot Detection
	Cellpose: Cell Segmentation
	MedSAM: Medical Segmentation

	Experiments
	Experimental Setup
	Agentic Superoptimization vs. Expert Baselines
	Impact of design choices
	Comparison with AutoML
	Impact of LLM choice

	Related Work
	Discussion
	Appendix
	Visualizations of Top Performing Preprocessing Functions
	Polaris
	Cellpose
	MedSAM

	Diveristy Analysis of primitives with full-system and no-function-bank settings
	Polaris Author's Comment on Agent-generated Function
	Extended Iteration Experiments
	Polaris
	Cellpose

	Experiments with different splits of data
	Experiments investigating the role of reasoning in superoptimization
	Statistics of primitives used in Top-K and Worst-K Functions
	Expert functions
	Polaris expert baseline function
	Cellpose expert baseline function
	MedSAM expert baseline function
	Git history analysis of expert functions

	Agent Top-1 functions
	Polaris
	Cellpose
	MedSAM

	Comparison of our method against related work
	Prompts
	LLM Agent domain-generic task prompt
	Polaris
	Cellpose
	MedSAM

	Computational requirements
	Polaris
	Cellpose
	MedSAM
	AutoML

	Primitives Used in Functions

