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Abstract

While automatic speech recognition (ASR) has witnessed remarkable achievements
in recent years, it has not garnered a widespread focus within the federated learning
(FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well-
suited benchmark for FL and DP as there is (i) a natural data split across users
by using speaker information; (ii) heterogeneous data across speakers close to
practical settings; (iii) interplay between acoustic and language modeling; (iv)
and it is a sequence-to-sequence task. Recent production-ready state-of-the-art
models in ASR include large conformer and transformer models, the optimization
of which is known to pose challenges even for central training. While the main
trends and benchmarks in FL and DP focus on small models, we show the necessity
of disentangling optimization and model size: the behavior of FL and DP for large
models is different from the one for small models. We speculate that FL and DP
are harder for small models due to harder optimization problems even in central
training. In this paper, we analyze the key FL parameters (optimizers, training
from scratch or a seed model pre-trained centrally, cohort size, data heterogeneity)
and propose first benchmark of FL with DP in the context of large models in ASR.
We examine the applicability of prior results and present an overview of observed
departures from the trends in prior works and from training different ASR models.
Through this work, we provide researchers and practitioners in the fields of FL and
DP with valuable insights into the fundamental differences that may arise when
applying FL and DP research to large-scale ASR training.

1 Introduction

Automatic speech recognition (ASR) with end-to-end (E2E) models made a remarkable achievements
in recent years [1; 2; 3; 4; 5; 6]. Moreover, recent works incorporate ASR as a benchmark alongside
vision and natural language processing (NLP) [7; 8; 9; 10]. However, ASR is not a widespread
benchmark in federated learning (FL) [11] and differential privacy (DP) [12; 13; 14] communities.
Scarce prior works applied FL to E2E ASR [15; 16; 17; 18; 19; 20]; most of these studies pointed out
that E2E ASR is challenging for FL especially due to the inherently heterogeneous data. Besides, we
are not aware of any studies on DP or FL with DP for ASR, although audio data reveal information
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not only about the content but also could be used to derive other pieces of sensitive information such
as biometric identity, emotions, health condition and others [21].

Similar to [18], we argue that ASR is also a well-suited benchmark for FL and FL with DP as there
is (i) a natural split across users by using speaker information available for most public datasets;
(ii) high data heterogeneity (see Figure 1 and discussion in [18]), covering variation in acoustic
features across speakers, acoustic environments, recording conditions, and amount of data; (iii)
interplay between acoustic and language modeling; (iv) unique challenges of ASR in the context of
DP that we show in this paper and that can advance FL with DP more broadly. Properties (i)-(iii)
stand out for ASR public datasets compared to others used by FL and DP communities in publications.
For example, in computer vision, we often do not have a natural data split across users for standard
datasets such as MNIST [22] and CIFAR-10/100 [23] used in [24; 25; 26; 27; 28]. Moreover, ASR
simultaneously solves classification and segmentation tasks that add additional complexity on top of
standard classification/regression tasks, de facto standard in many prior FL and DP works2. In natural
language processing (NLP) data heterogeneity is defined by diverse user language characteristics
while ASR broadens NLP data by including, e.g., acoustic, recording, and environment properties.

While large over-parameterized neural networks are becoming ubiquitous in many domains, e.g.,
computer vision [29; 30], NLP [31; 32] and ASR [2; 33; 5; 4; 3; 34], the same proliferation of large
models has not been observed in FL and DP research [35; 36; 37] due to (i) communication complexity
of FL [38] and (ii) difficulty of training large-scale models with DP [39; 40; 41]3. However, practical
model sizes are increasing over time, including ASR models [44]. Moreover, prior works reported
several stark differences in training large-scale models compared to smaller models in the centralized
training [45; 46; 47]. Some works [48] support a hypothesis that optimization of larger models is
simpler: e.g., distillation from a large model into a small model is still the dominant method in the
research community to train small models [49]. To fill the gap in understanding large-scale models in
the context of FL and DP, and to alleviate the optimization issues related to training smaller models,
we solely study large-scale models in this paper.

In this work, we aim to push for a collaborative step towards research in large-scale FL for production-
competitive models, widespread ASR as a benchmark in FL and DP, and study the difficulties
that arise in this setup. We observe several challenges when applying results from prior works in
conventional FL research [35; 50] towards large-scale production-ready ASR models — architectures
that use transformer [51] and conformer [2] blocks and are optimized using Connectionist Temporal
Classification (CTC) [52] or CTC with attention encoder-decoder (AED) [53] loss. Through analyzing
these further, we draw insights into the fundamental differences that arise out of model sizes and
switching to ASR task:

• Adaptive optimizers Some adaptive optimizers perform better than others because they induce
smoothness over the gradient subspace and/or reduce heterogeneity among FL client updates.
Adaptive optimizers for FL with large-scale transformer models are necessary to match centrally
trained models.

• Robustness While FL is sensitive to hyper-parameters of some optimizers, we are able to find a
robust optimizer setting that is applicable to other data, e.g. the training recipe transfers out of the
box from English data to French and German data.

• Seed models FL models can achieve nearly optimal performance for training both from scratch
and from a seed model centrally pre-trained even on out-of-domain data. The discrepancy between
different models reduces as the cohort size increases.

• Data heterogeneity The issue of data heterogeneity is alleviated with increased cohort size and
adaptive optimizers. Also, transformer models appear to be less susceptible to data heterogeneity
than conformer models.

• FL with DP While training transformer-based ASR models using FL with DP is fundamentally
difficult due to the adverse effect of DP noise, this can be mitigated by revisiting per-layer clipping,
especially when used together with layer-wise adaptive optimizers such as LAMB [45] and
LARS [54].

2We wish to underscore that our critique proposes to set priority for the development of benchmarks on
image segmentation tasks in FL and DP communities to approach realistic cases.

3Recent works [42; 43] showed that it is possible to fine-tune large language models centrally with hundreds
of millions of parameters with DP. The DP noise does not affect training efficiency if gradients are low rank.
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Table 1: Speaker statistics for LibriSpeech (LS) and
Common Voice (CV) train sets and their subsets.

Subset # hours # speakers # minutes per speaker

mean std min max

LS-100 100.6 251 24.1 2.7 5.5 25.2
LS-360 363.6 921 23.7 3.2 1.9 25.3
LS-500 496.9 1,166 25.6 5.9 3.0 30.3
LS-860 860.5 2,087 24.7 5.1 1.9 30.3
LS-960 961.1 2,338 24.7 4.9 1.9 30.3

CV-en-train 1593.7 34,753 2.8 32.7 0.02 5,049.6
CV-en-train-10 149.5 3,475 2.6 17.3 0.03 755.1
CV-en-train-90 1444.2 31,278 2.8 34.0 0.02 5,049.6
CV-en-train-05 79.5 1,737 2.7 15.8 0.03 508.3
CV-en-train-95 1514.2 33,016 2.7 33.4 0.02 5,049.6

CV-fr-train 727.9 6,856 6.4 57.2 0.04 3081.2
CV-fr-train-10 47.6 685 4.2 13.6 0.07 235.1
CV-fr-train-90 680.3 6,171 6.6 60.2 0.04 3081.2

CV-de-train 852.8 7,127 7.2 89.2 0.03 6249.9
CV-de-train-10 52.2 712 4.4 11.4 0.04 120.8
CV-de-train-90 800.6 6,415 7.5 94.0 0.03 6249.9

Figure 1: Speakers distribution in LibriSpeech (LS) and Common Voice (CV) train data: number of
minutes per speaker (top) and number of samples per speaker (bottom).

This paper summarizes results from our prior works [55; 56]. We refer the readers to these for a more
in-depth analysis and additional discussion on the empirical results presented in this work.

2 Empirical Setup

Datasets. We perform experiments using two datasets of audio-transcription pairs: LibriSpeech
(LS) [57] and Common Voice v13.0 (CV) [58]. These two datasets are read speech but differ in other
properties, like the source of text (books for LS vs Wikipedia for CV), data diversity, noise conditions,
speaker variation, and speaker distribution (see Figure 1 and Table 1). Since different languages vary
in terms of ASR difficulty, for CV, we consider 3 languages: English, French, and German. One
scenario that is of special interest for practical FL is to train a seed model centrally on a small dataset
and fine-tune the seed model using FL on a larger dataset from another domain (e.g. seed model from
a small subset of LS is fine-tuned with FL on CV). See Section 4 in [56] and Section 4 in [55] for
more details on the datasets used.

Models. We discuss results with respect to two models used extensively in ASR:

• M1 from [56]: A vanilla encoder-based transformer model trained with the CTC loss [52]; we start
our experimentation with the state-of-the-art model on LS-100 from [59] with pre-LayerNorm and
∼ 255M parameters. Refer to Section 4 in [56] for more details on M1 setup and experiments.

• M2 from [55]: A conformer encoder & bidirectional transformer decoder model with ∼ 120M
parameters trained using the CTC-AED loss. This model is derived from the WeNet [60] model
config4. Refer to Section 4 in [55] for more details on M2 setup and experiments.

Apart from the difference in the model size, the other characteristics to be noted include:

• layer characteristics: while M1 only comprises vanilla attention layers, M2 contains both convo-
lution and attention layers;

• layer normalization: both models utilize pre-layer normalization since we find that FL training
fails to converge consistently when using post-layer normalization;

• training losses: while M1 is trained using CTC loss alone, M2 uses CTC-AED loss; and

• tokenizer and stride: while M1 is using 30ms stride and character tokenizer, M2 uses 60ms stride
and SentencePiece [61] tokenizer with byte-pair encoding (BPE) subword units.

4Link to the configuration file: https://github.com/wenet-e2e/wenet/blob/main/examples/
librispeech/s0/conf/train_conformer_bidecoder_large.yaml
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FL Training FL introduces several challenges into the model training, e.g. heterogeneous data [62;
26; 25], scaling laws for large cohort training [27], and convergence rate due to local training [63; 64;
65]. In this paper, we focus on cross-device FL [24] where only a small fraction of users (clients)
participate in each central iteration and thus users cannot maintain a state across rounds, e.g., local
optimizer state or SCAFFOLD [66] state. The number of users participating in training in each central
iteration is termed cohort size or L. We simulate FL by considering every speaker in the data as a
separate user. Unless noted otherwise, we restrict the number of central steps to T = 2k. Moreover,
for practical FL with DP we are limited by the total privacy budget that we can spend on hyper-
parameter tuning, because it incurs additional overhead in terms of the privacy, and communication
and computation cost [67; 68]. We use various combinations of local and global optimizers and
learning rate schedules. Performance of models is measured by word error rate (WER) on the test
data. For more details, see [55; 56].

3 Key Empirical Findings

In this section, we expand on the several characteristics of FL for ASR (FL4ASR) that stand out in
terms of differences between: (i) FL4ASR models differing in sizes, architecture, and losses, i.e., the
differences among M1 and M2, and (ii) prior works in conventional FL research vs. our observations
for FL4ASR for M1 and/or M2. Also, we establish the first benchmark for FL with DP in ASR.

3.1 Adaptive Optimizers

Even within central training frameworks, it is well known that transformer models training poses
unique challenges related to optimization, which can be tackled using adaptive optimizers as well as
heuristics such as gradient clipping and learning rate scheduler among others [69; 70; 8]. Concur-
rently, similar observations have been made in the context of ASR training using transformer and
conformer models [69; 60]. Similarly, the use of adaptive optimizers is also necessary in FL as it is
claimed to help alleviate the negative impact of heterogeneous data on optimization efficiency and
convergence speeds [35]. ASR provides a rich set of benchmarks with realistic, heterogeneous data,
and competitive performance can be achieved by different models that vary in size, basic components
(transformers or conformers), and formulation of the loss function (e.g. CTC or CTC with AED).

While prior works consider adaptive optimizers, our analysis gives us a deeper insight into the
implications of using adaptive optimizers specifically towards ASR. In particular, when training
FL from scratch, the usability of second-order estimates of central optimizers between different
aggregation rounds (i.e., different samples of heterogeneous clients) can be interpreted in terms of
domain shift, i.e., the second-order estimates gathered from one batch of clients in an aggregation
round prove to be uninformative for making adaptive adjustments to the learning rate for a subse-
quent batch of heterogeneous clients. In our experiments, we find this domain shift between the
gathered second-order estimates and subsequent client updates is especially dominant at the start
of the FL training. However, we demonstrate that it can be mitigated by using one or more of the
following techniques: (i) using layer-wise adaptive optimizers, (ii) increasing the cohort size during
an aggregation round, (iii) initializing FL with a seed model, or (iv) starting training with SGD as
central optimizer and switching to adaptive optimizers after a certain number of central iterations.
We posit that adaptive optimizers have an impact by reducing the heterogeneity among client updates
by inducing smoothness over gradient subspace. It can be observed empirically in terms of (i) an
increase in cosine similarity among updates from different aggregation rounds, Figure 2 (left), (ii) an
increase in cosine similarity among clients within an aggregation round, Figure 2 (right).

Our results also indicate that FL optimization appears more difficult with conformer models than with
transformer models (e.g. compare Table 6 in [55] and Table 10 in [56]), although the transformer
models are larger (in our case, the transformer model is approximately twice as large as the conformer
model). Our analysis confirmed that this does not seem to be due to the AED component of the loss
function used in most experiments with conformer models (see Table 3 in [55]). Also, [73] argued
that transformers are less susceptible to distribution shifts and are thus especially well suited to deal
with heterogeneous data in FL. Therefore, it may likely be the case that the transformer architecture is
less susceptible to heterogeneous data also in the domain of ASR. See Section 3.4 for more discussion
on the impact of data heterogeneity on FL for ASR.
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Figure 2: Left: Overlap (lighter color means higher cosine similarity) among central model updates
for Yogi [71] and Adam [72] generated for first 50 aggregation rounds for the 7th encoder layer
(conv) with ∼ 3M parameters in the M2 model. Right: Overlap (lighter color means higher
cosine similarity) among client model updates for SGD and LAMB [45] (central optimizer is Yogi)
generated for 15 clients in an aggregation round for the 7th encoder layer (conv) with ∼ 3 million
parameters in the M2 model.

For transformer models, we found a number of central optimizers work comparably well (see Tables 8
and 9 in [56]); this provides further support to the observation that transformer models in FL for ASR
are easier to train and more robust than conformer models of smaller size.

3.2 Seed Models

In FL, there are typically some data available on the server, which are often from a different
distribution than the actual user data stored locally on user devices, and the amount of server data is
often orders of magnitude smaller than that of user data. To improve the quality of trained FL models,
the server data can be used to train a seed model, which can subsequently be used as a warm start
initialization for fine-tuning with FL using the data stored locally on user devices [74; 75; 76; 77; 18].
The server data can also be used to tune hyper-parameters because tuning hyper-parameters with FL
incurs significant privacy, communication, and computation costs.

We want to emphasize that ASR provides a suitable framework for studying the impact of seed models
because there are several datasets from different sources and with different properties (e.g. in terms of
the amount of data available for each user, acoustic variability of audio data, or the distribution of the
content). For example, one practical scenario is to use a limited amount of data from one dataset (e.g.
LS with ∼ 100h of audio) to train a seed model, and subsequently train the FL model on another,
larger dataset (e.g. CV with ∼ 1, 600h of audio). Also, there is a shift in distribution between the
central and FL data. This is a scenario we choose to use for experiments with DP (see Section 3.5).

Given that the use of seed models improves the final outcome of FL practically in every case [74; 75;
76; 77; 18; 78; 19], it is somewhat surprising that most prior works on FL do not study the impact of
seed models on FL performance. Several of these prior works focused specifically on the use of seed
models in FL for ASR [78; 19; 18].

Our results confirm the usefulness of starting with seed models (see Figures 3 and 4, and Tables 3, 4,
10 in [56]; Tables 3, 5, 6 in [55]): seed models improve performance of FL on ASR regardless of
the model type, cohort size, language, or the combination of optimizers used for local and central
training. Furthermore, we have shown that seed models improve FL performance even when the seed
model comes from another domain (e.g. even a seed model trained on a small subset of LS improves
the results of FL training on CV) and in some cases out-of-domain data could be preferable for the
seed model training (e.g. LS seed for CV data). The latter we attribute to better generalization to
longer audio/text sequences as LS has longer audio duration compared to CV. For example, for LS
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Figure 3: Comparison of WERs between central training and FL, and the impact of the cohort size L
and seed models for M1 models trained on LS. We use exponential decay for central LR starting at
t = 1, 000, decay rate 0.6, and transition steps 500 (w/o seed model) or 250 (w/ seed model) with
T = 2k total central steps and 10 local epochs. Local (central) LR is 0.4 (0.006) (w/o seed model) or
0.2 (0.003) (w/ seed model). Detailed results can be found in [56], Table 3 of Appendix.
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Figure 4: Comparison of word error rates (WERs) between central training and FL, and the impact of
the cohort size L and seed models for M1 models trained on CV: English (left) and French/German
(right). We use exponential decay for central LR starting at t = 1,000 (w/o seed model) or 750 (w/
seed model), decay rate 0.6, and transition steps 500 (w/o seed model) or 750 (w/ seed model) with
T = 2k total central steps and 10 local epochs. Local (central) LR is 0.4 (0.006) (w/o seed model) or
0.2 (0.002) (w/ seed model). Detailed results and parameter settings can be found in [56], Tables 4
and 10 of Appendix.

data the best seed is in-domain despite CV has more data as CV seed suffers from generalization to
longer sequences [7].

Recent work [18] focused on a small Seq2Seq model with CNN encoder and RNN decoder trained
with joint CTC-attention objective using a sub-word tokenizer. The authors argued that it is “nearly
impossible to train an E2E ASR model from scratch in a realistic FL setup” and proposed to use an
additional training step over a small batch of held-out data on the server, after the FL model update.
In contrast, our results show that FL training from scratch for large models is viable with a proper
optimizer and without the need for additional training steps on server data (see Figures 3 and 4,
Tables 3, 4 in [56] and Table 6 in [55]).

3.3 Cohort Size and Number of Local Epochs

Due to the communication complexity of FL, it is necessary that the training uses a moderate number
of central iterations [74; 79]. This necessitates that we maximize the utility of each central iteration.
One of the most straightforward ways of doing this is to increase cohort size and the number of local
epochs. Good scalability of FL to large cohorts is critical also for ensuring strong privacy guarantees
for FL using DP (see Section 3.5) and that is why some of the real-world FL deployments use cohort
sizes as large as 150k [80]. However, some prior FL studies implied that scaling FL to large cohorts
may be challenging [27].

Most prior works on FL for ASR did not provide an in-depth study of the impact of the cohort size
on the quality of obtained models and instead used one or two cohort sizes for all the experiments. In
contrast, we have analyzed a range of cohort sizes in a variety of scenarios with a varying initialization
(with or without a seed model), dataset, model, loss function, and language (see Figures 3 and 4,
Tables 3, 4 in [56] and Table 6 in [55]). In all cases, the larger the cohort size the better the
performance within the fixed number of central iterations of 2k. This is expected since the amount
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Figure 5: The effect of the number of local epochs on the convergence rate and performance for
M2 model trained on (left) LS-100, (middle) LS-100 and LS-360, and (right) LS-960 data. A higher
number of local epochs corresponds to faster convergence but gives diminishing returns (see green vs
black lines) with a possible plateau on higher WER. This is consistent with observation in [81], i.e.,
diminishing benefits from increasing local epochs.
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Figure 6: Comparison of WER for FL training of M1 model between local number of steps (solid)
and local number of epochs (dashed). Training is done on CV-en-train with a seed model pre-trained
centrally on LS-100. The cohort size is L = 64, total number of central steps is T = 2k, and all other
parameters are set the same as in the corresponding configuration in Figure 4.

of data seen by a model in training grows linearly with the cohort size for a fixed number of central
iterations.

Our results in Figure 5 confirm that increasing the number of local epochs generally speeds up
the convergence of FL, although eventually, the large number of local epochs precludes finding
competitive models and the benefits diminish as also discussed in [81]. We also tried to limit the
number of steps on each client (as opposed to the number of epochs), but we saw degradation in the
quality of the models in contrast to the observations of [26] as seen in Figure 6.

3.4 Heterogeneous Data

Numerous researchers argued that the heterogeneous data pose a challenge for FL [62; 26; 38] and
also specifically for FL in ASR [82; 20; 15; 18]. In most prior work on data heterogeneity in FL,
the focus is either on synthetic datasets or real-world datasets such as MNIST [22] and CIFAR [23]
where the data are distributed among the devices using a prior distribution that ensures that the data
are heterogeneous. Using synthetic data and real data with a synthetic distribution across user devices
can provide useful insights into the challenges for FL in the presence of data heterogeneity. However,
the good news is that ASR datasets such as LS and especially CV are inherently heterogeneous and
provide user IDs for each audio-transcription pair. This provides a realistic scenario for testing the
impact of data heterogeneity on FL and the best ways to alleviate its effects. However, we admit that
ASR data may not exhibit all types of heterogeneity that can be observed in the real world.

Our results for transformer models (M1) show that distributing data uniformly and randomly across
users indeed improves performance as seen for all datasets, cohort sizes, and seed models in Figure 7.
However, the impact is marginal and it decreases with increasing cohort size. On the contrary, the
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training with conformer models (M2) leads to the observation that training using Adam optimizer
only converges for iid data, especially with a smaller (L = 5) cohort size; it converges for larger
cohort sizes as discussed in Section 3.1. One of the plausible explanations for this discrepancy is that
the transformers were claimed to be relatively less susceptible to heterogeneous data [73].
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Figure 7: Impact of randomizing the distribution of data across users for LS (left, middle) and CV
(right) measured by WER for M1 model. Parameter settings are described in Figure 3 for LS and
Figure 4 for CV. While the original training data are non-IID (solid), IID (dashed) versions of LS-960,
LS-860 and CV-en-train are created by choosing a user id uniformly and randomly from the set of
user ids for each data point in the corresponding dataset. Details are in [56], Tables 5 and 6.

3.5 Differential Privacy

While FL on its own provides only limited privacy guarantees [83; 84; 85; 86; 87], it can be
combined with differential privacy (DP) [12] and secure aggregation [13; 14] to provide strong
privacy guarantees for users (or clients) while training high-quality models [50]. FL on its own
provides limited privacy even in the context of ASR [88; 19]. However, to the best of our knowledge,
no prior work exists that incorporates DP into FL for ASR. We argue that using DP in FL for ASR is
hard but feasible, and provide the first benchmarks for FL with DP for ASR.

Algorithm 1: Federated learning with differential privacy (marked as red) for transformer model
Inputs: Initial model state θ0 (either randomly initialized or pre-trained on server data), central steps T ,

central optimizer opt, clients sampling rate q, local steps Tl, local optimizer optl, clipping

function clip(v, C) = v ·min
(
1, C

||v||

)
, local clipping Cl, DP clipping C and DP noise σ.

Result: ASR model θT

1 Initialize central optimizer opt
2 for t = 1, T do
3 Sample every client with probability q to form a subsetN t of clients from all clientsN (|N | = N )
4 // For practical implementation we fix the size of the cohort N t to L throughout the training.

5 for n = 1, |N t| in parallel do
6 Initialize local model θ(t,0)

n ← θt−1 and local optimizer optl
7 for tl = 1, Tl do
8 // We also use local epochs instead of steps: then this loop has different number of steps per client.

9 Sample train mini-batch B
tl
n ∈ DN t

n
and compute gradient estimate g

(t,tl)
n (B

tl
n ;θ

(t,tl−1)
n )

10 Clip gradients g(t,tl)
n ← clip(g

(t,tl)
n , Cl) and update a local model θ(t,tl)

n ← optl(g
(t,tl)
n )

11 Compute client’s delta ∆t
n = θ

(t,Tl)
n − θ

(t,0)
n = θ

(t,Tl)
n − θt−1

12 Clip client’s delta ∆t
n ← clip(∆t

n, C)

13 Add Gaussian noise to client’s delta ∆t
n ←∆t

n +N (0, Iσ2qN)

14 Compute central model’s pseudo-gradient gt = ∆t = 1
|N t|

∑|N t|
n=1 ∆t

n

15 Update the central model θt ← opt(gt)

To incorporate user-level DP into FL, there are two additional steps compared to vanilla FL (see
Algorithm 1): (i) clipping user deltas ∆t

n so that they have bounded L2 norm ∥∆t
n∥2 ≤ C at every

central training step t; (ii) addition of Gaussian noise N (0, Iσ2qN) to the clipped deltas before
sending them to the server where q = L/N , L is cohort size, and N is the total number of users
(population size). DP guarantees can be quantified using ϵ and δ [12]; δ is typically a small number
between 10−9 to 10−6 and ϵ < 10 to be practical, ideally between 1 and 2.
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Table 2: Results for FL with DP and a M1 model pre-trained on LS-100 (∼100h) used as central
data and afterwards fine-tuned on CV-en-train (∼1.6k hours) used as clients data. We report added
noise N (0, Iσ2Nq) per client and CV dev and test WERs (%) for two clipping variants with clipping
bound C: global and per-layer “uniform” (“dim”). The total number of users is N , the expected
number of users sampled per central step is L = qN , and the number of central steps is T . We set
δ = 10−9 and report ϵ for which (ϵ, δ)-DP holds for given L and N using the moments accountant
of [50]. For scaling L and N where it is practically intractable to run model training (marked “-”), we
extrapolate (ϵ, δ)-DP assuming the training dynamic remains unchanged and thus similar WER could
be obtained. Central training gives 14.7%/17.8% WER on dev/test. Extended results see in [56]. ϵ
should be below 10 to be practically useful (marked with blue).
z

σ
C L N q = L/N T ϵ

Renyi global clipping per-layer clipping: uniform (dim)

·10−8 order dev WER test WER dev WER test WER

- - - 0 34,753 0 0 0 - 54.7 61.2 54.7 61.2

0.03072 30.0 0.01 1,024 34,753 0.0295 2,006 1.1·106 1.1 - - 25.2 (24.2) 29.3 (28.2)
0.3072 30.0 0.01 10,240 347,530 0.0295 2,006 3.7·102 1.1 - - - -
1.536 30.0 0.01 51,200 1,737,650 0.0295 2,006 6.5·100 7.0 - - - -

0.02048 20.0 0.01 1,024 34,753 0.0295 2,006 2.6·106 1.1 - - 23.7 (22.6) 27.6 (26.5)
1.024 20.0 0.01 51,200 1,737,650 0.0295 2,006 1.3·100 4.0 - - - -
2.048 20.0 0.01 102,400 3,475,300 0.0295 2,006 4.5·100 9.0 - - - -

0.01024 10.0 0.01 1,024 34,753 0.0295 2,006 1.1·107 1.1 - - 21.3 (20.1) 25.0 (23.7)
0.512 10.0 0.01 51,200 1,737,650 0.0295 2,006 7.2·101 1.5 - - - -
1.024 10.0 0.01 102,400 3,475,300 0.0295 2,006 1.3·101 4.0 - - - -
2.048 10.0 0.01 204,800 6,950,600 0.0295 2,006 4.5·100 9.0 - - - -

0.003072 3.0 0.01 1,024 34,753 0.0295 2,006 1.2·108 1.1 27.0 31.1 17.9 (17.1) 21.2 (20.4)
0.3072 3.0 0.01 102,400 3,475,300 0.0295 2,006 3.7·102 1.1 - - - -
0.6144 3.0 0.01 204,800 6,950,600 0.0295 2,006 4.2·101 2.0 - - - -
0.6144 3.0 0.01 204,800 69,506,000 0.00295 2,034 7.2·100 3.0 - - - -
0.6144 3.0 0.01 204,800 695,060,000 0.000295 3,390 3.7·100 6.0 - - - -

0.001024 1.0 0.01 1,024 34,753 0.0295 2,006 1.1·109 1.1 22.9 26.7 16.2 (16.0) 19.5 (19.3)
0.2048 1.0 0.01 204,800 6,950,600 0.0295 2,006 1.1·103 1.1 - - - -
0.2048 1.0 0.01 204,800 69,506,000 0.00295 2,034 2.7·102 1.1 - - - -
0.2048 1.0 0.01 204,800 695,060,000 0.000295 3,390 9.4·101 1.3 - - - -

- 0 0.01 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.9 19.1
- 0 1.0 1,024 34,753 0.0295 2,000 inf - 15.7 18.9 15.9 19.1

Figure 8 shows the word error rate (WER) measured on CV-en-test set for different values of DP
noise and different clipping algorithms; see Section 3 and Section 5.3 in [56] for details. Although
prior work [37] suggested that the per-layer clipping does not improve performance of FL with DP,
our results show that per-layer clipping performs considerably better than global clipping: with the
same DP noise σ = 3 · 10−8 we are able to closely match the model trained without DP noise (σ = 0)
with only a small WER degradation (from 19.1% to 21.2% WER) while guaranteeing (7.2, 10−9)-DP
assuming the training effectiveness remains the same if we extrapolate scaling to ∼70M clients with
the cohort size of ∼200k. Moreover, we can now increase DP noise up to σ = 10−7 getting 25.0%
WER with (4.5, 10−9)-DP by scaling only to ∼7M clients with the cohort size of ∼200k (see Table 2).
The latter is a realistic scenario even for mid/low resource languages. We can further reduce WER by
∼1% for the same (ϵ, δ)-DP guarantee if we apply per-layer clipping based on the layer dimension
(“dim”), Table 2.

Interestingly, for both French and German we observe that per-layer clipping is not as effective as
for English and we get only marginal improvements over global clipping. We have checked that the
seed model quality and the seed model being out-of-domain are not the sources of this discrepancy in
results between languages. Further investigation indicated that there is a discrepancy in gradients
balance across layers for the central model training for English, French, and German, which is likely
due to the differences between the languages. For more details, we refer a reader to [56].

4 Conclusion

ASR provides a valuable benchmark for (private) federated learning (FL). Datasets in this domain
are large, separated by users, and represent heterogeneity of the kind often seen in real private
FL settings. With the possible exception of language modeling, benchmarks typically used in the
private FL research community do not satisfy these properties, making them less suitable for deriving
conclusions that would translate to practical deployments. For example, the task of adapting a model
trained (centrally) on LibriSpeech data to work on Common Voice data in the federated setting is
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Figure 8: Word error rate (WER) of M1 model measured on CV-en-test set for different values of
DP noise σ (scale is set to 10−8). We apply clipping of 10−2 either globally (left, Algorithm 1)
or per-layer (right, “uniform” in [56], Section 3) with T = 2k central steps, 10 local steps, and
L = 1,024 cohort size. The seed model is trained on LS-100.

an appropriate candidate for benchmarking FL and FL with differential privacy (DP). In this paper,
we argue that ASR benchmarks provide insights into all critical aspects of the practical deployment
of private FL in challenging problem domains, including the impact of adaptive optimization, data
heterogeneity, cohort size, and other FL parameters, seed models, and DP. With a practical number of
central aggregations, we have been able to train large transformer and conformer FL models that are
nearly optimal even with heterogeneous data, a seed model from another domain, or no pre-trained
seed model. We show that even with large transformer models, FL with DP can achieve user-level
(7.2, 10−9)-DP (resp. (4.5, 10−9)-DP) with a 1.3% (resp. 4.6%) absolute drop in the word error rate
for extrapolation to high (resp. low) population scale.
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