
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIKED: SELF-GUIDED ITERATIVE KNOWLEDGE
DISTILLATION FOR MATHEMATICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can transfer their reasoning skills to smaller
models by teaching them to generate the intermediate reasoning process required
to solve multistep reasoning tasks. While LLMs can accurately solve reasoning
tasks through a variety of strategies, even without fine-tuning, smaller models are
not expressive enough to fit the LLMs distribution on all strategies when distilled
and tend to prioritize one strategy over the others. This reliance on one strategy
poses a challenge for smaller models when attempting to solve reasoning tasks
that may be difficult with their preferred strategy. To address this, we propose a
distillation method SIKeD: Self-guided Iterative Knowledge Distillation1, where
the LLM teaches the smaller model to approach a task using different strategies
and the smaller model uses its self-generated on-policy outputs to choose the
most suitable strategy for the given task. The training continues in a self-guided
iterative manner, where for each training iteration, a decision is made on how
to combine the LLM data with the self-generated outputs. Unlike traditional
distillation methods, SIKeD allows the smaller model to learn which strategy is
suitable for a given task while continuously learning to solve a task using different
strategies. Our experiments on various mathematical reasoning datasets show that
SIKeD significantly outperforms traditional distillation techniques across smaller
models of different sizes.

1 INTRODUCTION

PoT CoT L2M
Strategy

0

200

400

600

800

1000

Nu
m

be
r o

f T
im

es
 S

tra
te

gy
 S

el
ec

te
d

285

442

273

70

828

102

LLM
Smaller Model

Figure 1: Histogram of strategy choices for the
LLM and the smaller model. LLM tends to se-
lect several reasoning strategies, but the smaller
model is biased towards one strategy. The com-
parison was done on 1000 data points randomly
sampled from the GSM8K train set.

Large language models (LLMs), with tens to hun-
dreds of billions of parameters, generally outper-
form smaller models (with billions of parameters
or fewer) in a variety of reasoning tasks Touvron
et al. (2023); Achiam et al. (2023). One notable
strength of large models is their ability to reason
and perform multistep reasoning tasks, often con-
sidered an important aspect of intelligence Gómez-
Veiga et al. (2018). However, the significant size
and computational demands of these large models
present several challenges. For example, LLaMA3
models Touvron et al. (2023) are trained using
clusters of 24,000 GPUs, limiting their accessibil-
ity to many researchers and practitioners.

To bridge this gap, a key approach involves teach-
ing smaller models to replicate the knowledge of
a larger model, often referred to as knowledge dis-
tillation Hinton (2015). Typically, smaller models can be taught to replicate the multistep reasoning
capabilities of larger models by incorporating a set of intermediate sequences (Kim & Rush, 2016;
Shridhar et al., 2023). However, these intermediate steps can be derived from a number of different
strategies, such as Chain of Thought (CoT) Wei et al. (2022), Subquestion Decomposition Shridhar
et al. (2022); Zhou et al. (2023), and Program of Thoughts (PoT) Chen et al. (2023), among others. A

1SIKeD is pronounced as “psyched”

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

viable solution is to distill these reasoning capabilities into smaller models either by distilling indi-
vidual strategies (Magister et al., 2023; Shridhar et al., 2023; Hsieh et al., 2023) or by incorporating
multiple strategies simultaneously (Chenglin et al., 2023; Zhu et al., 2024). Although smaller models
have demonstrated impressive performance when distilled with a single strategy, they often struggle
to master multiple strategies equally well. An example is presented in Figure 1 where a larger model
can use multiple strategies to generate data but upon distilling, a smaller model tends to favor one
over the others. This is because reasoning through a variety of strategies tends to emerge as a result
of scaling language models, making it difficult for smaller models to replicate this behavior Lyu et al.
(2024).

On the other hand, learning to solve a task using multiple strategies can help smaller models overcome
the limitations of relying on a single approach. However, a key challenge arises when, despite being
trained on a fixed dataset containing various strategies, a distribution mismatch occurs between
the data generated by the LLM and the outputs produced by the smaller model during inference.
This mismatch can hinder the ability of the smaller model to generalize across different reasoning
strategies. This issue, often discussed in imitation learning (Pomerleau, 1991; Ross & Bagnell, 2010),
results in the student model consistently choosing one strategy, even when a different approach would
be more appropriate. As a result, the student generates outputs with strategy choices that are highly
unlikely to match those produced by the teacher.

To address this challenge, we introduce our distillation methodology, SIKeD: Self-guided Iterative
Knowledge Distillation. The process begins with the LLM teaching the smaller model to approach
tasks using a variety of reasoning strategies, providing a strong foundation for the smaller model to
understand different problem-solving approaches. However, due to inherent biases and its limited
capacity, the smaller model may still struggle to match the LLM’s distribution of strategy choices
effectively. To resolve this, we take inspiration from constructivist learning theory Narayan et al.
(2013), where the learner builds knowledge during the “assimilation phase” and refines their under-
standing during the “accommodation phase” to incorporate new insights. We propose generating
outputs using the smaller model in an on-policy setup and selecting the best strategies for the task.
By mixing the LLM-generated data with self-generated outputs, we leverage the strengths of both
datasets. We iteratively fine-tune the smaller model allowing it to recognize strategies that it learned
from the LLM but did not initially apply. With this approach, we align the smaller model with its
own learned knowledge rather than forcing its distribution to mirror that of the LLM’s.

Our proposed method extends beyond traditional one-step distillation, as each iteration of SIKeD
leads to an updated policy that better grasps new information. We repeat multiple iterations of SIKeD
based on the accuracy-cost tradeoff (does the improvement justify the cost of another iteration),
allowing for continuous refinement and improvement of the model’s reasoning capabilities. We
demonstrate the effectiveness of SIKeD on several mathematical reasoning tasks using models with
fewer than 7 billion parameters.2 On four mathematical datasets—GSM8K Cobbe et al. (2021),
SVAMP Patel et al. (2021), ASDiv Miao et al. (2020), and MultiArith Roy & Roth (2016)—our ap-
proach achieves improvements of up to +5 points over traditional distillation strategies. Additionally,
we show that multiple rounds of SIKeD allow the model to select the appropriate strategy for a given
problem, while traditional distillation using LLM’s data tends to leave it biased.

2 PRELIMINARIES: LLM BASED DISTILLATION

Problem Setup We consider the standard setup of LLM-based distillation (also referred to as
knowledge distillation), where the data is sampled from the larger model (LLM) with intermediate
reasoning and the smaller model is fine-tuned (distilled) over it Shridhar et al. (2023); Magister et al.
(2023). Two auto-regressive sequence models are involved in the process: a larger model or the LLM
denoted as pL and a smaller model to be distilled as pθsm (with learnable parameters θ). In this work,
we consider a reasoning dataset D consisting of a question qi and a numerical answer ai pairs for n
data points, i.e. i ∈ {1, . . . , n}. Since our work focuses on improving the reasoning in smaller models
by teaching them to solve a variety of reasoning strategies, we consider three reasoning strategies in
this work: Chain-of-Thought (CoT), Least-to-Most (L2M), and Program-of-Thought (PoT). For a
specific reasoning strategy, denoted as s ∈ S, we generate the reasoning chain or rationale, denoted

2We acknowledge that “smaller model” is a relative term, and we consider models with fewer than 7 billion
parameters to be smaller models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

as ri leading to the final answer as: ri ∼ pL(. | prs, qi), where, prs represents the strategy-specific
prompt, and s ∈ {CoT,L2M,PoT}. Prompts used are provided in Appendix A.

2.1 LLM BASED DISTILLATION

We add the generated rationales to the the dataset D to create an initial training dataset DLLM consisting
of a quadruple of {qi, ai, s, ri} for each data point. We perform a data filtering by extracting the final
answer âi from the generated rationale ri and comparing it with the ground truth answer ai. We
discard all samples that do not match, i.e., we keep samples where âi = ai. This filtering process
eliminates incorrect rationales, ensuring that only high-quality data is used for distilling the smaller
models.

We start the distillation process by training the smaller model with the created dataset DLLM. The
question qi is provided as input, and the smaller model pθsm (with learnable parameters θ) is first
instructed to generate the strategy s, followed by the rationale ri that leads to the final answer ai. The
loss LL(θ) is defined as:

LL(θ) = −E(qi,s,ri)∼DLLM

[
log pθsm (s | qi, I) +

M∑
t=1

log pθsm (ri,t | ri,<t, s, qi, I)

]
, (1)

where M represents the number of tokens decoded over time t in an autoregressive manner, and
I is the instruction used during fine-tuning. Note that this is analogous to traditional knowledge
distillation from LLMs except that we make a strategy choice before generating rationales.

Limitations Training solely on LLM-generated data DLLM can lead to a distribution mismatch
between the training data and the smaller model’s own output distribution. Specifically, the larger
model due to its larger capacity, may produce correct reasoning across multiple strategies that the
smaller model can find difficult to replicate directly Agarwal et al. (2024). A comparison of the
strategy selected by the LLM and the smaller model on 1K samples is presented in Figure 1. The
smaller model performs poorly when generating outputs on its own, as the training data distribution
Ptrain(x) is different from the model’s output distribution P θ

sm(x) as P (1)
train(x) = PLLM(x), where x

represents the samples (qi, s, ri), and PLLM(x) is the distribution of data generated by the LLM pL.

Proposed Solution To mitigate the distributional shift in strategy choice between the LLM and the
smaller model, we propose to incorporate the smaller model’s own correct outputs into the training
data. This self-guided training with data mixing aligns the training data distribution more closely with
the smaller model’s output distribution, making learning more effective. A visualization of the data
mixing approach is presented in Figure 2 that demonstrates that data mixing reduces the distribution
shift, bringing the LLM and the smaller model’s output distribution closer. This allows the smaller
model to choose the right strategy for a given task, much like the LLM.

3 SIKED: SELF-GUIDED ITERATIVE KNOWLEDGE DISTILLATION

We propose SIKeD, an iterative training where smaller models can take advantage of their own
generations to refine their strategy choices for a given task. In a nutshell, we generate data from the
smaller model, filter out the correct samples based on whether the generated solutions are correct, and
mix this data with the LLM-generated data to adjust its strategy preferences. The smaller distilled
model is used to iteratively generate data in an on-policy setting where it updates itself by leveraging
both the LLM data and its own generations. This iterative process allows the smaller model to
improve its reasoning abilities and strategy selection over time by leveraging the LLM’s knowledge
and its own prior learning. The following paragraphs discuss the steps involved in our proposed
iterative distillation methodology and the training objective.

Data generation For each question qi and its associated reasoning strategy s, we first generate K

rationales using the current smaller model pθsm as: r(k)i ∼ pθsm(· | s, qi, I), for k = 1, . . . ,K. Note
that we generate multiple samples K as the likelihood of a correct answer being present in one of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

St
ra

te
gy

 S
el

ec
tio

n
Pr

ob
ab

ilit
y

Iteration 1 Alpha: 0.90
KL Divergence: 0.3135

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 2 Alpha: 0.67
KL Divergence: 0.1792

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 3 Alpha: 0.43
KL Divergence: 0.0800

PoT CoT L2M
Strategies

0.0

0.2

0.4

0.6

0.8

1.0

Iteration 4 Alpha: 0.20
KL Divergence: 0.0184

LLM Distribution PL SM Distribution PSM Training Data P(t)
train

Figure 2: Alignment of the smaller model’s strategy distribution with the LLM over iterations.
Each subplot represents an iteration in the training process, showing the probability distributions over
reasoning strategies: PoT, L2M, and CoT. The blue bars depict the LLM’s distribution PL, while the
orange bars represent the smaller model’s distribution PSM , which is biased towards CoT. The green
bars show the training data distribution P

(t)
train, a mixture of PL and PSM weighted by the mixing rate

α. As α decreases over iterations (from 0.90 to 0.20), P (t)
train shifts from being similar to the LLM’s

distribution towards the smaller model’s distribution. The KL divergence between the training data
and the smaller model distributions decreases accordingly, indicating increased similarity.

rationales increases significantly with additional generations for smaller models (Jain & Shridhar,
2023; Wang et al., 2023).

Data Filtering Next, we extract the predicted answer â(k)i from each rationale r
(k)
i and compare

it with the ground truth ai. We collect the correct samples, where â
(k)
i = ai, into a new dataset

Dself =
{
(qi, s, r

(k)
i)

∣∣∣ â(k)i = ai

}
.

Data mixing We combine the LLM-generated dataset DLLM with the self-generated dataset Dself

to form the mixed dataset Dmix = DLLM ∪ Dself.

Note that, we do not always use all the data from LLM in Dmix, and study two variations: All
when all LLM data is used in Dmix, and Sparse when only queries that have no correct generations
in Dself are taken from DLLM. Sparse uses less generated data from the LLM, resulting in more
computationally efficient training.

The corresponding training data distribution changes to a mixture of the LLM data distribution and
the model’s own output distribution:

P
(2)
train(x) = αPLLM(x) + (1− α)P θ

sm(x),

where α = |DLLM|
|DLLM|+|Dself| serves as a normalized mixing rate between the two datasets.

Training objective By including Dself in the training data, we reduce the divergence between
P

(2)
train(x) and the model’s own output distribution P θ

sm(x), thus minimizing the distribution shift and
improving training effectiveness of choosing the right strategy for a given task.

We continue training the smaller model on Dmix using the following loss function:

Lmix(θ) = −E(qi,s,ri)∼Dmix

[
log pθsm (s | qi, I) +

M∑
t=1

log pθsm (ri,t | ri,<t, s, qi, I)

]
(2)

The expected loss over the training data is:

Lmix(θ) = −E
x∼P

(2)
train (x)

[
log pθsm(x)

]
4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where x = (qi, s, ri), and pθsm(x) denotes the probability assigned by the model to the sample x.

Analogous to minimizing the KL divergence Mixing the data is analogous to minimizing the
Kullback-Leibler (KL) divergence Kullback & Leibler (1951) between the training data distribution
P

(2)
train(x) and the model’s output distribution P θ

sm(x):

DKL(P
(2)
train(x) ∥ P θ

sm(x)) =
∑
x

P
(2)
train(x) log

P
(2)
train(x)

P θ
sm(x)

.

As we include more self-generated data, (1− α) increases, and P
(2)
train(x) becomes closer to P θ

sm(x).
This reduces the KL divergence and aligns the training data distribution with the model output
distribution, leading to more effective learning. Figure 2 demonstrates that as the value of α decreases,
the distribution of the training data strategy choices aligns with the smaller model, with a reduction in
their KL value over iterations. This allows the smaller model to better capture the strategy distribution
of the larger model.

3.1 ITERATIVE SELF-TRAINING OF SIKED

We repeat the data generation, filtering, mixing, and training steps iteratively. In each iteration t, the
smaller model potentially generates new correct rationales that are added to the training data. The
training data distribution at iteration t becomes:

P
(t)
train(x) = α(t)PLLM(x) + (1− α(t))P θ(t−1)

sm (x),

where θ(t−1) are the model parameters from the previous iteration, and α(t) is updated based on
the sizes of DLLM and D(t)

self at iteration t. Note that the generated samples from the smaller model
automatically govern the value of α(t) based on the size of D(t)

self.

This iterative process continues until the model’s performance converges or a predefined stopping
criterion is met. Over multiple iterations, the model’s own output distribution P θ(t)

sm (x) gradually
improves, and the training data distribution becomes increasingly aligned with it. We present an
end-to-end training methodology in Algorithm 1.

4 EXPERIMENTAL DETAILS

Dataset Our work demonstrates the effectiveness of selecting an appropriate strategy for a given
task. We consider multi-step mathematical reasoning datasets in our work, as various strategies
can solve the task fairly well. We trained SIKeD on the GSM8K training set Cobbe et al. (2021),
which includes 7,473 samples, and tested it on the corresponding test set of 1,319 samples. To
assess the domain transferability of our distillation method, we also evaluated it on three additional
mathematical datasets: SVAMP Patel et al. (2021) with 1,000 samples, ASDiv Miao et al. (2020) with
2,300 test samples, and MultiArith Roy & Roth (2016) with 180 samples. As the GSM8K training
set was used to train the smaller model, we classify it as an in-distribution dataset. In contrast, no
training data from SVAMP, ASDiv, or MultiArith was used, as they were exclusively employed for
testing purposes and thus considered out-of-distribution.

Implementation Details We used the Llama3 70B model Dubey et al. (2024) as the large language
model (LLM) to generate the rationales. We performed distillation on different smaller models
ranging from 0.5B to 7B parameters, including Qwen2 0.5B Bai et al. (2023), Qwen2 1.5B Bai et al.
(2023), SmolLM 1.7B Hugging Face (2023), Gemma 2B Team et al. (2024), and Gemma 7B Team
et al. (2024). All smaller models were fine-tuned using LoRA Hu et al. (2021) with a rank of 16,
and alpha of 32. We used a learning rate of 3e-4 for Qwen models with a cyclic scheduler, while we
set 2e-4 as the learning rate for other models and used a linear scheduler. We train all models for
3 epochs. We implemented all our experiments using the Unsloth FastLanguageModel Unslothai
(2023) and used the VLLM library Kwon et al. (2023) for inference. We set the temperature t = 0 for
data generation from the LLM while t = 0.7 was used for generating samples from the smaller model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: SIKeD: Self-guided Iterative Knowledge Distillation
Input: D: Reasoning dataset with questions {qi}Ni=1 and answers {ai}Ni=1, DLLM: Reasoning dataset

generated using the LLM with questions {qi}, answers {ai}, strategy {s}, rationales {ri}, S: Set
of reasoning strategies, I : instruction, pL: LLM for rationale generation , pθ

(0)

sm : Smaller model
with initial parameters θ(0) , K: Number of samples per question and strategy , T : Maximum
number of iterations , Variation: All or Sparse,

// LLM-Based Distillation

Train pθ
(0)

sm on DLLM by minimizing LL(θ(0)) (equation 1)
// SIKeD: Self-guided Iterative Knowledge Distillation
for iteration t = 1 to T do

Initialize dataset D(t)
self ← ∅

for each question qi ∈ D do
for each strategy s ∈ S do

for k = 1 to K do
Generate rationale r

(k)
i using pθ

(t−1)

sm : r(k)i ∼ pθ
(t−1)

sm (· | s, qi, I)
Extract answer â(k)

i from r
(k)
i

if â(k)
i = ai then
Add (qi, s, r

(k)
i) to D(t)

self
end

end
end

end
if Variation is All then

Combine datasets: D(t)
mix = DLLM ∪ D(t)

self
else

Identify questions with no correct self-generated rationales: I = {i | no correct r(k)i in D(t)
self}

Include corresponding LLM data: D(t)
LLM = {(qi, s, ri) ∈ DLLM | i ∈ I}

Combine datasets: D(t)
mix = D(t)

LLM ∪ D
(t)
self

end

Update α(t) =
|D(t)

LLM|
|D(t)

LLM|+|D(t)
self|

Retrain pθ
(t)

sm on D(t)
mix by minimizing L(t)

mix(θ
(t)) (equation 2)

end
Output: Updated smaller model pθ

(T)

sm

at each iteration. We set the number of generated samples or K to 10. We report Top-1 accuracy
(maj@1).

Our proposed approach was compared against a set of single-strategy distillation methods. In
this work, we employed three reasoning strategies: Chain-of-Thought (CoT) Wei et al. (2022),
Program-of-Thought (PoT) Chen et al. (2023), and Least-to-Most (L2M) Zhou et al. (2023).

5 RESULTS AND DISCUSSION

LLM Based Distillation We start by distilling smaller models using the reasoning dataset generated
using the LLM in two variations: using data from a single strategy (CoT, PoT, or L2M), and a
combination of all three strategies (referred to as “Combined”). Table 1 compares the accuracies
of the approaches across four mathematical datasets. The “Combined” approach benefited smaller
models, yielding slight improvements for the Qwen 0.5B, Qwen 1.5B, and SmolLM 1.7B models.
However, it showed little to no improvement, and sometimes even worse performance, for the larger
Gemma 2B and 7B models. This indicates that simply merging the distillation data for each strategy
is not sufficient for effective multi-strategy distillation.

Consistent improvement across in-distribution dataset Compared to the traditional LLM-based
distillation approaches, we observe consistent improvements with SIKeD across all models, ranging
from 0.5B to 7B parameters as shown in Table 1. On the in-distribution GSM8K dataset, both Gemma

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Top-1 (maj@1) accuracy comparison across different sized models (Gemma 2B and 7B,
SmolLM 1.7B, Qwen 0.5B and 1.5B) on four mathematical datasets: GSM8K, ASDiv, MultiArith,
and SVAMP. “Combined” refers to the scenario where data from all three reasoning strategies are
merged and then used for distillation. We report the two variants of SIKeD: “Sparse” and “All”.

Dataset
Model Method In Distribution Out of Distribution

GSM8K ASDiv MultiArith SVAMP
CoT 67.40 68.76 98.33 66.80
L2M 69.29 64.69 96.11 64.80
PoT 71.34 67.85 98.89 75.00

Gemma 7B Combined 70.74 69.11 99.44 69.40
SIKeD

Sparse 73.84 (↑ +2.5) 70.59 (↑ +1.5) 99.44 (-) 72.90 (↓ -2.1)

All 72.55 (↑ +1.2) 70.33 (↑ +1.2) 100.0 (↑ +0.6) 75.00 (↑ +0.0)

CoT 36.54 54.01 87.22 41.90
L2M 36.92 43.47 81.67 31.60
PoT 44.05 58.13 90.56 56.80

Gemma 2B Combined 44.05 57.96 84.44 56.20
SIKeD

Sparse 47.23 (↑ +3.2) 59.05 (↑ +0.8) 91.11 (↑ +0.6) 58.60 (↑ +1.8)

All 46.02 (↑ +2.0) 59.39 (↑ +1.3) 91.11 (↑ +0.6) 57.50 (↑ +0.7)

CoT 16.38 30.37 58.89 22.60
L2M 18.73 22.13 53.89 17.90
PoT 23.73 43.77 61.11 34.50

SmolLM 1.7B Combined 24.56 46.77 67.22 35.90
SIKeD

Sparse 27.98 (↑ +3.4) 47.20 (↑ +0.4) 72.22 (↑ +5.0) 37.80 (↑ +1.9)

All 26.54 (↑ +2.0) 45.47 (↓ -1.3) 70.56 (↑ +3.2) 36.30 (↑ +0.4)

CoT 55.57 68.76 99.44 66.30
L2M 54.59 63.69 96.67 62.30
PoT 64.22 66.94 95.56 74.30

Qwen 1.5B Combined 64.44 67.64 98.89 73.20
SIKeD

Sparse 64.97 (↑ +0.5) 68.98 (↑ +1.3) 99.44 (-) 75.40 (↑ +1.1)

All 64.14 (↓ -0.3) 67.72 (↑ +0.1) 99.44 (-) 74.50 (↑ +0.2)

CoT 36.47 54.66 83.89 43.00
L2M 33.59 49.76 76.67 44.60
PoT 41.62 56.83 92.22 51.40

Qwen 0.5B Combined 42.38 57.79 90.56 51.40
SIKeD

Sparse 43.14 (↑ +0.8) 58.44 (↑ +0.7) 93.33 (↑ +1.1) 51.70 (↑ +0.3)

All 44.28 (↑ +1.9) 58.05 (↑ +0.3) 95.00 (↑ +2.8) 51.70 (↑ +0.3)

2B and 7B show significant gains of +3.2 points and +2.5 points respectively (44.05 → 47.23 and
71.34 → 73.84, respectively). Similarly, SmolLM showed the largest improvement of +3.4 points
(24.56 → 27.98). In contrast, the smaller Qwen models see gains of +0.5 points for the larger variant
(1.5B) and +1.9 points for the smaller variant (0.5B).

SIKeD performs well on out-of-distribution datasets For the out-of-distribution datasets, there
is a steady improvement on the ASDiv dataset, with Gemma 7B gaining +1.5 points (69.11 → 70.59),
+1.3 points for Gemma 2B (58.13 → 59.39), +0.4 points for SmolLM, +1.3 points for Qwen 1.5B
(67.64 → 68.98), and +0.7 points for Qwen 0.5B (57.79 → 58.44). A similar trend is seen for the
MultiArith dataset, where SmolLM shows the largest gain of +5 points. It is followed by Qwen 0.5B
with +2.8 points, while other models outperform the baseline. In particular, Gemma 7B achieves a
perfect score of 100. The results are similar for the SVAMP dataset, with Qwen 0.5B, Qwen 1.5B,
SmolLM 1.7B, and Gemma 2B gaining +0.3, +1.1, +1.9, and +1.8 points, respectively. On the other
hand, Gemma 7B maintains its baseline score of 75. Upon further analysis, we find that the SVAMP
dataset tends to favor the PoT strategy, which outperforms other strategies by up to 10 points for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

GSM
8K

ASD
iv

SV
AMP

Mult
iArith

35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

Baseline
CoT PoT L2M

SIKeD Biased
CoT Biased SIKeD
PoT Biased SIKeD
L2M Biased SIKeD

Figure 3: Accuracy comparison between single distillation strategies of CoT, PoT, and L2M with
SIKeD biased training using the same strategy using the Gemma 7B model.

0 1 2 3
Iteration

40

42

44

46

48

50

52

Ac
cu

ra
cy

 (%
)

44.05

45.19
45.72

47.23

45.41

46.55
46.02

GSM8K
Baseline
Sparse
All

0 1 2 3
Iteration

52

54

56

58

60

62

56.20

57.30

58.60

57.70
57.00

57.50
56.90

SVAMP
Baseline
Sparse
All

0 1 2 3
Iteration

54

56

58

60

62

64

57.96

58.96 58.83 59.05
59.39

58.70
59.05

ASDiv
Baseline
Sparse
All

0 1 2 3
Iteration

80.0

82.5

85.0

87.5

90.0

92.5

95.0

84.44

91.11 91.11

89.44
90.56

91.11
90.00

MultiArith
Baseline
Sparse
All

Figure 4: Iterative accuracy comparison for the Gemma 2B model across all datasets. The process is
stopped when the gains diminish or when it is no longer cost effective to continue.

Gemma 7B. Although our approach often selects PoT, it does not always do so, leading to results
similar to the baseline score.

Biasing SIKeD in favor of our strategy of choice For some tasks, one strategy might be better
than the others due to its performance, lower cost, or better suitability for some use cases (for example,
PoT is significantly better for SVAMP compared to other strategies). In such cases, it would be
beneficial to bias the selection towards that strategy 3. This can be done by taking only the sample
from our choice of biased strategy when more than one strategy is correct from the model-generated
samples. For example, if for a given data point, a smaller model samples both CoT and PoT correctly,
and our biased strategy choice is PoT, we will ignore the CoT output and take only the PoT. Figure 3
compares the individual distillation strategy with the biased SIKeD. Using Gemma 7B as a smaller
model across all datasets, SIKeD outperforms individual distillation strategies by a margin of 2-4
points, highlighting the effectiveness of SIKeD over other distillation approaches.

How many iterations to run for SIKeD With each iteration of SIKeD, the model learns to solve
a task using different strategies and adjusts its strategy choice for a given task. This allows for
continuous training of SIKeD. Figure 4 illustrates the accuracy improvements across iterations for
the Gemma 2B model on various datasets. The iterative training is stopped when accuracy shows
only marginal improvements or declines. Three iterations have consistently proven to be the optimal
balance across different models and datasets in our experiments.

How the strategy distribution changes over iterations Figure 5 illustrates the strategy distribution
across different iterations for the GSM8K dataset using the SmolLM 1.7B model. Iteration 0
represents the baseline “combined” training from Table 1, and as expected, the smaller model is
initially biased towards one strategy (PoT in this case). Iterations 1, 2, and 3 show the model’s
progression using SIKeD, where it learns to diversify and select the suitable strategy for the given
problem. Notably, while PoT remains the dominant strategy, the model improves its usage of the

3Note that this is different from the already biased selection of the smaller model, as our biased strategy may
not be the default biased choice of the smaller model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3
Iteration

0

250

500

750

1000

1250

Nu
m

be
r o

f S
am

pl
es

CoT
L2M
PoT

0 1 2 3
Iteration

0

5

10

15

20

25

30

Ac
cu

ra
cy

 (%
)

CoT
L2M
PoT

Figure 5: Strategy distribution over iterations for GSM8K dataset using SmolLM 1.7B model.

other two strategies—CoT and L2M—which were absent in the biased baseline. This diversification
of strategies results in an overall gain of +3 points over the baseline.

Training from the last checkpoint vs training from pre-trained checkpoint In our work, we
iteratively train from the last checkpoint using on-policy training as we expect continuous improve-
ments in the model performance with a newly learned strategy. However, an alternative approach uses
off-policy training (training the pre-trained model at each iteration) to achieve strong performance
Gulcehre et al. (2023). We compared on-policy training (our proposed approach) with off-policy
training (as in Gulcehre et al. (2023)), utilizing both LLM-generated and self-generated data, and
observed a notable decrease in the overall accuracy with off-policy training. Note that we used all of
the LLM data at each iteration for off-policy training as the training is done on the pre-trained model.
On the GSM8K dataset, our on-policy approach outperformed off-policy training by +6 points (45.19
vs 38.90) using the Gemma 2B model. A similar trend was observed on out-of-distribution datasets,
where SIKeD outperformed with a gain of +4 points on both the SVAMP and ASDiv datasets (55.4
vs 51.3 for SVAMP and 58.96 vs 55.44 for ASDiv) and a gain of +2 points on the MultiArith dataset
(91.11 vs 88.33).

1.00 0.50 0.30 0.15 0.00
Alpha Value

42

43

44

45

46

47

48

Ac
cu

ra
cy

 (%
)

Accuracy vs Alpha

Figure 6: Accuracy comparison with different data
mix controlled by α. α = 1 means all data is from
the LLM only, while α = 0 means only smaller
model data is used.

Is data mixing better than LLM-based distil-
lation or self-distillation Mixing data from
the smaller model with the LLM helps in bridg-
ing the distributional gap between the LLM and
the smaller model. We explore the role of the
data mixing rate alpha (α) to validate our hy-
pothesis regarding data mixing. When α is set
to 1, only LLM-generated data is used, while at
the other extreme, α = 0 means only data gener-
ated by the smaller model is used. As shown in
Figure 6, an α value between 0 and 1 performs
better than either of the extreme cases.

Qualitative analysis demonstrating that
smaller models learn to choose the right strategy over iterations The increase in the per-
formance of smaller models can be attributed to the change in the distribution of reasoning strategies
as the model becomes more aligned with its strategy choices. Figure 7 shows that a model can solve
a given problem in the third iteration by switching the reasoning strategy which it initially struggled
with. Furthermore, Figure 11 shows an example of a model correcting its reasoning chain over time
due to its improved reasoning capabilities.

6 RELATED WORK

Knowledge Distillation for Reasoning Tasks Knowledge distillation (Buciluǎ et al., 2006; Hinton,
2015) is a widely-used technique for transferring knowledge from a large language model (LLM)
to a smaller model. Previous research has focused on transferring intermediate reasoning steps to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Question There are twice as many boys as girls at Dr. Wertz’s school. If there are 60 girls and 5 students to every teacher, how
many teachers are there?

Baseline
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration1
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration2
girls = 60
boys = 2 ∗ girls
total students = girls + boys
teachers per student = 5
total teachers = total students * teach-
ers per student
answer = total teachers
Final Answer: 900 ✗

Iteration3
Sub-question 1: How many boys are there?
Answer to Sub-question 1: 2 ∗ 60 =<< 2 ∗ 60 = 120 >> 120
Sub-question 2: How many students are there in total?
Answer to Sub-question 2: 60 + 120 =<< 60 + 120 = 180 >> 180
Sub-question 3: How many teachers are there?
Answer to Sub-question 3: 180/5 =<< 180/5 = 36 >> 36
Final Answer: 36 ✓

Figure 7: A qualitative example showing how Gemma 2B shifts its strategy selection over iterations
to solve a given task.

smaller models, either step-by-step (Shridhar et al., 2023; Magister et al., 2023; Hsieh et al., 2023)
or by combining multiple strategies simultaneously Chenglin et al. (2023); Zhu et al. (2024); Li
et al. (2024). These approaches can be viewed as aggregating diverse data sources for distillation,
similar to the LLM data approach in our work. In contrast, Hahn & Choi (2019) and Xu et al.
(2020) focus on self-distillation, where a model improves its performance without external data or
knowledge. Specifically, Hahn & Choi (2019) leverages word embeddings, while Xu et al. (2020)
uses temporal model checkpoints as a proxy for ground truth. However, both approaches rely solely
on data generated by the smaller model and exclude LLM data. Our method strikes a balance between
these two extremes by using LLM data to learn multiple strategies and self-generated data to optimize
for the right strategy choice.

Self-learning Previous studies, such as (He et al., 2019; Sun et al., 2020; Gulcehre et al., 2023),
have shown the effectiveness of the self-training paradigm in tasks such as machine translation.
While ReST Gulcehre et al. (2023) uses off-policy training, we find on-policy training more suitable
for our case both in terms of data efficieny and performance. On-policy training also allows a better
choice of learning strategies, since the model can use its most recent learning. Agarwal et al. (2024)
introduces Generalized Knowledge Distillation (GKD), an on-policy training method that aligns the
distributions of large language models (LLMs) and smaller models by incorporating output sequences
sampled from the student during training. However, the task was limited to the distribution alignment
and not to aligning the strategy choices in a multi-strategy distillation. Simply applying GKD would
not address this issue, as it would force the smaller model to learn all strategies, which is impractical
given its limited capacity.

Finally, we compare our distillation strategies with LLM-based distillation using both individual
strategies Shridhar et al. (2023); Magister et al. (2023); Hsieh et al. (2023) and a combination of
several strategies at once Chenglin et al. (2023); Zhu et al. (2024).

7 CONCLUSION

We propose SIKeD: Self-guided Iterative Knowledge Distillation, that addresses the challenge of
distilling multistep reasoning skills from large language models (LLMs) to smaller models. Unlike
traditional methods, which often leave smaller models biased towards a single strategy, SIKeD uses
iterative self-guided training, combining LLM and self-generated data to improve overall reasoning in
smaller models. We demonstrate our approach across various mathematical datasets and demonstrate
that SIKeD improves the ability of smaller models to handle complex reasoning tasks, achieving
significant performance gains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=3zKtaqxLhW.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541, Philadelphia PA USA, August 2006. ACM. ISBN 978-1-59593-339-3. doi: 10.1145/
1150402.1150464. URL https://dl.acm.org/doi/10.1145/1150402.1150464.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?
id=YfZ4ZPt8zd.

Li Chenglin, Chen Qianglong, Wang Caiyu, and Zhang Yin. Mixed distillation helps smaller language
model better reasoning. arXiv preprint arXiv:2312.10730, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Isabel Gómez-Veiga, José O. Vila Chaves, Gonzalo Duque, and Juan A. Garcı́a Madruga.
A new look to a classic issue: Reasoning and academic achievement at secondary
school. Frontiers in Psychology, 9, 2018. ISSN 1664-1078. doi: 10.3389/
fpsyg.2018.00400. URL https://www.frontiersin.org/journals/psychology/
articles/10.3389/fpsyg.2018.00400.

Sangchul Hahn and Heeyoul Choi. Self-Knowledge Distillation in Natural Language Processing,
2019. URL https://arxiv.org/abs/1908.01851. Version Number: 1.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio Ranzato. Revisiting Self-Training for Neu-
ral Sequence Generation, 2019. URL https://arxiv.org/abs/1909.13788. Version
Number: 3.

Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 8003–8017, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.507. URL https://aclanthology.org/2023.
findings-acl.507.

11

https://openreview.net/forum?id=3zKtaqxLhW
https://dl.acm.org/doi/10.1145/1150402.1150464
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.00400
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2018.00400
https://arxiv.org/abs/1908.01851
https://arxiv.org/abs/1909.13788
https://aclanthology.org/2023.findings-acl.507
https://aclanthology.org/2023.findings-acl.507

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Hugging Face. smol-llm: Train a small llm from scratch. https://huggingface.co/blog/
smollm, 2023. Accessed: 2024-09-23.

Kushal Jain and Kumar Shridhar. First step advantage: Importance of starting right in multi-step
reasoning. arXiv preprint arXiv:2311.07945, 2023.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Kevin
Duh, and Xavier Carreras (eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 1317–1327, Austin, Texas, November 2016. Association for
Computational Linguistics. doi: 10.18653/v1/D16-1139. URL https://aclanthology.
org/D16-1139.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathemati-
cal statistics, 22(1):79–86, 1951.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Chenglin Li, Qianglong Chen, Liangyue Li, Caiyu Wang, Yicheng Li, Zulong Chen, and Yin Zhang.
Mixed Distillation Helps Smaller Language Model Better Reasoning, February 2024. URL
http://arxiv.org/abs/2312.10730. arXiv:2312.10730 [cs].

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya, Li Zhang, Yanai Elazar, Niket Tandon, Marianna
Apidianaki, Mrinmaya Sachan, and Chris Callison-Burch. Calibrating large language models with
sample consistency. arXiv preprint arXiv:2402.13904, 2024.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Sev-
eryn. Teaching small language models to reason. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1773–1781, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-short.151. URL
https://aclanthology.org/2023.acl-short.151.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
English math word problem solvers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 975–984, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.acl-main.92. URL https://aclanthology.org/2020.acl-main.92.

Ratna Narayan, Cynthia Rodriguez, Juan Araujo, Ali Shaqlaih, and Glenda Moss. Construc-
tivism—constructivist learning theory. IAP Information Age Publishing, 2013.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
168. URL https://aclanthology.org/2021.naacl-main.168.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1):88–97, 1991.

Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye Teh
and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 661–668,
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL https://proceedings.
mlr.press/v9/ross10a.html.

12

https://huggingface.co/blog/smollm
https://huggingface.co/blog/smollm
https://aclanthology.org/D16-1139
https://aclanthology.org/D16-1139
http://arxiv.org/abs/2312.10730
https://aclanthology.org/2023.acl-short.151
https://aclanthology.org/2020.acl-main.92
https://aclanthology.org/2021.naacl-main.168
https://proceedings.mlr.press/v9/ross10a.html
https://proceedings.mlr.press/v9/ross10a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady, Tanmay Sinha, Manu Kapur, and Mrinmaya
Sachan. Automatic generation of socratic subquestions for teaching math word problems. In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 4136–4149, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.277. URL https://aclanthology.org/2022.emnlp-main.277.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.),
Findings of the Association for Computational Linguistics: ACL 2023, pp. 7059–7073, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.
441. URL https://aclanthology.org/2023.findings-acl.441.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama, Eiichiro Sumita, and Tiejun Zhao. Self-
Training for Unsupervised Neural Machine Translation in Unbalanced Training Data Scenarios,
2020. URL https://arxiv.org/abs/2004.04507. Version Number: 2.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Unslothai. Unsloth. https://github.com/unslothai/unsloth, 2023. URL https:
//github.com/unslothai/unsloth. GitHub repository.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yige Xu, Xipeng Qiu, Ligao Zhou, and Xuanjing Huang. Improving BERT Fine-Tuning via Self-
Ensemble and Self-Distillation, 2020. URL https://arxiv.org/abs/2002.10345. Ver-
sion Number: 1.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=WZH7099tgfM.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. Improving small language models’
mathematical reasoning via mix thoughts distillation. arXiv preprint arXiv:2401.11864, 2024.

13

https://aclanthology.org/2022.emnlp-main.277
https://aclanthology.org/2023.findings-acl.441
https://arxiv.org/abs/2004.04507
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://github.com/unslothai/unsloth
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2002.10345
https://openreview.net/forum?id=WZH7099tgfM

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Below is an instruction that describes a task, paired with an input that provides further context. Write a response
that appropriately completes the request.

Instruction: Solve the given math problem step by step. Put your final answer after ’Final answer:’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: The shirts cost 3*$20=$<<3*20=60>>60 before tax The tax cost $60*.1=$<<60*.1=6 6
So in total they paid $60+$6=$<<60+6=66 66 Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for
a month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 8: 8-shot Chain of Thought demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response
that appropriately completes the request.

Instruction: Solve the given math problem by decomposing it into smaller, manageable sub-questions.
Put your final answer after ’Final answer: ’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: Sub-question 1: How much did John spend on shirts?
Answer to Sub-question 1: 3*$20=$<<3*20=60>>60
Sub-question 2: How much did John spend on tax?
Answer to Sub-question 2: $60*.1=$¡¡60*.1=6¿¿6
Sub-question 3: How much did John spend in total?
Answer to Sub-question 3: $60+$6=$<<60+6=66>>66
Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for
a month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 9: 8-shot Least to Most demonstration.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Below is an instruction that describes a task, paired with an input that provides further context. Write a response
that appropriately completes the request.

Instruction: Solve the given math problem by writing a python program. Store your result as a vari-
able named ’answer’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything.
How much did he pay in total?

Response: total shirts = 3
cost of one shirt = 20
total cost shirts = total shirts * cost of one shirt
tax rate = 0.1
tax amount = tax rate * total cost shirts
total cost = total cost shirts + tax amount
answer = total cost <eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for
a month (30 days). If he continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 10: 8-shot Program of Thought demonstration.

Question In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining enrolled
in jazz dance, and the rest enrolled in hip-hop dance. What percentage of the entire students enrolled in hip-hop
dance?
Baseline
total students = 20
percentage enrolled contemporary = 0.2
students enrolled contemporary = total students ∗ percentage enrolled contemporary
remaining students = total students − students enrolled contemporary
percentage enrolled jazz = 0.25
students enrolled jazz = remaining students ∗ percentage enrolled jazz
remaining students = remaining students - students enrolled jazz
percentage enrolled hip hop = 1 − percentage enrolled contemporary − percentage enrolled jazz
answer = percentage enrolled hip hop
Final Answer: 0.55 ✗

Iteration1
total students = 20
contemporary students = total students ∗ 0.2
remaining students = total students − contemporary students
jazz students = remaining students ∗ 0.25
hip hop students = remaining students − jazz students
percentage hip hop = hip hop students/total students ∗ 100
answer = percentage hip hop
Final Answer: 60 ✓

Figure 11: Over iteration, Gemma 2B model learnt to fix its mistake using the same strategy

15

	Introduction
	Preliminaries: LLM based Distillation
	LLM based Distillation

	SIKeD: Self-guided Iterative Knowledge Distillation
	Iterative Self-Training of SIKeD

	Experimental Details
	Results and Discussion
	Related Work
	Conclusion
	Appendix

