LLM Prompting for Text2SQL via Gradual SQL Refinement

Anonymous ACL submission

Abstract

Recent studies have shown that prompting large
language models (LLMs) for Text2SQL can
achieve promising performance. However, the
task still remains very challenging due to the
difficulty of aligning complex natural language
semantics with database schema. In this pa-
per, we present a novel prompting approach
for Text2SQL via Gradual SQL Refinement
(GSR). It consists of three sequential prompt-
ing steps: 1) Clause Decomposition, which
breaks down a complex natural language ques-
tion into simpler clauses to facilitate natural
language interpretation; 2) SQL-driven Schema
Linking, which improves schema linking by
targeted schema information retrieval based on
the preliminary SQL generated in the first step;
3) SQL Execution Refinement, which further
refines the SQL generated in the second step
based on the results of SQL execution. GSR
is a gradual prompting approach in that it be-
gins with only one SQL and then gradually
refines the SQL based on SQL analysis and
execution at each of the following steps. We
have validated the efficacy of GSR by an em-
pirical study on the benchmark datasets. Our
experiments show that its execution accuracy
on BIRD and Spider are 69.26% and 87.7%
respectively when using GPT-4o0. With only a
few prompts, GSR is ranked 11th on the BIRD
benchmark, considerably outperforming the ex-
isting single-candidate alternatives. Its perfor-
mance is even highly competitive compared
with the existing approaches based on model
fine-tuning or multiple-candidate generation,
which requires considerably more prompts and
token consumption.

1 Introduction

The goal of Text2SQL is to translate natu-
ral language questions into corresponding SQL
queries (Deng et al., 2021). It enables users to
interact with databases using simple natural lan-
guage queries without requiring any knowledge of
SQL, thus lowering the barrier for non-technical

users to access relational databases. However, in-
herent differences between natural language and
SQL usually make this task particularly challeng-
ing. Natural language tends to be ambiguous, with
context-dependent semantic information, whereas
SQL queries must be syntactically precise and
aligned with database schema, specifically the ta-
bles, columns, values and relationships involved.
Therefore, generating correct SQL queries not only
requires understanding a user’s intent but also en-
suring that the generated SQL aligns with the un-
derlying database schema.

In recent years, leveraging the powerful under-
standing and generation capabilities of large lan-
guage models (LLMs) (Achiam et al., 2023) has
become a key approach to improve Text2SQL per-
formance (Rajkumar et al.), with prompt engi-
neering emerging as a mainstream technical strat-
egy (Nan et al.). Some studies aimed to enhance
the reasoning ability of LLMs by incorporating
various contextual learning techniques, such as
chain-of-thought prompts (Tai et al.; Wei et al.),
question decomposition (Eyal et al., 2023; Pour-
reza and Rafiei, 2024, 2023; Wang et al., 2024),
and self-consistency (Gao et al., 2023; Sun et al.,
2024). Other studies instead focused on schema
linking (Dong et al., 2023; Wang et al., 2024,
2020a; Talaei et al., 2024; Lee et al., 2024), which
aimed to improve performance by providing LLM
models with more specific database schema. How-
ever, generally speaking, Text2SQL still remains
very challenging due to the difficulty of accurately
aligning natural language semantics with database
schema.

In this paper, we introduce a novel LLM prompt-
ing approach for Text2SQL, named as Gradual SQL
Refinement (GSR), which can gradually refine a
SQL by a sequence of targeted prompts. Supposed
to perform Text2SQL with only a few prompts, it
consists of the following three sequential prompt-
ing steps:

/@ Clause Decomposition\

 SQL-driven Schema Linking

K@ SQL Execution Reﬁnemeh

/Pre-SQL Attributes & Values\ Schema Miningws \
q q Second-SQL Refinement
Clauses Decompositon / Extraction Pre-SQL Masking Q
Pre-SQL -Masked)- |
Pre-SQL —)@—) Attributes Full ' Pre SQL : Second-SQL
Question —»! Logic Clauses Schema Attributes |
2 0 <
%y—\% Refinement Extr::tcnr Question =’
. [" [Query Results or
Pre-SQL Generation 11 —l/ Error Message
S Potentiall Questi
otentially uestion
Question \\Attrlbutes E5 VIS No Ermy Relevant Schema
. Second-SQL
Logic Clauses
»@—» Pre-SQL
Pre-SQL Refinement
Full Schema Question
@5—> Second-SQL
\ Final-SQL

N PANE

L //

Figure 1: The Gradual SQL Refinement (GSR) framework for Text2SQL: 1) the 1st step decomposes a natural
language question into multiple simpler clauses, and leverages them as well as the original question to generate a
preliminary SQL (Pre-SQL); 2) the 2nd step performs SQL-driven schema linking to identify and correct schema
misalignment errors in the Pre-SQL, resulting in Second-SQL; 3) the 3rd step further refines the Second-SQL based
on its execution results and generates the final SQL (Final-SQL).

1. Clause Decomposition: it translates a com-
plex natural language question into a sequence
of simpler clauses with equivalent semantic
meaning; by prompting LLMs with these sim-
pler clauses as well as the original question,
GSR can effectively improve the accuracy of
natural language interpretation;

2. SQL-driven Schema Linking: it performs
schema linking by targeted schema informa-
tion retrieval based on the preliminary SQL
generated by the first step (Pre-SQL). Instead
of providing LL.Ms with blanket database
schema information, it only provides some
sample values of attributes present in the pre-
liminary SQL and other potentially useful
schema information missing in Pre-SQL. By
feeding these SQL-tailored schema informa-
tion as well as the original question to LLMs,
GSR can more precisely identify and correct
schema misalignment errors in the Pre-SQL;

3. SQL Execution Refinement: it further re-
fines the SQL generated by the second step
(Second-SQL) based on its execution results.
Specifically, GSR executes the Second-SQL
on the database to obtain the query results or
execution error information, which are then
leveraged to assess the validity of the Second-
SQL and its alignment with the original natu-
ral language question.

We have sketched the framework of GSR in Fig-
ure 1. As far as we know, even though there already
exist many prompting approaches for Text2SQL,
the proposed GSR is the first gradual SQL-driven
approach in that it begins with only one SQL, and
then gradually refines the SQL based on SQL anal-
ysis and execution at each of the following steps. It
is noteworthy that unlike the existing approaches
of question-driven schema linking (Wang et al.,
2020a; Dong et al., 2023; Pourreza and Rafiei,
2023; Talaei et al., 2024; Lee et al., 2024), which
provide instructions based on a given question to
identify relevant schema information, the proposed
schema linking of GSR is SQL-driven in that it ex-
tracts potentially useful schema information based
on a SQL as well as the original question and lever-
ages them for schema alignment. As a crucial step
in the iterative process of SQL refinement, SQL-
driven schema linking can more precisely detect
and correct schema misalignment errors present
in a SQL. On the other hand, the existing tech-
nique of question decomposition usually decom-
poses a question into multiple sub-questions and
then invokes LLMs to construct sub-SQLs for sub-
questions, which are finally fused to generate the
final SQL (Wang et al., 2024). In contrast, the
purpose of clause decomposition in GSR is not
to generate sub-SQLs, but to provide simple yet
effective instructions for Text2SQL translation.

The major contributions of our work can be sum-

marized as follows:

* We propose a novel gradual SQL-driven
prompting approach of GSR for Text2SQL,
which begins with a preliminary SQL, and
then iteratively performs schema refinement
by targeted SQL analysis and execution;

* We present the specific techniques of clause
decomposition, SQL-driven schema linking
and SQL execution refinement to enable the
implementation of GSR;

* We empirically validate the efficacy of the pro-
posed GSR. Our experiments show that GSR
achieves the execution accuracy of 69.26%
and 87.7% on the BIRD and Spider bench-
marks respectively when using GPT-40. With
only a few prompts, GSR is ranked 11th on the
BIRD benchmark, considerably outperform-
ing the existing single-candidate approaches.
Its performance is even highly competitive
compared with the existing approaches based
on model fine-tuning or multi-candidate gen-
eration, which requires considerably more
prompts and token consumption.

2 Related Work

Early rule-based (Thompson and Thompson, 1983;
Tang and Mooney, 2001) and template-based (Zelle
and Mooney, 1996; Wang et al., 2011) approaches
for Text2SQL were highly domain-specific and
heavily dependent on handcrafted rules, making
them unsuitable for complex queries or diverse
databases. With the widespread adoption of deep
learning (Vaswani et al., 2017), the research in
Text2SQL has undergone significant transforma-
tions, enabling end-to-end learning and enhanced
contextual understanding (Sutskever et al., 2014).
Early neural network-based methods, such as
SQLNet (Xu et al., 2017) and Seq2SQL (Zhong
etal., 2017), framed SQL generation as a sequence-
to-sequence (Seq2Seq) learning problem. These
models laid the foundation for neural approaches
but struggled to incorporate schema-specific
information while handling complex queries.
Schema-aware models addressed this limitation
by explicitly modeling the relationships between
queries and database schema elements (Yu et al.,
2018a; Guo et al., 2019). The transformer
architecture significantly enhanced the capabilities
of Text2SQL systems by capturing complex

relationships between schema elements and natural
language queries, e.g., RAT-SQL (Wang et al.,
2020b), TS5 (Raffel et al., 2023), BART (Lewis
et al., 2019) and PICARD (Scholak et al., 2021).
While these models achieved remarkable results,
they also faced challenges, such as noise from large
schema and inefficiencies in handling complex
multi-table queries, highlighting the need for
further optimization.

With the emergence of LLMs, an increasing
number of studies have explored their potential for
Text2SQL. Some studies introduced various chain-
of-thought prompt strategies to improve SQL gener-
ation performance, such as ACT-SQL (Zhang et al.,
2023), COE-SQL (Zhang et al., 2024) and TA-
SQL (Quetal., 2024). In contrast, DTS-SQL (Pour-
reza and Rafiei, 2024), DEA-SQL (Xie et al., 2024)
and DIN-SQL (Pourreza and Rafiei, 2023) used
the strategy of task decomposition strategy to im-
prove prompting accuracy. Some other studies, e.g.,
MAC-SQL (Wang et al., 2024), leveraged both
of the above strategies for Text2SQL. It is also
noteworthy that while some studies, e.g., DAIL-
SQL (Gao et al., 2023) and PET-SQL (Li et al.,
2024c) focused on optimizing prompt design, oth-
ers, e.g., Codes (Li et al., 2024b) and SuperSQL (Li
et al., 2024a), instead focused on improving SQL
generation by fine-tuning a pre-trained model.

There are also some work specifically focused
on schema linking. For instance, C3-SQL (Dong
et al., 2023) exploited zero-shot prompts of self-
consistency for schema linking. MCS-SQL (Lee
et al., 2024) leveraged zero-shot chain-of-thought
reasoning and schema order shuffling for table and
column selection. E-SQL (Caferoglu and Ozgiir
Ulusoy, 2025) aimed to improve schema linking
through question enrichment. RSL-SQL (Cao et al.,
2024) used bidirectional schema linking to mitigate
risks of incomplete recall and noise. CHESS (Ta-
laei et al., 2024), on the other hand, presented a
context-based schema selection method. It is note-
worthy that these existing approaches of schema
linking are mainly question-driven, analyzing natu-
ral language questions to filter schema information.
In contrast, the proposed schema linking in GSR
is SQL-driven, analyzing SQL to retrieve relevant
schema information.

More recently, some studies have employed the
Multi-Candidate Strategy (MCS) to improve SQL
generation accuracy. For instance, MCS-SQL (Lee

et al., 2024) generates multiple SQL candidates
using diverse prompts and filters them based on
confidence scores. It uses a separate LLM to select
the final SQL. CHESS (Talaei et al., 2024) simi-
larly generates multiple SQL candidates through a
multi-agent framework, and refines them iteratively
with an LLM if execution errors occur. It requires
a Unit Tester agent to evaluates candidates and se-
lects the highest-scoring SQL. CHASE-SQL (Pour-
reza et al., 2024) also introduced a multi-path rea-
soning framework to generate multiple SQL can-
didates. It selects the best SQL through pairwise
comparisons with a fine-tuned binary-candidates
selection LLM. XiYan-SQL (Li et al., 2023) em-
ployed a multi-generator ensemble strategy to en-
hance candidate generation. It combines prompt
engineering and the SFT method to enhance SQL
quality and diversity. These studies have shown
that the multi-candidate strategy can effectively
enhance execution accuracy. However, this strat-
egy usually requires considerably more prompts,
thus significantly increasing token consumption.
In comparison, the proposed GSR generates only
one candidate SQL and requires much less token
consumption.

3 Methodology

In this section, we detail the technical solutions
for the three essential steps of GSR, i.e., clause
decomposition, SQL-driven schema linking and
SQL execution refinement.

3.1 Clause Decomposition

To enhance question interpretation, GSR adopts a
new prompting strategy called “Clause Decompo-
sition”. It breaks down a natural language question
into multiple simpler logical units, which if fused,
would have the same semantic meaning with the
original question. By segmenting a question into
more manageable parts, clause decomposition can
effectively simplify relationship between descrip-
tive terms and their corresponding entities, thus
enabling more precise natural language interpreta-
tion. It is noteworthy that clause decomposition is
supposed to be automatically performed by LLMs.
An illustrative example of clause decomposition is
shown in Figure 2.

Then, GSR feeds the resulting clauses as well as
the original question and the full database schema
to a LLM, and generates a corresponding SQL
query, which is referred to as the preliminary SQL

(Pre-SQL). The generated Pre-SQL usually con-
tain errors, particularly in involved attributes and
selection conditions, which need to be refined in
the following steps.

=
Sentence: "What is the average amount of loan
which are still on running contract with statement

issuance after each transaction?"

Break the above sentence into simpler sentences
based on their logical structure, and list them point
by point in numerical order. Return only the

simplified sentences in the specified numerical order.

1. What is the average amount of loan?
2. The loans are still on running contract.
3. The loans have statement issuance after each

transaction.

Figure 2: An illustrative example prompt for clause
decomposition.

3.2 SQL-driven Schema Linking

Without access to actual data in a database, the Pre-
SQL usually contains errors involving attributes
and selection conditions. This necessitates schema
linking. Due to the large number of columns in a
database, feeding LLLMs with all the schema infor-
mation would result in excessively long input con-
texts, potentially filled with a significant amount of
irrelevant and redundant information, which may
reduce SQL accuracy as well as increasing token
cost.

To overcome this limitation, GSR adopts a SQL-
driven schema linking strategy that leverages the
Pre-SQL as well as the original natural language
question to retrieve relevant schema information.
Specifically, the process of SQL-driven schema
linking is composed of two stages: 1) Pre-SQL
attributes & values extraction, which retrieves the
attribute and value information present in the Pre-
SQL; 2) schema mining with Pre-SQL masking,
which retrieves additional schema information po-
tentially relevant to the natural language question
by missing in the Pre-SQL.

Pre-SQL Schema Extraction: in the first stage,
GSR extracts the tables and their columns involved
in the Pre-SQL, and then constructs an individual
query statement for each table and column combi-
nation to retrieve actual attribute values from the
database. This process ensures that the extracted
data reflect the real contents of the database, provid-
ing a precise reference for subsequent refinement
on Pre-SQL.

Specifically, GSR constructs a SQL value con-
dition checker to determine whether a column in
the Pre-SQL is involved in value condition, and
uses it to optimize value retrieval. If a column is
involved in value conditions, GSR extracts its con-
dition value, and retrieves the top-five values with
the highest similarities to the condition value as
value samples of this column. Otherwise, if a col-
umn is not involved in any value condition, GSR
randomly retrieves three distinct values as value
samples.

Please help me check and correct the Pre-SQL query
based on the Input, Value Examples, etc.
#it#H#Pre-SQL:

SELECT AVG(l.amount) FROM loan 1 JOIN trans t
ON Laccount_id = t.account_id WHERE L.status IN
('C','D') AND t.k_symbol = 'POPLATEK PO
OBRATU';

Correcting the SQL:

The condition ‘t.k_symbol = 'POPLATEK PO
OBRATU" is incorrect because 'POPLATEK PO
OBRATU!' is not a valid value for ‘k_symbol".
Instead, we should join with the ‘account’ table and
use the ‘frequency’ column to filter for 'POPLATEK
PO OBRATU'.

Final SQL:

SELECT AVG(l.amount) FROM loan 1 JOIN trans t
ON Laccount_id = t.account_id JOIN account a ON
lLaccount_id = a.account_id WHERE L.status IN ('C',
'D') AND a.frequency = 'POPLATEK PO
OBRATU";

Figure 3: An illustrative example prompt for SQL-
driven schema linking.

It is noteworthy that a Pre-SQL may contain
some column names not existing in the given
database schema. As a result, the execution of
value retrieval may receive error information from
a database. In this case, GSR would feed the error
message as well as the Pre-SQL to a LLM and ask
it for column correction. The column correction
would be repeatedly invoked until no error informa-
tion is returned. However, to ensure the efficiency
of value retrieval, GSR limits the maximum itera-
tions of column correction at 3.

Schema Mining with Pre-SQL Masking: the sec-
ond stage aims to mine tables and columns poten-
tially relevant to the original query, but not present
yet in the Pre-SQL, thereby constructing a schema
that is comprehensive but not redundant. Towards
this aim, GSR first masks the tables and columns
involved in the Pre-SQL within the full database
schema, resulting in a masked schema denoted as
Schema,,, and then asks a LLM to select the ta-

bles and columns within Schema,, that are poten-
tially relevant to the original natural language query.
We denote the schema obtained after schema min-
ing with Pre-SQL masking as Schema,, which
represents a subset of potentially relevant schema
not present yet in the Pre-SQL.

Prompt Instruction for SQL-driven Schema
Linking: after the two stages, GSR obtains not
only Pre-SQL’s tables, columns and their sample
values, but a small set of potentially relevant tables
and columns information not present yet in the Pre-
SQL. Then, GSR feeds the retrieved schema infor-
mation as well as the original query and Pre-SQL
to a LLM and instructs it to refine the Pre-SQL,
resulting in a new SQL (Second-SQL). An illustra-
tive example of instruction prompt for SQL-driven
schema linking is shown in Figure 3.

3.3 SQL Execution Refinement

The Second-SQL may still contain some minor
errors, e.g., incorrect values in the condition part
and the misguided use of keywords, both of which
would result in the SQL query returning an empty
result. The typical errors in the Second-SQL in-
clude: 1) the case sensitivity of the condition val-
ues; 2) incorrect data types involved in arithmetic
operations; 3) misused SQL keywords, e.g., dis-
tinct, group by, and order by.

- ###Input:

How many users are awarded with more than 5 badges?
###Second-SQL:
SELECT COUNT(DISTINCT Userld) FROM badges GROUP
BY Userld HAVING COUNT(Name) > 5;
The result of the above sql execution is as follows:
[(1,), (1,), (1,), (1,), (1,)] (There are 2875 records in total, only
5 are shown here.)
Please analyze whether the given SQL query meets the
following requirements and whether its execution result is

reasonable.

Correcting the SQL:

To correct the SQL, we need to adjust it so that it counts
the number of users with more than 5 badges without
grouping by "Userld" at the final level. We should
encapsulate the existing query as a subquery to count the
number of users that meet the condition.

Final SQL:

SELECT COUNT(*) FROM (SELECT Userld FROM
badges GROUP BY Userld HAVING COUNT(Name) > 5)
AS subquery;

Figure 4: An illustrative example prompt for SQL exe-
cution refinement.

Therefore, in the final step, GSR executes the
Second-SQL and then leverages the returned results
to detect and correct the potential misalignment
between the SQL query results and the expected

output of the original question. Specifically, GSR
instructs the large model to refine the Second-SQL
by Requirement Check (RC) and Result Reason-
ableness Check (RRC). The RC focuses on having
the model check if the conditions and the use of
values in the Second-SQL align with the question’s
requirements, while the RRC is supposed to exam-
ine issues such as case sensitivity or data types in
arithmetic operations. Due to the context length
limitation of LLMs, only a portion of the execution
results from the Second-SQL, along with the total
record count of the query, will be provided as input.
The SQL obtained after execution refinement from
the Second-SQL is the Final-SQL. An illustrative
example of instruction prompt for SQL execution
refinement is shown in Figure 4.

4 Empirical Study
4.1 Experimental Setting

Datasets: we conduct our experiments on the
benchmark datasets of BIRD (Li et al., 2023) and
Spider (Yu et al., 2018b). The Spider dataset is
a large-scale, cross-domain Text-to-SQL task. Its
primary challenge lies in accurately selecting the
correct columns from multiple tables within a given
database schema, as well as effectively managing
the join relationships between these tables. The
Spider is a valuable resource for evaluating the gen-
eralization capabilities of LLM models. On the
Spider dataset, the training, development, and test
sets include 146, 20, and 40 databases respectively;
they contain 8659, 1034, and 2147 examples re-
spectively. In comparison, the BIRD’s primary
challenge lies in handling both database values
and external knowledge, requiring LLM models
to effectively integrate external information with
the database content. Furthermore, the BIRD em-
phasizes the efficiency of SQL query generation.
These characteristics make the BIRD notably more
complex than the Spider. The training, develop-
ment, and test sets of Spider include 9428, 1534,
and 1789 examples and 69, 11, and 15 databases
respectively.

Implementation: we have employed the latest pro-
prietary model, GPT-4o0, as the backbone of our ex-
periments. We set the temperature of GPT-40 to 0.2.
Additionally, we used the text-embedding-3-small
model to perform vector encoding of database val-
ues.

Evaluation Metrics: we evaluate model perfor-
mance using the metrics of Execution Accuracy

(EX), Reward-based Valid Efficiency Score (R-
VES) and Soft F1-score, as defined by the BIRD
benchmark. Specifically, EX measures the correct-
ness of the predicted SQL queries by comparing
their execution results with those of the ground-
truth SQLs. R-VES is an adjusted version of the
previously proposed Valid Efficiency Score (VES).
R-VES is used to evaluate the efficiency of valid
SQL queries generated by the model. It not only
considers whether the generated SQL query returns
the correct results but also takes into account the
resource consumption and execution time during
query execution. The soft F1 score provides a more
flexible evaluation by reducing the impact of minor
discrepancies in the table output, such as column re-
ordering or missing values. Since our experiments
are conducted on the commercial LLM of GPT-
40 and its performance is very stable, the reported
results are single-run, which is also the default prac-
tice in most existing work.

4.2 Evaluation Results

We have compared GSR with 16 existing alterna-
tives, and presented the comparative results in Ta-
ble 1. It is noteworthy that some of the compared al-
ternatives require either Multi-Candidate Strategy
(MCS) or Model Fine-Tuning (MFT), while the
proposed GSR requires neither of them. It can
be observed that using the GPT-40 model, GSR
achieves the execution accuracy of 69.26% on the
test set of BIRD, ranked 11th on the BIRD leader-
board. It performs considerably better than the ex-
isting alternatives requiring neither MCS and MFT,
and even outperforms some alternatives leverag-
ing either MCS or MFT, e.g., MCS-SQL and E-
SQL. We have also reported the performance of
the existing approaches ranked higher than GSR
on the BIRD leaderboard and having technical re-
ports or project links. It can be observed that all
of them require MCS or MFT; the majority of
them even leverage both. By gradually refining
a single SQL, GSR can achieve competitive per-
formance with much less prompts and token con-
sumption. For instance, GSR requires averagely
only 7 LLM calls, while CHESS, to achieve good
performance, typically needs to generate up to 20
candidate SQL queries and invoke at least 30 LLM
calls, which require considerably more token con-
sumption. CHASE-SQL similarly uses three differ-
ent methods to generate totally 21 SQL candidate
queries, which requires at least 21 LLM calls, not

Method MCS MEFT Model Date R-VES devEX test EX
DIN-SQL No No GPT-4 Sep 2023 53.07 50.72 55.90
DAIL-SQL No No GPT-4 Sep 2023 54.02 54.76 57.41
MAC-SQL No No GPT-3.5 Dec 2023 - 50.56 55.90
MAC-SQL No No GPT-4 Dec 2023 57.60 57.56 59.59
DTS-SQL No Yes DeepSeek-7B Feb 2024 - 55.80 60.31
Codes No Yes Codes-15B Feb 2024 56.73 58.47 60.37
MCS-SQL Yes No GPT-4 May 2024 61.23 63.36 65.45
TA-SQL No No GPT-4 May 2024 - 56.19 59.14
SuperSQL No No GPT-4 Jul 2024 - 58.50 62.66
E-SQL Yes No GPT-40-mini ~ Sep 2024 55.64 61.60 59.81
E-SQL Yes No GPT-40 Sep 2024 62.43 65.58 66.29
RSL-SQL Yes No DeepSeek Oct 2024 - 63.56 65.51
GSR(ours) No No GPT-40 Jan 2025 64.41 66.88 69.26
CHESS Yes No Proprietary Nov 2024 66.53 68.31 71.10
Distillery No Yes GPT-40 Jul 2024 67.41 67.21 71.83
CHASE-SQL Yes Yes Gemini Nov 2024 66.53 74.46 74.79
XiYan-SQL Yes Yes GPT-40 Dec 2024 66.53 73.34 75.63

Table 1: Comparison of execution accuracy and reward-based valid efficiency score on the BIRD benchmark: 1)
the column of MCS denotes whether it uses the Multi-Candidate Strategy, and the column of MFT denotes whether
it requires Model Fine-Tuning (for the MCS approach, it would be marked as MFT if it fine-tunes a SQL selection
model; 2) we highlight the results of GSR and the existing approaches ranked higher than GSR on the BIRD test;
those ranked higher than GSR require either multi-candidate strategy or model fine-tuning.

the mention the cost of fine-tuning SQL selection
model. XiYan-SQL instead fine-tunes 4 SQL gener-
ation models and 1 SQL selection model, invoking
considerable model fine-tuning cost.

Complexity Level EX Soft F1
Simple 7713 78.24
Moderate 65.77 67.56
Challenging 49.82 5227
Overall 69.26 70.79

Table 2: The evaluation results on the BIRD using GPT-
40 across query complexity levels.

In Table 2, we have also presented a detailed per-
formance breakdown across different query com-
plexity levels on the BIRD test set. It demonstrates
that GSR can generate correct SQLs for the ma-
jority of simple and moderate queries. Although
its execution accuracy for challenging queries is
only 49.82%, its overall execution accuracy re-
mains relatively stable. Without relying on multi-
candidate SQL generation or model fine-tuning,
GSR achieves outstanding results with lower com-
putational overhead by gradually refining the gen-
erated SQL.

We have also conducted experiments on the Spi-

der test set to evaluate the generalization capability
of the proposed GSR approach. The detailed com-
parative results have been presented in Table 3.

Method Model Date EX
DIN-SQL GPT-4 Sep 2023 85.3
DAIL-SQL GPT-4 Sep 2023 86.6
MAC-SQL GPT-3.5 Dec 2023 755
MAC-SQL GPT-4 Dec 2023 82.8
DTS-SQL DeepSeek-7B Feb 2024 84.4
DEA-SQL GPT-4 Feb 2024 87.1
TA-SQL GPT-4 May 2024 85.0
PET-SQL GPT-4 Jun 2024 87.6
MSC-SQL Gemma-2-9B Oct 2024 84.7
RSL-SQL DeepSeek Oct 2024 87.5
CHASE-SQL Gemini Nov 2024 87.6
GSR(ours) GPT-40 Jan 2025 87.7
MCS-SQL GPT-4 May 2024 89.6
RSL-SQL GPT-40 Oct 2024 87.9
CHESS Proprietary Nov 2024 87.2
XiYan-SQL GPT-4o Dec 2024 89.6

Table 3: The evaluation results in terms of execution
accuracy on the Spider test set.

GSR achieves the execution accuracy of 87.7%
on the Spider test set, outperforming most of the ex-
isting approaches. It is noteworthy that all the three
approaches, which perform better than GSR, i.e.,

Method Simple Moderate Challenging Overall
GSR 72.86 58.62 55.17 66.88
w/o Clause Decomposition 72.86 57.76 53.79 66.49 0 39
w/o SQL-driven Schema Linking 70.05 53.23 53.10 63.36)3 5>
w/o Execution Refinement 71.03 55.82 48.97 64.34 554

Table 4: The evaluation results of ablation study on the BIRD Dev set.

MCS-SQL, RSL-SQL and XiYan-SQL, requires ei-
ther multi-candidate strategy or model fine-tuning.
These results validate the efficacy and strong gen-
eralization capability of the GSR.

4.3 Ablation Study

To evaluate the efficacy of each component in the
proposed GSR framework, we have conducted an
ablation study by systematically removing indi-
vidual components and measuring the incremental
impact of each component in terms of execution
accuracy. The evaluation results on the BIRD de-
velopment set are presented in Table 4 and Table 5,
where Table 4 reports the experimental results of
ablated GSR after removing each individual com-
ponent and Table 5 illustrates the impact of each
component as they are incrementally incorporated
into the solution.

Step EX
baseline 59.26
+Clause Decomposition 60.76+1 50
+SQL-driven Schema Linking 64.3443 53
+Execution Refinement 66.8812.54

Table 5: The evaluation results of incremental contri-
bution in terms of execution accuracy on the BIRD Dev
set.

From Table 4, we can observe that without clause
decomposition, the performance of GSR remains
stable on the simple queries, but drops by 0.86%
and 1.38% on the moderate and challenging queries
respectively. It clearly demonstrates the efficacy
of clause decomposition on complex queries. In
contrast, without SQL-driven schema linking, the
performance of GSR drops on all the three query
categories, with the respective margins of 2.81%,
5.39% and 2.07% on the simple, moderate and chal-
lenging queries. It demonstrates the challenge of
schema linking even on the simple queries and the
efficacy of the proposed SQL-driven approach. The

results w.r.t SQL execution refinement are similar.
Without the final execution refinement, the perfor-
mance of GSR consistently drops on all the three
query categories.

The incremental evaluation results, as shown in
Table 5, also demonstrate that each of the three
components can effectively improve the perfor-
mance of GSR, by the incremental margins of
1.50%, 3.58% and 2.54% respectively. It is note-
worthy that SQL-driven schema linking achieves
the biggest performance boost, illustrating the cen-
tral role schema linking plays in Text2SQL.

In summary, our ablation study demonstrates
that SQL-driven Schema Linking contributes the
most to execution accuracy, playing a critical role
in ensuring precise table and column mappings. Ex-
ecution Refinement, particularly valuable for com-
plex queries, can effectively improve SQL correct-
ness by addressing execution issues such as value
mismatches and syntax errors. Clause Decom-
position can also provides additional benefits to
complex query interpretation. By integrating these
three components, the proposed GSR achieves high
execution accuracy while minimizing token con-
sumption.

5 Conclusion

In this paper, we propose a novel gradual prompt-
ing approach of GSR for Text2SQL, which be-
gins with a preliminary SQL and then iteratively
refines it based on SQL analysis and execution.
We have presented corresponding techniques for
clause decomposition, SQL-driven schema linking
and SQL execution refinement to enable the im-
plementation of GSR. Our empirical study on two
benchmark datasets have also demonstrated that
with only a few prompts , GSR outperforms the
existing single-candidate alternatives. Its perfor-
mance is even highly competitive compared with
the existing approaches based on model fine-tuning
or multiple-candidate strategy, which require con-
siderably more prompts and token consumption.

Limitations

Our work has the several limitations, which may
inspire future research:

* The performance of the proposed GSR is to
a large extent dependent on the quality of the
preliminary SQL generated in the first step.
Even though the proposed clause decomposi-
tion can to some extent enhance natural lan-
guage interpretation for complex queries, the
generation of the preliminary SQL may be
worthy of further investigation;

¢ QOur current work focus on SQL refinement,
but not on multi-candidate SQL generation
and selection. Even though the proposed tech-
niques, e.g. SQL-driven schema linking, can
be straightforwardly incorporated in the exist-
ing MCS solution, a systematic MCS solution
based on GSR needs to be further investigated
in future work;

* Our current work doesn’t investigate model
fine-tuning, which may be necessary consid-
ering the challenge of Text2SQL and the ex-
isting performance gap between LLMs and
human beings. However, the general idea of
iterative SQL-driven refinement may inspire
new fine-tuning strategies for Text2SQL.

Ethics Statement

The datasets and models utilized in this paper, and
the implementation of the code and the resulting
models, are not associated with any ethical con-
cerns.

References

OpenAl:Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencial.eoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, HyungWon Chung, Dave
Cummings, and Jeremiah Currier. 2023. Gpt-4 tech-
nical report.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2025. E-sql:
Direct schema linking via question enrichment in
text-to-sql. Preprint, arXiv:2409.16751.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-
sql: Robust schema linking in text-to-sql generation.
Preprint, arXiv:2411.00073.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-grounded pretraining
for text-to-sql. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang
Lou. 2023. C3: Zero-shot text-to-sql with chatgpt.
Preprint, arXiv:2307.07306.

Ben Eyal, Amir Bachar, Ophir Haroche, Moran Mahabi,
and Michael Elhadad. 2023. Semantic decomposi-
tion of question and sql for text-to-sql parsing.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language models: A
benchmark evaluation. Preprint, arXiv:2308.15363.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. Preprint,
arXiv:1905.08205.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. Preprint, arXiv:2405.07467.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
Preprint, arXiv:1910.13461.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural language
to sql: Are we fully ready? Proceedings of the VLDB
Endowment, 17(11):3318-3331.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. Codes: Towards
building open-source language models for text-to-sql.
Preprint, arXiv:2402.16347.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023. Can llm
already serve as a database interface? a big bench for

https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://arxiv.org/abs/2411.00073
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://arxiv.org/abs/2307.07306
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/2308.15363
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/1905.08205
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/2405.07467
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://doi.org/10.14778/3681954.3682003
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2402.16347
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2305.03111

large-scale database grounded text-to-sqls. Preprint,
arXiv:2305.03111.

Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang,
Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye,
Ziyue Li, Rui Zhao, and Hangyu Mao. 2024c.
Pet-sql: A prompt-enhanced two-round refinement
of text-to-sql with cross-consistency. Preprint,
arXiv:2403.09732.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri,
Jaesung Tae, Ellen Zhang, Arman Cohan, Dragomir
Radev, Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, JaredD Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, Sandhini Agarwal, ArielHer-
bert Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam Mccandlish,
Alec Radford, Ilya Sutskever, Dario Amodei, Jerry
Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Oliveira Pinto, JaredKa Plan, Harri Edwards, Yuri
Burda, Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Michael Petrov, Heidy Khlaaf, GirishSas
Try, Pamela Mishkin, Brooke Chan, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Philippe Tillet, FelipePetroski Such, DaveCum
Mings, Matthias Plappert, Fotios Chantzis, Eliza-
Beth Barnes, Ariel Herbert-Voss, WilliamHebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, AndrewN Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer,
and Bob Mcgrew. Enhancing few-shot text-to-sql
capabilities of large language models: A study on
prompt design strategies.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Preprint, arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy
for mitigating hallucinations in text-to-sql generation.
Preprint, arXiv:2405.15307.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

10

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-
danau. Evaluating the text-to-sql capabilities of large
language models.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language
models. Preprint, arXiv:2109.05093.

Ruoxi Sun, Sercan O. Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and Tomas Pfister. 2024. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
Preprint, arXiv:2306.00739.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
Preprint, arXiv:1409.3215.

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. Exploring chain-of-thought style
prompting for text-to-sql.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. Preprint, arXiv:2405.16755.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing Multiple Clause Constructors in Inductive Logic
Programming for Semantic Parsing, page 466—477.

Bozenn H. Thompson and Frederick B. Thompson.
1983. Introducing ASK, a simple knowledgeable
system. In First Conference on Applied Natural Lan-
guage Processing, pages 17-24, Santa Monica, Cali-
fornia, USA. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, AidanN. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. Neural Information Processing Sys-
tems,Neural Information Processing Systems.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020a. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020b. RAT-
SQL: Relation-aware schema encoding and linking
for text-to-SQL parsers. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7567-7578, Online. Association
for Computational Linguistics.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

https://arxiv.org/abs/2305.03111
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2403.09732
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2304.11015
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/2405.15307
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2109.05093
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.1007/3-540-44795-4_40
https://doi.org/10.3115/974194.974198
https://doi.org/10.3115/974194.974198
https://doi.org/10.3115/974194.974198
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242

Chang Wang, Jialu Fan, Aditya Kalyanpur, and David
Gondek. 2011. Relation extraction with relation top-
ics. Empirical Methods in Natural Language Pro-
cessing, Empirical Methods in Natural Language Pro-
cessing.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. Chain of
thought prompting elicits reasoning in large language
models.

Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin,
Liang Chen, Chenyun Yu, Lei Cheng, ChengXi-
ang Zhuo, Bo Hu, and Zang Li. 2024. Decompo-
sition for enhancing attention: Improving llm-based
text-to-sql through workflow paradigm. Preprint,
arXiv:2402.10671.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. Preprint,
arXiv:1711.04436.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and
Dragomir Radev. 2018a. Typesql: Knowledge-based
type-aware neural text-to-sql generation. Preprint,
arXiv:1804.09769.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-sql task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing.

JohnM. Zelle and RaymondJ. Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. National Conference on Artificial Intelli-
gence,National Conference on Artificial Intelligence.

Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen
Xu, and Kai Yu. 2023. Act-sql: In-context learning
for text-to-sql with automatically-generated chain-of-
thought. Preprint, arXiv:2310.17342.

Hanchong Zhang, Ruisheng Cao, Hongshen Xu,
Lu Chen, and Kai Yu. 2024. Coe-sql: In-context
learning for multi-turn text-to-sql with chain-of-
editions. Preprint, arXiv:2405.02712.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
Preprint, arXiv:1709.00103.

11

https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/2402.10671
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1804.09769
https://arxiv.org/abs/1804.09769
https://arxiv.org/abs/1804.09769
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2310.17342
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/2405.02712
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1709.00103

A Prompt Details

A.1 Clause Decomposition
1. Generate Clause

#*Sentence**: What is the average amount of loan which are still on running contract with statement
issuance after each transaction?”

Break the above sentence down into simple sentences and list them point by point in numerical order,
returning only the simple sentences listed in numerical order.

2. Generate Pre-SQL

You are a database expert. Based on the following sections: ###Database Schema, ###Input, ###Hint, and
###Logic Clause, generate the SQL query that meets the requirements of ###Input. Each section provides
specific information:

###Database Schema: Details the structure of the database, including tables and columns.

###Input: Specifies the data the user wants to query, including required columns and conditions.
###Hint: Provides additional context or constraints related to the ###Input. Some reference information
for you to complete ###Input.

###Logic Clause: Offers further explanation to clarify the query requirements.

Goal: 1. Correctly understand the requirements of ###Input based on ###Logic Clause.

2. Be sure to use the hints given in ###Hint, then determine which part of ###Input the hints are used to
complete, and write SQL that combines the contents of ###Hint and ###Input, and do not write anything
that is not mentioned in ###Input.

3. Using SQLite syntax, write a single-line SQL query that selects only the columns required by ###Input.

Output Format:
Only return the SQL statement as a single line, following this format:
###SQL: SELECT song_name , song_release_year FROM singer ORDER BY age LIMIT 1; ###END

###Database schema:
financial contains tables such as account, card, client, disp, district, loan, order, trans.
-Table: account:
-Column: account_id
-Column_description: the id of the account
-Column: district_id
-Column_description: location of branch
-Column: frequency
-Column_description: frequency of the acount
-Column: date
-Column_description: the creation date of the account
-Primary Key: account_id
-Foreign Keys: district_id -> district.(district_id)
-Table: card:
-Column: card_id
-Column_description: id number of credit card
-Column: disp_id
-Column_description: disposition id
-Column: type

12

-Column_description: type of credit card
-Column: issued

-Column_description: the date when the credit card issued
-Primary Key: card_id
-Foreign Keys: disp_id -> disp.(disp_id)

###Input:
What is the average amount of loan which are still on running contract with statement issuance after each
transaction?

###Hint:
status = "C’ stands for running contract, OK so far; status = *D’ stands for running contract, client in debt.
"POPLATEK PO OBRATU’ stands for issuance after transaction

###Logic Clause:

1. What is the average amount of loan?

2. The loans are still on running contract.

3. The loans have statement issuance after each transaction.

A.2 SQL-driven Schema Linking
1. Table Column Extractor

Please help me extract the tables and columns involved in the following SQL statement, then list them.
When listing, do not use aliases, and the column names should be enclosed in double quotes. Here are
some examples, please follow the format of the examples for output.

###Example 1:

Input:

SELECT MAX("Free Meal Count (K-12)" * 1.0 / "Enrollment (K-12)") AS highest_eligible_free_rate
FROM frpm WHERE "County Name" = ’Alameda’;

Output:

{Table frpm:

columns:"Free Meal Count (K-12)","Enrollment (K-12)","County Name" }

###Example 2:

Input:

SELECT COUNT(*) FROM satscores s JOIN schools sch ON s.cds = sch.CDSCode WHERE
s.AvgScrMath > 400 AND sch.Virtual = 'F’;

Output:

{Table satscores:

columns:"cds"," AvgScrMath"},

{Table schools:

columns:"CDSCode","Virtual " }

Input:

SELECT AVG(l.amount) FROM loan 1 JOIN trans t ON l.account_id = t.account_id WHERE l.status IN
(CC’,’D’) AND t.k_symbol = "POPLATEK PO OBRATU’;

Output:

13

2. Masked SQL Schema Extractor

You are a database expert. Your task is to help me extract the tables and columns related to the ###Input
from the ###Database Schema, based on the following components: ###Database Schema, ###Input,
###Hint.

Each section provides specific information:

###Database Schema: Details the structure of the database, including tables and columns.
###Input: Specifies the data the user wants to query, including required columns and conditions.
###Hint: Provides additional context or constraints related to the ###Input.

Please follow the steps below and write down each step of the process:

1. You need to understand exactly what ###Input needs.

2. Please based on the column_description of the columns of each table, I need you to help me find the
columns related to ###Input as per the requirement. For each table, you need to find 1 to 3 columns that
may be related to ###Input. Note that each table is required.

3. Please list the columns that you think are related to the ###Input in the format below. For each table,
you need to list 1 to 3 columns that may be relevant, even if they are not. Please do not use another format,
return only what is in the format below, no additional information. Format:

###Related Schema

{Table satscores:

columns:"cds"," AvgScrMath"},

{Table schools:

columns:"CDSCode"," Virtual " }

###END

###Database schema:
financial contains tables such as account, card, client, disp, district, loan, order, trans.
-Table: account:
-Column: account_id
-Column_description: the id of the account
-Column: district_id
-Column_description: location of branch
-Column: frequency
-Column_description: frequency of the acount
-Column: date
-Column_description: the creation date of the account
-Primary Key: account_id
-Foreign Keys: district_id -> district.(district_id)
-Table: card:
-Column: card_id
-Column_description: id number of credit card
-Column: disp_id
-Column_description: disposition id
-Column: type
-Column_description: type of credit card
-Column: issued
-Column_description: the date when the credit card issued
-Primary Key: card_id
-Foreign Keys: disp_id -> disp.(disp_id)

14

##H#nput:
What is the average amount of loan which are still on running contract with statement issuance after each
transaction?

###Hint:
status = "C’ stands for running contract, OK so far; status = *D’ stands for running contract, client in debt.
"POPLATEK PO OBRATU’ stands for issuance after transaction

###Logic Clause:

1. What is the average amount of loan?

2. The loans are still on running contract.

3. The loans have statement issuance after each transaction.

3. Refine Pre-SQL

You are a database expert. Please help me check the Pre-SQL based on ###Input, ###Hint, ###Pre-SQL
and ###Value Examples. Please follow the steps below:

1. Pay close attention to the column_description (if provided) for each column in the ###Value Examples.
Explicitly write out the column_description, analyze them, and check if the correct columns are being
used in the current SQL.

2. Pay close attention to the value_description (if provided) and the value_sample for each column.
Explicitly write out the content of the specific value_description and the value in the value_sample.

3. Please check that the value written in the SQL condition exists in the value example, if there may
not be a corresponding value in the current column, it is possible that the wrong column is being used,
consider whether other columns could complete the ###Input. When performing this step, please refer to
the ###Value example and do not rely on the information in the ###Hint.

4. Check the values used in the conditional section of the SQL, compare the values in the SQL with
the values in the value_sample displayed, and make sure that the values are case-accurate (this is very
important).

5. If you identify any issues with the current SQL after your analysis, please help correct it. While fixing
the SQL, ensure that it follows SQLite syntax. If no issues are found, do not make any changes, and
provide the original SQL as is.

6. If the SQL contains arithmetic operations, explicitly identify the arithmetic operation parts and force
the use of the CAST function to convert those parts to a floating-point type.

7. Provide the final SQL with or without corrections based on your analysis.

8. Please place the final SQL on the last line and write the SQL in a single line following the format
below, without adding any line breaks in the SQL and without using any other format:

##SQL: SELECT song_name, song_release_year FROM singer ORDER BY age LIMIT 1; ##END

###Database schema:
financial contains tables such as account, card, client, disp, district, loan, order, trans.
Table account:
Columns: account_id, district_id, frequency, date
Primary Key: account_id
Foreign Keys: district_id -> district.(district_id)
Table card:
Columns: card_id, disp_id, type, issued
Primary Key: card_id
Foreign Keys: disp_id -> disp.(disp_id)

##Hnput:
What is the average amount of loan which are still on running contract with statement issuance after each

15

transaction?

###Hint:
status = "C’ stands for running contract, OK so far; status = D’ stands for running contract, client in debt.
"POPLATEK PO OBRATU’ stands for issuance after transaction

###Value Examples:
-Table: loan
-column: date
-column_description: the date when the loan is approved
-value_sample: ['1994-01-05’, *1996-04-29°, *1997-12-08’] (Total records: 682, Unique values:
559)
-column: loan_id
-column_description: the id number identifying the loan data
-value_sample: [4959, 4961, 4962] (Total records: 682, Unique values: 682)

###Pre-SQL:
SELECT AVG(l.amount) FROM loan 1 JOIN trans t ON l.account_id = t.account_id WHERE l.status IN
(CC’,’D’) AND t.k_symbol = "POPLATEK PO OBRATU’;

A.3 Execution Refinement

The result of the above sql execution is as follows:
[(205065.26074275715,)]

##Hnput:
What is the average amount of loan which are still on running contract with statement issuance after each
transaction?

##H#Hint:
status = "C’ stands for running contract, OK so far; status = D’ stands for running contract, client in debt.
"POPLATEK PO OBRATU’ stands for issuance after transaction

Please analyze whether the given SQL query meets the following requirements and whether its execution
result is reasonable.

Step 1: Requirement Check

- Confirm whether the SQL query aligns with the requirement specified in ###Input.

- Keep an eye on ###Hint for information that is a reference to help you check your SQL, based on the
information provided in ###Hint, verify if the SQL query correctly understands and applies the relevant
concepts or constraints.

- One situation requires special attention. If you think that the parts related to values in the SQL
do not match the ###Hint, please clearly state the relevant value_sample from the ###Value Exam-
ple. When making corrections to the values, please base them on the value_sample rather than the ###Hint.

Step 2: Result Reasonableness

- Analyze whether the execution result of the SQL query matches the expected outcome and satisfies the
requirements in ###Input.

- If the SQL involves arithmetic operations, check that the data types in the arithmetic operations section
are correct, and write your analysis in a descriptive manner.

- If the SQL execution result is empty, it indicates an issue with the query, as the database is guaranteed to

16

contain data that satisfies the ###Input requirements. In such cases, adjust the SQL query to ensure it
meets the requirements and returns a valid result.

Guidelines
- If the SQL query already meets the requirements in ‘###Input® and ‘###Hint‘ and produces a reasonable

result, no changes are needed.
- If it does not meet the requirements, modify the SQL query to ensure it fulfills all requirements and

generates a logical and reasonable result.
- Clearly write out the final corrected SQL in the format below, without using any other format. Format:

##SQL: SELECT song_name, song_release_year FROM singer ORDER BY age LIMIT 1; ##END

17

	Introduction
	Related Work
	Methodology
	Clause Decomposition
	SQL-driven Schema Linking
	SQL Execution Refinement

	Empirical Study
	Experimental Setting
	Evaluation Results
	Ablation Study

	Conclusion
	Prompt Details
	Clause Decomposition
	Generate Clause
	Generate Pre-SQL

	SQL-driven Schema Linking
	Table Column Extractor
	Masked SQL Schema Extractor
	Refine Pre-SQL

	Execution Refinement

