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Abstract001

Recent studies have shown that prompting large002
language models (LLMs) for Text2SQL can003
achieve promising performance. However, the004
task still remains very challenging due to the005
difficulty of aligning complex natural language006
semantics with database schema. In this pa-007
per, we present a novel prompting approach008
for Text2SQL via Gradual SQL Refinement009
(GSR). It consists of three sequential prompt-010
ing steps: 1) Clause Decomposition, which011
breaks down a complex natural language ques-012
tion into simpler clauses to facilitate natural013
language interpretation; 2) SQL-driven Schema014
Linking, which improves schema linking by015
targeted schema information retrieval based on016
the preliminary SQL generated in the first step;017
3) SQL Execution Refinement, which further018
refines the SQL generated in the second step019
based on the results of SQL execution. GSR020
is a gradual prompting approach in that it be-021
gins with only one SQL and then gradually022
refines the SQL based on SQL analysis and023
execution at each of the following steps. We024
have validated the efficacy of GSR by an em-025
pirical study on the benchmark datasets. Our026
experiments show that its execution accuracy027
on BIRD and Spider are 69.26% and 87.7%028
respectively when using GPT-4o. With only a029
few prompts, GSR is ranked 11th on the BIRD030
benchmark, considerably outperforming the ex-031
isting single-candidate alternatives. Its perfor-032
mance is even highly competitive compared033
with the existing approaches based on model034
fine-tuning or multiple-candidate generation,035
which requires considerably more prompts and036
token consumption.037

1 Introduction038

The goal of Text2SQL is to translate natu-039

ral language questions into corresponding SQL040

queries (Deng et al., 2021). It enables users to041

interact with databases using simple natural lan-042

guage queries without requiring any knowledge of043

SQL, thus lowering the barrier for non-technical044

users to access relational databases. However, in- 045

herent differences between natural language and 046

SQL usually make this task particularly challeng- 047

ing. Natural language tends to be ambiguous, with 048

context-dependent semantic information, whereas 049

SQL queries must be syntactically precise and 050

aligned with database schema, specifically the ta- 051

bles, columns, values and relationships involved. 052

Therefore, generating correct SQL queries not only 053

requires understanding a user’s intent but also en- 054

suring that the generated SQL aligns with the un- 055

derlying database schema. 056

In recent years, leveraging the powerful under- 057

standing and generation capabilities of large lan- 058

guage models (LLMs) (Achiam et al., 2023) has 059

become a key approach to improve Text2SQL per- 060

formance (Rajkumar et al.), with prompt engi- 061

neering emerging as a mainstream technical strat- 062

egy (Nan et al.). Some studies aimed to enhance 063

the reasoning ability of LLMs by incorporating 064

various contextual learning techniques, such as 065

chain-of-thought prompts (Tai et al.; Wei et al.), 066

question decomposition (Eyal et al., 2023; Pour- 067

reza and Rafiei, 2024, 2023; Wang et al., 2024), 068

and self-consistency (Gao et al., 2023; Sun et al., 069

2024). Other studies instead focused on schema 070

linking (Dong et al., 2023; Wang et al., 2024, 071

2020a; Talaei et al., 2024; Lee et al., 2024), which 072

aimed to improve performance by providing LLM 073

models with more specific database schema. How- 074

ever, generally speaking, Text2SQL still remains 075

very challenging due to the difficulty of accurately 076

aligning natural language semantics with database 077

schema. 078

In this paper, we introduce a novel LLM prompt- 079

ing approach for Text2SQL, named as Gradual SQL 080

Refinement (GSR), which can gradually refine a 081

SQL by a sequence of targeted prompts. Supposed 082

to perform Text2SQL with only a few prompts, it 083

consists of the following three sequential prompt- 084

ing steps: 085
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Figure 1: The Gradual SQL Refinement (GSR) framework for Text2SQL: 1) the 1st step decomposes a natural
language question into multiple simpler clauses, and leverages them as well as the original question to generate a
preliminary SQL (Pre-SQL); 2) the 2nd step performs SQL-driven schema linking to identify and correct schema
misalignment errors in the Pre-SQL, resulting in Second-SQL; 3) the 3rd step further refines the Second-SQL based
on its execution results and generates the final SQL (Final-SQL).

1. Clause Decomposition: it translates a com-086

plex natural language question into a sequence087

of simpler clauses with equivalent semantic088

meaning; by prompting LLMs with these sim-089

pler clauses as well as the original question,090

GSR can effectively improve the accuracy of091

natural language interpretation;092

2. SQL-driven Schema Linking: it performs093

schema linking by targeted schema informa-094

tion retrieval based on the preliminary SQL095

generated by the first step (Pre-SQL). Instead096

of providing LLMs with blanket database097

schema information, it only provides some098

sample values of attributes present in the pre-099

liminary SQL and other potentially useful100

schema information missing in Pre-SQL. By101

feeding these SQL-tailored schema informa-102

tion as well as the original question to LLMs,103

GSR can more precisely identify and correct104

schema misalignment errors in the Pre-SQL;105

3. SQL Execution Refinement: it further re-106

fines the SQL generated by the second step107

(Second-SQL) based on its execution results.108

Specifically, GSR executes the Second-SQL109

on the database to obtain the query results or110

execution error information, which are then111

leveraged to assess the validity of the Second-112

SQL and its alignment with the original natu-113

ral language question.114

We have sketched the framework of GSR in Fig- 115

ure 1. As far as we know, even though there already 116

exist many prompting approaches for Text2SQL, 117

the proposed GSR is the first gradual SQL-driven 118

approach in that it begins with only one SQL, and 119

then gradually refines the SQL based on SQL anal- 120

ysis and execution at each of the following steps. It 121

is noteworthy that unlike the existing approaches 122

of question-driven schema linking (Wang et al., 123

2020a; Dong et al., 2023; Pourreza and Rafiei, 124

2023; Talaei et al., 2024; Lee et al., 2024), which 125

provide instructions based on a given question to 126

identify relevant schema information, the proposed 127

schema linking of GSR is SQL-driven in that it ex- 128

tracts potentially useful schema information based 129

on a SQL as well as the original question and lever- 130

ages them for schema alignment. As a crucial step 131

in the iterative process of SQL refinement, SQL- 132

driven schema linking can more precisely detect 133

and correct schema misalignment errors present 134

in a SQL. On the other hand, the existing tech- 135

nique of question decomposition usually decom- 136

poses a question into multiple sub-questions and 137

then invokes LLMs to construct sub-SQLs for sub- 138

questions, which are finally fused to generate the 139

final SQL (Wang et al., 2024). In contrast, the 140

purpose of clause decomposition in GSR is not 141

to generate sub-SQLs, but to provide simple yet 142

effective instructions for Text2SQL translation. 143

The major contributions of our work can be sum- 144
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marized as follows:145

• We propose a novel gradual SQL-driven146

prompting approach of GSR for Text2SQL,147

which begins with a preliminary SQL, and148

then iteratively performs schema refinement149

by targeted SQL analysis and execution;150

• We present the specific techniques of clause151

decomposition, SQL-driven schema linking152

and SQL execution refinement to enable the153

implementation of GSR;154

• We empirically validate the efficacy of the pro-155

posed GSR. Our experiments show that GSR156

achieves the execution accuracy of 69.26%157

and 87.7% on the BIRD and Spider bench-158

marks respectively when using GPT-4o. With159

only a few prompts, GSR is ranked 11th on the160

BIRD benchmark, considerably outperform-161

ing the existing single-candidate approaches.162

Its performance is even highly competitive163

compared with the existing approaches based164

on model fine-tuning or multi-candidate gen-165

eration, which requires considerably more166

prompts and token consumption.167

2 Related Work168

Early rule-based (Thompson and Thompson, 1983;169

Tang and Mooney, 2001) and template-based (Zelle170

and Mooney, 1996; Wang et al., 2011) approaches171

for Text2SQL were highly domain-specific and172

heavily dependent on handcrafted rules, making173

them unsuitable for complex queries or diverse174

databases. With the widespread adoption of deep175

learning (Vaswani et al., 2017), the research in176

Text2SQL has undergone significant transforma-177

tions, enabling end-to-end learning and enhanced178

contextual understanding (Sutskever et al., 2014).179

Early neural network-based methods, such as180

SQLNet (Xu et al., 2017) and Seq2SQL (Zhong181

et al., 2017), framed SQL generation as a sequence-182

to-sequence (Seq2Seq) learning problem. These183

models laid the foundation for neural approaches184

but struggled to incorporate schema-specific185

information while handling complex queries.186

Schema-aware models addressed this limitation187

by explicitly modeling the relationships between188

queries and database schema elements (Yu et al.,189

2018a; Guo et al., 2019). The transformer190

architecture significantly enhanced the capabilities191

of Text2SQL systems by capturing complex192

relationships between schema elements and natural 193

language queries, e.g., RAT-SQL (Wang et al., 194

2020b), T5 (Raffel et al., 2023), BART (Lewis 195

et al., 2019) and PICARD (Scholak et al., 2021). 196

While these models achieved remarkable results, 197

they also faced challenges, such as noise from large 198

schema and inefficiencies in handling complex 199

multi-table queries, highlighting the need for 200

further optimization. 201

202

With the emergence of LLMs, an increasing 203

number of studies have explored their potential for 204

Text2SQL. Some studies introduced various chain- 205

of-thought prompt strategies to improve SQL gener- 206

ation performance, such as ACT-SQL (Zhang et al., 207

2023), COE-SQL (Zhang et al., 2024) and TA- 208

SQL (Qu et al., 2024). In contrast, DTS-SQL (Pour- 209

reza and Rafiei, 2024), DEA-SQL (Xie et al., 2024) 210

and DIN-SQL (Pourreza and Rafiei, 2023) used 211

the strategy of task decomposition strategy to im- 212

prove prompting accuracy. Some other studies, e.g., 213

MAC-SQL (Wang et al., 2024), leveraged both 214

of the above strategies for Text2SQL. It is also 215

noteworthy that while some studies, e.g., DAIL- 216

SQL (Gao et al., 2023) and PET-SQL (Li et al., 217

2024c) focused on optimizing prompt design, oth- 218

ers, e.g., Codes (Li et al., 2024b) and SuperSQL (Li 219

et al., 2024a), instead focused on improving SQL 220

generation by fine-tuning a pre-trained model. 221

There are also some work specifically focused 222

on schema linking. For instance, C3-SQL (Dong 223

et al., 2023) exploited zero-shot prompts of self- 224

consistency for schema linking. MCS-SQL (Lee 225

et al., 2024) leveraged zero-shot chain-of-thought 226

reasoning and schema order shuffling for table and 227

column selection. E-SQL (Caferoğlu and Özgür 228

Ulusoy, 2025) aimed to improve schema linking 229

through question enrichment. RSL-SQL (Cao et al., 230

2024) used bidirectional schema linking to mitigate 231

risks of incomplete recall and noise. CHESS (Ta- 232

laei et al., 2024), on the other hand, presented a 233

context-based schema selection method. It is note- 234

worthy that these existing approaches of schema 235

linking are mainly question-driven, analyzing natu- 236

ral language questions to filter schema information. 237

In contrast, the proposed schema linking in GSR 238

is SQL-driven, analyzing SQL to retrieve relevant 239

schema information. 240

More recently, some studies have employed the 241

Multi-Candidate Strategy (MCS) to improve SQL 242

generation accuracy. For instance, MCS-SQL (Lee 243
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et al., 2024) generates multiple SQL candidates244

using diverse prompts and filters them based on245

confidence scores. It uses a separate LLM to select246

the final SQL. CHESS (Talaei et al., 2024) simi-247

larly generates multiple SQL candidates through a248

multi-agent framework, and refines them iteratively249

with an LLM if execution errors occur. It requires250

a Unit Tester agent to evaluates candidates and se-251

lects the highest-scoring SQL. CHASE-SQL (Pour-252

reza et al., 2024) also introduced a multi-path rea-253

soning framework to generate multiple SQL can-254

didates. It selects the best SQL through pairwise255

comparisons with a fine-tuned binary-candidates256

selection LLM. XiYan-SQL (Li et al., 2023) em-257

ployed a multi-generator ensemble strategy to en-258

hance candidate generation. It combines prompt259

engineering and the SFT method to enhance SQL260

quality and diversity. These studies have shown261

that the multi-candidate strategy can effectively262

enhance execution accuracy. However, this strat-263

egy usually requires considerably more prompts,264

thus significantly increasing token consumption.265

In comparison, the proposed GSR generates only266

one candidate SQL and requires much less token267

consumption.268

3 Methodology269

In this section, we detail the technical solutions270

for the three essential steps of GSR, i.e., clause271

decomposition, SQL-driven schema linking and272

SQL execution refinement.273

3.1 Clause Decomposition274

To enhance question interpretation, GSR adopts a275

new prompting strategy called “Clause Decompo-276

sition”. It breaks down a natural language question277

into multiple simpler logical units, which if fused,278

would have the same semantic meaning with the279

original question. By segmenting a question into280

more manageable parts, clause decomposition can281

effectively simplify relationship between descrip-282

tive terms and their corresponding entities, thus283

enabling more precise natural language interpreta-284

tion. It is noteworthy that clause decomposition is285

supposed to be automatically performed by LLMs.286

An illustrative example of clause decomposition is287

shown in Figure 2.288

Then, GSR feeds the resulting clauses as well as289

the original question and the full database schema290

to a LLM, and generates a corresponding SQL291

query, which is referred to as the preliminary SQL292

(Pre-SQL). The generated Pre-SQL usually con- 293

tain errors, particularly in involved attributes and 294

selection conditions, which need to be refined in 295

the following steps. 296

**Sentence**: "What is the average amount of loan
which are still on running contract with statement
issuance after each transaction?"

Break the above sentence into simpler sentences
based on their logical structure, and list them point
by point in numerical order. Return only the
simplified sentences in the specified numerical order.

1. What is the average amount of loan?

2. The loans are still on running contract.

3. The loans have statement issuance after each 

transaction.

Figure 2: An illustrative example prompt for clause
decomposition.

3.2 SQL-driven Schema Linking 297

Without access to actual data in a database, the Pre- 298

SQL usually contains errors involving attributes 299

and selection conditions. This necessitates schema 300

linking. Due to the large number of columns in a 301

database, feeding LLMs with all the schema infor- 302

mation would result in excessively long input con- 303

texts, potentially filled with a significant amount of 304

irrelevant and redundant information, which may 305

reduce SQL accuracy as well as increasing token 306

cost. 307

To overcome this limitation, GSR adopts a SQL- 308

driven schema linking strategy that leverages the 309

Pre-SQL as well as the original natural language 310

question to retrieve relevant schema information. 311

Specifically, the process of SQL-driven schema 312

linking is composed of two stages: 1) Pre-SQL 313

attributes & values extraction, which retrieves the 314

attribute and value information present in the Pre- 315

SQL; 2) schema mining with Pre-SQL masking, 316

which retrieves additional schema information po- 317

tentially relevant to the natural language question 318

by missing in the Pre-SQL. 319

Pre-SQL Schema Extraction: in the first stage, 320

GSR extracts the tables and their columns involved 321

in the Pre-SQL, and then constructs an individual 322

query statement for each table and column combi- 323

nation to retrieve actual attribute values from the 324

database. This process ensures that the extracted 325

data reflect the real contents of the database, provid- 326

ing a precise reference for subsequent refinement 327

on Pre-SQL. 328
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Specifically, GSR constructs a SQL value con-329

dition checker to determine whether a column in330

the Pre-SQL is involved in value condition, and331

uses it to optimize value retrieval. If a column is332

involved in value conditions, GSR extracts its con-333

dition value, and retrieves the top-five values with334

the highest similarities to the condition value as335

value samples of this column. Otherwise, if a col-336

umn is not involved in any value condition, GSR337

randomly retrieves three distinct values as value338

samples.339

Please help me check and correct the Pre-SQL query
based on the Input, Value Examples, etc.
###Pre-SQL:
SELECT AVG(l.amount) FROM loan l JOIN trans t
ON l.account_id = t.account_id WHERE l.status IN
('C', 'D') AND t.k_symbol = 'POPLATEK PO
OBRATU';

**Correcting the SQL**:
The condition `t.k_symbol = 'POPLATEK PO
OBRATU'` is incorrect because 'POPLATEK PO
OBRATU' is not a valid value for `k_symbol`.
Instead, we should join with the `account` table and
use the `frequency` column to filter for 'POPLATEK
PO OBRATU'.
**Final SQL**:
SELECT AVG(l.amount) FROM loan l JOIN trans t
ON l.account_id = t.account_id JOIN account a ON
l.account_id = a.account_id WHERE l.status IN ('C',
'D') AND a.frequency = 'POPLATEK PO
OBRATU'; 

Figure 3: An illustrative example prompt for SQL-
driven schema linking.

It is noteworthy that a Pre-SQL may contain340

some column names not existing in the given341

database schema. As a result, the execution of342

value retrieval may receive error information from343

a database. In this case, GSR would feed the error344

message as well as the Pre-SQL to a LLM and ask345

it for column correction. The column correction346

would be repeatedly invoked until no error informa-347

tion is returned. However, to ensure the efficiency348

of value retrieval, GSR limits the maximum itera-349

tions of column correction at 3.350

Schema Mining with Pre-SQL Masking: the sec-351

ond stage aims to mine tables and columns poten-352

tially relevant to the original query, but not present353

yet in the Pre-SQL, thereby constructing a schema354

that is comprehensive but not redundant. Towards355

this aim, GSR first masks the tables and columns356

involved in the Pre-SQL within the full database357

schema, resulting in a masked schema denoted as358

Schemam, and then asks a LLM to select the ta-359

bles and columns within Schemam that are poten- 360

tially relevant to the original natural language query. 361

We denote the schema obtained after schema min- 362

ing with Pre-SQL masking as Schemap, which 363

represents a subset of potentially relevant schema 364

not present yet in the Pre-SQL. 365

Prompt Instruction for SQL-driven Schema 366

Linking: after the two stages, GSR obtains not 367

only Pre-SQL’s tables, columns and their sample 368

values, but a small set of potentially relevant tables 369

and columns information not present yet in the Pre- 370

SQL. Then, GSR feeds the retrieved schema infor- 371

mation as well as the original query and Pre-SQL 372

to a LLM and instructs it to refine the Pre-SQL, 373

resulting in a new SQL (Second-SQL). An illustra- 374

tive example of instruction prompt for SQL-driven 375

schema linking is shown in Figure 3. 376

3.3 SQL Execution Refinement 377

The Second-SQL may still contain some minor 378

errors, e.g., incorrect values in the condition part 379

and the misguided use of keywords, both of which 380

would result in the SQL query returning an empty 381

result. The typical errors in the Second-SQL in- 382

clude: 1) the case sensitivity of the condition val- 383

ues; 2) incorrect data types involved in arithmetic 384

operations; 3) misused SQL keywords, e.g., dis- 385

tinct, group by, and order by. 386

###Input:
How many users are awarded with more than 5 badges?
###Second-SQL:
SELECT COUNT(DISTINCT UserId) FROM badges GROUP
BY UserId HAVING COUNT(Name) > 5; 
The result of the above sql execution is as follows:
[(1,), (1,), (1,), (1,), (1,)] (There are 2875 records in total, only
5 are shown here.)
Please analyze whether the given SQL query meets the
following requirements and whether its execution result is
reasonable.

**Correcting the SQL**:
To correct the SQL, we need to adjust it so that it counts
the number of users with more than 5 badges without
grouping by `UserId` at the final level. We should
encapsulate the existing query as a subquery to count the
number of users that meet the condition.
**Final SQL**:
SELECT COUNT(*) FROM (SELECT UserId FROM
badges GROUP BY UserId HAVING COUNT(Name) > 5)
AS subquery; 

Figure 4: An illustrative example prompt for SQL exe-
cution refinement.

Therefore, in the final step, GSR executes the 387

Second-SQL and then leverages the returned results 388

to detect and correct the potential misalignment 389

between the SQL query results and the expected 390
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output of the original question. Specifically, GSR391

instructs the large model to refine the Second-SQL392

by Requirement Check (RC) and Result Reason-393

ableness Check (RRC). The RC focuses on having394

the model check if the conditions and the use of395

values in the Second-SQL align with the question’s396

requirements, while the RRC is supposed to exam-397

ine issues such as case sensitivity or data types in398

arithmetic operations. Due to the context length399

limitation of LLMs, only a portion of the execution400

results from the Second-SQL, along with the total401

record count of the query, will be provided as input.402

The SQL obtained after execution refinement from403

the Second-SQL is the Final-SQL. An illustrative404

example of instruction prompt for SQL execution405

refinement is shown in Figure 4.406

4 Empirical Study407

4.1 Experimental Setting408

Datasets: we conduct our experiments on the409

benchmark datasets of BIRD (Li et al., 2023) and410

Spider (Yu et al., 2018b). The Spider dataset is411

a large-scale, cross-domain Text-to-SQL task. Its412

primary challenge lies in accurately selecting the413

correct columns from multiple tables within a given414

database schema, as well as effectively managing415

the join relationships between these tables. The416

Spider is a valuable resource for evaluating the gen-417

eralization capabilities of LLM models. On the418

Spider dataset, the training, development, and test419

sets include 146, 20, and 40 databases respectively;420

they contain 8659, 1034, and 2147 examples re-421

spectively. In comparison, the BIRD’s primary422

challenge lies in handling both database values423

and external knowledge, requiring LLM models424

to effectively integrate external information with425

the database content. Furthermore, the BIRD em-426

phasizes the efficiency of SQL query generation.427

These characteristics make the BIRD notably more428

complex than the Spider. The training, develop-429

ment, and test sets of Spider include 9428, 1534,430

and 1789 examples and 69, 11, and 15 databases431

respectively.432

Implementation: we have employed the latest pro-433

prietary model, GPT-4o, as the backbone of our ex-434

periments. We set the temperature of GPT-4o to 0.2.435

Additionally, we used the text-embedding-3-small436

model to perform vector encoding of database val-437

ues.438

Evaluation Metrics: we evaluate model perfor-439

mance using the metrics of Execution Accuracy440

(EX), Reward-based Valid Efficiency Score (R- 441

VES) and Soft F1-score, as defined by the BIRD 442

benchmark. Specifically, EX measures the correct- 443

ness of the predicted SQL queries by comparing 444

their execution results with those of the ground- 445

truth SQLs. R-VES is an adjusted version of the 446

previously proposed Valid Efficiency Score (VES). 447

R-VES is used to evaluate the efficiency of valid 448

SQL queries generated by the model. It not only 449

considers whether the generated SQL query returns 450

the correct results but also takes into account the 451

resource consumption and execution time during 452

query execution. The soft F1 score provides a more 453

flexible evaluation by reducing the impact of minor 454

discrepancies in the table output, such as column re- 455

ordering or missing values. Since our experiments 456

are conducted on the commercial LLM of GPT- 457

4o and its performance is very stable, the reported 458

results are single-run, which is also the default prac- 459

tice in most existing work. 460

4.2 Evaluation Results 461

We have compared GSR with 16 existing alterna- 462

tives, and presented the comparative results in Ta- 463

ble 1. It is noteworthy that some of the compared al- 464

ternatives require either Multi-Candidate Strategy 465

(MCS) or Model Fine-Tuning (MFT), while the 466

proposed GSR requires neither of them. It can 467

be observed that using the GPT-4o model, GSR 468

achieves the execution accuracy of 69.26% on the 469

test set of BIRD, ranked 11th on the BIRD leader- 470

board. It performs considerably better than the ex- 471

isting alternatives requiring neither MCS and MFT, 472

and even outperforms some alternatives leverag- 473

ing either MCS or MFT, e.g., MCS-SQL and E- 474

SQL. We have also reported the performance of 475

the existing approaches ranked higher than GSR 476

on the BIRD leaderboard and having technical re- 477

ports or project links. It can be observed that all 478

of them require MCS or MFT; the majority of 479

them even leverage both. By gradually refining 480

a single SQL, GSR can achieve competitive per- 481

formance with much less prompts and token con- 482

sumption. For instance, GSR requires averagely 483

only 7 LLM calls, while CHESS, to achieve good 484

performance, typically needs to generate up to 20 485

candidate SQL queries and invoke at least 30 LLM 486

calls, which require considerably more token con- 487

sumption. CHASE-SQL similarly uses three differ- 488

ent methods to generate totally 21 SQL candidate 489

queries, which requires at least 21 LLM calls, not 490

6



Method MCS MFT Model Date R-VES dev EX test EX
DIN-SQL No No GPT-4 Sep 2023 53.07 50.72 55.90
DAIL-SQL No No GPT-4 Sep 2023 54.02 54.76 57.41
MAC-SQL No No GPT-3.5 Dec 2023 - 50.56 55.90
MAC-SQL No No GPT-4 Dec 2023 57.60 57.56 59.59
DTS-SQL No Yes DeepSeek-7B Feb 2024 - 55.80 60.31
Codes No Yes Codes-15B Feb 2024 56.73 58.47 60.37
MCS-SQL Yes No GPT-4 May 2024 61.23 63.36 65.45
TA-SQL No No GPT-4 May 2024 - 56.19 59.14
SuperSQL No No GPT-4 Jul 2024 - 58.50 62.66
E-SQL Yes No GPT-4o-mini Sep 2024 55.64 61.60 59.81
E-SQL Yes No GPT-4o Sep 2024 62.43 65.58 66.29
RSL-SQL Yes No DeepSeek Oct 2024 - 63.56 65.51
GSR(ours) No No GPT-4o Jan 2025 64.41 66.88 69.26
CHESS Yes No Proprietary Nov 2024 66.53 68.31 71.10
Distillery No Yes GPT-4o Jul 2024 67.41 67.21 71.83
CHASE-SQL Yes Yes Gemini Nov 2024 66.53 74.46 74.79
XiYan-SQL Yes Yes GPT-4o Dec 2024 66.53 73.34 75.63

Table 1: Comparison of execution accuracy and reward-based valid efficiency score on the BIRD benchmark: 1)
the column of MCS denotes whether it uses the Multi-Candidate Strategy, and the column of MFT denotes whether
it requires Model Fine-Tuning (for the MCS approach, it would be marked as MFT if it fine-tunes a SQL selection
model; 2) we highlight the results of GSR and the existing approaches ranked higher than GSR on the BIRD test;
those ranked higher than GSR require either multi-candidate strategy or model fine-tuning.

the mention the cost of fine-tuning SQL selection491

model. XiYan-SQL instead fine-tunes 4 SQL gener-492

ation models and 1 SQL selection model, invoking493

considerable model fine-tuning cost.494

Complexity Level EX Soft F1
Simple 77.13 78.24
Moderate 65.77 67.56
Challenging 49.82 52.27
Overall 69.26 70.79

Table 2: The evaluation results on the BIRD using GPT-
4o across query complexity levels.

In Table 2, we have also presented a detailed per-495

formance breakdown across different query com-496

plexity levels on the BIRD test set. It demonstrates497

that GSR can generate correct SQLs for the ma-498

jority of simple and moderate queries. Although499

its execution accuracy for challenging queries is500

only 49.82%, its overall execution accuracy re-501

mains relatively stable. Without relying on multi-502

candidate SQL generation or model fine-tuning,503

GSR achieves outstanding results with lower com-504

putational overhead by gradually refining the gen-505

erated SQL.506

We have also conducted experiments on the Spi-507

der test set to evaluate the generalization capability 508

of the proposed GSR approach. The detailed com- 509

parative results have been presented in Table 3. 510

Method Model Date EX
DIN-SQL GPT-4 Sep 2023 85.3
DAIL-SQL GPT-4 Sep 2023 86.6
MAC-SQL GPT-3.5 Dec 2023 75.5
MAC-SQL GPT-4 Dec 2023 82.8
DTS-SQL DeepSeek-7B Feb 2024 84.4
DEA-SQL GPT-4 Feb 2024 87.1
TA-SQL GPT-4 May 2024 85.0
PET-SQL GPT-4 Jun 2024 87.6
MSC-SQL Gemma-2-9B Oct 2024 84.7
RSL-SQL DeepSeek Oct 2024 87.5
CHASE-SQL Gemini Nov 2024 87.6
GSR(ours) GPT-4o Jan 2025 87.7
MCS-SQL GPT-4 May 2024 89.6
RSL-SQL GPT-4o Oct 2024 87.9
CHESS Proprietary Nov 2024 87.2
XiYan-SQL GPT-4o Dec 2024 89.6

Table 3: The evaluation results in terms of execution
accuracy on the Spider test set.

GSR achieves the execution accuracy of 87.7% 511

on the Spider test set, outperforming most of the ex- 512

isting approaches. It is noteworthy that all the three 513

approaches, which perform better than GSR, i.e., 514
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Method Simple Moderate Challenging Overall
GSR 72.86 58.62 55.17 66.88

w/o Clause Decomposition 72.86 57.76 53.79 66.49↓0.39

w/o SQL-driven Schema Linking 70.05 53.23 53.10 63.36↓3.52

w/o Execution Refinement 71.03 55.82 48.97 64.34↓2.54

Table 4: The evaluation results of ablation study on the BIRD Dev set.

MCS-SQL, RSL-SQL and XiYan-SQL, requires ei-515

ther multi-candidate strategy or model fine-tuning.516

These results validate the efficacy and strong gen-517

eralization capability of the GSR.518

4.3 Ablation Study519

To evaluate the efficacy of each component in the520

proposed GSR framework, we have conducted an521

ablation study by systematically removing indi-522

vidual components and measuring the incremental523

impact of each component in terms of execution524

accuracy. The evaluation results on the BIRD de-525

velopment set are presented in Table 4 and Table 5,526

where Table 4 reports the experimental results of527

ablated GSR after removing each individual com-528

ponent and Table 5 illustrates the impact of each529

component as they are incrementally incorporated530

into the solution.531

Step EX
baseline 59.26

+Clause Decomposition 60.76↑1.50

+SQL-driven Schema Linking 64.34↑3.58

+Execution Refinement 66.88↑2.54

Table 5: The evaluation results of incremental contri-
bution in terms of execution accuracy on the BIRD Dev
set.

From Table 4, we can observe that without clause532

decomposition, the performance of GSR remains533

stable on the simple queries, but drops by 0.86%534

and 1.38% on the moderate and challenging queries535

respectively. It clearly demonstrates the efficacy536

of clause decomposition on complex queries. In537

contrast, without SQL-driven schema linking, the538

performance of GSR drops on all the three query539

categories, with the respective margins of 2.81%,540

5.39% and 2.07% on the simple, moderate and chal-541

lenging queries. It demonstrates the challenge of542

schema linking even on the simple queries and the543

efficacy of the proposed SQL-driven approach. The544

results w.r.t SQL execution refinement are similar. 545

Without the final execution refinement, the perfor- 546

mance of GSR consistently drops on all the three 547

query categories. 548

The incremental evaluation results, as shown in 549

Table 5, also demonstrate that each of the three 550

components can effectively improve the perfor- 551

mance of GSR, by the incremental margins of 552

1.50%, 3.58% and 2.54% respectively. It is note- 553

worthy that SQL-driven schema linking achieves 554

the biggest performance boost, illustrating the cen- 555

tral role schema linking plays in Text2SQL. 556

In summary, our ablation study demonstrates 557

that SQL-driven Schema Linking contributes the 558

most to execution accuracy, playing a critical role 559

in ensuring precise table and column mappings. Ex- 560

ecution Refinement, particularly valuable for com- 561

plex queries, can effectively improve SQL correct- 562

ness by addressing execution issues such as value 563

mismatches and syntax errors. Clause Decom- 564

position can also provides additional benefits to 565

complex query interpretation. By integrating these 566

three components, the proposed GSR achieves high 567

execution accuracy while minimizing token con- 568

sumption. 569

5 Conclusion 570

In this paper, we propose a novel gradual prompt- 571

ing approach of GSR for Text2SQL, which be- 572

gins with a preliminary SQL and then iteratively 573

refines it based on SQL analysis and execution. 574

We have presented corresponding techniques for 575

clause decomposition, SQL-driven schema linking 576

and SQL execution refinement to enable the im- 577

plementation of GSR. Our empirical study on two 578

benchmark datasets have also demonstrated that 579

with only a few prompts , GSR outperforms the 580

existing single-candidate alternatives. Its perfor- 581

mance is even highly competitive compared with 582

the existing approaches based on model fine-tuning 583

or multiple-candidate strategy, which require con- 584

siderably more prompts and token consumption. 585

8



Limitations586

Our work has the several limitations, which may587

inspire future research:588

• The performance of the proposed GSR is to589

a large extent dependent on the quality of the590

preliminary SQL generated in the first step.591

Even though the proposed clause decomposi-592

tion can to some extent enhance natural lan-593

guage interpretation for complex queries, the594

generation of the preliminary SQL may be595

worthy of further investigation;596

• Our current work focus on SQL refinement,597

but not on multi-candidate SQL generation598

and selection. Even though the proposed tech-599

niques, e.g. SQL-driven schema linking, can600

be straightforwardly incorporated in the exist-601

ing MCS solution, a systematic MCS solution602

based on GSR needs to be further investigated603

in future work;604

• Our current work doesn’t investigate model605

fine-tuning, which may be necessary consid-606

ering the challenge of Text2SQL and the ex-607

isting performance gap between LLMs and608

human beings. However, the general idea of609

iterative SQL-driven refinement may inspire610

new fine-tuning strategies for Text2SQL.611

Ethics Statement612

The datasets and models utilized in this paper, and613

the implementation of the code and the resulting614

models, are not associated with any ethical con-615

cerns.616
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A Prompt Details851

A.1 Clause Decomposition852

1. Generate Clause853

**Sentence**: Ẃhat is the average amount of loan which are still on running contract with statement854

issuance after each transaction?´855

856

Break the above sentence down into simple sentences and list them point by point in numerical order,857

returning only the simple sentences listed in numerical order.858

2. Generate Pre-SQL859

You are a database expert. Based on the following sections: ###Database Schema, ###Input, ###Hint, and860

###Logic Clause, generate the SQL query that meets the requirements of ###Input. Each section provides861

specific information:862

863

###Database Schema: Details the structure of the database, including tables and columns.864

###Input: Specifies the data the user wants to query, including required columns and conditions.865

###Hint: Provides additional context or constraints related to the ###Input. Some reference information866

for you to complete ###Input.867

###Logic Clause: Offers further explanation to clarify the query requirements.868

869

Goal: 1. Correctly understand the requirements of ###Input based on ###Logic Clause.870

2. Be sure to use the hints given in ###Hint, then determine which part of ###Input the hints are used to871

complete, and write SQL that combines the contents of ###Hint and ###Input, and do not write anything872

that is not mentioned in ###Input.873

3. Using SQLite syntax, write a single-line SQL query that selects only the columns required by ###Input.874

875

Output Format:876

877

Only return the SQL statement as a single line, following this format:878

879

###SQL: SELECT song_name , song_release_year FROM singer ORDER BY age LIMIT 1; ###END880

881

###Database schema:882

financial contains tables such as account, card, client, disp, district, loan, order, trans.883

-Table: account:884

-Column: account_id885

-Column_description: the id of the account886

-Column: district_id887

-Column_description: location of branch888

-Column: frequency889

-Column_description: frequency of the acount890

-Column: date891

-Column_description: the creation date of the account892

-Primary Key: account_id893

-Foreign Keys: district_id -> district.(district_id)894

-Table: card:895

-Column: card_id896

-Column_description: id number of credit card897

-Column: disp_id898

-Column_description: disposition id899

-Column: type900
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-Column_description: type of credit card 901

-Column: issued 902

-Column_description: the date when the credit card issued 903

-Primary Key: card_id 904

-Foreign Keys: disp_id -> disp.(disp_id) 905

...... 906

907

###Input: 908

What is the average amount of loan which are still on running contract with statement issuance after each 909

transaction? 910

911

###Hint: 912

status = ’C’ stands for running contract, OK so far; status = ’D’ stands for running contract, client in debt. 913

’POPLATEK PO OBRATU’ stands for issuance after transaction 914

915

###Logic Clause: 916

1. What is the average amount of loan? 917

2. The loans are still on running contract. 918

3. The loans have statement issuance after each transaction. 919

A.2 SQL-driven Schema Linking 920

1. Table Column Extractor 921

Please help me extract the tables and columns involved in the following SQL statement, then list them. 922

When listing, do not use aliases, and the column names should be enclosed in double quotes. Here are 923

some examples, please follow the format of the examples for output. 924

925

###Example 1: 926

Input: 927

SELECT MAX("Free Meal Count (K-12)" * 1.0 / "Enrollment (K-12)") AS highest_eligible_free_rate 928

FROM frpm WHERE "County Name" = ’Alameda’; 929

Output: 930

{Table frpm: 931

columns:"Free Meal Count (K-12)","Enrollment (K-12)","County Name"} 932

933

###Example 2: 934

Input: 935

SELECT COUNT(*) FROM satscores s JOIN schools sch ON s.cds = sch.CDSCode WHERE 936

s.AvgScrMath > 400 AND sch.Virtual = ’F’; 937

Output: 938

{Table satscores: 939

columns:"cds","AvgScrMath"}, 940

{Table schools: 941

columns:"CDSCode","Virtual"} 942

943

Input: 944

SELECT AVG(l.amount) FROM loan l JOIN trans t ON l.account_id = t.account_id WHERE l.status IN 945

(’C’, ’D’) AND t.k_symbol = ’POPLATEK PO OBRATU’; 946

947

Output: 948
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2. Masked SQL Schema Extractor949

You are a database expert. Your task is to help me extract the tables and columns related to the ###Input950

from the ###Database Schema, based on the following components: ###Database Schema, ###Input,951

###Hint.952

953

Each section provides specific information:954

###Database Schema: Details the structure of the database, including tables and columns.955

###Input: Specifies the data the user wants to query, including required columns and conditions.956

###Hint: Provides additional context or constraints related to the ###Input.957

958

Please follow the steps below and write down each step of the process:959

1. You need to understand exactly what ###Input needs.960

2. Please based on the column_description of the columns of each table, I need you to help me find the961

columns related to ###Input as per the requirement. For each table, you need to find 1 to 3 columns that962

may be related to ###Input. Note that each table is required.963

3. Please list the columns that you think are related to the ###Input in the format below. For each table,964

you need to list 1 to 3 columns that may be relevant, even if they are not. Please do not use another format,965

return only what is in the format below, no additional information. Format:966

###Related Schema967

{Table satscores:968

columns:"cds","AvgScrMath"},969

{Table schools:970

columns:"CDSCode","Virtual"}971

###END972

973

###Database schema:974

financial contains tables such as account, card, client, disp, district, loan, order, trans.975

-Table: account:976

-Column: account_id977

-Column_description: the id of the account978

-Column: district_id979

-Column_description: location of branch980

-Column: frequency981

-Column_description: frequency of the acount982

-Column: date983

-Column_description: the creation date of the account984

-Primary Key: account_id985

-Foreign Keys: district_id -> district.(district_id)986

-Table: card:987

-Column: card_id988

-Column_description: id number of credit card989

-Column: disp_id990

-Column_description: disposition id991

-Column: type992

-Column_description: type of credit card993

-Column: issued994

-Column_description: the date when the credit card issued995

-Primary Key: card_id996

-Foreign Keys: disp_id -> disp.(disp_id)997

......998

999

14



###Input: 1000

What is the average amount of loan which are still on running contract with statement issuance after each 1001

transaction? 1002

1003

###Hint: 1004

status = ’C’ stands for running contract, OK so far; status = ’D’ stands for running contract, client in debt. 1005

’POPLATEK PO OBRATU’ stands for issuance after transaction 1006

1007

###Logic Clause: 1008

1. What is the average amount of loan? 1009

2. The loans are still on running contract. 1010

3. The loans have statement issuance after each transaction. 1011

3. Refine Pre-SQL 1012

You are a database expert. Please help me check the Pre-SQL based on ###Input, ###Hint, ###Pre-SQL 1013

and ###Value Examples. Please follow the steps below: 1014

1. Pay close attention to the column_description (if provided) for each column in the ###Value Examples. 1015

Explicitly write out the column_description, analyze them, and check if the correct columns are being 1016

used in the current SQL. 1017

2. Pay close attention to the value_description (if provided) and the value_sample for each column. 1018

Explicitly write out the content of the specific value_description and the value in the value_sample. 1019

3. Please check that the value written in the SQL condition exists in the value example, if there may 1020

not be a corresponding value in the current column, it is possible that the wrong column is being used, 1021

consider whether other columns could complete the ###Input. When performing this step, please refer to 1022

the ###Value example and do not rely on the information in the ###Hint. 1023

4. Check the values used in the conditional section of the SQL, compare the values in the SQL with 1024

the values in the value_sample displayed, and make sure that the values are case-accurate (this is very 1025

important). 1026

5. If you identify any issues with the current SQL after your analysis, please help correct it. While fixing 1027

the SQL, ensure that it follows SQLite syntax. If no issues are found, do not make any changes, and 1028

provide the original SQL as is. 1029

6. If the SQL contains arithmetic operations, explicitly identify the arithmetic operation parts and force 1030

the use of the CAST function to convert those parts to a floating-point type. 1031

7. Provide the final SQL with or without corrections based on your analysis. 1032

8. Please place the final SQL on the last line and write the SQL in a single line following the format 1033

below, without adding any line breaks in the SQL and without using any other format: 1034

###SQL: SELECT song_name, song_release_year FROM singer ORDER BY age LIMIT 1; ###END 1035

1036

###Database schema: 1037

financial contains tables such as account, card, client, disp, district, loan, order, trans. 1038

Table account: 1039

Columns: account_id, district_id, frequency, date 1040

Primary Key: account_id 1041

Foreign Keys: district_id -> district.(district_id) 1042

Table card: 1043

Columns: card_id, disp_id, type, issued 1044

Primary Key: card_id 1045

Foreign Keys: disp_id -> disp.(disp_id) 1046

...... 1047

1048

###Input: 1049

What is the average amount of loan which are still on running contract with statement issuance after each 1050
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transaction?1051

1052

###Hint:1053

status = ’C’ stands for running contract, OK so far; status = ’D’ stands for running contract, client in debt.1054

’POPLATEK PO OBRATU’ stands for issuance after transaction1055

1056

###Value Examples:1057

-Table: loan1058

-column: date1059

-column_description: the date when the loan is approved1060

-value_sample: [’1994-01-05’, ’1996-04-29’, ’1997-12-08’] (Total records: 682, Unique values:1061

559)1062

-column: loan_id1063

-column_description: the id number identifying the loan data1064

-value_sample: [4959, 4961, 4962] (Total records: 682, Unique values: 682)1065

......1066

1067

###Pre-SQL:1068

SELECT AVG(l.amount) FROM loan l JOIN trans t ON l.account_id = t.account_id WHERE l.status IN1069

(’C’, ’D’) AND t.k_symbol = ’POPLATEK PO OBRATU’;1070

1071

A.3 Execution Refinement1072

The result of the above sql execution is as follows:1073

[(205065.26074275715,)]1074

1075

###Input:1076

What is the average amount of loan which are still on running contract with statement issuance after each1077

transaction?1078

1079

###Hint:1080

status = ’C’ stands for running contract, OK so far; status = ’D’ stands for running contract, client in debt.1081

’POPLATEK PO OBRATU’ stands for issuance after transaction1082

1083

Please analyze whether the given SQL query meets the following requirements and whether its execution1084

result is reasonable.1085

1086

### Step 1: Requirement Check1087

- Confirm whether the SQL query aligns with the requirement specified in ###Input.1088

- Keep an eye on ###Hint for information that is a reference to help you check your SQL, based on the1089

information provided in ###Hint, verify if the SQL query correctly understands and applies the relevant1090

concepts or constraints.1091

- One situation requires special attention. If you think that the parts related to values in the SQL1092

do not match the ###Hint, please clearly state the relevant value_sample from the ###Value Exam-1093

ple. When making corrections to the values, please base them on the value_sample rather than the ###Hint.1094

1095

### Step 2: Result Reasonableness1096

- Analyze whether the execution result of the SQL query matches the expected outcome and satisfies the1097

requirements in ###Input.1098

- If the SQL involves arithmetic operations, check that the data types in the arithmetic operations section1099

are correct, and write your analysis in a descriptive manner.1100

- If the SQL execution result is empty, it indicates an issue with the query, as the database is guaranteed to1101
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contain data that satisfies the ###Input requirements. In such cases, adjust the SQL query to ensure it 1102

meets the requirements and returns a valid result. 1103

1104

### Guidelines 1105

- If the SQL query already meets the requirements in ‘###Input‘ and ‘###Hint‘ and produces a reasonable 1106

result, no changes are needed. 1107

- If it does not meet the requirements, modify the SQL query to ensure it fulfills all requirements and 1108

generates a logical and reasonable result. 1109

- Clearly write out the final corrected SQL in the format below, without using any other format. Format: 1110

###SQL: SELECT song_name, song_release_year FROM singer ORDER BY age LIMIT 1; ###END 1111
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